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Abstract

In multi-agent environments, effective interaction hinges on
understanding the beliefs and intentions of other agents.
While prior work on goal recognition has largely treated
the observer as a passive reasoner, Active Goal Recognition
(AGR) focuses on strategically gathering information to re-
duce uncertainty. We adopt a probabilistic framework for
AGR and propose an integrated solution that combines a joint
belief update mechanism with a Monte Carlo Tree Search
(MCTS) algorithm, allowing the observer to plan efficiently
and infer the actor’s hidden goal without requiring domain-
specific knowledge. Through comprehensive empirical eval-
uation in a grid-based domain, we show that our joint be-
lief update significantly outperforms passive goal recogni-
tion, and that our domain-independent MCTS performs com-
parably to our strong domain-specific greedy baseline. These
results establish our solution as a practical and robust frame-
work for goal inference, advancing the field toward more in-
teractive and adaptive multi-agent systems.

1 Introduction

Imagine a robot assistant working alongside a human in a
manufacturing environment. The human may be assem-
bling one of several different products, each requiring a dis-
tinct assembly sequence. To provide effective assistance,
the robot must infer the human’s intended step as early as
possible. This scenario highlights a broader challenge in
human-robot collaboration: successful interaction often de-
pends on accurately understanding the intentions and beliefs
of other agents (Demiris, 2007; Dann et al., 2023).

While crucial for effective multi-agent interaction, the
problem of recognizing other agents’ goals and modeling
their beliefs has received relatively limited attention in much
of the multi-agent systems literature. Many studies in this
area rely on model-free or learning-based approaches that
do not explicitly reason about other agents (Zhang, Yang,
and Bagar, 2021; Canese et al., 2021), or defer such rea-
soning to large language models (Li et al., 2023; Shi et al.,
2025). While these methods can perform well in reactive or
end-to-end tasks, they often lack interpretability and strug-
gle in situations that require anticipating others’ intentions
or long-term behavior. This limitation highlights the need
for multi-agent frameworks that explicitly incorporate goal
and belief modeling into decision-making—particularly in
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domains where understanding other agents is key to effec-
tive interaction.

In contrast, the goal recognition community typically em-
ploys symbolic models and planning-based approaches to
reason about agent behavior (Masters and Sardina, 2019;
Vered et al., 2018; Ramirez and Geffner, 2010). While these
studies differentiate between a range of observed agents, be
it unaware of being observed or even deceptive, they uni-
formly assume that the observer is a passive entity that can-
not affect the environment and focuses strictly on inferring
goals from a sequence of observations. However, in many
real-world scenarios the observer is not merely a passive rea-
soner but an agent capable of taking actions to shape its own
information state (Fitzpatrick et al., 2021). This aligns with
the field of active information gathering, which studies how
to select actions that reduce uncertainty (Shah, 2014; Veiga
and Renoux, 2023).

By unifying passive goal recognition with active infor-
mation gathering, Amato and Baisero (2019) introduced
the problem of Active Goal Recognition (AGR). In their
formulation, the observer is tasked with both recognizing
the actor’s goal and completing its own planning objec-
tive, requiring a balance between task execution and infor-
mation gathering. Although they model the problem as a
Partially Observable Markov Decision Process (POMDP),
they manually design the reward function instead of deriv-
ing it from the formulation. Around the same time, Shvo
and Mcllraith (2020) also proposed an AGR formulation us-
ing the STRIPS-like language. Their approach leverages a
landmark-based planning algorithm to actively collect ob-
servations for goal recognition. This method closely aligns
with traditional goal recognition as planning approaches and
does not incorporate a probabilistic formulation.

In this work, we focus on a setting where the observer’s
sole objective is to recognize the actor’s hidden goal, without
pursuing any independent task. To model this, we introduce
a Probabilistic Active Goal Recognition (PAGR) framework
based on a POMDP formulation. This framework lever-
ages structured knowledge representation and belief-based
rewards, enabling the observer to reason and act under un-
certainty. Our formulation provides a unified probabilistic
and decision-theoretic perspective to address a central ques-
tion: how should an observer act in the environment to ac-
tively uncover the actor’s goal?
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2 Related Work

In this section, we provide an overview of the previous
works that have modeled and solved related problems.

2.1 Goal Recognition

Two prevalent approaches of goal recognition are ei-
ther using plan libraries or plan recognition as planning
(PRP) (Meneguzzi and Fraga Pereira, 2021). Algorithms
based on plan libraries, also known as plan recognition as
parsing, present plans as a hierarchy of simpler actions. The
main task becomes aligning the observed actions with these
structured plans. Hierarchical Task Networks (HTNs) and
grammars are typical methods for representing knowledge
in plan libraries (Stuart and Norvig, 2016). HTN outlines
tasks using a set of subtasks and their constraints, either sep-
arately or in relation to each other. Meanwhile, grammars
describe the structure of plans through a set of production
rules. These algorithms are useful in domains where the set
of possible plans is known in advance, such as in video game
Al and robotics (Van-Horenbeke and Peer, 2021).

