Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Generalizing Platform-Aware Mission Planning
for Infinite-State Timed Transition Systems

Stefan Panjkovic'?, Alessandro Cimatti', Andrea Micheli', Stefano Tonetta'

'Fondazione Bruno Kessler, Trento, Italy
2University of Trento, Italy

{spanjkovic, cimatti, amicheli, tonettas } @fbk.eu

Abstract

The Platform-Aware Mission Planning (PAMP) problem for-
malizes the relationship between an automated temporal
planning problem and an execution platform modeled as a
Timed Automaton. The PAMP problem consists in finding a
valid plan that guarantees the plan executability and the sat-
isfaction of a safety property on the platform, regardless of
non-determinism. In this paper, we significantly generalize
the PAMP problem along three directions. First, we con-
sider platforms represented as infinite-state timed transition
systems (TTSs), allowing a more natural and expressive mod-
eling of realistic systems. Second, we introduce a new feature
to model relations between the fluents of the planning prob-
lem and the platform variables. Finally, we generalize the
semantics to cope with unbounded traces. We define a solu-
tion method for the resulting generalized PAMP, combining
an automated temporal planner and an infinite-state model-
checker. Our method is largely more efficient than the exist-
ing approaches for bounded PAMP problems, despite being
strictly more expressive.

1 Introduction

Automated planning is a central problem in Al and it has
been studied since the beginning of the field (Ghallab, Nau,
and Traverso 2004). Temporal planning considers the case
in which temporal constraints are present, and plans are
schedules of durative actions, which is particularly relevant
in applications like robotics (Ingrand and Ghallab 2017),
that require reasoning on the specific timings of events and
where parallelism between activities is possible.

As in any model-based technique, the plans produced by
automated planning are as good as the models used to gener-
ate them. For complexity and efficiency reasons, these plan-
ning models often omit or represent very coarsely the low-
level safety constraints that solution plans need to satisfy,
when they are executed on a particular platform in an un-
certain environment. For example, in robotic applications,
a robot may be required to avoid collisions with obstacles
or satisfy physical constraints such as maximum speed or
acceleration. To address this issue, several authors and tech-
niques focus on adapting the plan at runtime, using replan-
ning (Ingrand and Ghallab 2017) or rescheduling (Morris
2016) to adjust the plan in case of unforeseen events.

In applications where there is a formal model of the exe-
cution platform and the environment, it is possible to reason

843

explicitly about the low-level behavior and produce plans
with robustness guarantees on their execution. Recently,
the Platform-Aware Mission Planning (PAMP) problem has
been introduced, which characterizes situations where auto-
mated planning is used to generate plans that are executed
on a platform, where safety constraints must be satisfied and
can be formally modeled (Panjkovic et al. 2025). A solu-
tion plan for the planning problem is considered valid only
if all the possible executions of the platform controlled by
the plan satisfy the safety constraints. This is different from
runtime adaptation of the plan, as all the reasoning is done
at planning time and the generated plan is guaranteed to be
safe for all the non-deterministic behaviors of the platform.

However, in the original formulation of the PAMP prob-
lem, several simplifying assumptions are made that severly
limit the applicability of the method. The platform can only
be represented using timed automata, which highly restrict
the expressiveness by allowing only finite domain variables
and comparison of clocks to constants in guards. The pro-
posed approaches only work in a bounded setting, where
traces are assumed to have a maximum length k|r|, with
|| being the length of the plan. Moreover, it is not possible
to express mixed safety properties which take into consid-
eration both the state of the planner and of the controlled
platform, and this can result in plans that reach low-level
states that are not aligned with the state of the planner.

In this paper, we address these issues by generalizing the
PAMP problem to infinite state systems, to enable a more
precise modeling of the platform constraints such as bound-
aries on the physical movements or on resource manage-
ment. First, we reformulate the PAMP problem over Sym-
bolic Infinite-State Timed Transitions Systems (Cimatti et
al. 2019). In this way, we allow the modeling of more com-
plex platforms using arithmetic constraints and infinite-state
variables. Second, we introduce a mechanism to model and
check relations between the variables of the planning prob-
lem and the platform, allowing for controlling the alignment
of the traces at planning and platform levels. Third, we con-
sider the PAMP problem in an unbounded setting, where we
look for plans that ensure the safety constraints on the plat-
form for traces of any length. All these features are uni-
formly modeled in our PAMP formalism and we propose
a new method for tackling the problem. The basic idea is
to generate candidate plans in the form of Simple Temporal

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Networks (STN) (Dechter, Meiri, and Pearl 1991), allowing
for temporal flexibility in the scheduling of plan commands,
and use infinite-state model-checking to refine these timings
until either we reject the plan as unsafe and learn a prefix of
the plan that must be avoided at planning time, or we find
a subset of timings allowed by the STN that guarantee the
safety of the platform, hence finding a PAMP solution.

We provide an extensive experimental evaluation of the
approaches against the techniques proposed in (Panjkovic et
al. 2025), and show that our approach is largely superior in
terms of scalability and expressiveness, even when an oracle
is used to provide perfect bounds for the bounded encodings.

2 Background

Temporal Planning. We define the syntax of temporal
planning by adapting the formalization used by Gigante et
al. [2022], which is similar to PDDL 2.1 level 3 (Fox and
Long 2003) and is also compatible with a fragment of the
ANML (Smith, Frank, and Cushing 2008) language.

Definition 1 (Temporal Planning Problem). A temporal
planning problem 11 is a tuple (P, A,I,G), where P is a
set of propositions, A is a set of durative actions, I C
P is the initial state and G C P is the goal con-
dition. A snap (instantaneous) action is a tuple h =
(pre(h), eff* (h),eff (h)), where pre(h) C P is the set of
preconditions and efft (h), eff (h) C P are two disjoint sets
of propositions, called the posmve and negative effects of h,
respectively. We write eff(h) for eff™ (h) U eff (h). A du-
rative action a € A is a tuple {(ar, a_|,preH (@), [La, Ua]),
where ar- and a- are the start and end snap actions, re-
spectively, pre*(a) C P is the over-all condition, and
L, € Qs and U, € Qs U {oco} are the bounds on the
action duration.

A temporal (time-triggered) plan is a set of triples, each
specifying a durative action, its starting time and duration.

Definition 2 (Plan). Let IT = (P, A,1,G) be a temporal
planning problem. A plan for 11 is a set of tuples ©
{{ar,t1,d1), ..., {an,tn,dn)}, where, for each 1 < i < n,
a; € Ais a durative action, t; € Qx is its start time, and
d; € Qg is its duration.

We use the term length of a time-triggered plan 7 (de-
noted with |7|) to denote the number of snap actions in 7
(i.e. twice the number of durative actions appearing in 7).

