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Abstract

Consider the problem of learning a lifted STRIPS model of the
sliding-tile puzzle from random state-action traces where the
states represent the location of the tiles only, and the actions
are the labels up, down, left, and right, with no arguments.
Two challenges are involved in this problem. First, the states
are not full STRIPS states, as some predicates are missing, like
the atoms representing the position of the “blank™. Second,
the actions are not full STRIPS either, as they do not reveal
all the objects involved in the actions effects and precondi-
tions. Previous approaches have addressed different versions
of this model learning problem, but most assume that actions
in the traces are full STRIPS actions or that the domain pred-
icates are all observable. The new setting considered in this
work is more “realistic”, as the atoms observed convey the
state of the world but not full STRIPS states, and the actions
reveal the arguments needed for selecting the action but not
the ones needed for modeling it in STRIPS. For formulating
and addressing the learning problem, we introduce a variant
of STRIPS, which we call STRIPS+, where certain STRIPS ac-
tion arguments can be left implicit in preconditions which can
also involve a limited form of existential quantification. The
learning problem becomes the problem of learning STRIPS+
models from STRIPS+ state-action traces. For this, the pro-
posed learning algorithm, called SYNTH, constructs a strat-
ified sequence (conjunction) of precondition expressions or
“queries” for each action, that denote unique objects in the
state and ground the implicit action arguments in STRIPS+.
The correctness and completeness of SYNTH is established,
and its scalability is tested on state-action traces obtained
from STRIPS+ models derived from existing STRIPS domains.

1 Introduction

The problem of learning action models from data is fun-
damental in both planning and reinforcement learning. In
classical planning, lifted models are learned from observed
traces that may contain action and state information from a
hidden STRIPS domain (Yang, Wu, and Jiang 2007; Arora
et al. 2018; Aineto, Celorrio, and Onaindia 2019; Balyo et
al. 2024), while in model-based reinforcement learning ac-
tion models are learned from similar traces but without mak-
ing assumptions about the structure of the hidden domain
(Sutton and Barto 2018; Brafman and Tennenholtz 2003).
As a result, model-based RL approaches have been suc-
cessfully used in non-STRIPS domains like the Atari games
(Micheli, Alonso, and Fleuret 2023; Hafner et al. 2021;
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Burchi and Timofte 2025) but the models learned are not
lifted nor transparent.

In this paper, we aim to start exploring the middle ground
between model-learning approaches in classical planning
and reinforcement learning. A key step for this is to drop
the assumption that the observed actions or states in the
input traces come from a hidden STRIPS domain. This is
because such types of traces make unrealistic assumptions
about the information that the learning agent can actually
perceive. Consider for example the domains NAVIG and
SLIDING-TILE PUZZLE. In the first, an agent can move in
a grid, one unit at a time; in the other, the “blank tile” can
move in a grid in the same way. The observed actions in
the two domains can be described uniquely in terms of the
four labels UP, DOWN, LEFT, and RIGHT, yet these labels
do not represent full STRIPS actions. The reason is that ac-
tions in STRIPS are forced to include as arguments all the
objects involved in atoms that change. This means that in
NAVIG, the actions must include the current and next loca-
tion of the agent as arguments, while in the SLIDING-TILE
PUZZLE, they must include the tile that is moved, along with
its current and new location.

While these examples illustrate that it is not reasonable to
assume that the observed traces contain full STRIPS actions,
a similar argument can be made about full STRIPS states. In-
deed, STRIPS encodings of the SLIDING-TILE PUZZLE need
to include a predicate tracking the position of the “blank”,
but this predicate is not needed to represent the state of the
world which is given by the positions of the tiles alone.

An alternative to traces with full STRIPS actions and/or
full STRIPS states is to make both actions and states partially
observable (Lamanna et al. 2025). Yet without futher re-
strictions, the learning problem is not well defined and may
have no general solution. Our goals in this paper are more
modest but they can be understood from this perspective as
well. We consider a specific version of this general learning
problem where certain STRIPS action arguments and predi-
cates are fully observable, while the other action arguments
and predicates are not observable at all. Yet from these par-
tial observations we will be able to uncover the lifted STRIPS
model in full.

For formulating and addressing the resulting model learn-
ing problem we introduce a variant of the STRIPS language,
which we call STRIPS+, where certain STRIPS action argu-
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ments can be left implicit in preconditions which can also
involve a limited form of existential quantification. The
learning problem becomes the problem of learning STRIPS+
models from STRIPS+ state-action traces, and the proposed
learning algorithm will involve the construction of a se-
quence of precondition expressions or “queries” for each ac-
tion, each one built from the observed predicates and denot-
ing unique objects in the states where the action is executed.
The correctness and completeness of the learning algorithm
will be established, and its scalability will be tested on state-
action traces obtained from STRIPS+ models obtained from
existing STRIPS domains.

The rest of the paper is structured as follows. We re-
view related work and the STRIPS language first, then in-
troduce the new target language for learning, STRIPS+, and
the model learning task and algorithm. Finally, we present
the experimental results, conclusions, and challenges.

2 Related Work

Learning from states and actions. The problem of learn-
ing lifted STRIPS models has a long history in planning. In
most cases, the input traces combine information about ac-
tions and states. While observability of the states can be par-
tial or noisy, in almost all cases the observations reveal all
the domain predicates and their arities (Yang, Wu, and Jiang
2007; Mourdo et al. 2012; Zhuo and Kambhampati 2013;
Arora et al. 2018; Aineto, Celorrio, and Onaindia 2019;
Lamanna et al. 2021; Verma, Marpally, and Srivastava 2021;
Callanan et al. 2022; Le, Juba, and Stern 2024; Bachor and
Behnke 2024; Xi, Gould, and Thiébaux 2024; Aineto and
Scala 2024; Behnke and Bercher 2024). Likewise, the ac-
tions are normally full STRIPS actions with all the argu-
ments, the exception being a recent SAT-based learning for-
mulation where only the action names are observed (along
with the states), with no information about either their ar-
guments or their arity (Balyo et al. 2024). Interestingly,
Lamanna et al. (2025) recently considered learning action
models from state-action traces where both the states and
the action arguments can be partially observable, yet the ap-
proach comes with no guarantees. Indeed, the formulation,
which is based on observations about the atoms affected by
an action, implies that action arguments that are just in-
volved in preconditions and are not affected by the action,
must be observable, at least sometimes; else such arguments
cannot be recovered.!