On the other hand, PRP approaches use standard planning
algorithms to create potential plan hypotheses for the ob-
served agent (Ramirez and Geffner, 2010; Vered, Kaminka,
and Biham, 2016; Vered and Kaminka, 2017; Zhang, Kemp,
and Lipovetzky, 2023; Kaminka, Vered, and Agmon, 2018;
Masters and Sardina, 2019). These planning algorithms are
typically formulated using planning languages like STRIPS
or PDDL, enabling them to outline the state of the environ-
ment and the impacts of applicable actions. In these ap-
proaches planners are used to calculate potential plans, as
needed, that could achieve specified goals from varied ini-
tial states. The plan recognition system then assigns weights
to these candidate plans by matching them against incom-
ing observations, and the most likely plan or goal is chosen
based on these weights.

In their survey, Masters and Vered (2021) identified the
implicit and explicit assumption made by goal recognition
researchers. A common limitation that emerges across all
prior works is the implicit assumption that the observer is a
static agent and unable to change its state to improve its goal
recognition capability.

2.2 Active Goal Recognition

Active Goal Recognition, unlike standard goal recognition,
involves an observer that can influence the observation pro-
cess through its own actions. The observations of the ob-
serving agent depend on the actions it takes within its own
domain, which may differ from the domain of the target.
This allows the observer to strategically gather information
so as to improve the accuracy and efficiency of goal infer-
ence (Shvo and Mcllraith, 2020).

Shvo and Mcllraith (2020) was the first to formalize the
AGR problem and proposed a landmark-based approach
for solving it. Their method performs hypothesis elim-
ination within a partially observable planning framework
grounded in STRIPS. Around the same time, Amato and
Baisero (2019) introduced a more general framework based
on POMDPs, enabling the handling of stochastic actions and
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transitions. Their solution relies on a linear approximation
using the SARSOP solver and requires a manually designed
reward structure, which depends heavily on domain knowl-
edge. In a related line of work, Gall, Ruml, and Keren
(2021) studied Goal Recognition Design (GRD) in an active
setting, where the observer can interact with and modify the
environment to induce the actor to reveal their true goal ear-
lier. However, their formulation assumes full observability,
and the observer’s actions aim at breaking path symmetries
rather than gathering information.

In this work, we propose Probabilistic Active Goal
Recognition (PAGR) to address the limitations of prior ap-
proaches. Our formulation considers a partially observable
setting where the observer must act to collect information
and reduce uncertainty over the actor’s goal, within a uni-
fied probabilistic and decision-theoretic framework.

2.3 Active Information Gathering and Online
POMDP Solvers

To effectively perform AGR in partially observable environ-
ments, the observer must continuously update its beliefs and
select informative actions in real time. This aligns with the
broader literature on active information gathering and online
POMDP solving. In this section, we review key approaches
and solvers relevant to this approach.

Traditional information gathering has mostly been viewed
as a means to an end in planning problems under uncertainty.
In contrast, active information gathering refers to scenar-
ios in which acquiring information about the environment or
other agents is an integral part of the system’s objective (Ba-
jesy, 1988). While standard reactive sensing relies on deci-
sions driven by observed data, active information gathering,
also known as active sensing, addresses this challenge by
developing strategies that incorporate reasoning, decision-
making, and control to maximize the value of the informa-
tion collected (Veiga and Renoux, 2023).

These problems are usually modeled as POMDPs. Under
the extension of uncertainty, the model is modified with a
belief-based reward rather than a state-based one, resulting
in what is known as a p-POMDP. However, p-POMDPs are
computationally more expensive than normal POMDPs due
to the introduction of the belief space (Araya et al., 2010).

Due to the intractability of solving POMDPs offline in
complex domains, online POMDP solvers have been de-
veloped over the past two decades to enable scalable plan-
ning. A prominent example is POMCP (Silver and Veness,
2010), which applies Monte Carlo Tree Search (MCTS)
to sample and evaluate future trajectories from the current
state without modeling the belief space. Building on this
approach, many variants have been proposed, differing in
components such as backup strategies and sampling mech-
anisms (Sunberg and Kochenderfer, 2018; Thomas Vincent,
Hutin Gérémy, and Buffet Olivier, 2020). To further im-
prove scalability, especially in continuous state or action
spaces, Sunberg and Kochenderfer (2018) introduced an ex-
tension of POMCP that supports planning in continuous do-
mains, greatly expanding the applicability of online solvers
to p-POMDPs. These advances provide a practical founda-
tion for active decision-making in our setting.
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Figure 1: Illustrated example for Active Goal Recognition.

3 The Probabilistic Active Goal Recognition
Problem

To motivate the problem, consider a simplified scenario
where a single actor navigates an environment to reach one
of two possible goals. An observer, aiming to identify the
actor’s true goal as efficiently as possible, is allowed to place
a monitor in just one location. As shown in Figure 1, the two
potential goals are marked by green and purple boxes. The
observer knows the actor’s starting position and that the true
goal is one of the two possibilities, but receives no informa-
tion about the actor’s movements once the task begins ex-
cept through the monitor, mimicking the limited observabil-
ity available in real-world settings. The monitor provides a
single observation by triggering if the actor passes through
the chosen location. The challenge for the observer is to
strategically place the monitor so as to maximize the chance
of correctly inferring the actor’s goal.