We assume a semantics without self-overlapping of ac-
tions (Gigante et al. 2022), disallowing two instances of the
same ground action to overlap in time, and will consider in-
valid plans that do not satisfy Definition 3.

Definition 3 (Action self-overlapping). A plan
{{a1,t1,d1),...,{(an,tn,dn)} is without self-overlapping
if there exist no i,j € {1,...,n} such that a; = a; and
t; Stj <t; +d;.

This assumption makes the temporal planning problem
decidable, and is commonly adopted in the literature with
many papers advocating for the limited practical interest of
plans with self-overlapping (Fox and Long 2007).

Semantically, we recall the relevant definitions from Gi-
gante et al. (2022).

844

Definition 4 (Set of timed snap actions). A timed snap ac-
tion (TSA) is a pair (t,h), where t € Q>¢ and h is a snap
action. Given a plan m = {{a1,t1,d1),...,(Gn,tn,dn)},
the set of TSAs of m is defined as: H(m) = {{t1,a1), (t1 +
d17 a'14>7) <tn7 anF)a <tn + dn; an%>}-

Definition 5 (Induced parallel plan). Let m be a plan and
let H(mt) = {{t,h1),...,(t,,, hm)} be the set of TSAs of

7. The induced parallel plan for 7 is the sequence m"¢

(@7, {RI(tY, k) € H(m)}), ..., (g, {pI(Eg, h) € H(m)})),
which is ordered and grouped with respect to the time index.

Given ¢; = (a;,t;,d;) € m, we denote by 7rmd(;) and
7i1(c;) the indexes of the pairs in 7™ containing, in the
right hand side, the snap actions a,;— and a, relative to ¢;,
respectively. In order to avoid “race conditions”, the seman-
tics prescribes that pairs of interfering events cannot happen

simultaneously, and these pairs of events are called “mutex”.

Definition 6 (Mutex snap actions). Two snap actions h and
z are mutually exclusive (mutex), denoted by mutex(h, z),
ifeither pre(h) Neff(z) # 0, or pre(z) Neff(h) # 0, or
efft (R) Neff (2) # 0, or eff™ (2) Neff (h) # 0.

Plan validity is defined as a simulation of the plan, where
the state of the system is changed by the effects of the events,
each event is executable and over-all conditions are satisfied
in all the states in which they are active.

Definition 7 (Plan validity). Letr II (P,AI,G)
be a temporal planning problem, T
{{a1,t1,d1),...,{an,tn,dn)} be a plan for TI, and
aind = ((th, By),...,(t,,, Bm)) be its induced plan. Then,
7 is a valid plan for H if the following statements hold:

1. Yie{l,....,n},Lq, < d; <U,,;

2. there are no h,z € B;, with h # =z, for some i €
{1,...,m}, such that mutex(h, z).
3. givenso =1, foralli € {1,...,

(a) UheBl pre(h) C s;;
U UheB,; eﬂ+(h)

(b) si=(si=1 \Upep, eff (h))
(c) G C sps

4. for all ¢ = (a,t,d) € 7and all T"(c) < k < 7"(c),
we have pre*” (a) C sy,

5. forall i,5 € {1,...,m}, with i # j, such that there
exist h € B; and z € Bj, with mutex(h, z), we have that
[t; —ti] > &

6. there are no i,j € {1,...,
a; = a; and t; Stj < t; +d;.

m}, it holds that:

n}, with i # j, such that

Symbolic Timed Transition Systems. To model the plat-
form, we will use timed transitions systems (TTSs) (Cimatti
et al. 2019). Here we report the key definitions of TTSs.

Definition 8 (Symbolic Timed Transition System). A (sym-
bolic) Timed Transition System (TTS) is a tuple T
V, 2,5, I(V), T(V,, V'), Z(V)), where:

* V is a set of state variables;

o X C Visa set of clock variables;
e 3 is a set of input variables;

I(V) is the initial condition;
T(V,%, V') is the transition condition;
Z (V) is the invariant condition.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

L1

Figure 1: Depiction of an instance of the running example problem.

L2 L3

100 100

The state variables in V' can be of type Boolean, real or
clock. The initial and invariant conditions are expressions
over the variables in V' (invariant conditions must be convex
on clocks). The transition condition is an expression over
variables in V', ¥ and V', where for each variable v € V, V'’
contains the next version v’, representing the value of v after
the transition is taken.

Astate s : V — {T,L} UR for a given TTS T =
(V,X,%,1,T,Z) is a total assignment to the state variables
in V. We use s = ¢ to mean that the variable values speci-
fied by s satisfy the condition ¢.

Definition 9 (Semantics of TTSs). The semantics of a TTS
T is defined in terms of a transition system, where the states
correspond to the states of T and the transitions are defined
by the following rules:

* s i> s',ford S Rzo, lf

- §'(c)=s(c)+d forallc e X;
§'(v) = s(v), forallv e V\ X;
sEZV)and s' = Z(V);

s 5§ fora €y if

s? a” S, ': T(V7 E? V/);l
-sEZWV)and s = Z(V).

Essentially, the state of a TTS evolves either through a
delay transition, where the values of all the clocks increase
by the same amount while all the other variables remain un-
changed, or through a discrete transition that changes the
values of the variables according to the transition relation
T(V,%,V’). In every state, the invariant condition specified
by Z (V') must hold. Finally, we define the notions of timed
trace and run of a TTS.

Definition 10 (Timed trace). T be a TIS
(V,X,5,I(V), T(V,E,V"),Z(V)). A timed action is
a pair (t,a), where t € Rsg and a € X. A timed
trace is a (possibly infinite) sequence of timed actions
f = <<t17a1>, <t2, CL2>, ey <ti, ai>7 .. .>, where ti S ti+1f01"
all1 > 1.

Definition 11 (Run of a TTS). The run of a TTS T =
(V,X, 5, I(V), T(V,%, V"), Z(V)) with initial state sy |=

Let

I(V) over a timed trace & = {({t1,a1), (t2,a2),...) is the
.. di ax dz a2
sequence of transitions Sg —>—> S ——— Sa..., where

d oo .. d
s 5% s indicates the subsequent transitions s — s’ and
S s di =t andd; =t; — t;_1 foralli > 2.

'We abuse the notation meaning that a is set to true, and all
other variables in X are false.

845

Figure 2: The TTS model of the running example.

3 PAMP Formalization

In this section, we present the formalization of the Platform-
Aware Mission Planning (PAMP) problem, where we cou-
ple a high-level temporal planning problem with a low-
level model of the execution platform and the environment.
We generalize the framework presented in (Panjkovic et al.
2025) along three directions: first, we model the platform
using a Symbolic Infinite-State Timed Transition System
instead of a Timed Automaton, which allows infinite-state
variables and more general constraints; second, we extend
the notion of safety by allowing planning variables to be
used in the property, which can be used to model and check
the alignment between the traces at the two levels; finally,
we consider an unbounded version of the problem, without
assuming that the lengths of the platform traces are bounded
w.r.t. the length of the plan to be executed.