Learning from actions only. Fewer works have considered
the problem of learning lifted STRIPS models from traces
containing actions only. The LOCM systems (Cresswell
and Gregory 2011; Cresswell, McCluskey, and West 2013;
Gregory and Cresswell 2015; Lindsay 2021) accept ac-
tion traces as inputs, and outputs lifted domain descrip-
tions, but their properties and scope are not clear. More

'As a concrete example, a correct model for an action like
move(p, t1,t2,1) which moves a package p from truck ¢; to truck
t2> when both trucks are at location [ and package p is in truck ¢1,
cannot be learned in this approach if the action argument [ is not
observable, as the location ! cannot be identified from the effects
of the action alone. In SYNTH, this is not a problem.
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recently, the SIFT algorithm, which uses the same input
traces as LOCM, has been shown to be sound, complete,
and scalable (Gosgens, Jansen, and Geffner 2024). The
problem with SIFT is that the actions in the traces are as-
sumed to be full STRIPS actions with all the action argu-
ments spelled out. There is also a SAT approach to lifted
model learning, that accepts state graphs, not traces, where
the states are not observable and edges are labeled with
action names and no arguments (Bonet and Geffner 2020;
Rodriguez et al. 2021). This approach learns from very
sparse information, but unlike SIFT and LOCM, does not
scale up.

Model-based reinforcement learning. Model-based RL al-
gorithms learn controllers by learning (stochastic) models
first, without making further assumptions about the struc-
ture of the models (Sutton and Barto 2018). In the tabu-
lar setting, they result in flat state models with state transi-
tion probabilities obtained from simple counts (Brafman and
Tennenholtz 2003). In some cases, a first-order state lan-
guage is assumed but the state predicates are given (Diuk,
Cohen, and Littman 2008; Zettlemoyer, Pasula, and Kael-
bling 2005). In more recent approaches, the learned dy-
namics is not represented compactly in languages such as
STRIPS or PDDL, but in terms of deep neural networks. In
particular, successful model-based RL approaches for the
Atari games or Minecraft learn the action dynamics using
transformers or recurrent neural networks (Micheli, Alonso,
and Fleuret 2023; Hafner et al. 2021; Burchi and Timofte
2025). A limitation of these methods, like other recent deep-
learning approaches that learn STRIPS models from state im-
ages (Asai and Fukunaga 2018; Asai et al. 2022), is that the
learned action models are opaque and not lifted.

3 Background: STRIPS

A classical STRIPS planning problem is a pair P = (D, I)
where D is a first-order domain and I contains information
about the instance (Geffner and Bonet 2013; Ghallab, Nau,
and Traverso 2016). The domain D has a set of predicate
symbols p and a set of (lifted) action schemas a(z) with pre-
conditions, add, and delete effects Pre(a(x)), Add(a(x)),
Del(a(x)) given by atoms p(z1, . . ., 1), where p is domain
predicate of arity k, and each x; is an argument of the action
schema. The instance information is a tuple I = (O, Init, G)
where O is a set of object names or constants ¢;, and Init and
G are sets of ground atoms p(cy, . . ., ¢x) denoting the initial
and goal situations.

An action schema a(x), where « is a tuple of variables
Z1,...,Ty, s instantiated by consistently replacing the vari-
ables x; by constants ¢; in the instance. In the typed version
of STRIPS, the variables and the constants have types, and
variables are replaced by constant of the same type. The
atoms p(x) are called fluent if they appear in the effect of
some action, and else they are called static. Static atoms
appear in the initial situation and action preconditions, and
affect just the action groundings.

A STRIPS problem P = (D,I) defines a state model
S(P) = (S, s0,S¢,Act, A, f) in compact form where the
states s € S are sets of ground atoms from P (assumed to
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be the true atoms in s), sq is the initial state I, S is the set
of goal states s such that G C s, Act is the set of ground
actions in P, A(s) is the set of ground actions whose pre-
conditions are (true) in s, and f(a, s), for a € A(s), repre-
sents the state s that follows action a in the state s; namely
s = ((s\ Del(a)) U Add(a)).

By design, a STRIPS action can only affect the truth of an
atom p(z1, ...,z ) if the atom is an action effect, and hence
if all of its arguments x; are action arguments. This implies
for example, that if an action for picking up a block x makes
an atom clear(y) true, then y must be an action argument.

An action sequence 7 = ag,ai,...,a, is applicable in
P ifa; € A(Sl) and Si+1 = f(ai,si), for: = 0,...,n.
The states s; are said to be reachable in P, and the action
sequence T is a plan for P if s, is a goal state.

An action trace in D is an applicable action sequence in
some instance P = (D, I). Algorithms like LOCM and SIFT
learn (lifted) STRIPS models from action traces alone. Oth-
ers approaches learn from traces sg, ag, S1, . . . that combine
states and actions, with some information about actions or
states missing, or corrupted by noise. In our setting, STRIPS
models will be learned from state-action traces where some
of the action arguments and some of the predicates in the
state are not observable at all.

4 STRIPS+

We cast the problem of learning lifted STRIPS models from
traces of incomplete STRIPS actions and states into the prob-
lem of learning models in a language that is more succint
than STRIPS, that we call STRIPS+. STRIPS+ extends STRIPS
by allowing tuples of free variables y and z in the action
schemas a(x) that are not among the explicit action argu-
ments z. The variables in y can only appear in action pre-
conditions, while the variables in z can appear in action pre-
conditions and effects. The z variables, however, have to
be determined by the z variables as spelled out below. This
extension of STRIPS is not new and forms part of some of
the PDDL standards (Haslum et al. 2019). In particular, the
first PDDL standard (McDermott et al. 1998) supports the 2
variables, which are declared via the keyword : vars.

Definition 1. Action schemas a(x) in STRIPS+ have (con-
Junctive) preconditions Pre(a(z)) = ¢(z,y, z) with free
variables among those of x, y, and z which are pairwise
disjoint sets of variables. The variables in x and z can ap-
pear in action effects. The value of the variables in z must
be determined by the values of the variables in x as defined
below.

