Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Explanations for Unrealizability of Infinite-State Safety Shields

Andoni Rodriguez!? , Irfansha Shaik®*, Davide Corsi®, Roy Fox®, César Sanchez

1

IMDEA Software Institute, Spain
2Universidad Politécnica de Madrid, Spain
3Kvantify Aps, Denmark
“Department of Computer Science, Aarhus University, Denmark
5University of California Irvine, US

Abstract

Safe Reinforcement Learning focuses on developing optimal
policies while ensuring safety. A popular method to address
such task is shielding, in which a correct-by-construction
safety component is synthesized from logical specifications.
Recently, shield synthesis has been extended to infinite-state
domains, such as continuous environments. This makes
shielding more applicable to realistic scenarios. However, of-
ten shields might be unrealizable because the specification is
inconsistent (e.g., contradictory). In order to address this gap,
we present a method to obtain simple unconditional and con-
ditional explanations that witness unrealizability, which goes
by temporal formula unrolling. In this paper, we show differ-
ent variants of the technique and its applicability.

1 Introduction

Deep Reinforcement Learning (DRL) has been shown to
successfully control reactive systems of high complexity
(Marchesini and Farinelli 2020). However, despite their suc-
cess, DRL controllers can cause even state-of-the-art agents
to react unexpectedly (Goodfellow, Shlens, and Szegedy
2014). This issue raises severe concerns regarding the de-
ployment of DRL-based agents in safety-critical reactive
systems. Therefore, techniques that rigorously ensure the
safe behaviour of DRL-controlled reactive systems have re-
cently been proposed. One of them is shielding (Bloem et
al. 2015; Alshiekh et al. 2018; Corsi et al. 2025), which in-
corporates an external component (a “shield”) that enforces
an agent to behave safely according to a given specification
o specified in temporal logic. In this paper, we use post-
shielding, where the shield does not interrupt the agent un-
less it violates a safety constraint.

Regularly, shields are built from specifications using re-
active synthesis (Pnueli and Rosner 1989b; Pnueli and Ros-
ner 1989a), in which, given a specification ¢, a system
is crafted that is guaranteed to satisfy ¢ for all possi-
ble behaviors of its environment. Realizability is the re-
lated decision problem of deciding whether such a sys-
tem exists. This problem is well-studied for specifica-
tions written in Linear temporal logic (LTL) (Pnueli 1977;
Jacobs et al. 2017). However, many realistic specifica-
tions use complex data, whereas LTL is inherently propo-
sitional. Alternatively, such realistic specifications can be
expressed in LTL modulo theories (LTLy), which replaces

858

atomic propositions with literals from a first-order theory 7
(Geatti, Gianola, and Gigante 2022), whose domain might
be infinite (e.g., numbers). In (Rodriguez and Sanchez 2023;
Rodriguez and Sanchez 2024b) an LTL specification is
translated into an equi-realizable Boolean LTL specification
by (1) substituting theory literals by fresh Boolean variables,
and (2) computing, using theory reasoning, an additional
Boolean formula that captures the dependencies between the
new Boolean variables imposed by the literals. This ap-
proach is called Boolean abstraction and paves the way to
produce infinite-state shields, in which the input and output
of the shield is no longer Boolean, but belonging to infi-
nite data like numbers (Wu et al. 2019; Corsi et al. 2024;
Rodriguez et al. 2025a; Kim et al. 2025).

However, it is usually the case that the shield is not realiz-
able, which means that the uncontrollable environment has
a way to violate the specification and the shield no longer
provides safety guarantees. Thus, we want to understand
why this happens: i.e, have an explanation. Recently, the
problem of explainability in Al has gained traction, which
has had a major impact on the interest in explaining the in-
tricacies of reactive systems (Schewe and Finkbeiner 2007;
Baier et al. 2021; Bassan et al. 2023). These approaches fo-
cus on either building simple reactive systems, tuning their
behaviour or explaining, in each timestep, why the system
produces an output to an environment input. However, these
approaches (1) have not been used for infinite-state systems
and (2) have not addressed the particular problem of under-
standing shields that are to be synthetised from specifica-
tions. Thus, in this paper, we want to open an alternative ap-
proach to address explainability: to analyze the LTL s spec-
ification ¢ of a shield itself in order to discover why ¢ is
unrealizable (in case it is) via producing a simple witness of
an environment strategy such that ¢ is violated.

Example 1. Consider the following LTL specification:
p=0[x<2) -0 >DIN[(z=>2)~(y <z,

where x,y € Z and where x is uncontrollable (i.e., belongs
to an environment player) and y is controllable (i.e., belongs
to an system player).

Specification ¢ is unrealizable, which means that the en-
vironment player has a strategy to assign valuations to z
such that ¢ is violated. Therefore, it can be argued that we
can synthetise (e.g., using (Rodriguez and Sénchez 2024a;

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Rodriguez, Gorostiaga, and Sanchez 2024)) the environment
strategy for ¢ and analyze it in order to understand why ¢
is unrealizable. However, this strategy might be complex to
interpret and extract simple explanations. Moreover, this ex-
traction is not automatic and the procedure might not scale.

In this paper, we address these problems. We propose a
general, reusable and an automatic framework to find unre-
alizability explanations: a bounded unrealizability checking
via generating finite unconditional and conditional strate-
gies as explanations for unrealizable LTL specifications.
The idea with (1) unconditional explanations is to provide
a finite set of environment assignments that shows why a
specification is unrealizable. Alternatively, (2) conditional
explanations mean that the environment observes the state-
ful memory in order to take a decision, which means that
the explanation is a function over previous moves. Our gen-
eral solution works as follows: (1) given ¢, we construct
an unrolled formula ©* of length k that creates k copies of
variables and instances of ¢; and (2) we use ©* to find wit-
nesses of plays that make the environment player reach a
violation of (. This search is described as a logical formula
with different quantifier alternations, depending on the con-
ditionality of the strategy sought (meaning that the environ-
ment is conditioned to a greater or lesser extent on previous
moves). If the strategy is completely unconditional, then
the formula is quantified with the form 3*V*. ¢, whereas
more conditional strategies involve some quantifier alterna-
tions such as 3*V*3*V*. ¢, which can be understood as split
points where the environment observes some prefix of the
play. Our method explores all possible paths of length k£ and
finds whether there is at least one violation of ¢ that can
be achieved by the environment.

The resulting approach is sound, incomplete for uncon-
ditional explanations and complete up to k for conditional
ones. In summary, the contributions of this paper are:

1. An approach to solve unconditional strategy search of
LTL 7 specifications using satisfiability solvers for quan-
fidied first-order theory formulae.

2. An alternative method that is based on a combination of a
Boolean abstraction, followed by quantified Boolean for-
mulae and a technique to produce values in 7. Unlike the
first method, this alternative provides termination guaran-
tees in each iteration of method. Both techniques perform
an unrolling similar to bounded model checking where we
use a k-length unrolling of the original specification.

3. An analogous technique to 1-2 to produce conditional ex-
planations.

4. A case study to discuss the tradeoffs between different
explanations and techniques to obtain them.

5. Empirical evaluation showcasing the scalability of the
approach.

To the best of our knowledge, this is the first work that fo-
cuses on explaining LTL 7 unrealizability and (infinite-state)
shield unrealizability .

"Due to space limitations, we refer the reader to the extended
version (Rodriguez et al. 2025b) for further information about the
encodings, examples with figures and empirical evaluation.