The framework models an autonomous system architec-
ture with two layers of abstraction: a planning layer de-
scribing high-level actions and mission goals, which is rep-
resented as a temporal planning problem; a platform layer
describing low-level details and internal behaviors of the ex-
ecution platform that is controlled by the planner, which is
represented as a Timed Transition System (TTS). The inter-
face between the two layers is modeled by considering the
high-level events (start and end events of durative actions)
as commands that are sent to the platform triggering dis-
crete transitions: the execution of a time-triggered plan is
defined by synchronizing the action start/end commands of
the plan with transitions of the platform labeled with the cor-
responding events. Except for the assumption that the plat-
form obeys to the commands that are scheduled by a plan,
the platform is fully non-deterministic: in the time between
two high-level commands, the platform can evolve by per-
forming internal transitions and advancing time.

Example. Figures 1 and 2 show a small running example of
the considered framework. There are three locations named
L1, L2 and L3 on a line, a truck which is initially in L1, and
two packages also in L1. The planning problem consists
of 4 actions: DRIVELEFT(L, L") and DRIVERIGHT (L, L'),
which can have a duration between 100 and 500, and move

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

the truck from position L to position L' (for simplicity, we
represent them here as parametrized actions, but they can be
grounded and correspond to the same pair of start/end plat-
form labels); LOAD and UNLOAD, which have a duration
of 1, and respectively load and unload a package from the
truck at the current location. The goal of the planning prob-
lem is to have both packages at location L3. Fig. 2 shows
a simple execution platform, where the labels on the tran-
sitions correspond to the planning snap actions (e.g. the
transition with label Ly is taken when the LOAD action is
started, while the transition with label L. is taken when
LOAD is ended). This TTS models low-level aspects that do
not appear in the planning problem description: there is a
real variable representing the position on the line (pos), in-
stead of a symbolic location, and the distance that the truck
traverses for a DRIVE action depends on the duration of
the drive and on the weight of the truck, which increases as
packages are loaded. When the end event of a DRIVELEFT
or DRIVERIGHT action is triggered (DX or D%), the vari-
able corresponding to the position in the platform model is
updated by a term c/W, where c is a clock representing the
duration of the DRIVE action and W is the overall weight
of the truck and the packages that it is carrying (W is in-
cremented/decremented every time the end of a LOAD / UN-
LOAD action is triggered). Initially, the weight of the truck is
assumed to be 1. We specify a safety property that disallows
the unloading of a package at a location that is not within
distance 10 from 0, 100 or 200. Moreover, when unloading
packages, we want the value of the position variable both at
the planning layer and at the platform layer to correspond
(L1, L2 and L3 are at positions 0, 100 and 200 respectively).

Now, we formally define the overall framework and
the problem that we are considering. Let II
(P, A, I,G) be a temporal planning problem, and let 7 =
(V,X,5,I(V), T(V,2,V"),Z(V)) be a TTS such that
T 7%+ € X, for all actions a € A. Suppose that
T has a “global” clock v € X that is not reset in any
transition and has value O in the initial state. Let p =
((t1,€1)y..., (tn,en)) be a (possibly empty) ordered se-
quence of timed snap actions of II, where t; < ¢;; for all
1e{l,...,n—1}

We denote with Execry (s, p), the state of II that is reached
by applying in order all the effects of the snap actions in p,
starting from the planning state s C P of II. For an empty
sequence of snap actions, we define Execyy(s, () = s.

We define the set of states that are reachable by ex-
ecuting p on 7 from the initial state rg, denoted by
Reachable(rq, p), as all the states that belong to a run of
T where all and only the snap actions in p are applied, by
taking the corresponding transitions at the times specified
in p: rs € Reachabler(rg, p) if and only if there exists

de o)
Lk ks o, With 0 < s < k, such

,n} —

arunrg 2575 .
that there exists an injective function A : {0,1,..
{0,1,..., k} with the following properties

* h(0) = 0 (required to handle the case with p = ());

o foralli € {1,...,n},forallj € {1,...,k},if h(i) = j
then 7¢ = o and t; = > 7_; di;

o forall j € {1,...,k}, if j & Im(h) then for all e €

846

{ar-,a4:a € A}, 0; # 7°.

We define analogously the set of states that are reachable
after executing p on 7 from the initial state r(, denoted by
ReachableAfters(r, p) (in the previous definition, we only
include in the set the final state 7 of the run).

Example. Given the sequence
<(07LF)7(17L4)’(2aDﬁ)7(202>D5)>’ we
(ignoring the values of the clocks in the states):

Reachabler({(L = OFF,pos = 0,WW = 1),p) =

{{L = OFF,pos =0, W = 1),

(L = LOADING, pos = 0,W = 1),

(L = OFF,pos = 0,WW = 2),

(L = MOVING_R, pos = 0, W = 2),

(L = OFF,pos = 100, W = 2)}
ReachableAfter((L = OFF,pos = 0,W =1),p) =

{{L = OFF,pos = 100, W = 2)}

Next, we formalize the executability of a plan on a plat-
form represented as a TTS. Intuitively, we say that a time-
triggered plan is executable on a TTS if all the snap actions
of the plan are applicable at the prescribed times, assuming
that the platform applied all the previous commands of the
plan. A snap action is applicable if a corresponding transi-
tion can be taken at the time specified in the plan.

Formally, given a state 7 of 7, a snap action a;- /- is appli-

. /A
cable in if and only if there exists a transition r —— 7/

such that r, 7%/ v/ = T(V, 3, V') and ' |= Z(V).

For a plan 7 = {{a1,t1,d1),..., (an,tn,dn)}, we in-
dicate with p™ = ((t},e1),..., (th,, e2n)) the ordered se-
quence of timed snap actions of 7, with ; < ¢; , for all
i € {1,...,2n — 1}. For simplicity, we will assume in
this paper that all the valid plans of the considered plan-
ning problems do not contain simultaneous events, i.e. snap
actions scheduled at the same time: since the semantics of
TTS is super-dense (multiple discrete steps can be taken at
the same time in a specific order), in order to properly de-
fine and check the executability of a plan with simultaneous
events for all platform behaviors, all the possible orderings
for the sets of simultaneous events would need to be consid-
ered. We report at the end of Section 4 how the approach
can be extended to handle simultaneous events.

p pry
have that

Given a sequence of timed snap actions
p = ((t1,e1)y.-., (tn,€n)), we denote with
pi = {(ti,e1),...,(ti,e;)) the prefix obtained by

considering the first ¢ < n timed snap actions. We denote
with pp = () the empty sequence.