The variables in x denote explicit action arguments of
the action a(x) in STRIPS+, and the variables in z denote
“implicit” action arguments captured by the preconditions.
STRIPS actions are trivial STRIPS+ actions with an empty
list of implicit action arguments; while STRIPS+ actions map
into STRIPS actions with more arguments after pushing the y
and z variables into explicit action arguments in STRIPS. For
this translation and semantics to be valid, the value (denota-
tion) of the z variables that can appear in the action effects,
must be uniquely determined by the value of the explicit ac-
tion arguments x and the action preconditions.
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For example, in the SLIDING-TILE PUZZLE, the action
up(cy, c2,t) that moves tile ¢ from cell ¢y to cell ¢; can be
modeled in STRIPS with these three arguments. In STRIPS+,
on the other hand, the action up can be modeled without
any arguments, as the three explicit arguments in STRIPS, ¢,
¢2, and ¢ can be recovered from the values of the three free
z variables z = {21, 29, 23} in its precondition ¢(z,y, z)
given by the formula blank(z1) Aabove(z1, 22) Aat(z3, z2).
Indeed, this precondition is satisfied in each state s where
the action up is applicable by a unique grounding of the z;
variables, so that such variables can be regarded as implicit
arguments of the up action. This is all formalized below.

A ground STRIPS+ action a(0) is applicable in a state s if
its precondition formula ¢(z,y, ) is satisfiable in s with a
grounding that binds x to o. Formally:

Definition 2. For a STRIPS or STRIPS+ domain D, let
o(x,y, z) refer to a conjunction of domain atoms with ar-
guments from the three disjoint variable sets x,vy, z and let
s be the initial state of an instance P = (D, I) of D.* Then,

* A grounding of ¢(x,y, z) in P is an assigment o of vari-
ables in the formula to constants (objects) in the instance.

* A grounding satisfies the formula ¢(x,y, z) in s if the re-
sulting ground atoms are all true in s.

o The formula ¢(x,y, z) is satisfiable in s if some grounding
of the variables satisfies it.

The z variables are determined by the variables x in
a STRIPS+ action a(z) with precondition ¢(z,y, z) if the
groundings that satisfy the formula must agree on the value
(grounding) of z when they agree on the value of x:

Definition 3. The value of the variables in z are deter-
mined by the values of the variables in x in the precondi-
tion ¢(x,y, z) of an STRIPS+ action a(x) in a domain D,
if in the initial state of any instance P of D, there are no
two satisfying groundings o and o' of ¢(x,y, z) such that
o(z) = od'(z) and o0(2) # o'(2).

In the precondition ¢(z, y, z) of the action up above given
by the formula blank(z1) A above(z1, 22) A at(zs3, 22), the
three variables z; in z = {z1, 22, 23} are determined, as in
any legal state s over the sliding-puzzle domain D, there is a
unique grounding for z; (blank position), for z5 (cell above
the blank), and for z3 (tile at the cell which is above the
blank).

In addition to assuming that the grounding of the z vari-
ables in STRIPS+ action schemas a(z) is uniquely deter-
mined by the grounding of the explicit action arguments z
and the preconditions as expressed in Definition 1, we as-
sume, as in SIFT, that action effects are “well-formed” in the
sense that they change the state; namely, the complement of
the effects must be explicit or implicit action preconditions,
so that no action adds an atom that is true, or deletes an atom
that is false (Gosgens, Jansen, and Geffner 2024).

Determined variables express state-invariants of the do-
main; namely, that in the reachable states where a ground

Notice that a reachable state of an instance P is the initial state
of another instance P’ that is otherwise like P.
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action a(o) of the lifted action a(z) with precondition
o(x,y, z) applies, there is a unique grounding for z among
the (non-empty) groundings that satisfy ¢(x,y, z) with z =
o. In other words, the grounding of z is a function f, s(x)
of x, the state s, and the action instance a = a(0).

The semantics of the STRIPS+ action a(z) with precondi-
tion ¢(z,y, z) is the semantics of the STRIPS action a’(z’)
that has the same preconditions and effects as a(z) but with
the y and z variables pushed as explicit arguments in x’.

Example: NAVIG. The problem of navigating in an empty
grid can be modeled in STRIPS via action schemas like
up(c, '), where ¢ and ¢’ are grid cell variables, precondi-
tions are at(c) and above(d, c), and effects are at(c’) and
—at(c). In STRIPS+, the explicit action arguments ¢ and ¢/
can be made implicit through the use of the preconditions
at(z) and above(z’, z) where the variables z and 2’ are de-
termined, as in every state s, there is a single atom at(z)
that is true, and a single (static) true atom above(z’, z) given
z. The result is that the action up can be modeled with no
(explicit) arguments in STRIPS+.

Example: SLIDING-TILE PUZZLE. In STRIPS, the domain
can be modeled by actions like up(c, ¢/, t) where t is the tile
that moves from cell ¢’ to cell ¢, and preconditions involving
the atoms at(t, ¢'), blank(c), and above(c, '), where blank
tracks the position of the “blank”. In STRIPS+, the three
action arguments can be made implicit as shown above.

Example: BLOCKS. In STRIPS, the action unstack(xy, x2)
takes as arguments the blocks x1, x2, where x; is stacked on
Z9. In STRIPS+, the action unstack(x;) can take instead a
single explicit action argument x1, as the variable x5 can be
captured by an implicit variable z; whose unique ground-
ing is determined by the value of z; and the precondition
on(x1,21) in any state where the action unstack(x1) is ap-
plied. The explicit argument x; cannot be rendered implicit
because multiple blocks may be potentially unstacked. Yet
the action unstack(xs), where x5 denotes the block beneath
the one to be picked would be a well-formed schema too,
with the atom on(z1, 2) in its precondition determining the
unique grounding of the block z; to be unstacked.

5 The Learning Task

The learning task is to infer a lifted STRIPS+ domain from
random state-action traces obtained from instances over a
hidden STRIPS+ domain. We state the task formally below
after introducing some restrictions on the class of hidden
STRIPS+ models.

