Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Probabilistic HTN Planning:
Formalization and Computational Complexity Analysis

Mohammad Yousefi, Johannes Schmalz, Patrik Haslum, Pascal Bercher

School of Computing, The Australian National University

{mohammad.yousefi, johannes.schmalz, patrik.haslum, pascal.bercher} @anu.edu.au

Abstract

Hierarchical Task Network (HTN) planning is an approach
to sequential decision making that allows expressing com-
plex grammar-like path constraints. In this paper, we first
introduce an extension to HTN planning that takes proba-
bilistic outcomes into account, and then study the computa-
tional complexity of deciding such problems either by find-
ing a fixed sequence of actions (i.e., a conformant solution)
or an outcome-dependent policy. This formalization extends
factored Markov Decision Processes (MDPs) to have a hierar-
chical structure. In all studied cases, the conformant solutions
are harder to obtain than their non-deterministic analogues,
whereas policies are not always harder. Surprisingly, unlike
their deterministic counterparts, severely restricted cases of
probabilistic HTN problems are proven to be undecidable.
The result holds even if all of the transition probabilities are
bounded to be 0, 0.5, or 1.

1 Introduction

Markov Decision Processes (MDPs) are one of the funda-
mental frameworks for decision making under uncertainty,
and there has been extensive research on the computa-
tional complexity of solving them under various conditions
(Littman, Goldsmith, and Mundhenk 1998; Littman 1997,
Papadimitriou and Tsitsiklis 1987). When faced with hier-
archical problems, the traditional approach—especially in
the reinforcement learning literature—starts with an MDP
as the probabilistic foundation, and then imposes a hierar-
chy through various extensions like HAMs (Parr and Rus-
sell 1997), Options (Sutton, Precup, and Singh 1999), and
MAXQ (Dietterich 2000). In this paper, we take the op-
posite approach. We begin with Hierarchical Task Net-
works (HTNs), a framework designed for expressing com-
plex hierarchical structures, and extend it to handle prob-
abilistic dynamics. HTN planning is a powerful approach
to sequential decision making that enables expressing mul-
tiple layers of abstraction by decomposing tasks into re-
fined, smaller subtasks (Bercher, Alford, and Holler 2019;
Erol, Hendler, and Nau 1996). While HTN planning has
been studied in the non-deterministic setting (Chen and
Bercher 2022; 2021; Patra et al. 2021; 2019; Ghallab, Nau,
and Traverso 2016; Kuter and Nau 2004), less attention has
been paid to its potential in scenarios involving probabilistic
outcomes. In this paper, we start with formalizing the no-
tion of a probabilistic hierarchical planning problem (along

869

with the solution criteria under different observability con-
ditions), and then investigate the computational complexity
of finding a solution in each setting. In order to do this, we
build upon one of the formalisms for HTN planning with
non-deterministic action effects (Chen and Bercher 2021),
and attach a probability distribution to the outcomes. This
results in a new formalism where policies are structured hi-
erarchically, extending beyond the traditional flat mapping
from states to actions typically seen in MDPs and classical
planning, and can natively express complex constraints on
the action sequences. In this paper, we provide:

* a unified framework for reasoning about task hierarchies
and probabilistic action outcomes that:

— guarantees every solution terminates in a finite number
of steps since unbounded loops are prohibited, and

— provides means of expressing procedural knowledge
(i.e., path constraints on sequences of actions).

* an analysis of the computational complexity of solution
existence under various assumptions.

2 Formalization

In this section, we formally define our extension of the non-
deterministic HTN planning formalism by Chen and Bercher
(2021). The main difference is that our extension requires a
probability distribution over the action outcomes. We start
with a simple illustrative example to develop intuition before
introducing the formal framework.

2.1 Motivating Example

Consider the delivery problem depicted in Fig. 1 a. In this
grid-world setting, we want to deliver a package P to some-
one at location 9. It is known that the recipient may or may
not be at home with an equal probability. In case they are not
at home, the package must be delivered to the nearest post
office (i.e., the one at location 8). We know that any solu-
tion can be roughly divided into three abstract steps: picking
up the package, attempting to deliver it, and compensation
if the recipient is not at home (Fig. 1 b). Such compound
tasks need to be refined using decomposition methods. The
methods exemplify a divide-and-conquer paradigm that sys-
tematically breaks down compound tasks into smaller sub-
tasks. This is the quintessential characteristic of HTN plan-
ning. While classical planning formalisms are limited to
specifying outcome objectives (the what), HTN planning

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

methods extend this capability by explicitly encoding pro-
cedural knowledge (the how). A few decomposition steps
for our example are depicted in Fig. 1 c. As a first step,
dispatch[p, 3, lg] is broken down into two subtasks (by de-
composition), to obtain:

pickupp,l3] < drive[ls,lo] < deliver[p,ls] < confirm[p, 9]

where drive[ls, lg] is then recursively broken down. Now
suppose that the first two initial compound tasks are refined
and the primitive actions are executed successfully. This
means that there is one confirm|p, lg] task remaining, and
we can be in two possible states with equal probability, de-
pending on whether the delivery attempt was successful or
not. One possible refinement of this last task is to delete
it, resulting in a linear solution with a success rate of 50%.
The feasibility of a linear solution with 100% success rate
depends on whether the actions have conditional effects or
not. Specifically, whether the action of dropping off a pack-
age at the post office (following a failed delivery attempt)
requires the package to be physically present in the truck as
a precondition, or whether the action can be executed with
the unloading effect occurring only when the package is ac-
tually in the truck. A more flexible solution is to have a dy-
namic policy that observes the current state and changes the
order of task executions (while adhering to the hierarchy). A
notable difference with classical policies is that now we can
enforce behaviors such as: “return to location /5 following
precisely the same path that was originally used to reach that
destination”. In this example, as we will prove later, due to
the total ordering of the initial task network and methods,
any policy collapses to a linear solution.

2.2 Problem Formalization

Tasks and their execution dependencies are captured in a
partially ordered multi-set of tasks, which we refer to as a
task network.

Definition 1 (Task Network). A task network is defined as a

tuple tn = (T, <, &), where:

* T is a finite set of task IDs,

* <X C T x T isapartial ordering of T,

e a: T — N is a mapping from task IDs to a set of task
names, N (see Def. 2).

A hierarchical planning domain encodes the world-states
with propositional facts, describes how primitive tasks affect
the world, and how compound tasks can be decomposed.

Definition 2 (Planning Domain). An HTN planning domain

is a tuple D = (F, Ny, N., 0, A, M) where:

» Fis a finite set of propositional facts,

* N, and N, are disjoint finite sets of primitive and
compound task names, and their union gives N, the set
of all task names,

* §: N, — A is a mapping from primitive task names to
their corresponding action,

e A is a finite set of probabilistic actions (see Def. 3),

e M C N. xX TN the finite set of decomposition methods,
where T'N is the infinite set of all possible task networks.