859

2 Preliminaries
2.1 Temporal Logic and Synthesis

LTL. We consider LTL (Pnueli 1977; Manna and Pnueli
1995), whose formulae contain atomic propositions, A and —
(the usual Boolean conjunction and negation?, respectively),
and O and U (the next and until temporal operators). The
semantics of LTL formulae associates traces o € X with
LTL formulae as follows:

cET always holds
ockEa iff a € o(0)

ocE @1 Ve iff o ¢orolE @
o EOyp iff ol =

0 =1 U s iff forsomei >0 o |= ¢y, and
forall0 < j <i,0? = ¢

where o |= T always holds and from which we can also
derive common operators like A and [J (which means al-
ways), etc. A safety formula ¢ is such that for every failing
trace o}~ ¢ there is a finite prefix u of o, such that all ¢
extending u also falsify ¢ (i.e. o’ £).

Synthesis. Reactive synthesis is the problem of produc-
ing a system from an LTL specification, where the atomic
propositions are split into propositions that are controlled by
the environment and those that are controlled by the sys-
tem. Realizability is the related decision problem of decid-
ing whether such a system exists. Realizability corresponds
to a turn-based game in a finite arena where, in each turn, the
environment produces values of its variables (inputs) and the
system responds with values of its variables (outputs).

We revise now conventions of reactive synthesis research:
(1) A play is an infinite sequence of turns. (2) The system
player wins a play according to an LTL formula ¢ if the
trace of the play satisfies ¢. (3) A strategy p of a player is a
map from positions into a move for the player. (4) A play is
played according to p if all the moves of the corresponding
player are played according to p. Also, (5) p is winning for
a player if all the possible plays played according to p are
winning. If (6) p is winning for the system, the specification
is said to be realizable (resp. unrealizable otherwise).

LTL Modulo Theories. A first-order theory 7 (Bradley
and Manna 2007) consists of a finite set of functions and
constants, a set of variables and a domain (which is the sort
of its variables). Popular first-order theories are e.g., Pres-
burger arithmetic or real arithmetic.

LTL Modulo Theories (LTL7) is the extension of LTL
where propositions are replaced by literals from a given first-
order theory 7 (a finite-trace version is given in (Geatti, Gi-
anola, and Gigante 2022) and a infinite-trace version is given
in (Rodriguez and Sanchez 2023)). The semantics of LTL
associate traces o € X% with formulae, where for atomic
propositions ¢ = [holds iff o(0) Fr [, that is, if the valua-
tion o(0) makes the literal [true.

LTL 7 realizability is analogous to LTL realizability, but it
corresponds to a game in an arena where positions may have
infinitely many successors if ranges of variables are infinite.

2We will use ¢ to represent negation of a formula and @ to
represent negation of an atom a.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

2.2 Boolean Abstraction for LTL

Recently, the field of reactive synthesis beyond Booleans
gained traction, and solutions were proposed for different
fragments of LTLt; e.g., very new works like (Heim and
Dimitrova 2025; Rodriguez, Gorostiaga, and Sanchez 2025;
Azzopardi et al. 2025). In this paper, we want our solution
to be complete (up to a bound) and sound.

Therefore, we build upon (Rodriguez and Sanchez 2023),
which showed that some fragments of reactive LTL specifi-
cations can be translated into equi-realizable purely Boolean
LTL specifications via a procedure. The procedure is called
Boolean abstraction or Booleanization, and it works as fol-
lows: given ¢ with literals [;, we get a new specification
©B = @[li < ;] A p®™, where s; are fresh Boolean vari-
ables, controlled by the system, that replace the literals. The
additional subformula ¢*"“ uses s; as well as additional
Boolean variables ej, controlled by the environment, and
captures that, for each possible ey, the system has the power
to select a response among a collection of choices, where
each choice is a truth valuation of each the variables s; that
represent the literals. That is, a choice is a concrete valua-
tion of the s; variables (and hence of the literals /;), and a
reaction is a collection of choices. Pairs (eg, \/,(c;)) denote
that a decision e, of the environment can be responded by
choosing one of the choices ¢; in the disjunction. Then, the
set of reactions captures precisely the finite collection of de-
cisions of the environment and the resulting finite responses
of the system. The set of valid reactions is determined by
the literals in a specific theory 7.

Example 2. Consider ¢ from Ex. 1, for which the abstrac-
tion is as follows: op = (¢” AO[(eg +> €1) A (eg > €2) A
(e1 > €2) — ¢")), where ¢ = (so = Os1) A (50 — 52)
is a direct translation of ¢ (so abstracts (x < 2), s ab-
stracts (y > 1) and s9 abstracts (y < x)) that over-
approximates the power of the system. The additional sub-
formula "™ corrects the over-approximation and makes
p preserve the original decision power of each player:

eo — (SoAs1AS)V (soASTAs2)V (soASTASS)
A

e1 — (SoAS1AS) V(S ASTAS2)
A

es — (%/\sl/\sz)v(%/\sl/\g)v(%/\ﬁ/\sz)

where eq, e1, es belong to the environment and sq, s1 belong
to the system (and all of them are Boolean). Intuitively, eg
represents (x < 2), ey represents (v = 2) and eq represents
(x > 2). Choices are playable valuations in control of the
system: co = {sop A s1 A s2}, co ={so As1 ASz},...c7 =
{50 AS1 AS2}. In other words, the system can respond to e
with either c1, co or c3; to e1 with either cs or cg; and to es
with either cy, cs5 or cg.

Note that ey results in a strictly more restrictive set of
choices for the system than eo, which allows the system to
choose one more valuation, specificaly ¢4 = (Sg A 81 A S2).
Thus, a “clever” environment will never play es and it will
play ey instead. Therefore, for simplicity in the paper, we
will consider the simplified (equi-realizable) specification
vp = [(s0 — s1) A (50 = s2)] AO[(eo < €1) = YEwa'],
where Ypxya 1S a version of Qg where es is ignored.

860

3 Unconditional Explanations
3.1 Unconditional Encoding

The goal of this paper is to generate simple and automatic
explanations for unrealizability in safety LTLs specifica-
tions. We soon explain how we perform this automatization,
but first introduce a notion of simplicity.

Since, in a reactive system, the interplay between the
players can be very complex, it is appealing to find a strat-
egy that reduces the noise of this interplay as far as possi-
ble: in other words, ignoring some moves of the (potentially
infinite) interplay in order to get an explanation that is as
close as possible to a prefix. This is particularly interesting
in shields, because we provide a simple explanation regard-
less of how sophisticated the shielded policy is, and also re-
gardless of how complex the environment is. In this paper,
we designed these explanations in the form of unconditional
and conditional strategies. Let us begin with the first ones:

Definition 1. Given a specification ¢ and a length k, we
call unconditional strategies py, to strategies in which envi-
ronment can reach a violation of v in © < k timesteps with
a sequence of moves that is independent of the system.

More formally, py, is a constant function that assigns val-
uations to the environment variables up to length k.

Example 3. In ¢ of Ex. 1 it suffices for the environment to
(1) play a value for x such that (x < 2), for example x : 1,
in timestep © = 0; and (2) play x : 2int = 1. Thisis a
winning strategy for the environment in two steps, no matter
what the system plays. Thus, we say that the environment
has a two-step unconditional strategy (or explanation) in
and we denote it py.o = {2° : 1,2 : 2}.

Note that, from this point onwards, we use the terms ex-
planation and strategy interchangeably, whenever the mean-
ing is clear from the context. Now, in order to generate un-
conditional explanations/strategies from ¢ of a length up to
k, we propose to use unrollings of ¢ to formalize the exis-
tence of this statement in some logic. Unconditional proper-
ties are of the form there is a sequence of moves of the envi-
ronment such that, for all moves of the system, the formula
is violated, which corresponds to a prefix 3*V* formula.

Definition 2. Given a specification ¢ and a length k,
we call unconditional unrolling formula to an encoding
W = 3aal, ..., aP "LV b L BT Ao A o1 Al A
©k—1], where variables a; are controlled by the environment
and b; belong to the system, and formulae @; correspond to
instantiations of the specification @ at instant 1.