Let us examine two potential monitor placements, indi-
cated by the red heart and blue diamond. Although the actor
is very likely to pass through the blue diamond cell, this ob-
servation may offer little value: it lies along the optimal path
to both potential goals, and thus provides minimal disam-
biguation. In contrast, placing the monitor on the red heart
cell will yield a more informative observation. If the actor
passes through it, this strongly indicates the green goal is
the intended destination. Conversely, if the actor does not
trigger the monitor at the red cell, this absence of evidence
counts as negative evidence against the green goal, increas-
ing the likelihood that the purple goal is the true target. This
example shows the importance of selecting observer actions
that maximize informativeness for goal disambiguation.

3.1 Formal Definition

We consider an environment shared by two agents: an actor
and an observer. The actor is engaged in solving a plan-
ning problem to achieve a hidden goal, while the observer
aims to infer this goal, as early as possible, while potentially
interacting with the environment. We assume keyhole GR
whereby the actor is unaware of, and unaffected by, being
observed (Masters and Vered, 2021); that is, the actor’s pol-
icy and state transitions are independent of the observer’s
state or actions. This assumption simplifies the formulation
and is consistent with prior work in passive goal recogni-
tion. Extending the framework to model interactive actors is

882

an important direction for future research, see Section 6.

We build on the Active Goal Recognition (AGR) formula-
tion introduced by Amato and Baisero (2019), which allows
for various types of observer actions, while the determinis-
tic observation model is limited to specific types of obser-
vations that directly relate to the actor. In this work, we
adapt and generalize their formulation to create a more con-
cise and broadly applicable formulation. In particular, we
redefine the observation function to depend jointly on the
states of both the actor and the observer. This modification
enables a more flexible and expressive model of perceptual
uncertainty, accommodating a wider range of observation
scenarios. We note that our formulation falls within the fac-
tored DEC-POMDP framework (Oliehoek, Amato, and oth-
ers, 2016), which captures structured multi-agent decision
making under partial observability.

In the environment, the actor solves the following plan-
ning problem Pyctor = (S0, Eactors 9, Where the environ-
ment dynamics E,e10r = (S, A4, f4) are determined by
the actor’s state space S, the initial state sg € S, the actor’s
action space A4, the transition function f4(s,a?,s’) =
P(s' | s,a®) and the goal state g* € S. Given the ac-
tor planning problem P, the observer performs AGR
PPAGR = <5actor7u7 Ug, -AO7 fO, Oa fObSa g> where:

» U is the state space of the observer.
e ug € U is the initial state of the observer.
+ A9 is the observer’s action space.

o fOu,a®,u’) : U x A9 x U — [0,1] be the observer’s
transition probability function, representing the probabil-
ity of transitioning from state v to u’ given an observer
action a©.

* O is the observation space.

o fobs(u,8,0) : U x S x O — [0, 1] denote the observation
function, specifying the probability of observing o € O
given observer state u and actor state s. For simplicity,
we assume that it depends only on the current states.

e G C S is the candidate goal set such that g* € G.

Here, the observation space O (e.g. detect, not detect in
the motivated example) captures the fact that the observer
never sees s directly but must infer it via these partial,
state-dependent signals from the observation function fps.
Unlike prior AGR formulations that treat sensing/observing
as a distinct action class, our framework assumes a more
general setting in which every observer action may influ-
ence the distribution of its subsequent observations. Note
that while the observer has access to the actor’s environment
dynamics E,.t0r, it does not know the actor’s specific goal
g* or the initial state sg. Meanwhile, it is assumed to know
the set of candidate goals G.

At each time step t, the actor is in state s; € S. The
actor’s state evolves stochastically according to the transi-
tion dynamic P(s;11 | s¢,af'), where actions af* € A4
are selected based on a (possibly stochastic) policy 74 (a;4 |
st, g*) that aims to achieve the goal g*. This policy arises
from solving a planning problem conditioned on the goal.
Importantly, the observer does not have access to the actor’s
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policy 74, and cannot observe the actor’s states or actions
directly.

The observer maintains its own observer state u; € U,
which evolves according to its own transition dynamic f©.
While the observer does not have access to the actor’s in-
ternal state or policy, it receives a noisy observation o, € O
that provides partial information about the actor’s state. This
process is characterized by the observation function fyps.

For notational simplicity, we will use a; to denote the ob-
server’s action at time ¢ when no ambiguity arises. In Prob-
abilistic Active Goal Recognition (PAGR), the observer aims
to infer the actor’s hidden goal g* € G through a sequence
of interleaved actions and observations, which involves two
key components. First, at each time step ¢, the observer
maintains a belief distribution over all candidate goals, de-
noted b;(g) for each g € G. Second, it must execute a be-
havior policy to gather informative observations that support
belief update.

Quantifying the effectiveness of the observer’s algorithm
is non-trivial. In many applications, it is important not only
to identify the correct goal but to do so both early and con-
fidently. To formalize this, we adopt the notion of conver-
gence (CV), following the formulation introduced by Vered
et al. (2018), which captures both the timeliness and cer-
tainty of goal inference:

T_ *
7:;(9 ), if3r(g*) < T

otherwise

where 7(¢*) = min {¢ : Vt' € [t,T], b:(g*) > 0}, T is the
total task horizon, and 6 is a predefined threshold.