5.1 Target Fragment of STRIPS+

We cannot address the learning task in its full general-
ity because determining whether a precondition formula
o(x,y, z) is satisfiable in a state is already NP-hard. We as-
sume instead a class of hidden STRIPS+ domains D whose
precondition formulas ¢(z,y, z) are easy to evaluate. For
convenience, we will refer to formulas ¢(x, y, z) as conjunc-
tive queries. In these formulas the atom predicates are the
domain predicates and the arguments are free variables from
z, 1y, and z.
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The restrictions below limit the expressive power of the
target language, but every STRIPS problem is part of this
STRIPS+ fragment, as every STRIPS problem P = (D, ) is
a STRIPS+ problem with precondition ¢(z, y, z), where the
sets of variables y and z are empty.

The first restriction applies to the y variables:

Definition 4. A conjunctive query Q(x,y, z) is simple if
each y; variable appears only once in Q(z,y, z).

This means that the only constraints on y variables are
those occurring in single atoms, and moreover, no variable y
appears twice in such atoms either (this last condition could
be relaxed though). The second restriction, stratification, is
more interesting and applies to the z variables:

Definition 5. A conjunctive query Q(z,y,z) is stratified
if it can be expressed as the conjunction of conjunctive
queries Q1(x,y,2%), ..., Qu(x,y,2"), each with one or
more atoms, such that:

s Each variable z; appears in ' but not in 27, j < i.

o If Q(z,y, 2) is satisfiable in a state s with grounding
o(x)=oand o(z;)=c;, i =1,...,n, there is no ground-
ing o' satisfying the prefix Q1(z,y,z'), ..., Qi(x,y, 2")
with o' (x) = 0 and 0'(z;) # o(z;), forany 1 < j <
1=1,...,n,

In other words, the query Q(z,y, z) is stratified, not just
if the z variables are determined by the x variables through
the Q-formula, but if the value of each individual variable
Zi+1 in z is determined by the value of the variables z U
{z1,..., 2} in the subformula Q; 1 (z,y, z'T1). In fact, the
variables z being determined by x means that if the query is
satisfiable in a state s, there is a unique value z = f, 4(x) for
the z variables that satisfies the query for a given grounding
of z, state s, and action instance a = a(0). Computing these
values, however, can be computationally hard. Stratification
provides conditions under which this task is easy and can be
solved one variable z; at a time.

A domain D is said to be stratified if the action precondi-
tion formulas ¢(x, y, z) are simple and stratified.

5.2 Task

The learning task is to infer a lifted STRIPS+ domain Dy,
from random state-action traces obtained from instances
P = (D,I) of a hidden STRIPS+ domain D. The learned
domain Dy, does not have to be syntactically equivalent to
the hidden domain D but has to be semantically equivalent,
meaning that the traces from P = (D, I) must be traces of
P, = (Dy,I) and vice versa.

Definition 6 (Learning task). Given state-action traces of
the form sg,aq, S1,02,...,Sy, Gy from STRIPS+ instances
P = (D, 1) of a hidden stratified domain D, the task is to
learn a domain Dy, such that the instances P' = (Dy,,I)
generate the same traces as P.

Thus, the domain Dy, is to be learned from traces obtained
from instances P = (D, I) of a stratified domain D, and D,
and D are deemed equivalent if instances P, = (D, I,) and
P! = (Dy, I;) generate the same traces.
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6 The Learning Algorithm

We address the learning task in three parts: learning the pre-
conditions Q(z, y, z) of the actions a(x) that bind the z vari-
ables uniquely, learning the extra preconditions Q' (z,y, 2)
that use these bindings but which do not constraint further
their values, and learning the action effects.

6.1 Learning the Binding Preconditions Q(zx, y, z)

The assumption that hidden action preconditions ¢(z,y, z)
are simple and stratified suggests a simple algorithm for
learning a formula equivalent to ¢(z,y, z) from the traces
in two parts: a “conjunctive query” Q(z, y, z) that binds the
values of the z variables, and a second part Q'(x, y, z) that
uses such bindings. The query Q(z, y, z) is made up itself of
conjunctive subqueries Q1 (x,y,2%), ..., Qn(x,y, 2™) such
that:

1. Stratification: The formulas Q(z,y,2%), ...,
Qn(z,y, 2") stratify Q(x,y, z) (Definition 5).

2. Validity: If an action a(0) applies in a state s in the traces,
Q(z,y, z) must be satisfiable with = o in s.

3. Maximality: » is maximal; i.e., no other determined vari-
ables can be pushed into z, and no two variables 2% can be
merged into one (i.e., in some action application they de-
note different objects).

The maximality condition is needed so that the task of
learning action preconditions and effects can be decoupled.
Indeed, we learn first preconditions, and then, from them,
the action effects. These effects may use some of the z
variables “found” in the first step, but not necessarily all of
them. The query Q(z,y, z) provides a referring expression
for each of the variables z;, which selects a unique value
(grounding) for z; in any state s where a ground action a(0)
applies. Due to the stratification, the implicit value for z; in
a(o) may depend on the values of the variables z; preceding
z; in the ordering, but these values are also determined by
the binding = = o for a(x) in s. In this process, expressions
that refer to the same constant in all the states drawn from
the same instance are discarded, as they do not truly denote
functions of the state (for example, “the top-left corner cell
in a grid”).

The learning algorithm, that we call SYNTH, “synthe-
sizes” the query Q(z,y, z) one subquery Q;(z,y,2") at a
time, with each subquery being constructed one lifted atom
¢i,j(@,y, z") at a time too, where a lifted atom is an atom
whose arguments are free variables from z, y and z%. More
precisely, SYNTH constructs sequences of atoms of the form

1

,41,n, ($7y7 z ) ;
y 41,no (l’, Y, 22)
m

y 41,0, (1'7 Y,z

1
QI,I(x7y7 z )7 o
2
q2,1(zay7z )a 3
qm/,l('rayazm)w" )
where ¢; ; denotes predicates observed in the traces, and 2t
contains the variable z;, possibly the z variables up to z;,
and no variable z;, j > i. The Q;(x,y, 2*) expressions cor-
respond to the conjunction of the lifted atoms ¢; .(-), and the
conjunction of the expressions Q(z,y, 2%) = Q1(x,y, 21),
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Algorithm 1 TEST: checks for unique grounding of z; 1 in
Qit1(w,y, 2" ) over all s where a(o) applies, given unique
grounding o for 21, ..., z; in Q(z,y, 2°)

Input: Q(z,y, 2") = \'_, Q;(x,y,27) > Valid Query Q
Input: Q; 1 (x,y, 2" > Extension of Q
Input: AS = {(a(0),s)} > Relevant state-action pairs

function TES_T(Q(J;’ Y, Zi)v Qiﬁ-l (xv Y, Zi+1)7 AS)
Q(_xa Y, Z’LJFI) A Q(la Y, ZZ) A Qi—i—l(m’ Y, ZZ+1)
unique < true
V=A{x1,...,Tn, 21, ..., 2i }
for (a(0),s) € AS do
> get o for 2* from Q(x,y,2") in sand v = o
¥ < get_assignments(Q(z,y, 2'71), a(0), s, o)
if |X| = 0 then return Not-Valid
else if |X| > 2 then unique + false

> Variables in z, z*

> Else |X| = {o} = 1 and unique keeps its value
if — unique then return Not-Determined
elseif JveV : Va(o),s€ AS : 0(z;41)=0(v) then
return Subsumed
else return Valid

..., Qi(z,y, z*) must determine single values for the vari-
ables z; for j < i and a given value for z.