Note that we negate [¢p...] in our query, because the ob-
jective of the environment is to find a witness of the negation
of ¢. Also, note that copies ; resemble classical bounded
model checking (Biere et al. 1999; Clarke et al. 2001).

Remark 1. Before the encoding, o is transformed into nega-
tion normal form, and then specialized as ©** for every step
t (and the maximum unrolling k), using the fix-point expan-
sions of the temporal operators. When an appropriate solver
for 1) is searching to make a formula T, then every attempt
to expand a sub-formula beyond k is replaced by 1 (and
vice-versa when seeking to make a formula L).

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

3.2 Method #1: A Q-SMT Encoding

For a specification ¢ in LTL, 1) of Def. 2 is a quantified for-
mula in some first-order theory 7, which is a natural encod-
ing that can be solved using quantified satisfiability modulo
theories (Q-SMT) procedures; for instance, (Cooper 1972)
for integers or (Collins 1975) for reals.

Now, we detail our method and we start with k¥ = 1 in
order to find whether there is an environment one-step un-
conditional winning strategy px—1 for o7

Example 4. The 1l-unrolling for ¢ in Ex. 1 is:

320V —%1, where
P =1((2" <2) > T A (2" 2 2) = (° <)),

and where 2°,y° € Z are variables x and y instantiated in
timestep i = 0. Note that the sub-formula O(y > 1) is re-
placed by T because it falls beyond the end of the unrolling,
as in standard bounded model checking (as described in re-
mark 1). Thus, the definitive encoding is:

09y (20 < 2) —» T) A (20 2 2) = (5 < 22))),

which is unsatisfiable (i.e., unsat). Thus, there is no strat-
€8y Pk=1-

However, as seen in Ex. 3, there exists a two-step uncon-
ditional strategy px—o2. Moreover, the following Q-SMT en-
coding (for unrollings depth k = 2) finds this witness.

329, 21 0, b =[%2 A 12), where

P2 = (2 <2) = (' > DA 2 2) - (4 < a?))
and

=" <2) =) A (@' 22) = (¥ <z'))]

In this case, a Q-SMT solver will respond that the formula
is satisfiable and will output a model such as m = {x°
1,x! := 2} as an assignment that satisfies it. We can see
that m is precisely pr—o and it is easier to understand than
inspecting the synthesized environment strategy.

In summary, this approach relies on incremental calls to
Alg. 1, which receives the LTL+ specification ¢, an un-
rolling depth & max, environment variable set X and
system variable set Y. Alg. 1 also uses sub-procedures:
(1) copies(A,n), which performs n timestep copies of the
set A of variables; (2) unroll(y, n), which performs m un-
rollings of ¢; (3) QFlim(X, ¢), which performs quantifier-
elimination (QE) of the set Y from formula ¢ (which must
be the inner set of variables); and (4) wimess(y), which
returns a model of a satisfiable formula . Note that the
unrolling formula F (line 5) has {zg,...,Zn,%0---,Yn}
as free variables, G (line 6) quantifies universally over
{Y0-..,ym} so it has {zg,...,z,} as free variables, and
therefore ™ (line 8) is quantifier-free with {xo,...,z,}
as free variables. Also, note that, for each of the Q-SMT
queries to terminate, we require 7 to be decidable in the
F*V*-fragment.

Soundness of Alg. 1 is due to the following:

smt

Theorem 1. Ifthere is some unrolling depth k such that %’
is sat, then @ is unrealizable.

861

Algorithm 1 Unconditional bounded unrealizability check

Require: ¢, max, X,Y
1: for n = 1 to max do

2 [Yor-. yn] — copies(¥,n)

3: [zo,...,xn] < copies(X,n)

4: F < unroll(p1,n)

5. G+ YyoVyr ... Vyn. F

6: O < QElim([yo, - .., Yn), G)
7: if mp¥" is SAT then

8: return (t rue, witness(o5"))
9: endif
10: end for

11: return uncertain

Proof. Let m be such that 5™ is SAT and let e, . . ., e, be
a model of ©$. The unconditional strategy p™ that plays
first eq, then ey, etc up to e, is winning for the environment
because it falsifies ¢7. Note that the universal quantifiers
for yg, . . ., ym guarantee that all moves of the system for the
first m steps are considered and in all cases 7 is falsified.
Since p® is winning, then ¢ is unrealizable.

Note that Thm. 2, Thm. 4 and Thm. 6 follow analogously.

Remark 2. The Q-SMT encoding described in Ex. 4 and
Alg. 1 is also suitable for theories whose satisfiability prob-
lems are semi-decidable: if m is obtained, then it is a le-
gal witness of the desired strategy. For instance, we can
use general-purpose SMT solvers such as Z3 (de Moura and
Bjpgrner 2008) and encode unrollings for the theory of non-
linear integer arithmetic.

Algorithm 2 Uncond. bounded unrealiz. check for LTL.
Require: g, max, F, S
1: for n = 1to max do

2: [S0,...,8n] + copies(S,n)

3: [eg,...,en] < copies(E,n)

4: F + unroll(pp,n)

50 G+ VsgVsy...Vsp . F

6: <p?Bbf — QElim([so, - .., $n], G)
7. if ﬂ@%bf is SAT then

8: return (t rue, witness(¢i"))
9: endif
10: end for

11: return uncertain

3.3 Method #2: Boolean Abstraction to QBF

Although Alg. 1 is sound, each Q-SMT query lacks termi-
nation guarantees (Bjgrner and Janota 2015). Therefore, we
propose an alternative method based on Boolean abstrac-
tions for which the evaluation of each unrolling is guaran-
teed to terminate. In this method, we generate unrolled for-
mulae in QBF. This second method follows these steps: (1)
we compute an equi-realizable purely Boolean LTL ¢p from
 following the Boolean abstraction method (Rodriguez and
Sdnchez 2023); (2) find an unconditional strategy p® in ¢p

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

using QBF solvers; and (3) translate p® from Booleans to 7~
using existential theory queries, generating a strategy for ¢.
Example 5. Consider the search for an unconditional p®
for g in Ex. 2. Let ai, where i refers to the variable and
j to the timestep. Again, k is the unrolling depth. We now
encode the problem in QBF with unrolling k = 1:

368, e?.ng, 8(1), sg.ﬁ¢%’17
where @%’1 [(s§ — T)A (g — 8] = (e + €f) —

0,1 d wh 0,1 .,
SOExtra] and wnere Qp,,-

e = (s§ASIASYV(s§ASIASY)V (s§ASYASY)
N

e = (sHASIASYV(s§ASIASY)
Note, again like in remark 1, that since k = 1, every at-
tempt to access a proposition at time step greater than or
equal k (for example, s}) is replaced by T. Hence, the for-
mula (s§ — T) does not impose an actual constraint. As
we saw in Subsec. 3.2, there is no strategy p for p. Simi-
larly, the QBF unrolling cannot find a strategy p® for ¢p,
as the system only has to satisfy (58 — 89), which happens
if environment plays €. This is as expected, since p and
p should be equi-realizable and, thus, strategies should be
mutually imitable (in this case, have the same length).

