
A Planning Compilation to Reason about Goal Achievement at Planning Time

Alberto Pozanco , Marianela Morales , Daniel Borrajo , Manuela Veloso
J.P. Morgan AI Research

{alberto.pozancolancho,marianela.moraleselena}@jpmorgan.com, {name.surname}@jpmorgan.com

Abstract

Identifying the specific actions that achieve goals when solv-
ing a planning task might be beneficial for various planning
applications. Traditionally, this identification occurs post-
search, as some actions may temporarily achieve goals that
are later undone and re-achieved by other actions. In this pa-
per, we propose a compilation that extends the original plan-
ning task with commit actions that enforce the persistence
of specific goals once achieved, allowing planners to identify
permanent goal achievement during planning. Experimental
results indicate that solving the reformulated tasks does not
incur on any additional overhead both when performing op-
timal and suboptimal planning, while providing useful infor-
mation for some downstream tasks.

1 Introduction
Automated Planning involves determining a sequence of ac-
tions, or a plan, to achieve a set of goals from an initial
state (Ghallab, Nau, and Traverso 2004). Identifying the
specific actions that achieve goals when solving a planning
task might be beneficial for various planning applications.
For example, it can be valuable for attributing goal achieve-
ment to agents in centralized multi-agent planning (Pozanco
and Borrajo 2022); or for analyzing goal achievement dis-
tribution throughout the plan. However, this identification
can only be done at the end of planning by analyzing the
returned plan, since some actions may temporarily achieve
goals that are later undone and re-achieved by other actions.

Consider the SOKOBAN task illustrated in Figure 1, where
two agents are responsible for pushing stones to their desig-
nated goal locations, marked in green. One possible plan
to accomplish this task involves the orange agent pushing
a stone three times to the right, followed by the blue agent
pushing the other stone once downward. In this plan, the
first stone temporarily occupies a goal location before being
moved to its final destination. Through post-processing, we
can easily identify that it is not the initial action of the orange
agent, but rather the final push executed by the blue agent,
that successfully achieves the specific goal. However, there
is currently no standard mechanism to determine at plan-
ning time, whether a goal proposition that becomes true will
maintain its truth value until the plan’s completion. This
limitation hinders the community from developing planning
solutions that not only assess goal achievement but also rea-

Figure 1: SOKOBAN task where two agents are responsible
for pushing stones to their goal locations (in green).

son about and optimize it. In the SOKOBAN example, pos-
sessing this capability would enable us to create plans that
prioritize specific goal achievement distributions over oth-
ers. Examples include preferring more fair distributions of
goal to agents; or plans that minimize the number of actions
between the achievement of consecutive goals.

In this paper, we introduce a compilation (Nebel 2000)
that extends the original planning task by incorporating
commit actions. These actions enable the planner to en-
sure the persistence of specific goals once they are achieved,
thus committing to them within the search sub-tree. This
approach allows the planner to determine, during the plan-
ning phase, when an action permanently achieves a goal. In
the previous SOKOBAN example, the agents would have two
options: either perform the standard push or execute a push-
commit action, which guarantees that the stone will remain
in its goal location for the remainder of the planning episode.

Experimental results across a comprehensive benchmark
demonstrate that solving the reformulated tasks incurs in no
additional overhead, whether in optimal or suboptimal plan-
ning. This highlights that our compilation enables reasoning
about goal achievement during the planning phase without
any added overhead.

2 Background
We formally define a planning task as follows:
Definition 1. A STRIPS planning task is a tuple P =
⟨F,A, I,G⟩, where F is a set of fluents, A is a set of actions,
I ⊆ F is an initial state, and G ⊆ F is a goal specification.

A state s ⊆ F is a set of fluents that are true at a given
time. A state s ⊆ F is a goal state iff G ⊆ s. Each ac-

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

853

tion a ∈ A is described by its name NAME(a), a set of
positive and negative preconditions PRE+(a) and PRE−(a),
add effects ADD(a), delete effects DEL(a), and cost c(a).
An action a is applicable in a state s iff PRE+(a) ⊆ s
and PRE−(a) ∩ s = ∅. We define the result of applying
an action in a state as γ(s, a) = (s \ DEL(a)) ∪ ADD(a).
We assume DEL(a) ∩ ADD(a) = ∅. A sequence of ac-
tions π = (a1, . . . , an) is applicable in a state s0 if there
are states (s1. . . . , sn) such that ai is applicable in si−1 and
si = γ(si−1, ai). The resulting state after applying a se-
quence of actions is Γ(s, π) = sn, and c(π) =

∑n
i c(ai)

denotes the cost of π. A state s is reachable from state s′

iff there exists an applicable action sequence π such that
s ⊆ Γ(s′, π). The solution to a planning task P is a plan, i.e.,
a sequence of actions π such that G ⊆ Γ(I, π). We denote as
Π(P) the set of all solution plans to planning task P . Also,
given a plan π, we denote its alternatives, i.e., all the other
sequence of actions that can solve P as Ππ = Π(P) \ π. A
plan with minimal cost is optimal.