Definition 12 (Time-triggered plan executability on TTS).
Let 11 be a temporal planning problem and let T be a
TTS with initial state o |= I(V). An ordered sequence
of timed snap actions p = {(t1,€1),...,(tn,€,)) is exe-
cutable on T if and only if for all i € {0,...,n — 1}, for
all v € ReachableAfter,(ro, p;), if () = tit1 then e; 41 is
applicable in r. A time-triggered plan 7 is executable on T
if its sequence of timed snap actions p™ is executable on T.

Example. The sequence P defined
((0, L), (0.5, D), (1, L), (100.5, D)) is not

as
exe-

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

cutable, because location LOADING is reachable with
v = 0.5 (this state belongs to ReachableAfter((L =
OFF,pos = 0,W = 1), p)) and the transition with label
DE is not applicable (there is no transition from location
LOADING with such a label).

We formalize the safety of a plan w.r.t. a TTS, given
a formula ¢p representing a set of bad states B, by re-
quiring that all the states that can be reached by executing
p™ = ((t1,e1),...,(tn,e,)) do not belong to B. Differ-
ently from (Panjkovic et al. 2025), we allow variables of the
planning problem II to appear in ¢ g: their value is obtained
by simulating the application of the snap actions in p”.

Definition 13 (Plan safety w.r.t. TTS). Let 11 = (P, A, I, G)
be a temporal planning problem and let T be a TTS with
initial state ro. Let pp(P,V) be a formula representing a
set of bad states B for Il and T. Let ty = 0. An ordered
sequence of timed snap actions p = {(t1,e1),..., (tn,€n))
is B-safe w.r.t. 11 and T if and only if for all states r €
Reachabler(ro, p), s,r = pp, where s = Execri(I, p;)
andi € {0,1,...,n} is the maximum index s.t. t; < (7).

Example. Consider p = ((0, L1), (1, L4), (2, L), (3, L4),
(4,D{%), (204, DF), (205,U1), (206,0-), (207, Ur),
(208,U4)). This plan is not safe, because it is possible to
reach state (L UNLOADING, pos = 200/3,W = 3)
with v = 205 after starting the first unload action (this state
belongs to Reachabler({L = OFF,pos = 0,W = 1), p)),
and the reached position is not within distance
10 from 0, 100 or 200. Consider the plan m
{(LoAD, 0, 1), (DRIVERIGHT(L1, L3), 2, 200), (UNLOAD
,203,1)} with sequence of timed snap actions P
((0, L), (1, L4), (2, DE), (202, D), (203, Uy-), (204, U~)).
This plan is unsafe, because it creates a mismatch between
the position variable used in the planning model and the
position variable defined in the platform model: according
to the planning model, the position is set to L3 after the
drive, while on the platform model the position variable is
set to 200/2 = 100, since the truck is carrying a package.

This definition of safety is slightly different from the one
used in (Panjkovic et al. 2025): in that case, the safety prop-
erty had to hold only until the time of the last step of the
plan, while in this definition the safety property must hold
also beyond the application of the last snap action, for any
state that can be reached by performing only internal plat-
form transitions after applying all the commands from the
plan. Both semantics may be useful in different scenarios,
and in Section 6 we carry out an evaluation considering both
cases. We will denote with bounded safety the notion of
safety up to the end of the plan, as defined in (Panjkovic et
al. 2025), and with unbounded safety the notion of safety
extended beyond the end of the plan (Definition 13).

We can now formally define the PAMP problem, where
the objective is to find a solution plan for the planning prob-
lem, such that it is safe and executable for all the platform
traces that are compliant with the plan.

Definition 14 (PAMP). A Platform-Aware Mission Plan-
ning (PAMP) problem is a tuple T = (IL,T,pp(P,V)),
where 11 is a temporal planning problem with set of vari-
ables P, T is a TTS with set of variables V, and o (P, V)

847

\\\

\\ ExecFailure)\

,/ - \\
| Finished |

i

P
‘/ \
(‘\ Y<t I

\\v/ y

Figure 3: TTS for the plan sequence Ly ; L-; DE; DE: U.

Algorithm 1 Unbounded abstraction-refinement algorithm

1 procedure PLATFORMPLANNING(II, 7, ¢)
bad_prefixes = {} > Collects the prefixes to be avoided

while True do
mstN <— PLAN(II, bad_prefixes)

pass, bad_prefix, m - CHECK(T, 7stn, ©B)
if pass then return 7
else bad_prefixes <— bad_prefixes U {bad_prefix }

P TNC NV S UV Y

8 procedure CHECK(T, msTN, ©B)
9 €1,...,6n < PATH(7msTN); wﬁ(f) «— T
for i = 1 ton do
G (8) < Yr (L) A [msn],
if 1 (f) is “unsatisfiable” then
return false, (e1,...,¢;), 0
while True do
A, ¢ps + BUILDAUTOMATON(T, ¢ ()
outcome, p < INVARCHECK (A, B V ¢p’)

if outcome is “safe” then
if i == n then

return true, (), GETPLAN((1), TsTN)

else break > The timings in 1) (£) are all valid
else

(ro SN N %A-k)rk) “—p
¢(, @) < TRACEVALIDT & (%, &, &)[3/]
Un(t) ¢ () A-3C0(E,0)
if 4. (f) is “unsatisfiable” then

return false, (e1,...,¢;), 0

is a formula representing a set of bad states B for Il and T
A solution for Y is a plan w such that: (i) w is a valid solu-
tion plan for 11; (ii) 7 is executable on T, (iii) 7 is B-safe
wrt lland T.

Example. The plan m = {{LOAD,0, 1), (DRIVERIGHT(L1
, L3),2,400), (UNLOAD, 403, 1), (DRIVELEFT(L3, L1),
405, 200), (LOAD, 606, 1).(DRIVERIGHT(L1, L3), 608,
400), (UNLOAD, 1009, 1)} with sequence w° ((0, L),
(leﬁ)’ (27D5)’ (4027‘D§)’ (4037UF)’ (4047 Uﬁ),
(405, D), (605, DL), (606, L), (607, L), (608, DE),
(1008, D), (1009, Uy-), (1010, U)) is a valid solution for
the example: it brings both packages to L3 and it is safe and
executable because it only carries one package at a time.