Analogously, since there is py—o for o, then there is a
corresponding p],]fzz for pp via a k = 2 QBF unrolling:

00 1 10 0 0 1 .1 .1 0,2 1,2
360@17€0a61-VS0a51752a30751a32-ﬁ(€0m§ N g),

0,1 =
where 2" = [(s8 = 89) 1 (5 — s9)] = [(e] & ~e})
<)0£:rtra]’ Wlth SDEJ’YZVEZ = @L}Cﬂ‘a and Where @B’ 1:2[(86 - T) /\

1,2 . s
(86 - S%)] - [(e(l] < 6%) - (pExtra]’ with PExtra*

— (s§AsTASE)V (shAsTASY)V (shAstAs))
A
O N WV 9

1
€0

Note again that an attempt to generate s3 is replaced by T,
so the formula (s} — T) again imposes no constraint. This
time, the environment has a winning strategy if it plays €9
and e}: playing €3 in timestep i = 0 forces s} to hold in

timestep © = 1, and e% int1 = 1 forces s% ini = 1. Then,

only (siAstAsk) and (s§AstAsd) are valid responses of the
system, but none of them satisfied both s} forced in timestep
1 and s1 forced by the previous timestep, so the specification
is inevitably violated. Thus, in g, it exists py_, = {€J, el }.
Last, if we recall that eq represents (x < 2) and ey repre-
sents (x = 2), the strategy p® in py obtained with QBF
encoding is coherent with py—y = {x° : 1,21 : 2} obtained
with Q-SMT o in Ex. 4.

In summary, this approach starts by ¢, performs abstrac-
tion g, and then again relies on incremental calls to an algo-
rithm that is identical to Alg. 1, except for the fact that it re-
ceives ¢p, Boolean environment variable set £/ and Boolean
system variable set S, and does not solve an SMT query, but
a QBF query (see Alg. 2). Soundness of this method follows
analogously to Thm. 1, given that the Boolean abstraction
method in use ensures equi-realizability of ¢ and g, which
holds with (Rodriguez and Sanchez 2023).

Theorem 2. Ifthere is some unrolling depth k such that
is sat, then @y is unrealizable.

Remark 3. Even though the performance of QBF solvers
degrades with quantifier alternations, modern solvers scale
efficiently even for large formulae with 3*V* prefixes. Al-
though scalability is not the goal of methods presented in
this paper, QBF is a more mature technology than Q-SMT,
which suggests that performance might also be gained reg-

ularly (see Sec. 6 for experiments in scalability).

Remark 4. Similar to remark 2, note that our method is ag-
nostic to the abstraction method in use (even semi-decidable

methods), as long as it preserves equi-realizability.

Remark 5. Similar to remark 3, note that pB of Ex. 5, could
also be related to other strategies in pT rather than p: in-
—1,2t : 2}, to
{20 : =2, 2 : 2} and an infinite amount of strategies

deed, p' = {0 : 0,21 : 2}, 10 p"" = {2° :

p///
that make the literal (z° < 2) true.

Remark 6. One might wonder when is a Q-SMT encoding
preferable to the QBF encoding. We believe there are at
least three situations to consider: (1) If the abstraction is
not terminating, then we can try a Q-SMT encoding. (2) If
the theory T is undecidable, then still Q-SMT solvers have
heuristics for semi-decidability that may produce explana-
tions (which are correct by construction). (3) In very small
instances, abstraction might consume most of the time of a

abstraction+QBF query, so Q-SMT might be faster.

3.4 Strategy Deabstraction

Since the explanation of Alg. 2 is given in terms of Boolean
variables, we need a technique to produce proper values in
the domain of the theory 7. We describe now how to craft a

strategy p from p®.

Definition 3. Consider an LTLy specification ¢ and its
equi-realizable abstraction @g. Then, if p® is winning for
the environment in g, we call a strategy deabstraction func-
tion to a function d : p® — p such that if p® is winning in

g then p is winning in ¢.

In the case of unconditional strategies, these deabstracted
strategies can be obtained leveraging the partitions used dur-

ing the Boolean abstraction.

Algorithm 3 Conditional bounded unrealizability check

Require: ¢, max, X,Y
1. for n =1 to max do

2 [Yor 4] + copies(¥,)

3: [xoy...,xn] < copies(X,n)

4: F < unroll(p1,n)

5: G+ alternats([yo,-.-,Yn)s [T0y-- - Zn]).F
6: P <« QFElim([yo, x1,y1,%2 ..., Tn,Yn|, G)

7: if =" is SAT then

8: return (t rue, witness(o5"))

9: endif

10: end for

11: return uncertain

862

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Example 6. Consider Ex. 2 and the two environment vari-
ables eg and e1, which are discrete partitions of the infi-
nite input space of for variables of the environment. Recall
from Sec. 2 that this partition comes from the fact that the
abstraction algorithm found reactions ro = (x < 2) and
r1 = (x = 2) to be valid.

In other words, in order to get a literal in 7 from an envi-
ronment variable ey, in g, it suffices to associate each ey, to
the reaction formula in 7 that is valid.

Definition 4. Let function conv produce a formula in T
from each ey. Then, our deabstraction procedure is:

i<k

dprgop /\ (conv(el))

e',‘IQEpRiz

This way, we only need to produce a 7 -valuation of x that
satisfies the reaction associated to ey.

Example 7. For the reactions in Ex 6, assignments
Jz.ro(x) < 1 and Jz.ri(x) < 2 mean that ey, which rep-
resents, (x < 2) has a witness x : 1; and ey, which repre-
sents (x = 2), has the (only possible) witness x : 2. This al-
lows to characterize the strategy of Ex. 2 as expected. Since
the Boolean strategy of the environment is p® = {e9, el},
then a possible T -strategy is p = {(2° : 1), (z! : 2)}, as
predicted in Ex. 5.

We now formalize that any Boolean strategy pp

{e?, ej,...} of the environment is related to a p = {(2° -
a), (! : b),...}, where a,b € T, in the sense that the out-

comes of ¢p and ¢ are related in terms of literals they
satisfy.

Theorem 3. Let ¢ and g it Boolean abstraction. Then, an
unconditional strategy p of length k exists if and only if p®
of length k exists.

Proof. The main idea is to create the corresponding se-
quence using Lemma 5 of (Rodriguez and Sanchez 2024b).
It follows that if the system in @7 can make a collection of
literals at some point then the system can make the corre-
sponding Boolean literal hold at the same point (and vicev-
ersa). By structural induction, if the atoms have the same
valuation then all sub-formulae have the same valuation.
Therefore, given an arbitrary length k, if the unconditional
strategy pj in @7 is winning for a player the strategy py in
p is winning for a player as well, and vice-versa.

Note that Thm. 8 follows analogously.

Remark 7. Thm. 3 is different to correctness theorems of
(Rodriguez and Sdnchez 2023), because we prove that a
strategy of same length exists in both ¢ and @p.

4 Conditional Explanations

In Sec. 3 we showed how to discover unconditional expla-
nations for unrealizability, which are simple and preferrable
for the solvers (because of the lack of quantifier alterna-
tions). However, they carry two fundamental problems: (1)
incompleteness (unsatisfiability of a k-step unrolling does
not mean the formula is unrealizable in k timesteps); and

863

Figure 1: Illustration of agent behavior under different conditions.

(2) lack of practical applicability, due to the fact that often
an unrealizable formula does not contain an unconditional
strategy that explains it. Both problems require that the en-
vironment movements are no longer independent to the sys-
tem, but instead has the ability to look at them in order to
choose the move most promising to win.

Definition 5. Given a specification p and a length k, we call
conditional strategies py, to strategies in which environment
can reach a violation of ¢ in i timesteps with a sequence of
moves that depends on previous moves of the system.

Example 8. We illustrate conditionality with ¢’:

(x <5) = O3(y > 9)
A\
(5<x<10)— [((y <0) = Oy >9)

A(y >0) = Oy <9))]

AN
(10 <z <15) — (y <)
(z > 15) — (y >),

which is unrealizable. Again, we can synthetise an environ-
ment automata for ' and again the corresponding automata
is not easy to interpret. Instead, we can get both uncondi-
tional and conditional explanations.

First, ¢’ is unconditionally unrealizable in 4 timesteps: if
the environment plays x : (x < 5) in tg, then y > 9 has to
hold in tyy3,; and if x : 10 in tyy3, then (y < x) has to hold
(i.e., y < 10), which contradicts (y > 9). Note that, if the
first line of @' did not exist, then there would not exists an
unconditional strategy.