3 Planning with Commit Actions
The aim of our compilation is to extend the original task with
commit actions that allow the planner to enforce the persis-
tence of specific goals once they are achieved. In particular,
we will only focus on committing to those goals that are
not already true in the initial state, and that can be achieved
through actions in A. We make this restriction because it is
not possible to tell apriori whether the goals that are true in
I will need to be eventually undone to then be re-achieved
by an action, or no action will need to ever falsify the goal
in order to achieve G. We define pending goals as:
Definition 2. Let P = ⟨F,A, I,G⟩ be a planning task, the
subset of pending goals Ḡ ⊆ G is formally defined as:

Ḡ = {gi ∈ G \ I | ∃a ∈ A, gi ∈ ADD(a)}

To ensure that goals in Ḡ remain achieved throughout the
planning process, we extend the original set of propositions
F with a new set of commit propositions that we denote
F ′. Each goal gi ∈ Ḡ is associated with a commit version,
which tracks whether gi has been achieved and should re-
main true. Formally, we define F ′ =

⋃
gi∈Ḡ{gi-commit}.

We also extend the original actions to ensure the persis-
tence of the commit propositions once they become true. To
do that, we differentiate four different groups within A based
on their interaction with the goals.
(1) Actions that add and do not delete goals: AG = {a ∈
A | Ḡ ∩ ADD(a) ̸= ∅ ∧ Ḡ ∩ DEL(a) = ∅}. Since ac-
tions can achieve multiple goal propositions, for each ac-
tion aG ∈ AG, we define CaG as a set containing all pos-
sible combinations of commit goals in ADD(aG) ∩ Ḡ. This
set will have 2n subsets, where n is the number of goals in
ADD(aG)∩ Ḡ. For instance, if ADD(aG)∩ Ḡ = {x, y}, then
CaG = {{}, {x}, {y}, {x, y}}. Next, we introduce a new
set of commit actions AC: for each action aG ∈ AG, we
introduce |CaG | new actions. Each commit action aCi ∈ AC,
with i ∈ CaG , is defined as:
• NAME(aC

i) = NAME(aG)-commit-i

• PRE+(aC
i)=PRE+(aG),

• PRE−(aC
i)=PRE−(aG) ∪ {∪j∈igj-commit}

• DEL(aC
i)=DEL(aG), ADD(aC

i)=ADD(aG)∪ {∪j∈igj-commit}
• c(aC

i) = c(aG)

(2) Actions that do not add but delete goals: A¬G =
{a ∈ A | Ḡ ∩ ADD(a) = ∅ ∧ Ḡ ∩ DEL(a) ̸= ∅}. We
must ensure these actions do not delete a goal that is already
commit. For each a¬G ∈ A¬G, we substitute it with an
updated forcecommit action a¬C, which is added to a new
set A¬C and defined as follows:
• NAME(a¬C) = NAME(a¬G)-forcecommit

• PRE+(a¬C) = PRE+(a¬G)

• PRE−(a¬C)= PRE−(a¬G)∪{gj-commit |gj ∈DEL(a¬G)∩ Ḡ}
• DEL(a¬C) = DEL(a¬G), ADD(a¬C) = ADD(a¬G)

• c(a¬C) = c(a¬G)

(3) Actions that add and delete goals: AG⋆

= {a ∈ A |
Ḡ ∩ ADD(a) ̸= ∅ ∧ Ḡ ∩ DEL(a) ̸= ∅}. The behavior of the
reformulated actions is defined as a combination of the pre-
vious two type of actions, and therefore they: (i) add commit
propositions to achieve the goals in Ḡ; and (ii) ensure that
these actions do not delete a goal that is already commit. For
each aG

⋆ ∈ AG⋆

, we define CaG⋆ as the set of all the possi-
ble combinations of commit goals in ADD(aG