The objective of the PAGR problem is to find an observer
policy 7°(a; | wu,00.¢) that selects informative actions,
along with a belief update mechanism that maintains b;(g)
over time, in order to maximize the convergence CV(g*)
with respect to the true goal in a stochastic environment.

4 Inference and Planning for Active Goal
Recognition

To address the PAGR problem, we propose a framework that
integrates probabilistic belief update with decision-theoretic
planning. In this framework, the observer maintains a joint
belief distribution over the actor’s possible goals and states,
and selects actions aimed at actively reducing this uncer-
tainty. The belief is updated using a Bayesian inference
mechanism informed by the sequence of observations ob-
tained through interaction with the environment. To deter-
mine informative actions, we employ a Monte Carlo Tree
Search (MCTS) algorithm tailored to the PAGR setting. This
section introduces the joint belief update formulation and the
MCTS algorithm that guides the observer’s behavior.

4.1 Joint Belief Update

The observer maintains and updates a belief over both the
actor’s hidden goal g and its internal state s for each time
step t. This is represented as a joint belief over the pair
(s¢,g). Note that the update of this belief depends not only
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on the history of the observations og.;, but also on the ob-
server’s own trajectory ug., since the observation function
fobs 18 conditioned on the observer’s state. Intuitively, this
reflects the fact that the informativeness of each observa-
tion depends on the observer’s state, which determines its
perspective and sensing capabilities. To formalize this, we
define the joint belief distribution 7, at time ¢ as:

Ji(st,9) = P(s¢,9 | 004, u0:t), (D

which expresses the observer’s probabilistic estimate of the
actor being in state s; and pursuing goal g, given the ob-
servation and observer state histories. This joint distribution
forms a matrix over S x G.

Next, we adopt a sequential update approach, where the
belief j; is recursively computed from j;_1, using newly ac-
quired information (o, u;). To model the actor’s behavior,
we assume it follows a goal-directed policy. Under this as-
sumption, the actor’s state transition can be written as:

P(St | Stflag) = ZP(St | StflyaA)fTA(aA | Stflyg)v
aA

2
where P(s; | s;_1,a®) is the known environment dynamics
4 and 74(a? | s;_1,9) is how observer models actor’s
goal-conditioned policy.

Using this, we first perform a prediction step:

P(Sug ‘ 00:t717U0:t71)

= Z P(st,9,5t—1 | 00:—1,U0:t—1) (3)
St—1

= Z P(st | st-1,9)P(st-1,9 | 00:4—1,u0:4-1)  (4)
St—1

=" P(st | s-1,9)je-1(5-1, 9)- (5)
St—1

Equation 3 applies marginalization. Equation 4 uses local
Markov property of s;, which states that s; is conditionally
independent of past variables given s;_; and g; Equation 5
is the definition of j; 1.

Then, we perform the update step using the current obser-
vation (o¢, u;) and the observation model P (o | s¢, ut):

jt(stvg) = P(Stag | OO:t7UO:t) 6)

P(o; | s¢,up) - P(s¢, 9 | 00:4—1,U0:¢—1)
Zs;,g’ P(ot | sy, ut) - P(s}, 9" | 00:¢—1,u0:t-1)
(7N

This equation applies Bayes’ rule to incorporate the new ob-
servation o; and observer state u;. The numerator reflects
the product of the observation likelihood P(o¢ | s¢,u;) and
the predictive belief P(s, g | 00.t—1, uo.t—1) obtained from
the previous step. The denominator normalizes the distribu-
tion by summing over all possible state-goal pairs (s}, ¢’),
ensuring that 7, is a valid probability distribution. This step
also relies on the conditional independence assumption:

P(Ot | StygaOO:t—lvu():t) = P(Ot | stvut)v (8)

which states that given the current actor state s; and observer
state u;, the observation o; is conditionally independent of
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the goal g, the observation history og.;—1, and the observer’s
previous trajectory wug.;—j. This follows from the structure
of the observation model and is a consequence of the local
Markov property in the underlying graphical model.
Combining both steps yields the full recursive update:

Je(st,9) =
P(oy | st,ut) Zst—l P(st | st-1,9)jt-1(5t-1,9)
Zs;’g’ P(Ot | 5;, Ut) Zsfﬁ_l P(S{f | 5;_1’ g/)jt—l(sé_lvg/) ’
)
We denote this update compactly as j; = h(ji—1,us, 0¢) ,
indicating that the current joint belief is computed from the
previous belief and the latest information.
Once the joint belief distribution j; (s, g) is obtained, the

marginal belief over goals can be computed by summing
over the actor’s possible states:

be(g) = th(shg)'

(10)

4.2 Belief-Guided Action Selection

With the joint belief j; computed at each time step, the ob-
server must choose an observer action a; € A that maxi-
mizes its ability to infer the actor’s true goal. A natural re-
ward signal R(j;) is the marginal belief b, (g*), which quan-
tifies the observer’s confidence in the true goal g* under the
current belief j;. However, this formulation is not directly
usable for action selection, since the observer does not know
which goal g is the true goal.