Additionally, o does contain a shorter strategy of the en-
vironment to win, but this strategy is conditional (i.e., looks
at the previous play of the system): concretely, the envi-
ronment can play v : (5 < x < 10) in tg, then looks
at whether the system played (y < 0) or (y > 0) in tg,
which imposes (y > 0) or (y < 9) respectively in t41 and
thus the environment reacts accordingly in k + 1 by playing
(10 < x < 15) or (x > 15) respectively in order to violate
. Note how this strategy is shorter, but more complex.

In order to automatically produce these explanations, we
now present conditional strategy search, for which we need
to solve (3*V*)* formulae.

Definition 6. Given a specification ¢ and a length k, we call
conditional unrolling formula to an encoding

3a® W00 3al Wb, ..., 3aF LY = 6P S[pg A A o],

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

where again variables a; are controlled by the environment
and b; belong to the system and formulae y; correspond to
instantiations of @ at instant 1.

Example 9. Consider ¢’ from Ex. 8. Unfortunately, due to
space limitations, we cannot show the 1-step unrolling (only
note that its verdict is unsat and that both conditional and
unconditional formulae are the same). Let us denote with
Q an arbitrary quantification. Then, the 2-step unrolling is
Q. —[%r A 2], where 01

(" < 5) — T
(5 <2’ <10) — (4" <0) = (y' >9))
ANy’ = 0) = (y' <9))]
(10 < 2° < 15) — (y° < 2)
(x0>15)—> (y0>x,
and where p'2:

(' < 5) = T

(5<z! <10) = T

(10 < z* < 15) — (y' < 2)

(z' > 15) — (y' >)

As we can see, an unconditional instantiation, () =
320.vy0 2. Vy!, results in an unsat verdict (because
there is no way the environment can win in 2 steps un-
conditionally, although it can do it in 3 steps as shown
in Ex. 8). However, if the environment is allowed to ob-
serve the prefix of the play, then the conditional instantiation
Q' = 320.vy0 .3z Vyl is sat with a model m/.

Moreover, since a conditional formula captures the envi-
ronment’s ability to to look at the trace and adapt the be-
haviour, a model m' is no longer an assignment of environ-
ment variables to valuations; instead, this only happens in
instant i = 0, whereas for any i > 0 the valuation of ' is
decided using a Skolem function that depends on the previ-
ous value of the system. For instance, {x° : 7, 2% : f,1(y°)},

where: .
10 if (y° <5)
0y _
Jor (W) = {18 otherwise

In summary, we can construct Alg. 3 where changes with
respect to Alg. 1 are that (1) G from line 6 now represents
quantifier alternations, (2) witness from line 8 does not
produce constant Skolem functions and (3) line 11 returns
unreal (see Thm. 5 below). Soundness of Alg. 3 for safety
is due to the following:

Theorem 4. If there is some unrolling depth k such that "'
of Alg. 3 is sat, then o is unrealizable.

Moreover, for arbitrary k, Alg. 3 is guaranteed to find a
conditional strategy of length k, whenever ¢ is an unrealiz-
able safety specifications. This provides k-completeness.

Theorem 5. If ¢ is an unrealizable safety formula in LTL,
then there is an unrolling k such that 05" of Alg. 3 is sat.

Proof. Since (7 is unrealizable, there is some reachability
goal that the environment satisfies. Moreover, since ¢ is in

864

safety, then this goal is reached in a finite number of steps.
O

Note that Thm. 7 follows analogously.

However, as in Sec. 3, extracting simple conditional ex-
planations is a challenge and using Q-SMT for (3*V*)* can
be intractable or even undecidable for some theories. On
the other side, Boolean abstraction for LTL is decidable
for 3*V* decidable theories, so whenever the abstraction is
obtained, we can perform a QBF encoding that is analogous
to the one in Subsec. 3.3: this approach starts by ¢, per-
forms abstraction g then again relies on incremental calls
to an algorithm that is identical to Alg. 3, except for the fact
that it receives ¢p, Boolean environment variable set £/ and
Boolean system variable set S, and does not solve an SMT
query, but a QBF query. Soundness of and completeness of
this method follow analogously.

Theorem 6. If there is some unrolling depth k such that
conditional ap]%bf is sat, then @y is unrealizable.

Theorem 7. If ¢ is an unrealizable safety formula in LTL,

qbf

then there is an unrolling k such that cond. ¢’ is sat.

However, again we need a deabstraction procedure, be-
cause the explanations that we will get will be made up
of Boolean Skolem functions. Moreover, leaning on Sub-
sec. 3.4, the deabstraction procedure for the Boolean Skolem
function is trivial: (1) in timestep ¢ = 0 it substitutes the
environment assignments by reactions (exactly as in the un-
conditional case); whereas (2) in ¢ > it takes each Boolean
Skolem function and performs a term substitution by replac-
ing the domain (variables s’ by their literals in 7)) and the
co-domain (variables e’ by the reactions). Thus:

Theorem 8. Let p and abstraction py. Then, an conditional
strategy p of length k exists iff p® of length k exists.

Remark 8. We can construct arbitrary versions of the
algorithms presented in this paper if we consider semi-
conditional strategies that are between conditional and un-
conditional. For instance, for k = 10, it can be the case
that an unconditional unrolling (which has a = 1 quantifier
alternations) is unsat, a conditional encoding (for which
a = 10) is sat and some semi-conditional encoding (for
which 1 < a < 10) is sat.

Remark 9. It is very important to note that a conditional
encoding is not necessarily harder to solve than uncondi-
tional encodings for QBF solvers. This is not surprising,
since the number of quantifier alternations are not the sole
deciding factors for hardness of a problem. For instance, in
this paper, we presented Ex. 1 which can be solved using un-
conditional strategy. However, one could easily encode the
same problem using a conditional strategy, but this does not
increase the intrinsic hardness of the problem.

Indeed, every problem has its intrinsic hardness and it
is not trivial to figure out at which layer such a problem
belongs to in the polynomial hierarchy.

5 Discussion: What is a better explanation?

Since the unrealizability explanations that we find are the
shortest possible (because the bounded search ends as soon

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

as a satisfiable assignment is found) it is easy to see that
a shorter explanation is better than a longer one. However,
there are other criteria for measuring quality of explanations:
e.g., if we consider conditionality, then finding a strategy
that is less conditional is better than a more conditional one,
because the less conditional the strategy, more of its Skolem
functions will be constants. We now formalize this intuition.

Definition 7. We measure the quality of an explanation as
a function q(k, o), where k is the length of the explanation
and o is the amount of times the environment observes some
prefix of the play (note o = 0 corresponds to unconditional).

Since the goal is to minimize g, then, given %k and o for
strategy p and k' and o’ for explanation p’, where k < j’
and o < 0/, then it is easy to see that q(k,0) < q(k',0),
which means ¢ is a better explanation. However, what if
k < K’ but o > 0, or vice-versa? For instance, in Ex. 9, is it
better to have a longer unconditional explanation or a shorter
conditional one? This is not always an easy choice and its
automatization will heavily depend on our definition of gq.
Moreover, both kinds of explanations can be complemen-
tary, allowing us to find different unrealizability sources.