870

So far, the definitions of a task network and planning
domain follow the standard HTN formalism (Bercher, Al-
ford, and Holler 2019). In the next step, we extend
non-deterministic action effects (Chen and Bercher 2021;
Cimatti et al. 2003) with a probability distribution and con-
ditional effects. The conditional effect, as seen in Section
2.1, is crucial since many problems do not have a solution
unless some runtime “decision-making” is possible (Braf-
man and Hoffmann 2004). As another example in the same
3 x 3 grid, assume the first action non-deterministically
places a robot in one of the cells and the task is to reach
the upper right cell. A linear solution that only works when
conditional effects are present is to move 2 cells to right fol-
lowed by moving up 2 cells. In case the robot is next to a
wall, the conditional effect prevents it from moving in that
direction. As such, we extend the non-determinsitic actions
to be conditional. In this paper, we use p(X) to denote the
power set of X, and S = p(F') to denote the set of all states.

Definition 3 (Probabilistic Action). A (primitive) proba-
bilistic action is a tuple a = (pre(a), eff(a), P), where:

» pre(a) C F is a set of propositions that must be true in
order for a to be applicable,

e eff(a) C p(p(F) x p(F) x p(F)) is a set of effects. Each
effect, E € eff(a), is a set of triples (con, add, del) where
con denotes the conditions under which the propositions
are added or deleted, respectively. An effect is called un-
conditional iff con = (),

o P.: effla) — [0,1] is a probability mass function over
the action effects (i.e., VE € eff(a): 0 < P,(E) < 1 and
A primitive action is applicable in a state s € S, iff

its preconditions are true in s. We define the applicabil-

ity function 7 : A x S — {T,L} such that 7(a,s)

T <= pre(a) C s. If the primitive action a is ap-

plicable in s, then executing it results in a set of successor

states defined as v(s,a) = {vg(s,a) | E € eff(a)} where

vE(s,a) = {(s\del)Uadd | con C s, (con,add,del) € E}.

We define the probability of reaching a particular state after

executing an applicable action as follows:

P(s'| s,a) = > Pa(E)-I(s'|s,E)
Eceff(a)

where the function indicating whether s’ is the result of ef-
fect F on state s is given by:

1 if s’ =vg(s,a)
0 otherwise.

1 5.8) = {

There can be E # E’ with I(s’ | s,E) = 1 and I(s' |
s, E') = 1, i.e., there can be multiple effects that lead to the
same state. As an example, suppose s =) and we have two
unconditional effects F and E’ with a uniform distribution.
Suppose E only adds a proposition f, whereas E’ adds f
and removes f’. Clearly, the probability of s’ = {f} is
100%. So, when evaluating the probability of reaching s’,
we must add up the probabilities of all effects that lead to s’.

A planning problem is given by a domain, the initial state
of the world, and a task network. To solve the problem, one

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

(a) Problem Description

fols

— P
ll—lg—lg‘
L L
sy /1l — s
L L
el A

(b) Initial Task Network

dispatch
[])7 137 19]

(c) A few decomposition steps

=< [dispatch | <
[, 13, 10]

deliver

[P, 19]

Figure 1: (a) Deliver package P to someone at location 9 who may or may not be at home with an equal probability. In case they are not at
home, the package must be delivered to the post office. (b) The initial task network consisting of three compound tasks. (c) A few steps of
decomposing the initial task network into a more refined one. By convention, primitive tasks are square and compound ones are circular.

must achieve all the tasks in the task network, subject to its
partial ordering and the dynamics of the domain initialised
at the start state. Note that we do not have goal descriptions
because the “goal” is to achieve all tasks. Explicit goal de-
scriptions would not add any power, since they can be com-
piled into the precondition of an artificial primitive task that
is appended as a last task to the initial task network (Geier
and Bercher 2011).

Definition 4 (Probabilistic HTN Planning Problem).
Probabilistic HTN planning problem is a tuple ()
(D,tny, sr), where:

e D isan HTN domain,

e s; € S is an initial state,

e tny € T'N is an initial task network.

A

In order to solve an HTN planning problem, we need to
first define the equivalence test between two task networks.

Definition 5 (Isomorphism of Task Networks). The task
networks tny = (T1,<1,a1) and tny = (Ty, <9,) are
isomorphic, written tn1 = tno, iff there exists a bijection
o : Ty — Ty such that (t <1 t') <= (o(t) <2 o(t')) and
a1 (t) = as(o(t)) forall t,t' € T.

The main machinery of HTN planning is the decomposi-
tion methods which refine compound tasks by substituting
them with their corresponding network of subtasks.

Definition 6 (Task Decomposition). A method (c,tn) € M
decomposes a task network tn, = (11, <1, 0q) into tng =
(To, <2, a2) if and only if there exists a t € Ty such that
a1 (t) = c and there is a task network tn' = (T', <’ o)
with tn' = tn where Ty N'T' = (. The task network tns
is defined as tno = ((Ty \ {t}) UT", <" U <p, (a1 \ {t —
c} U o)) where <p is defined as follows.

<p ={(t1,t2) |
{(t1,t2) |
{(t1,t2) |

(t1,t) € <1,ta € T'}U
(t,ta) € <1,t1 € T'}U
(t1,t2) € <1,t1 #t Aty 7t}

871

Decompositions can be chained together to achieve an-
other task network. This process can go on until we find
a primitive one. Primitive task networks cannot be decom-
posed any further.

Definition 7 (Primitive and Achievable Task Networks). A
task network tn is achievable from tn' iff there is a finite
(potentially empty) sequence of decompositions that trans-
form tn' into tn” such that tn” = tn. A task network
tn” = (T, <,) is primitive iff Vt € T': a(t) € N.

Given the operations to decompose task networks and ex-
ecute primitive actions, we are now equipped to formally de-
fine the solution criteria to such problems. Notably, a simple
sequence of actions is no longer the only form of solution as
we might need to alter the course of actions based on the
observed outcome of an action.

2.3 Conformant Solution

Conformant solutions, also called linearization-dependent
solutions (Chen and Bercher 2021), are a fixed sequence
of primitive actions (i.e., a linearization) that is guaranteed
to be executable regardless of the uncertainty. Thus, the
setup is similar to conformant probabilistic planning, also
called probabilistic planning with no observability and con-
ditional probabilistic planning (Hyafil and Bacchus 2004;
Majercik and Littman 2003; Kushmerick, Hanks, and Weld
1995), but in the HTN setting. In order to formally define
the probabilistic conformant solution criteria, we first need
to consider the state trajectories that can arise from execut-
ing a sequence of probabilistic actions.

Definition 8 (Conformant Trajectory). Let tn = (T, <, «)
be a primitive task network, and o = 1,13, ...,t be some
linearization of tn (i.e., a total ordering of T that is con-
sistent with <). We write X (o, s) to denote the set of state
sequences that are induced from executing o from state s.
Formally, for all x = (s1,...,Sk+1) € X(o,s), it holds
that s1 = sand Vi € {1,...,k}, we have:

o m(a(ty),si) =T

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

° ,P(Slurl ‘ Si, a(ti)) >0
The probability of state sequence x is defined as

k
P(@) = [[Psia [i, a(t:))

A probabilistic conformant solution is a sequence of prim-
itive tasks, derived from the hierarchy, where the probability
of successful execution exceeds a threshold value p.