Instead, the observer can aim to maximize the expected
confidence across all possible goals. Conditioning on the
current joint belief j;, the expected reward R(j;) becomes:

R(jt) = Egup(ginbe(9)] = Y _bilg)- Plg | 4r) (11)

= Zb?(g) = (th(3t79)>2~

since P(g | j:) = bi(g). This squared belief reward en-
courages the observer to take actions that sharpen the goal
distribution—i.e., to reduce uncertainty and increase confi-
dence in a particular goal.

Given the reward signal defined from the joint belief, the
observer aims to select actions that maximize the discounted
cumulative expected reward. Formally, for any policy 7€,
we define the value function at time ¢ as:

Vi (eowr) = E”O{Zw’“-fR(jk) | i, ut} (13)

k>t

(12)

where v € [0, 1] is the discount factor, and the expectation is
taken over the stochastic belief transitions and observer-state
dynamics induced by 7©.

Correspondingly, we define the action-value function

Q7 oy usy ar) = EWO[Z’Yk_tR(jk) | e e, Gt],
k>t

(14)
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which gives the expected return when the observer takes ac-
tion a; in (j;, u;) and thereafter follows policy 7©.

The optimal policy 7©* is defined as the policy that se-
lects the action maximizing the expected future value at each
time step, which satisfies the Bellman relations:

*

O . . ﬂ'o* .
Vi (Je,ue) = R(Jje) + max Q7 (Jr,ue,ae), (15)
(@]
QY

o* . 3
=ENWViiy (et wer1)les ue, ael.

*

(Je, e, ar)
(16)
(17

. o* .
WO*(at | Jesug) = argmfof (je,ue, a).

To evaluate the Q-function in Equation 16, we decom-
pose the expectation over the possible future observer states

and observations that influence the update of the joint belief.
This leads to the expansion of Equation 16:

o* . .
E {’thjil (o1, tes1) ’ Jta“taat}

=~ Z P(uty1 | ug,az) Z P(oi41 | wig1,Jt)

Ut41 Ot41

o* )
Vi (h(jes w1, 0041)5 Utg1)s (18)

where h(js, uss1,0041) is the joint belief update function
specified previously in Equation 9. The observation likeli-
hood under the belief j; is computed as:

P(ors1 | ursr, ) = > Plovr | sian,wern) Plsien | i),
St41

19)

P(sesr | o) = Y Plseer | s6,9)ie(st,9). 20)

Stsg

This formulation highlights how the observer policy 7¢
affects the future expected reward, that is by determining
the action a;, the observer controls the transition to the next
state u;41, which affects the subsequent observation oy 1,
and thereby influences the updated belief j,, ;. Because the
reward R(j;) depends on the confidence in the actor’s goal
encoded in the belief, the observer is incentivized to choose
actions that lead to informative observations. This captures
the essence of the PAGR problem where the observer is not
just passively reacting to observations but actively selecting
actions to accelerate goal inference by driving belief updates
toward greater certainty.

4.3 Monte Carlo Tree Search for Active Goal
Recognition

In the previous subsection we established a principled
framework for observer action selection based on maximiz-
ing the expected cumulative reward under the joint belief.
This formulation, grounded in the Bellman equations, cap-
tures how observer actions influence future beliefs and ulti-
mately the confidence in goal inference. However, comput-
ing exact value or Q-functions becomes computationally in-
feasible in practice due to the high-dimensional belief space
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and stochastic dynamics involved in belief updates. The ex-
ponential growth of possible observation-action trajectories
renders exact planning intractable in realistic settings.

To overcome this challenge, we employ Monte Carlo
Tree Search (MCTS), which is a sample-based online
solver that approximates optimal actions via forward sim-
ulation. Rather than exhaustively evaluating all possible be-
lief trajectories, MCTS incrementally constructs a search
tree rooted at the current belief j; and observer state wuy;.
Through repeated simulations, it estimates the value of dif-
ferent action branches by sampling possible observation out-
comes and belief transitions. At each time step, MCTS
selects an action according to the approximation a; =~

arg max,, Q7 ‘ (jt,ut, at), where the Q-values are esti-
mated from simulations.

We now describe our adaptation of MCTS for the PAGR
problem, which is similar to PFT-DPW introduced in Sun-
berg and Kochenderfer (2018) but without double progres-
sive widening. To model the uncertainty in observations, our
MCTS tree alternates between decision nodes and chance
nodes. The root node represents the current joint belief j;
and observer state u;, and is a decision node where the ob-
server selects an action a;. This node approximates the value

function Vt’TO (ji, ut), and each child node corresponds to
a possible action a;, forming a chance node. A chance node