4 Solving Unbounded PAMP

In this section, we present an approach for solving our gener-
alized version of the PAMP problem. The algorithm shares
some similarities with the abstraction-refinement approach
presented in (Panjkovic et al. 2025). A temporal planner

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

is used to solve the planning problem (without considering
the platform model) and generate candidate solution plans;
these plans are then checked for safety and executability on
the platform model. At each failed validation check, the
planner is informed about a class of plans that needs to be
excluded, by analyzing the sequence of discrete choices that
determined the validation failure. In (Panjkovic et al. 2025),
the validation was performed by producing an encoding of
the platform and the candidate plan, which was then checked
with an SMT solver. Producing such an encoding was feasi-
ble, due to the strong assumption on the boundedness of the
platform traces, which allowed a BMC-style encoding of the
traces by unrolling the formula representing the transition
relation. Since in our formulation of the PAMP problem we
do not make such an assumption, in order to perform the
validation check we rely on infinite-state model checking:
the main idea, is that we represent the produced candidate
plans using a TTS, which we then compose with the TTS
representing the platform, and then apply a model checking
technique on the resulting model to determine whether the
safety and executability properties are satisfied.

For temporal planning, we assume a sound planner that
can return plans in the form of Simple Temporal Net-
works (STN) (Dechter, Meiri, and Pearl 1991): a solution
mstN 1s characterized by a fixed ordering of snap actions
€1,...,e, < PATH(msn), Where each snap action e; is
associated to a time variable ¢;, and a set of constraints be-
tween these time variables enforcing the ordering of the ac-
tions and their duration constraints. Given a set of plan pre-
fixes, we assume that the search of the planner can avoid
plans whose sequence of snap actions starts with a prefix
in this set. For model checking, we assume a sound model
checker that is able to prove temporal properties of TTSs.

Top-level PAMP procedure. The overall PAMP proce-
dure is detailed in Algorithm 1. First, the planning problem
II is solved, obtaining a set of solution plans 7srN, char-
acterized by a fixed ordering of snap actions ey, ...,e,
PATH(7stN) and a set of constraints between the time vari-
ables t1,...,t, associated to them. Then, the solution mstn
is passed to the CHECK procedure, together with a formula
encoding the desired safety property @p. The CHECK pro-
cedure maintains a v (f) formula, where t = (t1,...,t,),
representing the current region of feasible values for the time
variables of the snap actions, initialized with T. We iterate
over all the prefixes i € {1,...,n}, and we conjoin the sub-
set of constraints of gy considering only 1, . .. , t; ([TsTn]s
is the conjunction of all the constraints containing ¢; and
one of the previous time variables ¢1,...,¢;—1). It is then
checked whether the addition of these constraints keeps the
formula v, (#) feasible, otherwise the planner is informed
that the sequence of snap actions ey, . . ., e; is invalid.
Then, the algorithm performs a series of loops, refining
the formula) (£) until it either becomes empty, or all the
possible timings defined by the constraints satisfy the safety
and executability properties of the platform: the intuition is
that a new TTS is constructed by composing the platform
model and the plan 7 (with the set of constraints ¢, (f)), a
model checker is used to determine whether there is an as-

848

signment to ¢ such that there exists a trace that violates a
property, and if such a trace exists, then the formula dzﬂ(f)
is refined in such a way that counterexample traces with the
same sequence of discrete transitions are no longer possi-
ble; then, the procedure is repeated with the new set of con-
straints to find new counterexample traces (which will take
different discrete transitions from the previous ones), until
either the property is satisfied (meaning that for any choice
in the resulting 1, () the properties hold), or 1), (£) becomes
L, meaning that the plan sequence ey, . .., e; is invalidated.

TTS construction. For every planning action a € A,
we use the Boolean variable 7% (respectively 7%7) to de-
note whether a transition with label 7% (respectively 7%)
is taken by 7. First, starting from the platform 7, the plan
p = (e1,...,e,) with associated symbolic times t1,. .., ¢,
and the current formula constraining these times (), we
construct a TTS modeling the execution of p on 7.

An example of such a TTS is shown in Fig. 3. It essen-
tially consists of a sequence of locations, one for every snap
action in the plan, and the switch between consecutive lo-
cations can only occur when the value of the global clock
becomes equal to the timing of the next snap action to apply.
If it is not possible to apply a snap action e (represented by
the T3, jicable formula, described afterwards), then the Exec-
Failure location is reached, which represents the failure of
the executability for the given plan.

Let V, = {L,v, f1,. .., fmst1, oo tn, 71, ..., 7"} be
a set of variables, where L is the plan location variable with
values in {l1, ..., ln, lend; lExecFailure }» Y 1S the global clock,
f1, .-, fm are Boolean fluent variables one for each propo-
sition in P denoting whether it is true or false, and ¢4, . .., ¢,
and 7°t,...,7°" are as defined above. Let X, = {7}, and
let ¥, = {o}, where o is the plan event input variable with
values in {€1, ..., €n, €internal s €fail }- The variables are initial-

ized according to the initial state and the constraint v (£):

L(V,) = (L=l Ay =0 Avr(B) ANy fi = In(f:)
An invariant condition states that the plan location variable
can keep a certain value only until the time of the next plan
snap action to be applied:

Zy(Vp) = Ny (L=1; 5 v < ;)
We define a transition relation 7, (Vp, X0, Vp’) with the fol-

lowing constraints:
* the time variables always keep their initial value

Nizy (ti = 1)
e when changing the plan location from one value to the
next, the global clock must have the value of the timing of
the next snap action to be applied, the corresponding tran-
sition must be taken by 7T, and the variables fi, ..., f,, are
changed according to the snap action effects
/\?:1(0' = €; — (L = ll A L' = li+1 /\’}/ =1; ATEN
Nietr,.my: F5= T A Njeqr,oomy:- [= L))

fj€efft (e;) fj€eft™ (e;)
¢ when the platform 7 performs an internal transition, the
plan location variable remains unchanged

— — /
O = €internal — L=1L

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

 when the platform 7 performs a transition that is associ-
ated to a plan snap action, the plan event variable must have
the value of the corresponding event

Naca(T/* = Vieq,..n}. 0 = &)

€;=0a} /H

* when a fluent variable changes, the plan event variable
must be associated to a snap action that affects such fluent

/\21 fi# fi = \/je{L...,n}; (0 =€)

fieeff(e;)

We define with T§,; the transition condition that sets the
plan location variable to lgxecFailure, Which occurs when a cer-
tain snap action must be applied (the global clock reaches
the timing of the application), but the transition to the next
plan location value cannot be taken (expressed using the
negation of the existentially quantified transition relation):

O =€fjl — \/;LZI(L = lj ANL = lExecFailure /\ 7= tj/\
(3. Tr(Vr, S7, V) ATV, S, V) o /€5])

Finallyy, we can define the TTS A
(Va, X, Ea, La(Va), Ta(Va, 24, Vi), Za(Vaa)), where
Va VruV, X4 = ArUu i, ¥4 = X7 U3,
14 :IT/\IP,TA :TT/\Tp/\TfaﬂandZA = Z’T/\Zp-
The invariant condition is ¢ g/ = (L = lgxecFailure)-