The generation of the ordered atom sequences
Qi(x,y, z") that make up the query Q(z, y, z) for satisfying
Conditions 1-3 (stratification, validity, and maximality) is
computed “greedily”, as all the successful maximal queries
end up denoting the same unique tuple of objects.> For
this, only sequences of atoms are considered that preserve
stratification and validity. The sequence becomes invalid
when the resulting partial query Q(w,y,z'"!) becomes
unsatisfiable with z = o in some state s of the traces where
the action a (o) applies. In addition, atoms q; 41 «(, y, 2°*1)
are considered in the sequence only after the preceding
variable 2 has been determined by the formula Q;(z, y, z*)
built so far (stratification). Finally, the computation finishes
with the query Q(z,y, z) = Q1(z,y, ), ..., Qu(z,y, =")
when the atom sequence representing the query cannot be
extended with an additional variable z,; which is not
equivalent to the explicit x variables, or the implicit z;
variables, 7 < n.

In short, starting with ¢ = 1, SYNTH tries to append
a new atom qi,j(x,y,zi) to the sequence prefix (initially
empty), while preserving validity; i.e., the resulting formula
Q(z,y, z") must remain satisfiable with z = o when a(0)
applies in a state s. This process continues until a sequence
of atoms is found for which the grounding of variable z; be-
comes unique for each action grounding a(o) and state in
which the action is applied. At that point, we have the sub-
query Q;(x,y, z*) and all the ones preceding it.

The two main routines of SYNTH are displayed in Algo-
rithms 1 and 2.* The first, TEST procedure, gets as input

3The algorithm can also be seen as a dynamic programming
algorithm that builds the subqueries Q;(z, y, z*) sequentially.
“The actual code is equivalent but more efficient.
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Algorithm 2 EXPAND: Extends Q(z,y,2") with lifted
atoms p(w) to determine one more variable z; 1

Input: Q(z,y, 2*) /\;:1 Q;(z,y,27) > Valid query Q
Input: AS = {(a(0;), s;) }i—; > State-action pairs
Output: Q;1(x,y, 2" > Valid extension of Q

function EXPAND(Q(z, v, %), AS)
Q<+ {p(w) |p€ Pwe {x,y,2}, 241 €w}
Qo + {qa4} > qq is dummy query true
while Qg # () do
Qnemt — {}
for ¢ € Qg do
for ¢’ € (Q\ q) do
¢ —qnq
res < TEST(Q(z,vy,2%),q", AS)
if res = VALID then
return ¢”
else if res = Not-Determined then
Qnemt <~ Qnemt U qN

QO < Qnemt

return Maximal > Q(x,vy,2") can’t be extended

a query Q(z,y, z%), a new subquery Q;41(z,y,2z'T1), and
a set AS of action-state pairs (s, a(0)) where an instance
a(o) of action a applies in state s in the given traces, and
checks whether the query that conjoins the two makes the
zi+1 variable determined in all such states. For this, it com-
putes the set of groundings X of the variables in z**! that
satisfy this conjunction for x = o, assuming that there is a
single grounding o for the variables 21, ..., z; in 2 that sat-
isfies Q(z,y, 2') given z = o. If |X| = 0, it returns that the
query extension is not valid, if |X| > 1, that it is not deter-
mined (no unique grounding), and if |X| = 1, it returns that
it is valid, if the new variable z;, 1 does not have the same
denotation as a variable in z or z° over all state-action pairs
(a(0),s) in AS. Otherwise, the procedure returns that the
query extension is subsumed.

Algorithm 2 displays the procedure EXPAND, which is
the heart of SYNTH: it incrementally refines a precondi-
tion query Q@ = Q(z,y,z"), which initially contains only
the dummy query qq, that is always true and does not in-
volve (constraint) any variables, by conjoining it with lifted
atoms ¢, one at a time, until these atoms jointly form the
new query component Q; 1 (z,y, 2*1) that determines the
unique grounding of the variable z;4;. For this, the TEST
procedure is called with @, ¢, and the relevant set of state-
action pairs AS (instances a(o) of a in the traces and the
states s where are applied). The atom ¢ can be used to ex-
pand the query only if TEST returns “valid”, and in this case
the exapansion Q;1(,y, z'T1) is returned. If the algorithm
TEST returns “not-determined”, the algorithm EXPAND will
expand ¢ in the next iteration. When the subquery is “non-
valid” or “subsumed” we known that it cannot be used to

expand Q(x, vy, 2°).
The algorithm SYNTH is complete in the following sense:
Theorem 1. Let ¢(x,y, z) be the precondition of the action
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a(z) in the hidden, stratified domain, and let z; = ¢;° be
the value of variable z; in the state s of the traces where the

action a(o) applies, i = 1,...,n. Then SYNTH returns a
query Q(x,y’,2") from the traces with 2/ = (2},...,2},)

2’ variable in

where each z; variable in z is captured by a z;
= 2 such that in all

Z'; namely, there is a function p(z;) ;
such states s, Q(x,y', 2" is satisfiable in s with x = o, and

in all the satisfying groundings o, o(2}) = ¢;"°.

The theorem doesn’t imply soundness in the sense that
groundings of Q(z,y, z) that satisfy z = o in the state s of
the traces, imply that the ground action a(0) must be appli-
cable in s. Indeed, for this, the precondition query Q(z, y, z)
needs to be extended with other atoms as shown below.