represents the Q-value Qfo (Jt, us, ar). At this node, we
perform the belief prediction step (Equation 3-5) and sim-
ulate forward by sampling a goal §, actor state s;y1, ob-
server state u;y1, and observation o;y; from the updated
belief. Using these, we update the joint belief to obtain
je+1 = f(Jt,us41,0141) as shown in Equation 9. We use
lazy expansion for chance nodes, meaning that new decision
nodes are only generated when selected for the first time to
avoid full enumeration of the large belief space. During the
tree traversal, decision nodes use the UCB1 algorithm for
action selection. Chance nodes select the child by sampling
from current subjective belief maintained by the observer. In
the backpropagation stage, we backup values by averaging
the values of child nodes, which improves robustness under
partial observability. At decision nodes, we also incorpo-
rate the immediate reward R(j;) into the backup. To reduce
computational cost, we initialize newly expanded nodes with
their immediate reward R(j;1) rather than performing ran-
dom rollouts. By combining the belief update mechanism
introduced in Subsection 4.1 with MCTS described in this
subsection, we obtain a complete algorithm for solving the
AGR problem, which we refer to as AGR-MCTS.

5 Active Goal Recognition in Grid World

We present a case study of the AGR problem in a classic
two dimensional grid world domain, which is widely used
in both goal recognition (Masters and Sardina, 2019) and
active information gathering (Varotto, Cenedese, and Cav-
allaro, 2021). In this environment, the actor, observer, and
goals are represented as discrete positions on a grid.

While our general framework described in previous sec-
tions supports stochastic transitions and observations, we
adopt a simplified deterministic setting in this section to bet-
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Figure 2: Illustrative experimental environment. The red cone rep-
resents the observer, and the green cone represents the actor, with
each cone indicating their orientation. The light gray region de-
notes the observer’s field of view (FoV). Colored squares mark
candidate goal locations. For clarity, the grid size is scaled down
to 8 x 8 with a FoV of 3 x 3.

ter illustrate the core ideas. Specifically, we assume deter-
ministic transitions for both the actor and the observer, as
well as deterministic observations. As a result, the transition
models (Equations 2 and f©) and the observation function
fobs are treated as Dirac distributions.

The environment includes static obstacles that the actor
cannot traverse. The actor starts from an initial location s
and aims to reach a fixed goal location g*. The observer also
starts from a random location ug, but unlike the actor, it is
allowed to traverse obstacles. Both agents share the same
action space: move forward, turn left, turn right, and stay.
The state of each agent is defined by its grid position and
facing direction, which are the only relevant state variables
in this domain. The observer also has a set of potential goals
G so that g* € G, which is consistent with prior work in goal
recognition. An illustrative layout is shown in Figure 2.

The observer is equipped with a Field of View (FoV). In
our experiments, the FoV is defined as a 5 x 5 grid extending
in the observer’s facing direction. The observer is positioned
at the center of the back row of this grid, meaning the FoV
extends two cells to the left and right and five cells forward
relative to the observer’s orientation. Cells in the FoV are
excluded if a direct line of sight is blocked by an obstacle.
The observation model is straightforward: the observer ob-
tains the actor’s position if it falls within the FoV; otherwise,
it receives a “not observed” signal.

Most prior work in goal recognition assumes the actor be-
haves optimally, limiting applicability to realistic settings.
In contrast, we introduce a more realistic and challenging
scenario by modeling bounded rational behavior. Specifi-
cally, we generate a private cost map known only to the ac-
tor. The actor then computes an optimal path to its goal g*
under the private cost map, resulting in behavior that may
appear suboptimal from the observer’s perspective.

We implement this multi-agent environment using the
MultiGrid Python library (Li et al., 2023).

5.1 Experiment Setup

We evaluate several algorithms on the previously described
grid world domain to illustrate the inherent challenges of
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AGR. To systematically vary the difficulty of the task, we
manipulate two key factors: grid size and the initial distance
between the actor and the observer. We consider two grid
sizes: a small grid (10 x 10) and a large grid (20 x 20). For
each grid size we test three levels of initial actor-observer
distances: easy (3 cells), normal (5 cells), and hard (7 cells
in small grid and 10 cells in large grid).

The observer’s Field of View (FoV) is fixed at five cells.
In the easy condition, the actor often falls within the ob-
server’s initial FoV, making it observable from the start. In
contrast, under the hard condition, the actor starts far enough
away that it is initially unobservable. These combinations
yield a total of six unique environment configurations.

For each configuration, we generate ten random grid lay-
outs, each with static obstacles. To simulate imperfect be-
havior and induce goal ambiguity, each layout includes a
hidden cost map for the actor, encouraging suboptimal paths.
For each layout, we then create five distinct task instances.
In each instance, we randomly sample three goal candidates
G and randomly select one as the actor’s true goal g*. The
actor’s starting position sq is randomly assigned. The ob-
server’s starting position ug is then placed at the specified
distance from the actor according to the configuration, and
its initial orientation is set to face the actor. Importantly, the
observer has access only to the goal candidate set G and no
other information about the actor’s internal state or behavior.
Each episode concludes once the actor reaches its goal.

Evaluation Metrics. As introduced in Section 3, we use
convergence (CV) as the primary evaluation metric, with a
threshold parameter set to 6 = 0.5. In addition, we report
two auxiliary metrics: (1) Final probability: the average fi-
nal belief probability assigned to the true goal by (g*), where
T denotes the length of the episode (i.e., the number of steps
the actor takes to reach the goal) and (2) Success rate: the
percentage of instances in which the true goal g* was cor-
rectly identified by the observer by the end of the episode
(i.e. br(g*) > 0 was considered as correctly identified).