Model checking and refinement. Once the TTS A is built,
we check the invariant property ¢p V ¢p/, i.e. we check
whether the platform 7 controlled by the plan can violate
either the safety or the executability property. If the property
is satisfied, then we either move to the next plan prefix, or if
we already reached the end we can extract a specific time-
triggered plan by solving the set of constraints (f) (since
the invariant check passed, all the timing in 1, () are valid).
Otherwise, the model checker returns a trace p

wi A A .
(ro Bk AN INEAL rk) that violates the safety or ex-

ecutability property. Now, we want to remove a region of
values from (%), for which a trace with the same dis-
crete transitions of p is still a valid counterexample for the
invariant properties. Let TRACEVALID 4 (#,, &) be the
formula representing the unrolling of the transition rela-
tion of A for k steps (where k is the length of trace p),
where ¢ is the set of clocks of A, and & is the set of all
the other variables of .A. Consider the formula ¢(f,&) =

TRACEVALIDT (1, G, &) {E/X} , where we fix the values of
the discrete variables according to the trace p. Now, by ex-
istentially quantifying over the clocks ¢ and negating the re-
sulting formula, we obtain a formula encoding the times ¢
for which a trace with discrete choices X is no longer feasi-
ble (for any delay of the clock variables ¢). Therefore, we
update 1) (f) by setting it to 1 (£) A =3E.¢(1, &). In the end,
we check whether 1/, (£) has become unsatisfiable, in which
case we return a bad prefix to the planner. Otherwise, we

repeat the validation process with the new 1) (Z), and we are
guaranteed that an eventual new counterexample trace will
make different discrete choices.

849

Theorem 1. Ler Y = (II,T,pp) be a PAMP
problem, and let w™ be a plan returned by
PLATFORMPLANNING(IL, 7, ¢p). Then, 7 is a valid
solution for Y.

Proof. We need to show that 7 satisfies Definition 14:
1. Let wgrn be the last plan in STN form returned by
PLAN(II, bad_prefixes). Because of the soundness of the
planner, every plan that has the ordering of snap ac-
tions given by ej,...,e, < PATH(wsn), and a value
for the variables representing the time of the snap ac-
tions t1,...,t, that satisfies the STN constraints of msrn,
is a valid solution for II. The plan 7 is returned by
GETPLAN (¢ (), (€1, . . ., €,)) when iteration i = n of the
CHECK(T, 7stN, @) procedure is reached. Since we are at
iteration i = n, 4 (t) is a conjunction of all the constraints
in wgTn and eventually other formulas that were used for
the refinement (line 28 of Algorithm 1); hence, w,r(zf—) im-
plies the constraints of wgN. Since the ordering of the snap
actions is eq, . . ., €5, we can conclude by the soundness of
the planner that 7 is a solution for II.

2. Suppose, for the sake of contradiction, that 7 is not ex-
ecutable on 7. Let p™ be the sequence of snap actions
of . By Definition 12, there exists ¢ € {0,...,n —
1} and r € ReachableAfters(rg, pT) such that r(7)

t;+1 and e;41 is not applicable in r. By definition of
. d dy,
ReachableAfters, there exists a run rg Rt A T . I L T

rr = r such that there exists an injective function h :
{0,1,...,i} — {0,1,..., k} with the properties described
in Section 3. Consider the last TTS A that is returned by
BUILDAUTOMATON(T, ¢ (£)) at iteration 4, for which the
INVARCHECK(A, ¢p V ¢p/) returns “safe”. We can show

that there exists a run rfy 275 . 2.7k r, = r' of
A such that r'(v) = ¢;41 and e;11 is not applicable in 7’:
the run satisfies the transition relation T4 = T AT, AT
of A since the original run satisfies 7r; T, is satisfied be-
cause of the properties of function h, specifying that the
transitions corresponding to the snap actions are taken only
when the value of the global clock equals the value of the
time of the snap action; 7/(vy) = t;.1 because the run
has the same delay transitions, and e;;; is not applicable
since there is no transition with the corresponding label
that can be taken in 7. The transition from 7’ to a state
with location ExecFailure is possible, as the fact that e; 1
is not applicable satisfies the constraints of Tf;. There-
fore, there exists a run from an initial state of A to a state
with location ExecFailure, but this is a contradiction since
INVARCHECK (A, ¢ V ¢p/) returned “safe”. Thus, 7 is
executable on 7.

3. Suppose, for the sake of contradiction, that 7 is not B-safe
w.rt. IT and 7. Let p™ be the sequence of snap actions of
7. By Definition 13, there exists € Reachables(rq, p™)
such that s,7 = ¢p, where s = Execry(I, p;) with ¢ be-
ing the maximum index such that ¢; < r(vy). The proof
then follows the previous reasoning: there exists a run of
A which satisfies g, but this is a contradiction as the in-
variant checking procedure did not find any run to a state
satisfying ¢ . Thus, 7 is B-safe w.r.t. IT and 7. O

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Handling simultaneous snap actions. For the sake of sim-
plicity, we assumed that the plans generated by the planner
could not contain simultaneous snap actions (snap actions
scheduled at the same time), but the framework and the ap-
proach can be easily extended to handle such plans. If a plan
has a set of snap actions that need to be applied simultane-
ously, we can obtain the strongest guarantee on the robust-
ness of the plan by requiring that the executability and safety
constraints are satisfied for all the possible total orderings of
the simultaneous snap actions in the plan. In order to han-
dle this requirement, we can model such behaviors in the
TTS representing the plan. Suppose, for example, that a se-
quence of timed snap actions p contains (¢, €) and (¢, €’): we
add two transitions from the state with plan location corre-
sponding to time ¢, with the guard that the global clock must
be t, that do not modify the plan location, apply the snap
action, and set a boolean variable to true, which represents
the fact that the snap action was applied; we also add two
transitions that change the plan location to lgxecFailure, Which
can be taken only if the snap actions have not been applied
so far (the boolean variable is false) and the transition that
applies them cannot be taken. The transition that changes
the plan location to the next value can only occur if both the
boolean variables corresponding to (¢, e) and (¢, ') are true
(i.e. they were applied). The model checker can choose any
order for the simultaneous snap actions, and if the property
holds, then any possible ordering is safe and executable.