Definition 9 (p-Linearizable). Consider the Probabilistic
HTN problem Q) = (D, tny, s1). For any probability thresh-
old p € (0, 1], we say that §) is p-linearizable iff there exists:

* a primitive task network tn achievable from tny, and
* a linearization, o, of tn such that Emex(a o1) P(z)>p

2.4 Outcome-dependent Solution

In contrast to the conformant solution, outcome-dependent
solutions are able to change course based on the observed
effects of actions, making them more powerful (Chen and
Bercher 2021). In particular, after executing each action, the
realized non-deterministic effect of that action is observed.
This allows the subsequent action to be selected based on
the state. As such, the solution is not a linear sequence of
actions, but a Directed Acyclic Graph (DAG) that branches
based on the action outcomes. This DAG is represented as a
partial function, which is referred to as a policy.

Definition 10 (Policy). Let tn = (T, <, «) be a primitive
task network. A policy is a partial function 7 : (T) x S —
T such that for all T'" C T, s € S, andt € T where 7 is
defined (i.e., 7(T', s) = t), we have:

s tgT,

e VteT\T': t At and

o m(a(t),s) =T.

A key distinction between this hierarchical policy for-
mulation and classical state-action policies in MDPs is the
guarantee of termination. Unlike classical policies that may
permit infinite loops (i.e., “do X until Y”’), our approach—
rooted in primitive task networks with a bounded number of
tasks—ensures that every policy terminates in a finite num-
ber of steps.

The underlying DAG is known as the execution structure
of the policy (Chen and Bercher 2021). The success proba-
bility of a policy is computed based on this representation.

Definition 11 (Execution Structure). Let w be a policy for
primitive task network tn = (T, <, «). We define the execu-
tion structure of 7 as a directed graph K = (Q, R) where
QCp(T)xSand R C (p(T)xS)xT x (p(T) x S) are
minimal sets satisfying:
* (0,s1) €@
o if (T",s) € Qand w(T",s) = t, then ¥s' € y(s, a(t)):

- (T"uit},s') €@

- <<T/7 5>7t7 <T/ U {t}v S/>> ER

Contrary to Def. 8, a trajectory that is induced by a pol-
icy interleaves observation and execution, allowing a more
flexible approach.

872

Definition 12 (Observable Trajectory). Let 7 be a policy for
the primitive network tn = (T, <, a), and K = (Q, R) be
the execution structure of w. We define the sequence ¢ =
(T, 1), (T2, 82), ..., (Tk, Si.) as an observable trajectory of
7 iff it is a path in the execution structure from the initial
node to a terminal node, i.e.,

e Vie{l,... k}: (T),s) €Q
o VT3, 8:), (Tix1,8i41) where 1 < i < k, we have
w(T;, 8;) = t such that <(Ti7si),t, (Ti+1,si+1)> € R,

* (T, s1) = (0, 51),
o (Ty, si) does not have any outgoing edges in K.

A trajectory is defined to be successful iff T, = T. The
probability of occurrence is defined as:

k—1
P(¢ | m) =[] Plsisr | sira(n(T;, 5:)))
=1

Recall that the product over the empty set is one, so
P(¢ | m) = 1if the trajectory consists of zero or one steps.
This makes sense because applying zero or one applicable
action will always succeed, and is unaffected by any prob-
abilistic effects. Our definition of p-policies extends fixed-
method policies (i.e., policies that cannot do decomposition
during plan execution) in non-deterministic HTN planning
(Chen and Bercher 2021), which contains the hierarchical
information, with specifications on success probability.

Definition 13 (p-Policy). Let Q = (D,tny, s;) be a prob-
abilistic HTN planning problem, and tn = (T, <, «a) be a
primitive task network. Let m be a policy for tn, and ® be
the finite set of all successful trajectories induced by this pol-
icy. For any probability threshold p € (0,1], we say that
is a p-Policy for Q) iff:

* tn is achievable from tny, and

¢ Z¢e<1> P(¢|m) = p.

3 Background

We assume the reader is familiar with complexity classes
and decidability as presented in textbooks (Sipser 2020;
Hopcroft, Motwani, and Ullman 2006). However, since
some concepts like Probabilistic Turing Machines and their
associated complexity classes might be unfamiliar to some
readers, we provide a brief explanation of the terminology
used in the paper. In the latter part of this section, we present
several well-known hierarchical restrictions from the HTN
planning literature, which serve as the foundation for the
subsequent analysis of their impact on computational com-
plexity within our formalism.

3.1 Complexity Classes
We use Turing Machines as our model of computation.

Definition 14 (Turing Machine). A (deterministic) Turing
Machine is a tuple TM = (Q,T', X, 0, qo, B, F') where:

* @ is a finite set of states,

e T'is a finite set of tape symbols,

e Y C I'is a finite set of input symbols,

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

*6:Q xT — Q xT x {L, R} is a partial function that
maps the current state and the symbol under the machine
head to a triple of outputs: the next state, the symbol to
be written, and the direction for the head movement,

* qo € Q is the initial state,

* B €T\ X is the blank symbol,

o F C Q@ is a finite set of accepting final states.

In addition to the mentioned deterministic Turing Ma-
chine, we also use its non-deterministic variant where the
output of ¢ is altered to be a set. Formally, we have
0: Q xT — p(Q xT' x {L,R}). Such machines effec-
tively “guess” the correct transition. To capture a complete
snapshot of any Turing Machine variant, we present the con-
cept of a configuration.

Definition 15 (Configuration). A (Turing Machine) config-
uration is a tuple C = (w, q¢,n) € ¥* x Q x N where:

* w is the non-trivial content of the tape,
* (. is the current state of the Turing Machine,
* n is the head position on the tape.

We write C; F C;41 to indicate that configuration C}41
is immediately derivable from C; via a single transition in 6.
For non-deterministic Turing Machines, we have C; - C; 11
iff some transition in the set transforms C; to Cj 1.

Definition 16 (Language of a Turing Machine). Let TM =
(Q,T,%,6,q0, B, F) be a Turing Machine. The language
recognized by TM, denoted L(TM), is defined as the set of
strings, w € X%, such that there exists a sequence of config-
urations Cy, C1, ..., C, where:

» Oy is the initial configuration with input w, the machine
in state qo, and the head is on the first position of the tape,

e (i Chigq forall0 < i <n, and

» (), is a configuration where the machine is in some ac-
cepting state gy € F.

Definition 17 (Decidability). A language L is decidable iff
there exists a Turing Machine with L(TM) = L that halts
for every w € ¥*.