We compare our proposed method, AGR-MCTS, against
several baseline approaches. Here, we introduce our own
domain-specific Belief-Greedy algorithm, which uses joint
belief updates but selects actions greedily. It is always mov-
ing toward the most likely actor position without considering
long-term planning. A brief description of each approach is
provided in Table 1. By default, our formulation uses the
accumulated belief in the true goal as the primary reward
signal, reflecting the confidence gained over time in the cor-
rect hypothesis. However, the active information gathering
literature often employs entropy reduction as a reward signal
to encourage uncertainty minimization (Veiga and Renoux,
2023). To assess the effectiveness of this alternative strategy,
we extend AGR-MCTS by incorporating an entropy-based
regularization term of actor state into the reward function.
We set the number of MCTS iterations to 100 to balance
computational efficiency and decision quality, and the algo-
rithm assumes an e-greedy actor model for belief update in
Equation 2.
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5.2 Passive Goal Recognition

For the passive goal recognition algorithm, we adopt the
single-observation approach proposed by Masters and Sar-
dina (2019), which has been shown to be effective in simi-
lar grid world domains. This approach is particularly well-
suited to our setting, where the number of valid observations
(i.e., known actor positions) may be very limited. Its ability
to perform inference based on a single observation is espe-
cially advantageous under such constraints.

The original method assumes access to the actor’s start
position, which is not always available in our setting. To ad-
dress this, we adapt the algorithm to a more general setting.
Specifically, if no valid observation has been made, we de-
fault to the prior distribution over goals. Once a valid obser-
vation o is available, we compute an accumulated cost differ-
ence value for each goal g, denoted as cdiff(o, g), and apply
the probabilistic model from Ramirez and Geffner (2010):

efﬁ-cdiff(o,g)

Plglo) = T——5mog

2D
where « is a normalization constant and [ is a scaling pa-
rameter.

In the formulation by Masters and Sardina (2019), this
cost difference is computed using the final observation and
a known start state. Instead, we extend this to operate in-
crementally by maintaining accumulated cost differences
across observations. When a new valid observation o; is
made, we consider the last valid observation o', and update
cdiff(g) as follows:

cdiff(g) < cdiff(g) +optc(oy, g) +step(o’, o) —opte(0’, g),

(22)
where optc(o, g) denotes the optimal cost from observation
oto goal g, which can be precomputed, and step(o’, ;) is the
number of steps taken between the two observations, which
is directly accessible.

This incremental formulation allows the method to ac-
commodate suboptimal behavior and operate under partial
observability, without requiring any additional online plan-
ning. Although this represents a novel adaptation of passive
goal recognition for settings with substantial missing obser-
vations and online inference requirements, we present it here
only briefly, as it is not the primary focus of this work.

5.3 Results

Table 2 presents a comparative evaluation of the four se-
lected algorithms across the six unique environment con-
figurations, combining variations in grid size (Small/Large)
and initial distance conditions (Easy/Normal/Hard). As the
three metrics exhibit similar performance trends across con-
figurations, we focus on the Coverage (CV) metric in the
following discussion for clarity and conciseness.

Among all algorithms inspected, Belief-Greedy consis-
tently demonstrates strong performance across all configu-
rations, achieving the highest scores under most conditions.
AGR-MCTS, which incorporates a more complete planning-
based approach, further improves performance in easier sce-
narios, where it outperforms all other methods.
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Method Goal Inference

Action Selection

Reward Design

Passive-Random Passive Goal Recognition

Search-and-Follow Passive Goal Recognition

Belief-Greedy Joint Belief Update

AGR-MCTS Joint Belief Update

Random

Actively searches for the actor,

N/A
N/A

then follows its trajectory.

Greedy Negative distance to most likely
actor position.
MCTS Accumulated Goal Probability

plus actor state entropy

Table 1: Comparison of AGR-MCTS and some of ablation algorithms, in terms of goal inference, action selection, and reward design.

Algorithm Metric S-E S-N S-H L-E L-N L-H
Ccv 0.12 0.03 0.03 021 0.09 0.06
Passive-Random SR 024 0.12 0.18 028 0.16 0.12
FP 051 042 044 052 043 040
[6\Y 026 0.14 0.09 031 0.12 0.08
Search-and-Follow SR 066 046 034 054 024 0.16
FP 075 062 053 070 049 043
CcvV 035 027 024 045 031 0.22
Belief-Greedy SR 082 076 0.68 0.80 0.70 0.60
FP 087 082 0.78 0385 0.79 0.69
(&)Y 039 022 021 051 030 0.12
AGR-MCTS SR 082 070 0.66 086 0.60 0.30
FP 08 076 0.76 090 0.72 0.54

Table 2: Results across six configurations for each algorithm. Each algorithm is evaluated using three metrics: Convergence (CV), Success
Rate (SR), and Final Probability (FB). The best performance for each metric in each configuration is highlighted in bold. S and L denote
Small and Large grid sizes, respectively, while E, N, and H indicate Easy, Normal, and Hard initial distance conditions.