5 Related Work

The PAMP problem has been originally defined in (Pan-
jkovic et al. 2025), where solution approaches are presented
that provide system-level guarantees on the execution be-
haviors of generated plans, considering a platform modeled
as a Timed Automaton. These techniques adopt the very
strong assumption that platform traces are bounded w.r.t. the
length of the plans, i.e. it is assumed that platform traces
can be of length at most k|r|, for a given constant k and
a plan m. In many scenarios, it is true that such a con-
stant k exists, as a platform may only be able to perform
a bounded number of internal transitions between two com-
mands of the plan. However, this constant k can be very
large, especially for platforms that can perform many inter-
nal transitions with short delays in between, and choosing a
wrong value for k& impacts the soundness of the approach, as
potentially longer counterexample traces could be missed.
Having a large bound k can have a huge impact on the per-
formance of these approaches, as they rely on the solving
of quantified SMT formulas that scale linearly with k. Our
approach relaxes the boundedness assumption by relying on
model-checking for the verification of the safety and exe-
cutability constraints. It is also more expressive, as it allows
for infinite-state transition systems in the platform modeling
and it provides a mean to express relations among the plan-
ning and platform variables. This is crucial in order to check
if some undesired misalignment can occur between the state
of the planning problem and the state of the platform.

The PAMP problem shares strong connections with con-
formant planning (Ghallab, Nau, and Traverso 2004), where
actions can have non-deterministic effects and no runtime

850

observation is granted. To the best of our knowledge, no
conformant planner tackles the temporal case, and our ap-
proach differs in that we consider the platform modeled as a
timed transition system, allowing for (possibly unbounded)
behaviors during and among planning actions; moreover, we
provide guarantees on the execution safety on the platform.

A closely related work is (Viehmann, Hofmann, and
Lakemeyer 2021), which models the platform layer as a
timed automaton and assumes an abstract sequential plan is
provided. The authors use Metric Temporal Logic (MTL)
to express constraints between the planning and platform
layers. However, their work focuses on verifying whether
a single platform execution satisfies a given plan (an 33
problem). Our approach, by contrast, includes a formal
framework for plan generation and addresses a universally-
quantified validation of platform behavior (3V). Moreover,
our interface between abstraction layers differs: we use TTS
labels to represent “commands” sent by the plan, whereas
Viehmann, Hofmann, and Lakemeyer employ MTL con-
straints to restrict possible traces.

Bozzano, Cimatti, and Roveri (2021) present an auton-
omy framework using symbolic, model-based reasoning to
integrate plan generation, execution, monitoring and FDIR.
The approach models the controlled system as a finite-state
non-deterministic planning problem with resource estima-
tion functions. Our work employs a infinite-state model for
the system and features a richer platform representation.

Finally, there are several works on plan execution with a
known model of the underlying environment: PRS-style ar-
chitectures (Ingrand, Georgeff, and Rao 1992) are able to
perform execution-time reasoning and planning in dynamic
domains; approaches based on hierarchical task-oriented
refinement methods (Patra et al. 2021) integrate planning
and acting systems by using the same operational models;
SkiROS (Rovida et al. 2017) is an approach developed on
top of ROS that integrates planning with low-level robotics
control, offering a GUI to supervise the execution of a plan.
These approaches are fundamentally different from PAMP
as they operate in an online setting, while we focus on pro-
viding robustness guarantees at planning time.

6 Experimental Evaluation

We developed the presented technique in a solver written in
Python based on pyVMT, a python framework for handling
VMT (Verification Modulo Theory) problems (Cimatti,
Griggio, and Tonetta 2022). For temporal planning, we use
the TAMER planner (Valentini, Micheli, and Cimatti 2020):
the planning algorithm is an explicit-state heuristic-search
approach, that explores all the possible total orderings of se-
quences of snap actions, and updates in each visited state
a STN every time a new snap action is added to the se-
quence. A state is pruned whenever the set of STN con-
straints becomes unfeasible (which means that the selected
sequence of actions cannot be scheduled while respecting
all the constraints), and if a goal state is reached, then all the
time-triggered plans with that sequence of snap actions and
a scheduling which satisfies the STN constraints are valid
solution plans for II. We also adapted TAMER to support the
avoidance of a set of bad plan prefixes during its search.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Unsound Unsound Bounded Sem.
Domain PCMT BMC PCMT REF | PCMT BMC PCMT REF UAR-PAMP
(bound=2) (bound=2) with Oracle with Oracle (Ours)

Driverlogl 0 0 0 0 7
Driverlog2 0 0 0 0 9
Factory1 4 9 0 0 8
Factory2 10 10 0 0 3

Fix1 5 8 1 1 11

Fix2 5 8 0 1 16
Rover 35 44 0 1 40
Total | 59 79 | 1 3 | 94

Table 1: Coverage table for the bounded safety semantics

Bounded Sem. Unbounded Sem.

UAR-PAMP UAR-PAMP
Driverlogl 7 8
Driverlog2 9 10
Factoryl 8 8
Factory2 3 2
Fix1 11 11
Fix2 16 16
Rover 40 42
Battery Vars 14 14
Driverlogl Vars 5 5
Driverlog2Vars 6 6

Total | 119 122

Table 2: Coverage table for UAR-PAMP

For model checking, we use NUXMV (Cimatti et al.
2019), a symbolic model checker that is able to prove tem-
poral properties of TTSs. In particular, we exploit the IC3IA
algorithm (Cimatti et al. 2014), which combines search-
based, deductive and abstraction techniques to iteratively
build proofs while disproving candidate counterexamples.

The solver accepts temporal planning problems written in
PDDL2.1 or ANML, and platform models written in timed
SMV (Cimatti et al. 2019). It is also possible to specify
whether to use the bounded or unbounded notion of safety.

We experimentally evaluated the new approach on the
benchmark set used in (Panjkovic et al. 2025) and three
novel sets of benchmarks, DRIVERLOG, FIX and BATTERY.
DRIVERLOG is similar to the running example used in this
paper, and it is scaled by increasing the number of locations
and the number of packages to be delivered. FIX describes
a scenario in which a certain amount of objects needs to be
fixed, but at the platform layer a single fix action may not
be sufficient to repair an object. There is however a bound,
over which it is guaranteed that the fix succeeds, but this in-
formation is not present in the planning model. We scale
the instances by increasing the number of objects and the
number of necessary fix actions to repair an object. Finally,
in BATTERY, an energy storage device needs to be fully
recharged, but the amount of charge after every recharge ac-
tion can have some uncertainty according to the platform
model. The safety property specifies that the absolute differ-
ence between the planning charge variable and the platform
charge variable must not be larger than a threshold, and the
only way to guarantee this property, is to apply a sufficient
number of times the charge action. We scale the instances
by increasing the number of required recharges.