Example 10. Consider a particle scenario where a drone
wants to reach a certain goal while avoiding dangerous
zones. Also, there is an uncontrollable (environment) wind-
turbulence that can affect the position of the drone. Now, the
developers (1) train the drone using RL until they reach a de-
sired success rate in satisfying the goal, and afterwards (2)
design the specification @ of an infinite-state safety shield
that would achieve collision avoidance. However, they find
that @ is unrealizable. Moreover, the environment strategy
is not easy to interpret (the automata is too big), so they use
methods of Sec. 3 and Sec. 4. In particular, they find that
there are both conditional and unconditional explanations.
We illustrate this using Fig. 1, where the green dot (A) rep-
resents the agent, and the yellow dot (G) represents the goal.
Also, the dotted line indicates the agent’s intended trajec-
tory, while the solid line represents the actual trajectory ex-
ecuted. Now, in Fig. 1 (Left) the agent collides without exter-
nal influences. (Middle) The agent attempts to follow a safe
trajectory, but unavoidable external perturbations (the wind
represented by blue arrows) push it towards the obstacle, re-
sulting in a collision. (Right) The agent initially follows a
safe trajectory but is influenced by the wind, causing a de-
viation from its intended path. Despite this disturbance, the
agent successfully recovers and continues towards the goal.
However, later, a stronger perturbation pushes the agent in
the opposite direction, resulting in a collision. As we can
see, both the unconditional and conditional strategies (i.e.,
Middle and Right resp.) allow us to discover information
about @ to restrict the power of the environment towards a
realizable version of p: Middle shows that no matter what
the agent does, the turbulence is too strong; whereas Right
shows that ¢ is allowing an unrealistic dynamic such as
changing the turbulence direction from timestep to timestep.

In summary, we acknowlede there is no unique rigorous
formalization of what an explanation is 3. In this section, we

3Papers (Miller 2019) show that human-interpretable explana-

865

proposed that minimal (k, o) pairs seem to correlate with
human-judged interpretability.

6 Empirical Evaluation

Experimental setting. The main contribution of this pa-
per is the method for obtaining simple explanations in reac-
tive systems specified in LTLs. In addition, Sec. 5 show-
cases in a qualitative manner how the method helps finding
such explanations for shielding. Now, we perform a scal-
ability evaluation with a prototype unrealExplainerT
that takes an LTL formula and a bound k, produces the un-
rolling for both Q-SMT and QBF approaches, and returns
the unrealizability explanation (in case it exists).
Concretely, we created two versions for each benchmark
in (Rodriguez and Sanchez 2023): (1) if the specification
does not have a strategy of length & (e.g., it is realizable), we
introduced minimal modifications to have such a strategy;
(2) if the specification did contain such strategy, then we
made minimal modifications not to have the strategy. We
tested both the original and modified versions, both QBF
and Q-SMT and both conditional and unconditional cases.

Unconditional encoding. We can see results in Tab. 1, un-
der the block unconditional. The first column corresponds
to the name of the benchmarks (nm.) The two next columns
shows variables (vr.) and literals (/¢.) per benchmark, where
gray colour indicates that the specification is unrealizable
and white colour means the opposite.; The following two
groups of columns show results of the execution of QBF and
Q-SMT techniques for a different (at most) number of un-
rollings of the formula: 10, 50 and 100 4. We show the time
needed (in seconds) for each execution, where Preprocess-
ing time (Pre.) in the QBF column is the time needed for
computing the Boolean abstraction. Results show that, even
if QBF has an initial Boolean abstraction cost, it quickly
begins to to perform better than Q-SMT in time and also
reaches higher limits. Note that we encounter false negatives
(i.e., the specification is unrealizable but because there is no
unconditional strategy), but all the results are sound. Also,
note that the time necessary for constructing the unrollings
of both QBF and Q-SMT formulae is here negigible.

Conditional encoding. Similar experiments were con-
ducted for conditional versions of the benchmarks, noting
that this method offers completeness, but at the cost of an
expected dramatical decrease in scalability. The conditional
block of Tab. 1 confirms these results, were times increased
alot and Q-SMT usually does not go beyond 5 whereas QBF
does not go beyond 20 (usually not beyond 10). There-
fore, we can argue that, in case conditional explanations
are seeked, paying the price for the abstraction is absolutely
worth it. Moreover, usually Q-SMT could not provide an
answer (underlying SMT-solver responded N/ R).

tions require cognitive models that are inherently hard to formalize.

“Note that an interval of 100 timesteps in industrial benchmarks
happens because time of the original specifications is dense: this
means that if there is a requirement that must be satisfied in 0.2
seconds and another one in 1 second, this imposes a discrete repre-
sentation with 5 timestep horizon.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Bn Cls Unconditional Conditional
) : QBF Q-SMT QBF Q-SMT
(nm.) w,1 Pre. ‘ 10 ‘ 50 ‘ 100 10 ‘ 50 ‘ 100 10 ‘ 20 10 ‘ 20
Li 4411002 | 044 | 9.85 | 0.32 | 0.64 | 14.08 | 422 - 611 -
) (5,16) | 3.71 | 0.02 | 0.36 | 8.00 | 0.26 | 0.52 | 11.44 | 341 - 493 -
T 5.13 | 0.01 | 0.53 | 11.70 | 0.38 | 0.76 | 16.72 | 507 - - -
) (19,36) | 5.01 | 0.01 | 0.57 | 12.62 | 0.41 | 0.82 | 18.04 | 544 - - -
Con 437 1002 | 047 | 10.52 | 0.34 | 0.68 | 15.04 | 452 490 654 | 7029
’ 2,2) 434 |1 002 | 051 | 11.39 | 0.37 | 0.74 | 16.28 | 498 536 741 -
n 7.04 | 0.02 | 043 | 954 | 031 | 0.62 | 13.64 | 411 | 4454 - -
’ (8, 8) 7.38 | 0.02 | 0.61 | 13.55 | 0.44 | 0.88 | 19.36 | 588 | 6563 | 824 -
Air 3.29 | 0.01 | 0.50 | 11.14 | 036 | 0.72 | 1592 | 477 - 6838 -
) (13,14) | 4.51 | 0.01 | 040 | 893 | 0.29 | 0.58 | 12.76 | 397 - 5124 -
Coo 3.64 | 0.03 | 0.46 | 10.16 | 0.33 | 0.66 | 14.52 | 443 475 622 681
’ (3,5 3.56 | 0.03 | 0.54 | 12.01 | 0.39 | 0.78 | 17.16 | 520 556 754 811
Ush 3.93 1 0.01 | 049 | 10.78 | 0.35 | 0.70 | 1540 | 466 | 5151 | 6557 -
(5, 8) 393 | 0.01 | 056 | 1232 | 040 | 0.80 | 17.6 | 5343 | 5702 | 7837 -
5 6.06 | 0.02 | 0.39 | 8.62 | 0.28 | 0.56 | 12.32 | 3417 - - -
) (11,14) | 2.86 | 0.02 | 0.51 | 11.39 | 0.37 | 0.74 | 16.28 | 5162 - - -

Table 1: Results using both Q-SMT and QBF unrollings to find unconditional and conditional environment strategies of industrial benchmarks.

7 Final Remarks

Related Work. We classify our work in classic incre-
mental SAT/SMT/QBF solving methods like CEGAR-loops
(Clarke et al. 2000), which repeatedly check satisfiability
while incrementally growing the formula/constraint set and
bounded unroll constraints each iteration until the proof is
found. Some concrete works are intended to find counter ex-
amples and counter traces for SMT solvers (e.g., (Chehida
et al. 2021; Reynolds et al. 2015)). Also, QBF solvers
have been used for such tasks (e.g., (Balabanov et al. 2015;
Janota et al. 2016)) and (Hecking-Harbusch and Tentrup
2018) encodes Petri games in QBF and provides strategies
of the environment. QBF has also been used for planning
(Shaik and van de Pol 2022; Shaik et al. 2023).