In the implementation of SYNTH, the lifted atoms
gi,j(w,y, z%) are ordered lexicographically, so that a sin-
gle ordering of the atoms is considered in the construction
of the subquery Q;(x,y,z;). Moreover, these atoms are
represented by atom patterns, following an idea from SIFT
(Gosgens, Jansen, and Geffner 2024). Namely, a pattern
like p(-,2,i,,1,_,1,) is used to represent the lifted atom
p(y17 L2, 2i; X1, Y2, Zl) in Qz(xa Y, Z’L) where ¢ > 1.

6.2 Learning the Extra Preconditions and Effects

The precondition formula Prey(a(z)) of the STRIPS+
action a(x) in the learned domain Dy conjoins the
query Q(z,y, z) obtained from the traces with a formula
Q' (z,y, z) that does not refine the binding of the z vari-
ables, but which contains all lifted atoms that are true in
all the states s where an action a(o) applies. This ensures
that if Prey (a(x)) is satisfiable with z = o in a trace, then
the precondition Pre(a(zx)) of the action a(z) in the hidden
domain D will also be satisfiable with + = o, and hence
that if the ground action a(o) applies in the state s of a trace
in the learned domain Dy, it also applies in s in the hidden
domain. The reverse implication is also true, and if a(o) ap-
plies in a state s of a trace in the hidden domain D, it also
is applicable in the same state s in the learned domain Dy,.
Otherwise, the action a(z) would feature a precondition in
the learned domain that is not true in a state s of the traces
where an action a (o) is done, and hence the precondition in
Dy, would not be valid over the traces.

The formula Q’(x,y,z) to augment the precondition
query Q(z,y, z) in Preg(a(x)) is obtained as the conjunc-
tion of the lifted atoms p(z, y, z) whose arguments are vari-
ables x; from the lifted action a(z), z; variables from z, and
y; variables from y. The y; variables can only appear once
in these lifted atoms and they are assumed to be existen-
tially quantified. The z; and z; variables are free, and in a
state s where an action a(z) is applied, their values are de-
termined by the action arguments and the the precondition
query Q(z,y, 2).

A lifted atom p(z,y, z) is a valid precondition of a(x)
given the traces 7', and hence pushed into Q'(x,y, z) and
Prey(a(x)), if the formula 3y’ .p(z, y’, ) is true in all the
states s of T' where an instance a(o) of a is applied, provided
the binding x o for z and the unique grounding for z
determined by the precondition query Q(z, y, 2).

Likewise, a lifted atom p(z, z) is a valid positive (resp.
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negative) effect of a(x) given the traces T', and hence pushed
into Add(a(x)) (resp. Del(a(x))), if the formula p(x, z)
is false (resp. true) in a state s of T', where an action in-
stance a(o) of a is applied, and true (resp. false) in the
resulting state s’, provided the binding x = o for x and
the unique grounding for z determined by the precondition

6.3 Properties

If Dy denotes the learned model, namely, the action
schemas a(z) for the actions appearing in the traces 7' with
their learned preconditions and effects, it can be shown that
Dy, is equivalent to the hidden domain D provided that the
set of traces T is rich enough and that D is stratified (i.e.,
the unique grounding of the z variables can be determined
one z; variable at a time):

Theorem 2. For a suitable finite set of traces T’ from the hid-
den (stratified) domain D, the learned domain Dy, is equiva-
lent to D, meaning that the state-action traces resulting from
any instance P = (D, I) of D, are traces of P’ = (D, I),
and vice versa.

Proof. (Sketch) SYNTH learns queries (); for each of the
hidden z; variables in D such that the hidden preconditions
¢(x,y,2) and @, pick up the same denotations. The re-
sulting learned preconditions in D, may be different than
in D, and the indices ¢ and 7 may be different too, but the
function f, s(x) represented by both, that defines the unique
grounding of the z variables, would be the same. Also,
by construction all the preconditions in D are expressible
with the x, y, z variables, and hence will be captured in the
learned domain Dy, which may include other preconditions
too. Similar to preconditions, all effects are expressible with
x, z variables, and since the domain is assumed to be well-
formed, all effects of the hidden domain are captured by the
learned domain Dy, too. Finally, any invalid precondition
will be rendered invalid through a single state in a trace, and
there is a finite number of such invalid preconditions that can
be constructed. 0

6.4 Negation

The extension of SYNTH for learning negated preconditions
is convenient and direct, and is implemented in the algo-
rithm. The only change is that in negated lifted atoms
—p(z,y, z), the y variables are interpreted as universally
quantified; namely, as Vy.—p(z,y,2). As a result, a pre-
condition —p(x,y, z) of an action a(z) is true in a state s
with x = o and z = ¢/, if the formula Vy.—p(z, y, 2) is true
in s with the bindings for the x and z variables provided by
oand 0.

For example, in the SLIDING-TILE PUZZLE, the posi-
tion z; of the blank can be obtained without the predicate
blank(x;) through the negated precondition —at(y1, 21)
which stands for the formula Vy;.—at(y1, 21), as this for-
mula is true only when 2 represents the unique cell without
a tile.
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7 Experiments

We have tested SYNTH over a number of existing STRIPS
domains D’. For this, we converted these domains into
STRIPS+ domains D by moving the explicit action argu-
ments in D’ that are determined into implicit z arguments
in D. On average, as we will see, this reduces the num-
ber of (observed) action arguments during training by half.
Then a single random state-action trace is sampled from a
large instance P = (D, I) from D to learn the domain Dy..
The hidden and the learned domains are then compared over
other test instances in a verification phase. We provide fur-
ther details of the set up below, along with the results. A
finer grained analysis of the results can be found in the next
section. The experiments have been run on Intel(R) Xeon(R)
Platinum 8160 CPUs running at 2.10GHz and the data and
code are publicly available (Jansen and Gosgens 2025).

Domains: The domains are the ones considered in the SIFT
paper (Gosgens, Jansen, and Geffner 2024): Blocks with 3
and 4 operators, Delivery, Driverlog, Grid, Ferry, Gripper,
Hanoi, Logistics, Miconic, Sliding-tile puzzle, Sokoban.
The Sliding-tile puzzle is in two versions: one with sepa-
rate x and y coordinates denoted as n-puzzle, and the other
with cells, denoted as c-puzzle. Sokoban-Pull is a varia-
tion of Sokoban, adding one action schema for a pull-action
to make the resulting domain dead-end free. Dead-ends
present a potential problem in the generation of data, as ran-
dom traces are often trapped in parts of the state space.