For Probabilistic Turing Machines, we adopt the defini-
tion proposed by Gill (1974). These Turing Machines are a
special kind of non-deterministic ones where the transition
function J is constrained to have either one or two outputs.
On inputs where two outputs are available, the machine flips
an unbiased coin to select one of them as the transition to be
applied. Unlike non-deterministic machines, the language
recognized by a Probabilistic Turing Machine is defined as
the set of input strings for which strictly more than half of
all computation paths, represented by sequences of configu-
rations, lead to an accepting state.

Complexity classes are defined by imposing a time or
space constraint on the Turing Machines. Each class rep-
resents a set of problems that can be solved within the com-
putational resource boundaries. We begin by introducing:

* DTIME(t(n)) is the set of languages that are decidable
by a deterministic TM in O(¢(n)) steps.

* NTIME(t(n)) is the set of languages that are decidable
by a non-deterministic TM in O(¢(n)) steps.

873

* IITIME(¢(n)) is the set of languages that are decidable
by a probabilistic TM in O(¢(n)) steps.

* DSPACKE(¢(n)) is the set of languages that are decid-
able by a deterministic TM using O(t(n)) tape cells.

* NSPACE(t(n)) is the set of languages that are decid-
able by a non-deterministic TM using O(t(n)) tape cells.

Then, for a string w € ¥* as input with |w| = n, we have:
* PTIME = | J, oy DTIME(n*)

* NP = |J, .y NTIME(n*)
* PP = |,y ITIME (n)
* PSPACE = |J, .y DSPACE(n*)

* NPSPACE = | J, .y NSPACE(n*)

Similarly, we use EXPTIME, NEXPTIME, PEXP, and

EXPSPACE, when the bound is exponential (i.e., on*). Ad-
ditionally, a language L as UNDECIDABLE if it is not de-
cidable. Finally, we introduce the oracle machine; a theo-
retical extension of the Turing Machine that has access to a
“black box” capable of instantly solving specific problems.
These machines are common in studying probabilistic com-
putations, where PP is an oracle.

Definition 18 (Oracle Machine). An oracle machine XY is
a Turing Machine X augmented with an additional tape that
can query an oracle Y. The machine may write any string
l on the oracle tape and determine whether 1 € L(Y) in a
single step.

3.2

The undecidability of deterministic HTN planning (Erol,
Hendler, and Nau 1996) has motivated research into decid-
able subclasses. In this section we list some of the most
commonly used subclasses (Alford, Bercher, and Aha 2015;
Erol, Hendler, and Nau 1996).

Definition 19 (Primitive Problem). An HTN planning prob-
lem, Q = (D, tny, sg), is primitive if tny is a primitive task
network.

Hierarchical Restrictions

Another well-studied class emerged by restricting the in-
terplay between task executions through imposing a total or-
der on every task network in the problem.

Definition 20 (Totally-Ordered Problem). An HTN planning
problem is totally-ordered if the initial task network and the
task network of every method is totally-ordered.

To define the other subclasses, we use the notation of set
stratification (Alford et al. 2012).

Definition 21 (Set Stratification). A set R C N. X N.isa
stratification if it is a total preorder (i.e., reflexive, transitive,
and total). A stratum is an inclusion-maximal subset S C
N, such that for all x,y € S, we have both (x,y) € R and
(y,x) € R.

The acyclic class does not allow recursive tasks (i.e., a
compound task that can reach itself via decomposition).

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Definition 22 (Acyclic Problem). An HTN planning prob-
lem is acyclic if there exists a stratification R with the prop-
erty that for all methods, {c,(T,<,a)) € M, and for all
compound tasks, t € T, we have both (a(t),c) € R and

(c,a(t) ¢ R

Tail-recursive problems allow special forms of recursion.
In particular, it only allows a last task to be recursive. This
restricts the growth of task networks by forcing every task
before the recursive one to be on an easier stratum.

Definition 23 (Tail-recursive Problem). An HTN planning
problem is tail-recursive if there exists a stratification R with
the property that for all methods {(c, (T, <,a)) € M, we
have:

1. if there is a compound last task t € T (formally, a(t) €
N, and for all t' # t it holds that (t',t) € <), then
(aft),c) € R,

2. for all compound non-last tasks t € T, we have both
(a(t),c) € Rand (c,a(t)) ¢ R.

4 Complexity Results

Before discussing the computational complexity, we show
that if a probabilistic HTN problem is totally-ordered, it can-
not form a branching policy. Thus, every p-policy in this
setting can be reduced to a p-linearization. In this paper, we
use this result to collapse the complexity of decision prob-
lems associated with these problems into one since knowing
one answer immediately leads to the other one.

Theorem 1. Let Q2 be a totally-ordered HTN planning prob-
lem, and p € (0,1]. Q has a p-policy if and only if it is
p-linearizable.

Proof. =) Assume) is p-linearizable, and let o
t1,t2,...,t; be one such solution. To construct a p-policy,
we have to artificially augment o with state observations.
For this, we recursively construct a policy as follows:

o w(0,s1) = t1,

e m(T,s) =t; = w(TU{t;},s) =ty forall s’ €
v(s,a(t;)) and 1 < i < k.

<) Assume) has a p-policy. By definition, this policy
is defined for a primitive task network, ¢tn. Since the prob-
lem is totally-ordered, tn is also totally-ordered. It follows
that the policy must execute each task one after another re-
gardless of the state. Thus, the sequence of actions in tn
is a linearization of the task network, which succeeds with
probability exactly equal to that of the policy. O

Next, we provide the complexity results for probabilistic
HTN planning across three key axes: the hierarchical restric-
tions (primitive, acyclic, tail-recursive, and arbitrary), order-
ing constraints (total or partial), and solution type (linear or
branching). The results are summarized in Table 1.

874

4.1 Complexity Results for p-Linearization
Existence

We start by introducing a variant of the model counting
problem, that is known to be PP-Complete (Cozman and
Mauad 2018, Prop. 1).

Definition 24 (#3SAT(>)). Let ¢ be a boolean formula
in conjunctive normal form with exactly three literals per
clause over variables V. = {v1,...,v,}, and k be a non-
negative integer. The #3SAT(>) problem asks whether
has more than k satisfying truth assignments.

Given a sequence of primitive tasks, deciding whether its
probability of success exceeds a threshold is PP-Complete.

Theorem 2. Let (D,tng, s1) be a totally-ordered
primitive HTN planning problem. Let p be a rational num-
ber, represented by two binary numbers, where 0 < p <
1. Deciding whether a p-linearization exists for) is PP-
Complete.