⋆

) ∩ Ḡ. Next,
we introduce a new set of simultaneous actions AS: for each
aG

⋆ ∈ AG⋆

, we introduce |CaG⋆ | new actions. Each action
aSj ∈ AS, with j ∈ CaG⋆ , is defined as:

• NAME(aS
j) = NAME(aG⋆

)-simultaneous-j

• PRE+(aS
j) = PRE+(aG⋆

)

• PRE−(aS
j)=PRE−(aG⋆

) ∪ {∪i∈jgi-commit} ∪ {gi-commit |
gi ∈ DEL(aG⋆

) ∩ Ḡ}

• DEL(aS
j)=DEL(aG⋆

), ADD(aS
j)=ADD(aG⋆

)∪{∪i∈jgi-commit},

• c(aS
j) = c(aG⋆

)

(4) Actions that neither add nor delete goals: AL = {a ∈
A | Ḡ ∩ ADD(a) = ∅ ∧ Ḡ ∩ DEL(a) = ∅}. We keep these
actions unchanged.

The new planning task is defined as follows:
Definition 3. Given a planning task P = ⟨F,A, I,G⟩,
a commit planning task is defined as a tuple Pc =
⟨Fc, Ac, I, Gc⟩ where,
• Fc = F ∪ F ′,
• Ac = AC ∪A¬C ∪AS ∪AL

• Gc = {G \ Ḡ} ∪gi∈Ḡ {gi-commit}
Theorem 1. If P is solvable, Pc is also solvable.

Proof. Let π be a solution for P . We need to show that there
exists a plan π′ that solves Pc comprised by the same se-
quence of actions as π, only varying their version, i.e. we in-
clude actions that allow us to have commit and forcecommit
versions. For each action a ∈ π, there could be these cases:

Case 1. a ∈ AL, then π′ will use a.
Case 2. a ∈ A¬G is replaced by its corresponding

forcecommit action a′ ∈ A¬C. They differ only in their pre-
conditions related to commit goals. If such action appears

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

854

in π, it means there will be another action a′′ ∈ π that will
achieve the goal that is being temporary deleted.

Case 3. a ∈ AG. We differentiate two sub-cases: (i)
a is not the last action in the plan achieving the goals in
ADD(a) ∩ Ḡ: this action is replaced by the original non-
commit action that we keep in AC; and (ii) a is the last action
in the plan achieving the goals in ADD(a)∩ Ḡ: this action is
replaced by its corresponding aCi ∈ AC where i ∈ CaG .

Case 4. a ∈ AG⋆

. We differentiate two sub-cases as Case
3 and combine the preconditions related to commit goals as
Case 2.

For every gi ∈ G, either gi ∈ I , and is correctly achieved
in Pc by the same original actions in Ac; or gi ∈ Ḡ corre-
sponds to a commit version gi-commit ∈ Gc and is correctly
achieved by commit actions in AC.

Theorem 2. Any plan π′ that solves Pc is a plan for the
original problem P .

Proof. Let π′ be a solution for Pc. We need to show that
there is a plan π that can be mapped from π′ which is a so-
lution for P . Each action in π′ falls into one of four cases:
(i) a ∈ AL: we leave them as is in π; (ii) a ∈ AC: they are
substituted in π by their counterparts in AG; (iii) a ∈ A¬C:
they are substituted in π by their counterparts in A¬G, which
are equivalent to the original actions in P , regarding their ef-
fects. Their preconditions in Pc include commit attributes,
but this only restricts action applicability in Pc, not in P;
(iv) a ∈ AS: they are substituted in π by their counterparts
in AG⋆

. Their preconditions in Pc only restricts action ap-
plicability in Pc as in (iii). Lastly, for all g′i ∈ Gc, we have
that either g′i ∈ G or g′i is the commit version of a gi ∈ G.
Then G is correctly achieved in P .

From Theorem 1 and 2, along with the preservation of
costs from the original actions to the commit ones, we can
show that the optimality of plans solving P is maintained in
the commit task Pc.

Corollary 3. If a plan π optimally solves P , then there exists
a plan π′ that optimally solves Pc.

Proof. Let π be an optimal solution for P . We need to show
that there is a plan π′ that can be mapped from π which is
an optimal solution for Pc.