Translation into STRIPS+: The traces are not generated
from these STRIPS domains D’ but from their STRIPS+
translation D where some of the explicit action arguments
in STRIPS are pushed into implicit z arguments. The algo-
rithm for doing this translation automatically is a simplifica-
tion of the query learning component of SYNTH, as the pre-
conditions are given. In order to determine if an argument
variable z, in a STRIPS action a'(z”) from D’ is determined
by other arguments and hence can become a z variable in
the encoding of the equivalent action a(z) in D, we check if
in all states of traces drawn from D’ where the STRIPS ac-
tion a’(0’) is applied, the value of the argument o/, is unique
given the preconditions. The preconditions and effects of
the STRIPS action a/(x’) and the resulting STRIPS+ action
a(x) are the same except for the renaming of the variables
x} into x and z variables. There are no (existentially quan-
tified) variables y in D, but they can appear in the learned
domains Dy,.

Data generation: For each STRIPS domain D’, we pick an
instance P = (D, I') from the STRIPS+ translation, and gen-
erate a long random trace with up to ten thousands of state-
action pairs.5 In some domains, small instances and short
traces suffice to learn the domains correctly, in other cases,
larger instance and/or longer traces are needed.

Verification: The correctness of the learned domains Dy,
is assessed by sampling a number of reachable states s and
ground actions a(o) in instances P = (D, I) where D is the

STraces from multiple instances could have been used too.
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hidden domain. The applicability and effects of these ac-
tions are then compared in D and Dy. A 100% verification
rate indicate a full match. For testing also the translation
from STRIPS to STRIPS+, the STRIPS actions of the original
domain that are applicable in s are also considered, and they
must map to the same set of successor states. This compari-
son with the original STRIPS domain is not done however in
the experiments.

Results: Table 1 shows the results of the experiments. The
columns on the left show the domains, the number of objects
in the instance used to generate the single trace per domain
(#0), the length of the trace measured as the number of state-
action pairs (#L), and the total number of action arguments
in the original STRIPS domain D’ (|]z'|), and the reduced
number of action arguments in the STRIPS+ translation D
used to generate the traces (|«|). This is followed by the
sum of this number |z| and the total number of implicit ac-
tion arguments z; learned along with their queries (|z|+|z|).
The following columns show the total number of explicit but
determined STRIPS arguments 2’ that the learned z variables
fail to capture (J2’/z|), ® and the total number of z vari-
ables learned which do not capture any z’ variable (|z/z’]).
This is extra information learned; namely, valid query ex-
pressions that define functions f, s(z) over the traces that
are just not used in Dy,. This is followed by the total learn-
ing time (T), and the verification data: number of objects
used in the verification instance (#0O,,), number of action-
state pairs tested (#SA), the verification time (T,) and the
score (%V). The data on the top part of the figure is about
experiments where the full STRIPS+ states in DD, which are
equal to the full STRIPS states in D', are used in the traces.
The data on the bottom part is about the experiments where
all atoms involving selected predicates were removed from
the states in the traces (incomplete states).

Analysis: In all domains, SYNTH learns domains Dy, that
verify 100%. The learning times run from a few seconds, to
1695 seconds in Driverlog. The times grow with the num-
ber of domain predicates, their arities, and the length of the
traces. Both the length of the traces and the size of the
instances used to generate the traces were selected so that
SYNTH outputs the correct domains. This doesn’t happen if
the traces are too short or the instances are too small. The
domains that required the longest traces are Driverlog and
Grid. At the same time, the n-puzzle provides a good il-
lustration of the size of the instances required for correct
learning. The c-puzzle uses cells and the domain is learned
correctly from traces of the 4x4 c-puzzle. The n-puzzle, on
the other hand, uses separate « and y coordinates instead of
cells, and requires traces from the larger 5x5 n-puzzle, as
smaller instances resulting in invalid referring expressions
(z variables and their queries).

®In the translation from STRIPS D’ into STRIPS+ D, some z;
variables in the STRIPS actions a’(z") are pushed into z; variables
in the STRIPS+ actions a(z) of D (this is why |z| < |z in gen-
eral). These z; variables and their queries have to be learned in Dy,
and then z; captures z; if in all the states s where a(z) applies, z;
and z, represent the same object.
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Table 1 shows that the actions in the traces contain on av-
erage half of the arguments of the original STRIPS actions
(i-e., the column |z’|, which expresses the total number of
STRIPS action arguments, is on average twice the value of
the column |z|, which captures the total number of STRIPS+
action arguments used in the traces). More details about this
below. The learned queries capture indeed all the “redun-
dant” (determined) STRIPS action arguments (column |z"\z|)
and more (column |2\z’|). For instance, in Gripper, there are
just two rooms and two grippers, and z variables are learned
that pick “the other room” and “the other gripper”, which
are not used in the learned preconditions or effects of the
actions.

The bottom part of the table shows the results when learn-
ing from incomplete states in four domains where all atoms
involving selected predicates were removed from the traces.
The blank predicate is removed in the c-puzzle,’ the on-
table and clear predicates in Blocks, the in-lift predicate in
Miconic, and the on predicate in Ferry. These predicates can
be defined in terms of the other predicates and thus do not
provide information about the state of the world, but about
the atoms needed to get an STRIPS encoding. In STRIPS+,
these predicates are learned as existentially quantified pre-
conditions and are not needed in the traces.

8 Fine-grained Analysis

We provide an analysis of the learned queries that account
for the missing action arguments in the traces, that become
the implicit action arguments in the learned domains.

* Gripper:  The STRIPS actions are move(r,r’),
grab(b,r,g) and drop(b,r,g). The actions in the
STRIPS+ traces are move(), grab(b,g), and drop(b).
SYNTH learns the precondition queries that capture the
omitted arguments which are involved in preconditions
and effects. For example, the current and next rooms in
move are captured by the learned queries Q1 = {at(z1)}
and Q2 = {—at(z2)}. These queries also capture the
rooms for the actions pick and drop. The missing gripper
of the action drop is obtained by the learned query
Q3 = {carry(b, z3)}, and actually, the other gripper is
also identified through the query Q4 = {—carry(b, z4)}.
One can see that for pick and drop, the referring expres-
sion for the “room in which the robot is not located” is
derived, while for drop, the expression for the “gripper
in which the ball is not held” is derived. These referring
expressions and their corresponding z variables, however,
are not used in the learned preconditions or effects.