Note that our fully conditional method, is not the same
as bounded synthesis (Schewe and Finkbeiner 2007), be-
cause the latter bound strategies by size of the controller,
not by a temporal size. However, our technique is simi-
lar to bounded model checking, BMC, (Biere et al. 1999;
Clarke et al. 2001) in the sense that BMC algorithms un-
roll a finite-state automata for a fixed number of steps k,
and check whether a property violation can occur in k or
fewer steps. This typically involves encoding the restricted
model as an instance of SAT. The process can be repeated
with larger and larger values of k. Recently, QBF solving
has been used in bounded model checking for hyperproper-
ties (Hsu, Sanchez, and Bonakdarpour 2021), which opens
the door for the same study over LTL s properties (and also
with loop conditions (Hsu, César Sanchez, and Bonakdar-
pour 2023)). Last, we find similar research directions in
other temporal logics.; e.g., in STL (Maler and Nickovic
2004), the problem of falsification (i.e., achieving the vio-
lation of the proposed requirements) is considered, via dif-
ferent approaches (e.g., (Peltomiki and Porres 2022)).

866

Limitations and opportunities. In this work, we are re-
stricted to the fragment of LTL for which synthesis is de-
cidable. Therefore, future work includes proposing similar
methods to temporal logics that allow to transfer richer data
across time (e.g., infinite-trace (Geatti, Gianola, and Gigante
2022)). Also, we want to study usability of semi-conditional
explanations (see remark 8), because they offer a trade-off
between explainability, completeness and performance (e.g.,
to solve failures of Tab. 1) that seems promising.

Last, we consider that the discussion of Sec. 5 about
optimizing different explanation criteria has to be widely
made (and note that neurosymbolic approaches seem to be a
key direction in order to optimize an eventual explainability
function ¢). Thus, we want to integrate our solution under
unified views of explainability. One example is comparing
our work with conditional conformant planning (Smith and
Weld 1998; Cimatti and Roveri 2000), where the objective
is to find a sequence of actions that will guide the system to
the desired state, regardless of the nondeterminism.

Conclusion. In this paper, we showed methods to find
simple explanations of unrealizable LTL; safety specifica-
tions, mostly designed for shields. We obtain such wit-
nesses via unrollings of the formula up to a certain num-
ber k£ in a semi-complete spirit. We first showed that this
method can be designed following an SMT-with-quantifiers
(Q-SMT) encoding, but that this method lacks some termi-
nation guarantees and might not scale. Then, we showed a
second method that uses an QBF encoding preceded by an
abstraction process and a posterior deabstraction process. In
both cases, we proposed a method to generate unconditional
explanations (simpler, but less common) and conditional ex-
planations (more complex, but complete). The paper is the
basis for exciting work in other aforementioned directions.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Acknowledgments
This work was funded in part by the DECO
Project (PID2022-1380720B-100) funded by

MCIN/AEI/10.13039/501100011033 and by the ESF+.

References

Alshiekh, M.; Bloem, R.; Ehlers, R.; Konighofer, B.;
Niekum, S.; and Topcu, U. 2018. Safe Reinforcement
Learning via Shielding. In Proc. of the 32nd AAAI Con-
ference on Artificial Intelligence, 2669-2678.

Azzopardi, S.; Stefano, L. D.; Piterman, N.; and Schnei-
der, G. 2025. Full Itl synthesis over infinite-state arenas.
In Proc. of the 37th International Conference on Computer
Aided Verification (CAV’25), LNCS.

Baier, C.; Coenen, N.; Finkbeiner, B.; Funke, F.; Jantsch,
S.; and Siber, J. 2021. Causality-based game solving.
In Proc. of the 33rd International Conference in Computer
Aided Verification (CAV’21), Part I, volume 12759 of LNCS,
894-917. Springer.

Balabanov, V.; Jiang, J. R.; Janota, M.; and Widl, M.
2015. Efficient extraction of QBF (counter)models from
long-distance resolution proofs. In Proc. of the 29th Confer-
ence on Artificial Intelligence (AAAI 2015), January 25-30,
2015, Austin, Texas, USA, 3694-3701. AAAI Press.

Bassan, S.; Amir, G.; Corsi, D.; Refaeli, I.; and Katz, G.
2023. Formally explaining neural networks within reac-
tive systems. In Formal Methods in Computer-Aided Design
(FMCAD 2023), 1-13. 1IEEE.

Biere, A.; Cimatti, A.; Clarke, E. M.; and Zhu, Y. 1999.
Symbolic model checking without BDDs. In Proc. of the
Sth Int’l Confe. on Tools and Algorithms for Construction
and Analysis of Systems (TACAS’99), volume 1579 of LNCS,
193-207. Springer.

Bjgrner, N. S., and Janota, M. 2015. Playing with quanti-
fied satisfaction. In Proc. of the 20th International Confer-
ences on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR 2015), Short Presentations, Suva, Fiji,
November 24-28, 2015, volume 35 of EPiC Series in Com-
puting, 15-27. EasyChair.

Bloem, R.; Konighofer, B.; Konighofer, R.; and Wang, C.
2015. Shield Synthesis: - Runtime Enforcement for Reac-
tive Systems. In Proc. of the 21st Int. Conf. in Tools and
Algorithms for the Construction and Analysis of Systems,
(TACAS), volume 9035, 533-548.

Bradley, A. R., and Manna, Z. 2007. The Calculus of Com-
putation. Springer-Verlag.

Chehida, S.; Ledru, Y.; Blein, Y.; and Vega, G. 2021.
An SMT-based approach for generating trace examples and

counter-examples of parametric properties. Int. J. Crit. Com-
put. Based Syst. 10(2):143-183.

Cimatti, A., and Roveri, M. 2000. Conformant planning via
symbolic model checking. J. Artif. Intell. Res. 13:305-338.
Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith,
H. 2000. Counterexample-guided abstraction refinement.
In Computer Aided Verification, 12th International Confer-
ence, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Pro-

867

ceedings, volume 1855 of Lecture Notes in Computer Sci-
ence, 154-169. Springer.

Clarke, E. M.; Biere, A.; Raimi, R.; and Zhu, Y. 2001.
Bounded model checking using satisfiability solving. For-
mal Methods Syst. Des. 19(1):7-34.

Collins, G. E. 1975. Quantifier elimination for real closed
fields by cylindrical algebraic decompostion. In Automata
Theory and Formal Languages, volume 33 of LNCS, 134—
183. Berlin, Heidelberg: Springer.

Cooper, D. W. 1972. Theorem proving in arithmetic without
multiplication. Machine Intelligence 7(2):91-100.

Corsi, D.; Amir, G.; Rodriguez, A.; Katz, G.; Sanchez, C.;
and Fox, R. 2024. Verification-guided shielding for deep
reinforcement learning. RLJ 4:1759-1780.

Corsi, D.; Mallik, K.; Rodriguez, A.; and Sinchez, C. 2025.
Efficient dynamic shielding for parametric safety specifi-
cations. In Proc. of the 23rd International Symposium on
Automated Technology for Verification and Analysis (ATVA
2025),, LNCS. Springer.

de Moura, L. M., and Bjgrner, N. S. 2008. Z3: an effi-
cient SMT solver. In Tools and Algorithms for the Construc-
tion and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings,
volume 4963 of Lecture Notes in Computer Science, 337—
340. Springer.

Geatti, L.; Gianola, A.; and Gigante, N. 2022. Linear tem-
poral logic modulo theories over finite traces. In Proc. of

the 31st International Joint Conference on Artificial Intelli-
gence, (IJCAI 2022), 2641-2647. ijcai.org.

Goodfellow, I.; Shlens, J.; and Szegedy, C. 2014. Explaining
and Harnessing Adversarial Examples. Technical Report.
http://arxiv.org/abs/1412.6572.

Hecking-Harbusch, J., and Tentrup, L. 2018. Solving QBF
by abstraction. In Proc. of the 9th International Sympo-
sium on Games, Automata, Logics, and Formal Verification,
(GandALF 2018), Saarbriicken, Germany, 26-28th Septem-
ber 2018, volume 277 of EPTCS, 88-102.