From Theorem 1, given a solution π for P , then there
exists a solution π′ for Pc. Since the cost of every action a′

in Ac is preserved from the cost of each action a ∈ A, then
we have that c(π) = c(π′). Let us now observe that if π is
optimal, then π′ is also optimal. Note that π being optimal
means that for all alternative plans πa ∈ Ππ , we have that
c(π) ≤ c(πa). Therefore, in order to show that π′ is optimal,
we need to show that it does not exist π′′ that solves Pc and
c(π′′) < c(π′).

By contradiction, let us suppose that there exists π′′ that
solves Pc such that π′′ ̸= π′ and π′′ is an optimal plan,
i.e., c(π′′) < c(π′). By Theorem 2, there exists π′′′ that
can be mapped from π′′ and is a solution for P . Since the
costs are preserved, we have c(π′′′) = c(π′′). And giving
c(π′′′) = c(π′′) < c(π′) = c(π), then we have that π is not

optimal. This is a contradiction from the assumption that π′

is not optimal. Thus, π′ is an optimal solution for Pc.

Let us illustrate the compilation by considering a planning
task P = ⟨F,A, I,G⟩ where F = {x, y}, A = {a1, a2},
I = {}, and G = {x, y}. Actions are defined as follows:
(a1)PRE+ = PRE− = {}, DEL = {}, ADD = {x}; and
(a2)PRE+ = {x}, PRE− = {}, DEL = {x}, ADD = {y}.
The optimal plan for P is π = (a1, a2, a1). Note that
x becomes true after the first execution of a1, but only
permanently after its last execution, as a2 must tem-
porarily delete it to achieve y. Given that a1 ∈ AG,
our compilation keeps the original action a1, and
adds a commit version (a1-commit-x) in AC such that
PRE+ = {}, PRE− = {x-commit}, DEL = {}, ADD =
{x, x-commit}. On the other hand, given that a2 ∈ AG⋆

,
the following simultaneous actions are created in AS:
(a2-simultaneous-∅) PRE+ = {x}, PRE− = {x-commit},
DEL = {x}, ADD = {y}; and (a2-simultaneous-y)
PRE+ = {x}, PRE− = {x-commit, y-commit},
DEL = {x}, ADD = {y, y-commit}. This gives
us the following commit planning task, Pc =
⟨Fc, Ac, I, Gc⟩ where Ac = {a1-commit-∅, a1-commit-x,
a2-simultaneous-∅, a2-simultaneous-y} and Gc =
{x-commit, y-commit}. Then, there exists an op-
timal plan in Pc that can be mapped from π,
πc = (a1-commit-∅, a2-simultaneous-y, a1-commit-x). In
πc, unlike in π, we can determine during the search if an ac-
tion permanently achieves a goal without post-processing.

4 Evaluation
Experimental Setting. We selected all the STRIPS tasks
from the optimal suite of the Fast Downward (Helmert 2006)
benchmark collection1. This gives us 1767 tasks divided
across 62 domains. We reformulated each task using our
approach and solved both the original (P) and the compiled
(Pc) tasks using two planners. The first one, LAMAF, is
a state-of-the-art planner that won the agile track of the last
International Planning Competition (IPC)2. LAMAF runs the
first iteration of the well-known LAMA planner (Richter and
Westphal 2010), aiming to find a solution as soon as possi-
ble, disregarding its quality. It combines, among others: de-
ferred heuristic evaluation, preferred operators, and multiple
open lists guided by the FF (Hoffmann and Nebel 2001) and
LANDMARK-SUM (Hoffmann, Porteous, and Sebastia 2004)
heuristics. The second one, LMCUT, is an optimal planner
that runs A∗ with the admissible LMCUT heuristic. We run
both planners with a 8GB memory bound and a time limit of
900s on Intel Xeon E5-2666 v3 CPUs @ 2.90GHz. We will
report the following metrics, where higher numbers indicate
better performance.

Coverage: number of problems solved by the planner.
SAT Score: C∗/C, where C∗ is the lowest cost found for

the task, and C is the plan’s cost the planner gets in the task.
AGL Score: 1 − log(T)/log(900), where T is the plan-

ner’s runtime, including grounding and search time.