All the experiments were performed on a cluster of iden-
tical machines with AMD EPYC 7413 24-Core Processor
and running Ubuntu 20.04.6. We used a timeout of 14400

851

140001 © — PcMT BMC with Oracle /
— PCMT REF with Oracle 4
— = Unsound BMC bound=2 1
= = Unsound REF bound=2 1

—— UAR-PAMP (Ours)

12000

S,

-
o
o
o
=}

8000] |
6000 *

Solving time (s)

4000; -
2000 ¢

0 20 40 60 80
Instances Solved

Figure 4: Cactus plot for the bounded safety semantics

seconds and a memory limit of 20GB. Table 1 is the cov-
erage table comparing our approach (adopting the bounded
safety semantics) UAR-PAMP with the bounded approaches
of (Panjkovic et al. 2025) (which we denote with PCMT
BMC and PCMT REF). For each domain, we manually
found the bound on the number of platform internal transi-
tions between two consecutive commands from the planner,
and used such bound as an “Oracle” for the approaches of
(Panjkovic et al. 2025). In this way, the bounded approaches
of (Panjkovic et al. 2025) are guaranteed to find PAMP plans
that are valid also for the unbounded case, but we remark
that this is not a fair comparison, as the “oracle” bound is not
easily computable in general. We also ran those approaches
using the smallest bound 2. Clearly, by choosing bound 2,
the resulting approaches are unsound in general, as given a
plan there may exist a platform trace invalidating that plan
of length greater than twice the length of the plan. This actu-
ally happens in many of our domain instances: the unsound
approaches find plans, which are not valid according to the
unbounded semantics nor for the approaches using oracle
bounds. The results clearly show that UAR-PAMP solves
significantly more problems than PCMT BMC and PCMT
REF, even when adopting 2 as the bound (which is the abso-
lute best case for the bounded approaches). The dominance
of UAR-PAMP is also evident in the cactus plot in Fig. 4,
which demonstrates the runtime performance. Finally, Ta-
ble 2 compares our approach in both the bounded and un-
bounded safety semantics for all the domains, including the
ones with variable relations. The results show that the num-
ber of solved instances is very similar, highlighting that the
choice of the semantics for the safety specification does not
significantly affect the performance.

7 Conclusions

We presented a significant generalization of the Platform-
Aware Mission Planning (PAMP) problem to consider
infinite-state execution platform models: we defined the
problem over Timed Transition Systems (TTS) instead of
Timed Automata, we allowed custom relations between
planning fluents and platform variables, and we consider
unbounded traces instead of bounded ones. Our solution
method combines a temporal planner with an infinite-state
model-checker, and we show that it is consistently more ef-
ficient than the existing approach for bounded PAMP prob-
lems, despite being strictly more expressive.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Acknowledgments

This work has been partly supported by the PNRR project
iNEST — Interconnected Nord-Est Innovation Ecosystem
(ECS00000043) funded by the European Union NextGen-
erationEU program and by the STEP-RL project funded by
the European Research Council (grant n. 101115870). We
acknowledge the support of the PNRR project FAIR - Future
Al Research (PE00000013), under the NRRP MUR program
funded by the NextGenerationEU.

References

Bozzano, M.; Cimatti, A.; and Roveri, M. 2021. A com-
prehensive approach to on-board autonomy verification and
validation. ACM Trans. Intell. Syst. Technol. 12(4).

Cimatti, A.; Griggio, A.; Mover, S.; and Tonetta, S. 2014.
IC3 Modulo Theories via Implicit Predicate Abstraction. In
TACAS, volume 8413 of Lecture Notes in Computer Science,
46-61. Springer.

Cimatti, A.; Griggio, A.; Magnago, E.; Roveri, M.; and
Tonetta, S. 2019. Extending nuxmv with timed transition
systems and timed temporal properties. In Dillig, I., and
Tasiran, S., eds., Computer Aided Verification - 31st Interna-
tional Conference, CAV 2019, New York City, NY, USA, July
15-18, 2019, Proceedings, Part I, volume 11561 of Lecture
Notes in Computer Science, 376-386. Springer.

Cimatti, A.; Griggio, A.; and Tonetta, S. 2022. The VMT-
LIB language and tools. In SMT, volume 3185 of CEUR
Workshop Proceedings, 80-89. CEUR-WS.org.

Dechter, R.; Meiri, 1.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial intelligence.

Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of artificial intelligence research.

Fox, M., and Long, D. 2007. A note on concurrency and
complexity in temporal planning.

Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
planning - theory and practice. Elsevier.

Gigante, N.; Micheli, A.; Montanari, A.; and Scala, E. 2022.
Decidability and complexity of action-based temporal plan-
ning over dense time. Artif. Intell. 307:103686.

Ingrand, F., and Ghallab, M. 2017. Deliberation for au-
tonomous robots: A survey. Artif. Intell. 247:10-44.

Ingrand, F.; Georgeff, M.; and Rao, A. 1992. An architecture
for real-time reasoning and system control. IEEE Expert
7(6):34-44.

Morris, P. H. 2016. The mathematics of dispatchability re-
visited. In Coles, A. J.; Coles, A.; Edelkamp, S.; Maga-
zzeni, D.; and Sanner, S., eds., Proceedings of the Twenty-
Sixth International Conference on Automated Planning and
Scheduling, ICAPS 2016, London, UK, June 12-17, 2016,
244-252. AAAI Press.

Panjkovic, S.; Cimatti, A.; Micheli, A.; and Tonetta, S.
2025. Platform-aware mission planning. In Proceedings
of the International Conference of Automated Planning and
Scheduling ICAPS 2025 (https://doi.org/10.48550/ arXiv.
2501.09632).

852

Patra, S.; Mason, J.; Ghallab, M.; Nau, D.; and Traverso,
P. 2021. Deliberative acting, planning and learning
with hierarchical operational models. Artificial Intelligence
299:103523.

Rovida, F.; Crosby, M.; Holz, D.; Polydoros, A. S.; Grof-
mann, B.; Petrick, R. P. A.; and Kriiger, V. 2017. SkiROS—A
Skill-Based Robot Control Platform on Top of ROS. Cham:
Springer International Publishing. 121-160.

Smith, D.; Frank, J.; and Cushing, W. 2008. The anml
language. In KEPS 2008.

Valentini, A.; Micheli, A.; and Cimatti, A. 2020. Temporal
planning with intermediate conditions and effects. In AAAI
2020.

Viehmann, T.; Hofmann, T.; and Lakemeyer, G. 2021.
Transforming robotic plans with timed automata to solve
temporal platform constraints. In Zhou, Z.-H., ed., Proceed-
ings of the Thirtieth International Joint Conference on Arti-
ficial Intelligence, IJCAI-21,2083-2089. International Joint
Conferences on Atrtificial Intelligence Organization. Main
Track.

https://doi.org/10.48550/arXiv.2501.09632
https://doi.org/10.48550/arXiv.2501.09632

	Introduction
	Background
	PAMP Formalization
	Solving Unbounded PAMP
	Related Work
	Experimental Evaluation
	Conclusions