Proof. (Membership) Our membership proof is similar
to probabilistic plan evaluation in the classical setting
(Littman, Goldsmith, and Mundhenk 1998). Given tn; =
ti,t2,...,t,, we construct the computation tree in which
every root-to-leaf path represents a trajectory and its asso-
ciated probability of success. For each action ar, = a(t),
where 1 < k < n, we require m coin flips, with m rep-
resenting the number of bits needed to encode a common
denominator of the outcome probabilities. In the worst case,
we need to multiply every denominator together, leading to
an exponential growth for the value of this denominator.
However, given the binary encoding of the numbers, loga-
rithmic number of bits are required for the encoding. Thus,
the encoding is still polynomial. To represent the proba-
bilities, we flip m coins to create a binary subtree with 2™
leaves, where the numerator determines the minimum num-
ber of accepting and rejecting leaves. In particular, we ac-
cept if at least p = * of leaves are in an accepting state,
and reject otherwise. When restricted to polynomial time
bounds, probabilistic languages (i.e., an input is accepted if
more than half of the computation leaves are accepting) and
threshold languages (i.e., an input is accepted if at least a de-
fined ratio of computation leaves are accepting) are identical
(Simon 1975, Thm. 4.4). Thus, the problem is in PP.

(Hardness) We reduce from the #3SAT(>) problem.
Given a boolean formula (as a set of clauses C
{c1,...,cm} over variables V = {vy,... v, } and an integer
k, we construct a planning domain D = (F, N,, 0,4, A, 0)
and a planning problem Q = (D, tn;, () such that:

* for each ¢; € C, we have a proposition f., € F, which
represents whether that clause is satisfied or not,
* foreach v; € V, we have:
— two propositions f,, f~»,; € F, which represent the
variable assignments, and
— one probabilistic action p; € N, with no precon-
dition or delete effect, which either unconditionally

adds { f,, } U {fe, | vj satisfies clause c;} or {f-,,} U
{fe, | —wj satisfies clause c;} with each effect having

% chance of occurring.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Hierarchy Ordering Solution Type

p-Linearization Proof p-Policy Proof

Primitive Total PP-Complete Thm. 2 PP-Complete Thm. 1 and Thm. 2
Partial ~ NP'P-Complete ~ Thm.3 PSPACE-Complete Thm. 8

. Total in NEXPTIME™ Thm.4 in NEXPTIME™ Thm. 1 and Thm. 4

Acyclic . . PP . PSPACE

Partial in NEXPTIME Thm. 4 in NEXPTIME Thm. 9

Tail-Recursive Total UNDECIDABLE Thm. 5 UNDECIDABLE Thm. 1 and Thm. 5
Partial UNDECIDABLE Cor. 6 UNDECIDABLE Cor. 10

Arbitrar Total UNDECIDABLE Cor. 7 UNDECIDABLE Thm. 1 and Cor. 7
y Partial UNDECIDABLE Cor. 11 UNDECIDABLE Cor. 11

Table 1: Complexity results for probabilistic HTN planning. For decision problems where only a membership (i.e., an upper bound) is
provided, the hardness (i.e., a lower bound) follows from the corresponding class in non-deterministic HTN planning (Chen and Bercher
2021). In particular, deciding whether a partially ordered acyclic problem is p-linearizable is NEXPTIMIE-Hard, and the totally ordered case
is PSPACE-Hard. To the best of our knowledge no lower bound is known for deciding p-policies in acyclic problems.

* we have an action is_sat € N, with no effect and
{fess- - fe,, } as its precondition, which checks whether
all clauses are satisfied or not.

 the initial task network, tn; has n + 1 totally or-
dered tasks, which correspond to the action sequence

Ply-- -y Pn,t5-5al.

The next step is to construct the probability threshold, p.
We know that there are 2™ possible assignment to the vari-
ables. Thus, p = k;;l ensures that the number of satisfying
assignments exceed k. Even though, the denominator is ex-
ponential, we only need |log, 2" | + 1 bits to represent it in
a binary notation. Thus, p is constructible in PTIMIE. As
the last step we show that there are more than £ satisfying
assignments to (if and only if € is p-linearizable.

=) Assume (has exactly &’ satisfying assignments (k' >
k 4 1), then by construction the precondition of is_sat is
satisfied in &’ trajectories out of 2™ possible ones. The rest
of the actions do not have any preconditions. Thus, € is
(&tL)-linearizable.

2’71
<) Assume (Q is (k;;)-linearizable. Since the effects of

each action p; are uniformly distributed between two effects
and there are n actions, we have 2" conformant trajectories
(each with a probability of 2%). The precondition of is_sat
is satisfied in at least k¥ + 1 of these trajectories (exceeding
k). Given that this precondition requires all clauses in (to
be simultaneously satisfied, and considering our space of 2"
possible variable assignment, we can conclude that ¢ must
have at least k + 1 unique satisfying assignments. O

Next, we show that allowing partial ordering of the tasks
increases the complexity. Our reduction is from E-MAJSAT,
which is N]P’W-Complete (Littman, Goldsmith, and Mund-
henk 1998).

Definition 25 (E-MAIJSAT). Let ¢ be a boolean formula in
conjunctive normal form over variables V. = {vy,...,v,},
and k be an integer such that 1 < k < n. The E-MAJSAT
problem asks whether there is an initial partial assignment

875

to variables vy, ..., vy so that the majority of assignments
that extend that partial assignment satisfy C.

Theorem 3. Let Q) = (D, tny, s;) be a primitive HTN plan-
ning problem. Let p be a rational number, represented by
two binary numbers, where 0 < p < 1. Deciding whether a
p-linearization exists for () is NIPW—Complete.

Proof. (Membership)

1. Guess a linearization of tny,

2. Verify using the PP membership procedure of Thm. 2’s
proof.

(Hardness) We reduce from the E-MAIJSAT prob-
lem. Given a boolean formula (as a set of clauses
C = {c1,...,cm} over variables V. = {v1,...v,},
and an integer k, we construct a planning domain D =
(F,Np,0,0,A,0), similar to the one in the hardness proof
of Thm. 2, such that:

« FF=C"UV"UO where:

- C" ={f., | & € C} tracks which clauses are satisfied,

- V' = {fu,, f~, | v; € V} tracks variable assign-
ments, and

- O = {oy, | v; € V'} ensures each variable is assigned
once.

e for each v; € {vy ... vy}, there are two deterministic ac-
tions p;, =p; € N, where:

— pre(p;) = pre(-p;) = 0.

- eff(p;) = {({ovj}7 {fvj} U {fe; | v; satisfies clause
Ci}a {O'Uj }>}’ and

= efft=p;) = {{ov, } {0, } UA{fe; | —vj satisfies
clause ¢; }, {0y, })}.

e for each v; € {vgq1...v,}, there is one prob-
abilistic action p; € N, with no precondition or
delete effect which either unconditionally adds {f,, } U
{fe, | wjsatisfies clause c;} or {f-o,} U {fe, |
—wj satisfies clause c;} with each effect having % chance
of occurring.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

* there is a deterministic action is_sat with eff(is_sat) = 0,
and pre(is_sat) = C'.