* Sokoban: The STRIPS actions are move(cy,cz) and
push(cy, ca, c3), which translate to the STRIPS+ actions
move(cg) and push(cz). For both actions the location
of the agent ¢; is obtained by z; with query @
{at(z1)}, while c3 is obtained by zo with query Q2
{adjacents(z1, z2), adjacent(ca, z2) }.

"Interestingly, in the n-puzzle, which is like the c-puzzle but
with separate z and y coordinates, the same predicate cannot be
removed, as the limited form of existential quantification in action
preconditions in our STRIPS+ fragment is not expressive enough to
recover it.



Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Data Learning Verification

Domain  #0O  #L |2/ || | |z|+]z] |z| |2'\z| |z\2| T #O0y  #Sy Ty %V

blocks3 5 250 7 5 7 2 0 0 0.82s 6 1200  80.56s  100%
blocks4 5 250 6 3 6 3 0 0 1.43s 6 1600 105.04s  100%
delivery 16 1000 9 5 9 4 0 0 101.4s 24 1200 246.69s 100%
driverlog 63 10000 19 10 19 9 0 0 1695.32s | 148 2400 3757.22s 100%
ferry 8 100 6 2 6 4 0 0 0.96s 10 1200 68.78s  100%
grid 50 10000 13 4 17 13 0 4 584.62s 48 2000 1264.47s 100%
gripper 10 500 8 3 11 8 0 3 2.52s 12 1000 96.14s  100%
hanoi 8 200 3 2 3 1 0 0 1.5s 10 400  41.58s  100%
logistics 35 1000 13 7 20 13 0 7 28.25s 45 1600  377.5s  100%
miconic 9 600 8 2 8 6 0 0 2.78s 12 1600 104.14s 100%
n-puzzle 34 1000 16 O 16 16 0 0 498.28s 34 1600 1123.36s 100%
c-puzzle 49 500 12 0 12 12 0 0 147.19s 49 1600 569.38s  100%
sokoban 30 1000 5 2 5 3 0 0 20.7s 30 800 72.45s  100%
sokopull 25 600 8 3 8 5 0 0 10.67s 30 1200 80.51s  100%
blocks3™ 5 250 7 5 7 2 0 0 0.73s 6 1200 56.8s 100%
ferry~ 8 100 6 2 6 4 0 0 0.54s 10 1200 63.71s  100%
miconic ™ 9 600 8 2 8 6 0 0 2.0s 12 1600 89.34s  100%
c-puzzle™ 49 500 120 12 12 0 0 87.67s 49 1600 488.87s 100%

Table 1: Table of results when learning a STRIPS+ domain Dy, from a trace of of length #L from hidden domain D derived from a STRIPS
domain D’ with #0 objects. |z'| is the total number of action arguments in D', |z| is the total number of action argument in D, |z| is the
number of learned implicit action arguments in Dy, and |x|+]z] is their sum. |z’\ 2| is the number of action arguments in D’ not captured in
Dy, while |z\z'| is the number of implicit action arguments in Dy, that are not in D (they are not incorrect, just not used). T is the total time
to learn Dy, Ty is the time to verify Dy, #Sv is the number of sampled state-action pairs in the verification. All numbers are averages over
10 runs as traces are random. %V is the success rate of the verification. The rows in the second block show the experiments using incomplete
STRIPS states in the traces where atoms involved selected predicates are removed.

e c-Puzzle:
Up(01, C2, t)’

The STRIPS actions in c-puzzle are

down(cy,ca,t), left(cr,co,t), and
right(ci, ca,t).  In STRIPS+, the resulting actions
take no arguments. Focusing on the first action, the
position of the “blank™ ¢, is picked up by a z; variable
with query Q1 = {—at(y1,21)}, while the next posi-
tion of the “blank” c¢; is picked up by 2z with query
Q2 = {above(z1,22)}, and the tile ¢ that is moved
is picked up by z3 with query Qs {at(z3,22)}.
The predicate blank is not used in a query and also is
not needed in a precondition, since for example up is
applicable, if there is a cell above the blank which is the
case iff (o is satisfied. Therefore, the predicate blank
does not need to be contained in the states such that the
domain can be learned.

* Blocks World 3: The actions in STRIPS are stack (b, b2),
unstack(by,bs), and move(by,ba,b3). In STRIPS+,
these actions reduce to stack(by, bs), unstack(by), and
move(by,bs). The argument by is picked by a variable
z1 with query Q1 = {on(b1, z1)}. In addition, the atoms
on_table(x), clear(x) are not needed in the state traces,
as they can be learned as the negated preconditions of the
form —on(x, y) and —on(y, =) respectively, that stand for
Vy.—on(z,y) and Vy.—on(y, ).

9 Conclusions

The problem of learning lifted STRIPS model from action
traces alone has been recently solved by the SIFT algorithm,
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a follow up to LOCM. The limitation is that the actions in the
traces must come from a hidden STRIPS domain and include
all the arguments. This means for example that to represent
the action of unstacking a block x in a trace, the location
of the block z must be conveyed as an extra argument. In
this work, we addressed a new variant of the model learning
problem which is more realistic, and closer to the settings
used in model-based reinforcement learning where actions
reveal a minimal number of arguments. The problem is for-
mulated and solved as the task of learning lifted STRIPS+
models from STRIPS+ state-action traces. The resulting al-
gorithm has a broad and crisp scope, where it is sound, com-
plete, and scalable, as illustrated through the experiments.

One question that arises from this work is whether the
proposed methods can be used to learn, for example, the de-
terministic dynamics of Atari-like video games. In this set-
ting, actions have no explicit arguments and states are rep-
resented by the colors of the cells in a grid (pixels). One
difference to learning the dynamics of the sliding-tile puz-
zles from grids (atoms at(t, ¢)) is that the objects in Atari
can take up many cells. This seems to call for representa-
tion languages that are richer than STRIPS+, able to accom-
modate definitions (axioms) and partial observability, as one
does not observe objects directly but cell colors.
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