1https://github.com/aibasel/downward-benchmarks
2https://ipc2023-classical.github.io/

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

855

Coverage SAT Score AGL Score
Domain (#Tasks) P Pc P Pc P Pc

agricola18 (20) 20 20 20.0 20.0 15.5 15.5
airport (50) 34 34 34.0 33.9 33.0 32.9
barman11 (20) 20 20 20.0 19.9 25.8 25.9
barman14 (14) 14 14 14.0 13.9 17.2 17.1
blocks (35) 35 35 22.7 35.0 56.4 56.8
childsnack14 (20) 15 15 15.0 15.0 20.0 19.9
data-net18 (20) 20 20 20.0 20.0 29.6 29.5
depot (22) 20 21 18.8 20.1 21.3 22.4
driverlog (20) 20 20 17.8 19.5 26.7 30.7
elevators08 (30) 30 30 28.3 28.4 48.1 47.9
elevators11 (20) 20 20 18.8 19.2 32.4 32.3
floortile11 (20) 9 9 8.7 8.6 6.1 5.8
floortile14 (20) 9 8 8.7 7.1 2.9 2.5
freecell (80) 77 79 74.7 75.4 81.0 83.1
ged14 (20) 20 20 20.0 19.6 32.2 31.9
grid (5) 5 5 4.9 5.0 6.5 6.5
gripper (20) 20 20 20.0 20.0 32.9 32.3
hiking14 (20) 20 20 20.0 20.0 24.0 24.0
logistics00 (28) 28 28 27.6 27.7 46.4 46.2
logistics98 (35) 35 34 34.9 33.7 41.0 40.9
miconic (150) 150 150 150.0 150.0 231.6 231.3
movie (30) 30 30 26.2 30.0 54.5 54.6
mprime (35) 35 35 35.0 35.0 47.2 47.2
mystery (30) 19 19 18.9 19.0 25.7 25.6
nomystery11 (20) 16 16 16.0 16.0 22.5 22.3
openstacks08 (30) 30 30 20.6 30.0 45.9 43.9
openstacks11 (20) 20 20 13.1 20.0 30.5 29.0
openstacks14 (20) 20 20 12.2 20.0 26.4 24.5
openstacks (30) 30 30 29.8 30.0 36.0 34.8
org-syn18 (20) 7 6 7.0 6.0 9.2 5.3
org-syn-spl18 (20) 18 11 18.0 11.0 17.7 12.0
parcprinter08 (30) 30 21 28.6 21.0 47.0 27.4
parcprinter11 (20) 20 15 19.0 15.0 31.5 17.7
parking11 (20) 20 18 18.9 15.6 20.2 12.3
parking14 (20) 20 18 19.8 15.3 21.0 13.8
pathways (30) 23 23 23.0 22.9 32.3 32.3
pegsol08 (30) 30 29 26.2 28.5 43.2 34.1
pegsol11 (20) 20 19 18.1 18.7 26.6 19.7
pipes-notank (50) 43 43 33.1 40.6 47.4 53.8
pipes-tank (50) 43 37 35.6 35.4 41.4 39.6
psr-small (50) 50 50 50.0 49.1 87.0 86.0
rovers (40) 40 40 40.0 40.0 54.1 54.1
satellite (36) 36 36 33.4 35.9 41.7 42.8
scanalyzer08 (30) 30 30 27.9 27.4 36.8 34.1
scanalyzer11 (20) 20 20 18.8 17.9 25.0 23.5
sokoban08 (30) 29 29 26.4 27.0 32.4 30.4
sokoban11 (20) 20 20 18.7 18.5 22.8 21.6
spider18 (20) 19 16 17.8 15.4 14.3 8.8
storage (30) 19 21 16.9 19.9 26.5 27.7
tetris14 (17) 17 10 15.3 9.3 13.1 9.1
tidybot11 (20) 18 18 17.8 17.9 15.5 15.7
tidybot14 (20) 19 19 19.0 18.8 13.5 13.3
tpp (30) 30 30 30.0 30.0 38.4 38.0
transport08 (30) 30 30 29.9 29.7 42.8 42.6
transport11 (20) 20 20 20.0 19.9 29.7 29.5
transport14 (20) 20 20 19.9 20.0 28.1 28.0
trucks (30) 15 17 15.0 17.0 16.1 17.8
visitall11 (20) 20 20 20.0 16.4 33.1 32.4
visitall14 (20) 20 20 20.0 16.5 29.1 27.9
woodwork08 (30) 30 30 29.9 27.6 40.9 36.5
woodwork11 (20) 20 20 19.9 18.7 26.8 24.0
zenotravel (20) 20 20 19.9 19.3 29.7 29.6
Total (1767) 1637 1598 1544.3 1554.3 2154.1 2058.8

Table 1: LAMAF Coverage, SAT and AGL scores when solv-
ing the original (P) and compiled (Pc) tasks. Bold figures
indicate best performance.