Next, we construct a planning problem Q = (D, tny, sy)
with sy O, and tn; (Np, =, {z — = | z € Np})
where:

<={(2,y) | € {pipi},y € {pi+1, Pit1}, 1 <i <k}
U{(k Pis1)> (0Dk> Piy 1)}
U{(p}s pigr) | B <i<n}
U{(x,is-sat) | x € (N, \ {is-sat)}}

Q is %-linearizable if and only if the E-MAJSAT problem
has a solution.

=) Assume A = {A,,, Au,, ..., Ay, } is a partial as-
signment to V' such that the majority of assignments to the
remaining variables satisfy (. By construction, there ex-
ists a partial plan (which forms a prefix) consisting of 2k
steps comprising unordered pairs of p; and —p; for each
1 < i < k. The order of each pair denotes which assignment
is chosen for variable v;. Thus, an action sequence corre-
sponding to A,,, = A,,, ..., A, , A, sets the state to A.
After this, we have pj_ ,..., pl, where each correspond-
ing action randomly assigns a value to one of the remaining
variables. Since none of these actions have any precondi-
tion, they are always executable. Lastly, the is_sat action is
executable if and only if all clauses are satisfied. By assump-
tion, the majority of the remaining variables satisfy ¢, which
means more than half of the conformant trajectories satisfy
the precondition of is_sat. Hence, € is %—linearizable.

<) Assume 2 is %—linearizable. By construction, there
exists a plan whose prefix is a sequence of p; and —p; pairs
in some order, with 1 < ¢ < k. The state of variable f,, and
f-w, after executing this prefix corresponds to the variable
assignments caused by the first action of each pair. In other
words, f,, and its negation — f,,, are uniquely determined for
all ¢ < k after executing the prefix. Since these actions do
not have any non-deterministic effect, they are fixed for ev-
ery conformant trajectory. The actions following this prefix
branch over each variable assignment to create a new tra-
jectory. By construction, is_sat is executable if and only if
every clause is satisfied. By assumption, the majority of tra-
jectories succeed. Thus, the prefix gives us the assignment
for the first k& variables where the majority (i.e., > %) of the
assignments to the remaining variables satisfy . O

The next theorem shows an upper bound on the complex-
ity of deciding whether a p-linearization exists under the as-
sumption that compound tasks exist in the initial task net-
work, but none of the methods are recursive.

Theorem 4. Let Q) = (D, tny, s;) be an acyclic HIN plan-
ning problem. Let p be a rational number, represented by
two binary numbers, where 0 < p < 1. Deciding whether a
p-linearization exists for € is in NEXPTIME®?.

Proof. (Membership) Since recursion is not possible in
acyclic problems, each compound task in the domain can be
refined to primitive tasks, at worst case, using exponentially
many decompositions (Alford, Bercher, and Aha 2015).

876

2. Guess a total order <

Thus, there is a decomposition sequence A = dy,...,d,
where n < |T'| - 2% (for some positive integer k) that refines
tny to a primitive task network tn,, that is at most exponen-
tially larger than tnj.

1. Guess and apply A to obtain a primitive task network
tnp = (Tp, <p, Op,).
; that is consistent with <, and con-

struct tny, = (T, <5, ap,).

3. Use the PP membership proof of Thm. 2 to check whether

(D, tny,, sr) is p-linearizable.
O

For the undecidability results, we reduce from the empti-
ness problem of a simple probabilistic automaton (Gimbert
and Oualhadj 2010).

Definition 26 (Emptiness of Simple Probabilistic Automa-
ton). Given a A € [0,1] and a probabilistic automaton
A=(Q,T,A, qo, F) where:

e Q) is a finite set of states,

e T’ is a finite set of input alphabet,

* A is a finite set of |Q| x |Q| probabilistic transition ma-
trices where for each | € T there exists a /A where each
of its rows defines the probability of next state given that
the current character is | and current state is the one cor-
responding to the row,

¢ qo € Q is the initial state, and
o F C Q is the set of final states.

The emptiness problem asks whether there exists a word w
such that A accepts w with probability greater than or equal
to)\, where acceptance means the automaton transitions
from its initial state qg to some accepting state f € F (de-
noted as P4 (w) > A). A probabilistic automaton is called
simple if every transition probability in A is in {0,0.5, 1}.

It has been shown that the emptiness problem is undecid-
able for rational thresholds, too (Rote 2024). Based on this,
the next theorem shows that even severely restricted cases of
probabilistic tail-recursive problems are undecidable.

Theorem 5. Let Q (D,tny,sr) be a totally-ordered
tail-recursive HTN planning problem. Let p be a rational
number, represented by two binary numbers, where 0 <
p < 1. Deciding whether a p-linearization exists for §2 is
UNDECIDABLE. The result holds even if for every action
a and effect E, we have P,(FE) € {0,0.5,1}.

Proof. We reduce from the UNDECIDABLE emptiness
problem of a simple probabilistic automaton (Gimbert and
Oualhadj 2010). Formally, given A = (Q,T', A, qo, F) and
A € [0, 1], we construct a totally-ordered tail-recursive HTN
domain D = (F, N,,, N, d, A, M) such that:

* F=Q UT U {f}, where fact f indicates reaching a
final state,

* N, = Npr U Na U {is_final} where:
- Ne={l|leT},
- Na ={nl |nl eQxT},

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

° Nc = {Cgues57 Csimulate}s
* A is the minimal set satisfying:
1. for each n; € N, there exists a deterministic action a

such that pre(a) = 0 and eff{(a) = {(0, {{}, T\ {i})},
2. for each nfl € Na, there exists an action a with
pre(a) = @ and the following effects:

— If the row corresponding to state ¢ in A; has two
non-zero cells (leading to either state ¢’ or ¢”), then
we have two conditional effects (each with probabil-
ity equal to 0.5). The condition for both of them is
{¢,1} (i.e., we are at state ¢, and the token [has not
been consumed). If a conditional effect is fired, state ¢
and token [are consumed (i.e., deleted from the state).
The added propositions differ in whether ¢’ is added
or ¢”. Additionally, f is added if the new state is a
final one. Formally:

ifq € F
ifd g}-} 7{Qal}>}

etta(a) = {{{a.0), {7 90 €7

with P, (eff1 (a)) = P, (effz(a)) = 0.5.

— If the transition is deterministic (i.e., there is only
one non-zero cell transitioning to ¢’), then eff(a) =
{{a, 1} {d'} g 11} iff ¢ ¢ F. Otherwise,
effla) = {{a, 1}, {d, f}.{a 11}

3. there exists a deterministic action is_final with
pre(is_final) = {f}, and eff(is_final) = (.
* § is a canonical mapping,
* M= Mguess) Msimulate where:

= Mauess = {(Cguess; ({1},0,{1 = a})) | a € Nr}

— Mimuiare consists of two methods. The first one
is a totally-ordered tail recursive method that de-
composes Clinuare 10 a task network corresponding
to the sequence Cpuegs, 02, ... 0l , Cyimuare Where
{nlo ... nlr } = Na. Intuitively, this provides a re-
cursive guess and verify mechanism. The other method
decomposes the compound task to a task network with
a single instance of the primitive task, is_final.This is
used for terminating the recursion loop.

eff, (a) = {({a. 1), {gﬁ’ d

q", f
q//

bty

The probabilistic planning problem is £
(D, {1},0,{1 = Cimuare}),{q0})- © is A-linearizable if
and only if there exists a word w such that P 4(w) > A.