In contrast, the Passive-Random and Search-and-Follow
baselines perform significantly worse, indicating that non-
belief-driven strategies struggle under partial observability.
Overall, the results demonstrate the advantage of combining
belief-aware planning and informative rewards for AGR in
partially observable environments.

Goal Inference Comparison To further evaluate the ef-
fectiveness of the proposed joint belief update mechanism,
we conduct an ablation study comparing it with the passive
goal recognition algorithm. Specifically, for the same se-
quence of observations collected under four different algo-
rithms, we apply both the passive goal recognition and the
joint belief update methods, and compare their performance,
as illustrated in Figure 3.

Joint belief update outperforms the passive baseline
across all configurations and action selection strategies. This
improvement is primarily due to how each approach handles
missing observations. In passive goal recognition, only pos-
itive observations (i.e., those where the actor is detected) are
utilized for inference, while unobserved signals are treated
as missing observation and thus provide no information. In
contrast, the joint belief update algorithm leverages both ob-
served and unobserved information. Returning to our mo-
tivating example, if the observer receives no signal when
monitoring at the red marker, the joint belief update infers
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that the actor is likely pursuing an alternative goal, rather
than treating this absence of evidence as uninformative.

6 Discussion

In this section, we discuss the insights from our experiment
results and highlight the potential future directions in the
field of AGR.

6.1 Goal Inference Mechanism

Our experimental evaluation confirms the superior perfor-
mance of joint belief updating over passive goal recogni-
tion algorithms. Like we discussed in the previous section,
the key advantage lies in the belief formulation’s capacity
to seamlessly integrate all available information. Although
passive goal recognition methods could potentially exploit
similar information by explicitly modeling missing observa-
tion effects, such an approach would incur exponential com-
putational cost due to model size expansion. These results
validate the theoretical advantages of belief-based goal in-
ference approaches in POMDP settings.

6.2 Action Selection Strategy

While there is a clear advantage to the belief update and goal
recognition mechanism, the complexity of designing effec-
tive online solvers in PAGR settings became apparent even
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Figure 3: Comparison of CV between Joint Belief Update (active) and Passive Goal Recognition across different algorithms and scenario
configurations. Each group contrasts the performance of the two inference methods under the same observation sequences.

within our constrained experimental domain. Belief-Greedy
enhanced with domain-specific heuristics (i.e., distance to
the most probable actor position) achieved strong perfor-
mance through joint belief integration, but its reliance on do-
main knowledge limits its broader applicability. Conversely,
our MCTS-based approach, though not consistently supe-
rior to the greedy algorithm, maintains complete domain in-
dependence, thereby offering greater generalizability across
different domains.

For completeness, we also tested MCTS using the same
heuristic-based reward signal, yet it still underperformed
compared to the theoretically myopic greedy algorithm.
One possible explanation is that MCTS fails to search deep
enough to gather meaningful reward signals. In our do-
mains, rewards are extremely sparse, because a strong signal
only arises when the observer detects the actor. Indeed, we
measured the average search depths of just four steps in large
grids (and eight in small ones), explaining why MCTS only
outperforms the greedy strategy in simpler scenarios where
positive observations are more likely. These findings suggest
enhancing online solvers to better exploit belief information
for tree pruning and deeper lookahead (e.g., techniques like
double progressive widening (Sunberg and Kochenderfer,
2018)) as an important avenue for future work.

6.3 Relaxing Keyhole Assumption

As mentioned previously, this work focuses exclusively on
keyhole goal recognition (Masters and Vered, 2021), where
the actor remains completely unaffected by the observer.
While this assumption holds in certain scenarios, such as
a high-altitude drone monitoring ground targets, it limits the
applicability to other real-world situations. An important fu-
ture direction is extending this framework to cases where the
actor is aware of the observer, whether in collaborative set-
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tings (e.g., transparent planning as formulated in MacNally
et al. (2018)) or adversarial contexts. This represents a cru-
cial step toward more interactive multi-agent environments.

7 Conclusion

In this paper, we introduced Probabilistic Active Goal
Recognition (PAGR), a novel probabilistic formulation of
the Active Goal Recognition problem. Our main con-
tributions are twofold: (1) a formal definition of PAGR
grounded in the Partially Observable Markov Decision Pro-
cess (POMDP) framework, which enables principled rea-
soning under uncertainty; and (2) an integrated solution
framework that combines joint belief update with Monte
Carlo Tree Search (MCTY) to efficiently solve the problem
without relying on domain-specific knowledge.

We developed a comprehensive set of baselines to em-
pirically evaluate the effectiveness of our approach. The
joint belief update was shown to significantly outperform
passive goal recognition methods by making more effec-
tive use of available information. Additionally, our domain-
independent MCTS approach performed comparable to that
of our strong domain-specific greedy algorithm, suggesting
a promising direction for future work on developing more
effective domain-independent methods for PAGR.

In summary, the presented contributions push the bound-
aries of AGR and offer a rigorous platform for continued
exploration in multi-agent reasoning, goal inference, and
decision-making under uncertainty.
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