Coverage SAT Score AGL Score
Domain (#Tasks) P Pc P Pc P Pc

airport (50) 28 28 28.0 28.0 33.3 33.4
blocks (35) 28 28 28.0 28.0 35.8 36.6
elevators11 (20) 18 18 18.0 18.0 10.7 10.3
floortile14 (20) 6 5 6.0 5.0 1.9 1.6
gripper (20) 7 5 7.0 5.0 7.1 5.5
logistics00 (28) 20 20 20.0 20.0 23.7 23.2
openstacks08 (30) 21 20 21.0 20.0 17.7 16.0
org-syn-spl18 (20) 15 11 15.0 11.0 13.4 10.3
pegsol11 (20) 18 11 18.0 11.0 15.8 3.3
rovers (40) 7 7 7.0 7.0 9.9 9.8
sokoban11 (20) 20 20 20.0 20.0 18.3 17.0
tetris14 (17) 6 3 6.0 3.0 3.3 2.2
trucks (30) 10 10 10.0 10.0 9.0 8.8
woodwork11 (20) 12 11 12.0 11.0 10.3 8.8
Total (1767) 917 887 917.0 887.0 1006.2 943.2

Table 2: LMCUT Coverage, SAT and AGL scores when solv-
ing the original (P) and compiled (Pc) tasks.

Results. Tables 1 and 2 show the Coverage, SAT and
AGL scores when solving the original (P) and the compiled
(Pc) tasks with LAMAF and LMCUT, respectively. Due to
space constraints, we present only a subset of the results for
LMCUT. Domains with problems where goal propositions
cannot be falsified once achieved are highlighted in gray.
These tasks do not require reformulation into commit plan-
ning tasks, but we aimed to verify the general applicability
of our compilation across different problem structures. As
observed, both planners achieve slightly better overall re-
sults when solving P , attaining higher scores across most
metrics compared to Pc. The performance gap varies by do-
main and planner, yet Pc tasks can always be solved compa-
rably to P , both optimally and suboptimally. This holds true
even in domains such as OPENSTACKS or ROVERS, where
our commit compilation is unnecessary due to the perma-
nence of goals. This emphasizes the non-intrusive nature of
our compilation, providing the advantage of reasoning about
goal achievement during the planning phase without com-
promising search efficiency.

5 Conclusions and Future Work
We introduced a compilation that extends the original plan-
ning task with commit actions that allow planners to enforce
the persistence of specific goals once achieved, thus commit-
ting to them in the search sub-tree. This new task structure
allows us to determine at planning time when an action per-
manently achieves a goal. This opens up research opportu-
nities for reasoning and optimizing goal achievement distri-
bution, potentially benefiting various planning applications.

Certain domains, such as BLOCKS, consistently benefit
from our reformulation, indicating that allowing planners
to greedily commit to achieving specific goals may enhance
search performance in certain situations. In other domains
such as OPENSTACKS, performance improvements appear to
stem from an internal state representation that is more com-
patible with the specific planner being used (Vallati et al.
2015). We intend to further investigate this phenomenon and
its implications as part of our future work.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

856

Disclaimer
This paper was prepared for informational purposes by the
Artificial Intelligence Research group of JPMorgan Chase
& Co. and its affiliates (”JP Morgan”) and is not a prod-
uct of the Research Department of JP Morgan. JP Morgan
makes no representation and warranty whatsoever and dis-
claims all liability, for the completeness, accuracy or relia-
bility of the information contained herein. This document is
not intended as investment research or investment advice, or
a recommendation, offer or solicitation for the purchase or
sale of any security, financial instrument, financial product
or service, or to be used in any way for evaluating the merits
of participating in any transaction, and shall not constitute a
solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would
be unlawful.

References
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
planning - theory and practice. Elsevier.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The ff planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search 22:215–278.
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. Journal of Artificial
Intelligence Research 12:271–315.
Pozanco, A., and Borrajo, D. 2022. Fairness in multi-agent
planning. arXiv preprint arXiv:2212.00506.
Richter, S., and Westphal, M. 2010. The lama planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Vallati, M.; Hutter, F.; Chrpa, L.; and McCluskey, T. L.
2015. On the effective configuration of planning domain
models. In International Joint Conference on Artificial In-
telligence (IJCAI). AAAI press.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

857