=) Assume there exists a word w such that P4 (w) > A.
Given an initial unit vector of the starting state in the au-
tomaton, each transition triggers a matrix multiplication.
To simulate this, we need to simulate both multiplication
and summation of rational numbers. The multiplication is
achieved by executing probabilistic actions, which multiply
the probability of a particular trajectory with the rational
number associated with the probability of the effect. The
summation occurs over the trajectories that are induced by
executing those actions. The combination of these two al-
lows us to do matrix multiplication, which results in sim-
ulating the transitions. Formally, On a single letter ! of w,

877

the state distribution vector [qy q1 ... @] changes based
on A;. And, each action in o = nlo ... nl . corresponds
to one row of the transition matrices. The condition {g, [}
prevents them from firing the outcome if the letter is not
l. Thus, for any single letter produced by Cjey, only 4
is simulated. As such, each trajectory induced by o corre-
sponds to one single transition of the automaton. The reason
is that [(and its removal) forces only one of the automaton
state transitions to fire in each iteration. Lastly, Cl,ss makes
an arbitrary guess of which letter to produce next. Hence, it
can iteratively guess a letter to obtain the following primitive
task network:

ln lo In
7nq”L’nl2’ nqo’ e 7an’ :

.., 1s_final

lo
ml,nqo,...

s Ny .
where the probability of successful execution is greater than
or equal to A and ny,ny,...n;, = w. As such, Q is A-
linearizable.

<) Assume € is A-linearizable. By definition, there exists

a primitive task network with the following structure.

k

l
Mg

n L SNy - - -, i5final

l
nlg?” 2 7qm?

l 0
ny,n g0

0
o7

where the probability of successful execution is greater than
or equal to A\. Thus, P4(l1ls...1x) > X where l1ly ... 1lx is
the guessed word. O

Since totally-ordered tail-recursive problems are re-
stricted cases of more general problems, the general ones
(i.e., partially-ordered tail-recursive and totally-ordered with
no restriction on recursion) are also undecidable.

Corollary 6. Let Q) = (D, tny, sy) be a tail-recursive HTN
planning problem. Let p be a rational number, represented

by two binary numbers, where O < p < 1. Deciding whether
a p-linearization exists for 2 is UNDECIDABLE.

Corollary 7. Let Q = (D,tny,sy) be a totally-ordered
HTN planning problem. Let p be a rational number, repre-
sented by two binary numbers, where 0 < p < 1. Deciding
whether a p-linearization exists for) is UNDECIDABILIE.

4.2 Complexity Results for p-Policy Existence

Unlike linear solutions where probabilistic versions are
more complex to decide than non-deterministic ones, prob-
abilistic and non-deterministic hierarchical policies have
more or less the same computational complexity (Chen and
Bercher 2021). We demonstrate this by reducing the non-
deterministic policy existence problem to its probabilistic
counterpart for primitive planning problems.

Theorem 8. Let) be a primitive HTN planning problem.
Let p be a rational number, represented by two binary num-
bers, where 0 < p < 1. Deciding whether a p-policy exists
for Q) is PSPACE-Complete.

Proof. (Membership) The main idea is that it is possible to
systematically enumerate every possible policy (to be more
specific, their execution structures) and run a Depth-First
search with a polynomial bound on space to check whether
this policy succeeds with a probability greater than or equal
to p. Assume tng is the initial task network with n tasks.
The total number of possible policies for tn; in the worst

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

case is equal to the set of all permutations of n tasks, which
can be enumerated in finite amount of time. In all of them,
the diameter of the execution graph (i.e., the longest dis-
tance between two vertices of a graph) is n + 2 where one
extra is used for the initial node with no executed task and
the other one for the extra node after executing all n tasks.
Thus, the time (and space) required to calculate the proba-
bility of each branch is clearly polynomially bounded. The
branches can be recursively generated based on: (1) the se-
quence of actions that have been executed, (2) the state un-
der which they were executed in order to backtrack and se-
lect the next outcome, and (3) the accumulated probability
of the current branch. Notably, the backtracking in step 2
forgets everything after the backtracking point and jumps to
the next outcome of the “current” action. This approach pre-
vents us from storing the entire execution structure (which
is exponentially larger) and ensures that we don’t revisit the
same branch. As a final detail, we need to keep track of the
accumulated probability over all branches for evaluating the
entire policy. All of the mentioned information can be stored
in O(|T'| + b) space where b is the number of bits required
to represent the probabilities. Thus, the overall procedure is
in PSPACE.

(Hardness) A strong policy in the non-deterministic set-
ting is a special case of a p-policy where p = 1. Thus,
the PSPACE hardness follows from the fact that finding
a strong policy for a primitive task network is PSPACE-
Complete (Chen and Bercher 2021). O

The complexity of policy existence in the acyclic case is
similar, but with a different oracle, to the linear solution ex-
istence in the same setting.

Theorem 9. Let Q = (D,tny,sr) be a partially-ordered
acyclic HTN planning problem. Let p be a rational
number, represented by two binary numbers, where 0 <
p < 1. Deciding whether a p-policy exists for € is in
NEXPTIME?SPACE,

Proof. As mentioned in the membership proof of Thm. 4,
there is a decomposition sequence A = dy,...d, where
n < |T| - 2% (for some positive integer k) that refines tny
to a primitive task network ¢n,,, where tn,, is at most expo-
nentially larger than ¢n;.

1. Guess and apply A to obtain a primitive task network ¢n,,.

2. Use the PSPACE membership proof of Thm. 8 to check
whether (D, tn,,, s;) has a p-policy.

O

From Theorems 1 and 5, it follows that finding a p-policy
for a totally-ordered probabilistic HTN planning problem is
undecidable. Thus, the general case for partially-ordered
problems are also undecidable.

Corollary 10. Let Q = (D, tny, sy) be a partially-ordered
tail-recursive probabilistic HTN planning problem. Let p
be a rational number, represented by two binary numbers,
where 0 < p < 1. Deciding whether a p-policy exists for §2
is UNDECIDABLE.

878

It is known that partially-ordered HTN planning with no
restriction on hierarchy is UNDECIDABILE (Erol, Hendler,
and Nau 1996; Geier and Bercher 2011). Since prob-
abilistic planning is a generalization of that, it is also
UNDECIDABLE.

Corollary 11. Let 2 = (D, tny, sy) be a partially-ordered
HTN planning problem. Let p be a rational number, repre-
sented by two binary numbers, where 0 < p < 1. Decid-
ing whether a p-linearization or a p-policy exists for §) is
UNDECIDABLE.