Heim, P., and Dimitrova, R. 2025. Issy: A comprehensive
tool for specification and synthesis of infinite-state reactive
systems. In Proc. of the 37th International Conference on
Computer Aided Verification (CAV’25), LNCS.

Hsu, T.; César Sanchez, S. S.; and Bonakdarpour, B. 2023.
Efficient loop conditions for bounded model checking hy-
perproperties. In Proc. of the 29th International Conference
in Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2023) , Held as Part of the European Joint
Conferences on Theory and Practice of Software (ETAPS)
2023, Paris, France, April 23 - April 27, 2023, volume ?? of
Lecture Notes in Computer Science, 7?7 Springer.

Hsu, T.; Sanchez, C.; and Bonakdarpour, B. 2021. Bounded
model checking for hyperproperties. In Proc. of the 27th
International Conference in Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2021), vol-

http://arxiv.org/abs/1412.6572

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

ume 12651 of Lecture Notes in Computer Science, 94—112.
Springer.

Jacobs, S.; Basset, N.; Bloem, R.; Brenguier, R.; Colange,
M.; Faymonville, P.; Finkbeiner, B.; Khalimov, A.; Klein,
F.; Michaud, T.; Pérez, G. A.; Raskin, J.; Sankur, O.; and
Tentrup, L. 2017. The 4th reactive synthesis competition
(SYNTCOMP 2017): Benchmarks, participants & results.
In Proc. of the 6th Workshop on Synthesis (SYNT@ CAV
2017), volume 260 of EPTCS, 116-143.

Janota, M.; Klieber, W.; Marques-Silva, J.; and Clarke,
E. M. 2016. Solving QBF with counterexample guided re-
finement. Artif. Intell. 234:1-25.

Kim, K.; Corsi, D.; Rodriguez, A.; Lanier, J.; Parellada,
B.; Baldi, P.; Sanchez, C.; and Fox, R. 2025. Realizable
continuous-space shields for safe reinforcement learning. In
Proc. of the 7th Annual Learning for Dynamics & Control
Conference (L4DC’25), PMLR.

Maler, O., and Nickovic, D. 2004. Monitoring tempo-
ral properties of continuous signals. In Formal Techniques,
Modelling and Analysis of Timed and Fault-Tolerant Sys-
tems, Joint International Conferences on Formal Modelling
and Analysis of Timed Systems, (FORMATS 2004) and For-
mal Techniques in Real-Time and Fault-Tolerant Systems,
(FTRTFT 2004), Grenoble, France, September 22-24, 2004,
Proceedings, volume 3253 of Lecture Notes in Computer
Science, 152—-166. Springer.

Manna, Z., and Pnueli, A. 1995. Temporal verification of
reactive systems - safety. Springer.

Marchesini, E., and Farinelli, A. 2020. Discrete deep
reinforcement learning for mapless navigation. In 2020
IEEFE International Conference on Robotics and Automation
(ICRA).

Miller, T. 2019. Explanation in artificial intelligence: In-
sights from the social sciences. Artif. Intell. 267:1-38.

Peltomiki, J., and Porres, I. 2022. Falsification of mul-
tiple requirements for cyber-physical systems using online
generative adversarial networks and multi-armed bandits. In
Proc. of the 15th IEEE International Conference on Soft-
ware Testing, Verification and Validation Workshops, (ICST
Workshops 2022), Valencia, Spain, April 4-13, 2022, 21-28.
IEEE.

Pnueli, A., and Rosner, R. 1989a. On the synthesis of a
reactive module. In Proc. of the 16th Annual ACM Symp.
on Principles of Programming Languages (POPL’89), 179—
190. ACM Press.

Pnueli, A., and Rosner, R. 1989b. On the synthesis of
an asynchronous reactive module. In Proc. of the 16th
Int’l Collogium on Automata, Languages and Programming
(ICALP’89), volume 372 of LNCS, 652—671. Springer.

Pnueli, A. 1977. The temporal logic of programs. Proc.
of the 18th Annual Symposium on Foundations of Computer
Science (FOCS 1977) 46-57.

Reynolds, A.; Deters, M.; Kuncak, V.; Tinelli, C.; and Bar-
rett, C. W. 2015. Counterexample-guided quantifier instanti-

ation for synthesis in SMT. In Proc. of the 27th International
Conference on Computer Aided Verification (CAV 2015),

868

San Francisco, CA, USA, July 18-24, 2015, volume 9207
of Lecture Notes in Computer Science, 198-216. Springer.

Rodriguez, A., and Sinchez, C. 2023. Boolean Abstrac-
tions for Realizability Modulo Theories. In Proc. of the
35th International Conference on Computer Aided Verifica-
tion (CAV’23), volume 13966 of LNCS. Springer, Cham.

Rodriguez, A., and Sdnchez, C. 2024a. Adaptive reactive
synthesis for LTL and LTLf modulo theories. In Proc. of the
38th AAAI Conf. on Artificial Intelligence (AAAI’24). AAAI
Press.

Rodriguez, A., and Sénchez, C. 2024b. Realizability mod-
ulo theories. J. Log. Algebraic Methods Program. (JLAMP)
140:100971.

Rodriguez, A.; Amir, G.; Corsi, D.; Sanchez, C.; and Katz,
G. 2025a. Shield synthesis for LTL modulo theories.
In Proc. of the 39th AAAI Conf. on Artificial Intelligence
(AAAI’25). AAAI Press.

Rodriguez, A.; Shaik, I.; Corsi, D.; Fox, R.; and Sanchez,
C. 2025b. Explanations for unrealizability of infinite-state
safety shields.

Rodriguez, A.; Gorostiaga, F.; and Sanchez, C. 2024. Pre-
dictable and performant reactive synthesis modulo theories
via functional synthesis. In Proc. of the 22nd International
Symposium on Automated Technology for Verification and
Analysis (ATVA 2024), Part 11, volume 15055 of LNCS, 28—
50. Springer.

Rodriguez, A.; Gorostiaga, F.; and Sanchez, C. 2025.
Counter Example Guided Reactive Synthesis for LTL Mod-
ulo Theories. In Proc. of the 37th International Conference
on Computer Aided Verification (CAV’25), LNCS.

Schewe, S., and Finkbeiner, B. 2007. Bounded synthesis.
In Proc. of the 5th International Symposium in Automated
Technology for Verification and Analysis (ATVA 2007), vol-
ume 4762 of LNCS, 474-488. Springer.

Shaik, I., and van de Pol, J. 2022. Classical planning as
QBF without grounding. In Proc. of the 32nd International
Conference on Automated Planning and Scheduling, (ICAPS
2022),329-337. AAAI Press.

Shaik, I.; Heisinger, M.; Seidl, M.; and van de Pol, J. 2023.
Validation of QBF encodings with winning strategies. In
26th International Conference on Theory and Applications
of Satisfiability Testing, SAT 2023, July 4-8, 2023, Alghero,
Italy, volume 271 of LIPIcs, 24:1-24:10. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik.

Smith, D. E., and Weld, D. S. 1998. Conformant graph-
plan. In Proc. of the 15th National Conference on Artificial
Intelligence (AAAI 98), 889-896. AAAI Press / The MIT
Press.

Wu, M.; Wang, J.; Deshmukh, J.; and Wang, C. 2019. Shield
synthesis for real: Enforcing safety in cyber-physical sys-
tems. In Proc. of 19th Formal Methods in Computer Aided
Design, (FMCAD’19), 129-137. 1IEEE.

	Introduction
	Preliminaries
	Temporal Logic and Synthesis
	Boolean Abstraction for LTLT

	Unconditional Explanations
	Unconditional Encoding
	Method #1: A Q-SMT Encoding
	Method #2: Boolean Abstraction to QBF
	Strategy Deabstraction

	Conditional Explanations
	Discussion: What is a better explanation?
	Empirical Evaluation
	Final Remarks