5 Conclusion

We present a formal framework for incorporating proba-
bilistic outcomes into Hierarchical Task Network planning,
a key step towards real-world applicability by moving be-
yond rigid non-deterministic assumptions. Our formalism
allows integrating procedural constraints and hierarchical
abstraction into Markov Decision Processes and their asso-
ciated solutions, providing a unified approach for reasoning
about task decomposition hierarchies and probabilistic ac-
tion outcomes. The paper includes an analysis of the frame-
work’s computational complexity under different constraints
and solution types. We proved that probabilistic conformant
solutions (fixed action sequences) are consistently harder
than their non-deterministic counterparts. Even with severe
restrictions, the solution existence problem is undecidable.
Branching solutions (i.e., policies) are proven to be even
harder in some of the subclasses. This work establishes a
solid theoretical foundation for future research. Potential di-
rections include devising algorithms and heuristics, as well
as analyzing the complexity of more flexible solution crite-
ria, such as allowing decomposition during execution. Ad-
ditionally, given the undecidable nature of the general prob-
lem, characterizing decidable fragments through further re-
strictions represents an important direction.

Acknowledgements

Pascal Bercher is the recipient of an Australian Research
Council (ARC) Discovery Early Career Researcher Award
(DECRA), project number DE240101245, funded by the
Australian Government. We extend our appreciation to the
anonymous reviewers whose insightful comments helped us
identify and correct some errors from the first submission.

References

Alford, R.; Bercher, P.; and Aha, D. W. 2015. Tight bounds
for HTN planning. In Proceedings of the 25th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 7-15. AAAI Press.

Alford, R.; Shivashankar, V.; Kuter, U.; and Nau, D. S. 2012.
HTN problem spaces: Structure, algorithms, termination. In
Proceedings of the 5th Symposium on Combinatorial Search
(SoCS), 2-9. AAAI Press.

Bercher, P.; Alford, R.; and Hoéller, D. 2019. A survey on
hierarchical planning-one abstract idea, many concrete re-
alizations. In Proceedings of the 28th International Joint

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Conference on Artificial Intelligence (IJCAI), 6267-6275.
CAL

Brafman, R., and Hoffmann, J. 2004. Conformant planning
via heuristic forward search: A new approach. Artificial
Intelligence (A1J) 170:355-364.

Chen, D., and Bercher, P. 2021. Fully observable nonde-
terministic HTN planning — formalisation and complexity
results. In Proceedings of the 31st International Confer-

ence on International Conference on Automated Planning
and Scheduling (ICAPS), 74-84. AAAI Press.

Chen, D., and Bercher, P. 2022. Flexible FOND HTN
planning: A complexity analysis. In Proceedings of the
32nd International Conference on Automated Planning and

Scheduling (ICAPS), 26-34. AAAI Press.

Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. Weak, strong, and strong cyclic planning via symbolic
model checking. Artificial Intelligence (AlJ) 147(1):35-84.

Cozman, F. G., and Mau4, D. D. 2018. The complexity of
bayesian networks specified by propositional and relational
languages. Artificial Intelligence (AlJ) 262:96—141.

Dietterich, T. G. 2000. Hierarchical reinforcement learning
with the MAXQ value function decomposition. Journal of
Artificial Intelligence Research (JAIR) 13(1):227-303.

Erol, K.; Hendler, J.; and Nau, D. 1996. Complexity results
for HTN planning. Annals of Mathematics and Artificial
Intelligence (AMAI) 18(1):69-93.

Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proceedings of the 22nd

International Joint Conference on Artificial Intelligence (1J-
CAI), 1955-1961. AAAI Press.

Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.

Gill, J. T. 1974. Computational complexity of probabilistic
turing machines. In Proceedings of the 6th Annual ACM
Symposium on Theory of Computing, 91-95. Association
for Computing Machinery.

Gimbert, H., and Oualhadj, Y. 2010. Probabilistic automata
on finite words: decidable and undecidable problems. In
Proceedings of the 37th International Colloquium Confer-
ence on Automata, Languages and Programming: Part II,
527-538. Springer-Verlag.

Hopcroft, J. E.; Motwani, R.; and Ullman, J. D. 2006. Intro-
duction to Automata Theory, Languages, and Computation
(3rd Edition). USA: Addison-Wesley Longman Publishing
Co., Inc.

Hyafil, N., and Bacchus, F. 2004. Utilizing structured rep-
resentations and CSPs in conformant probabilistic planning.
In Proceedings of the 16th European Conference on Artifi-
cial Intelligence (ECAI), 1033—1034. 10S Press.

Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995. An
algorithm for probabilistic planning. Artificial Intelligence
(AlJ) 76(1-2):239-286.

Kuter, U., and Nau, D. 2004. Forward-chaining planning
in nondeterministic domains. In Proceedings of the 19th
National Conference on Artificial Intelligence (AAAI), 513—
518. AAAI Press.

879

Littman, M. L.; Goldsmith, J.; and Mundhenk, M. 1998. The
computational complexity of probabilistic planning. Journal
of Artificial Intelligence Research (JAIR) 9:1-36.

Littman, M. L. 1997. Probabilistic propositional planning:
representations and complexity. In Proceedings of the 14th
National Conference on Artificial Intelligence (AAAI), T48—
754. AAAI Press.

Majercik, S. M., and Littman, M. L. 2003. Contingent plan-
ning under uncertainty via stochastic satisfiability. Artificial
Intelligence (AlJ) 147(1-2):119-162.

Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The com-
plexity of markov decision processes. Mathematics of Op-
erations Research 12(3):441-450.

Parr, R., and Russell, S. 1997. Reinforcement learning with
hierarchies of machines. In Proceedings of the 11th Inter-
national Conference on Neural Information Processing Sys-
tems (NeurIPS), 1043—-1049. MIT Press.

Patra, S.; Ghallab, M.; Nau, D.; and Traverso, P. 2019.
Acting and planning using operational models. In Proceed-
ings of the 19th AAAI Conference on Artificial Intelligence
(AAAI), 7691-7698. AAAI Press.

Patra, S.; Mason, J.; Ghallab, M.; Nau, D.; and Traverso,
P. 2021. Deliberative acting, planning and learning with
hierarchical operational models. Artificial Intelligence (AlJ)
299:103523.

Rote, G. 2024. Probabilistic finite automaton emptiness is
undecidable. arXiv Preprint 2405.03035.

Simon, J. 1975. On some central problems in computational
complexity. Ph.D. Dissertation, USA. AAI7518004.

Sipser, M. 2020. Introduction to the Theory of Computation.
Course Technology, 3rd edition.

Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial Intelligence Jour-
nal (AlJ) 112(1):181-211.

	Introduction
	Formalization
	Motivating Example
	Problem Formalization
	Conformant Solution
	Outcome-dependent Solution

	Background
	Complexity Classes
	Hierarchical Restrictions

	Complexity Results
	Complexity Results for -Linearization Existence
	Complexity Results for -Policy Existence

	Conclusion

