Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Counting Solutions under Cardinality Constraints:
Structure Counts in Counting

Max Bannach', Markus Hecher?

'European Space Agency, Al and Data Science Section, Noordwijk, The Netherlands
2University of Artois, CNRS, UMRS8188, Computer Science Research Center of Lens (CRIL), France
max.bannach @esa.int, hecher @mit.edu

Abstract

Model counting is a powerful extension of constraint reason-
ing that, instead of finding a solution to a constraint system,
allows to identify the number of such solutions. Cardinal-
ity constraints are used to filter solutions of a certain quality
by restricting the number of elements that can be added to
the solution. Naturally, one would like to combine both in
order to count the number of solutions of good quality. Un-
fortunately, the two concepts do not get along so well as (1)
cardinality constraints may not be parsimonious (due to aux-
iliary variables, the system’s number of solutions may change
in an uncontrolled way) and (2) such constraints may destroy
structural properties, which are crucial for the performance
of modern solvers. This article provides a systematic study
of existing cardinality constraints in the light of model count-
ing, observing that none of them are both, parsimonious and
treewidth-preserving. We present structure-aware cardinality
constraints that are parsimonious and guaranteed to increase
the input’s treewidth only in a controlled way. Detailed ex-
periments reveal that our encodings outperform existing ones.

1 Introduction

One of the most important techniques to encode constraint
satisfaction problems and problems from other domains to
SAT are cardinality constraints. A cardinality constraint
over literals /1, . .., £, has the form

P

Y livak for e {<, < =2>>}

i=1
for a target value k£ € N. Such constraints arise naturally if
optimization problems are tackled via SAT technology. For
a running example, let us consider the odd cycle transversal
problem (OCT), which asks whether we can delete in a given
graph G at most k vertices in order to make it bipartite (i.e.,
such that it does not contain an odd cycle, hence the name).
This problem can be considered as a variation of the three
coloring problem in which one color is a “joker color” that
is allowed to be adjacent to itself, but which can be given to
at most k vertices (these are the ones to be deleted). Figure 1
contains an example graph with an highlighted solutions and
a typical SAT formula with a cardinality constraint.

We can choose from a wide variety of possible encodings
to realize cardinality constraints (Roussel and Manquinho
2021, Chapter 2). The perhaps simplest encoding is the
naive encoding, which expresses that for every subset .S of

78

/\ (ry Vby V gy)
veV(G)
A N (576 V =r) A (=by V =by)
vweE(G)
ANy g <k
veV(G)

Figure 1: An example graph with an odd cycle transversal of size
two (left), containing 6 OCTs of size two. On the right a typical SAT
encoding ..t of the OCT problem using a cardinality constraint.

ly,..., 4, of size k+1, at least one literal in .S must be false:
p
i=1

SC{ly,..,0p} LES
|S|=k+1
This and many other encodings have been intensively stud-
ied in the literature, concerning their size (in terms of clauses
and introduced auxiliary variables), as well as their propaga-
tion properties and empirical performance — see the survey
by Wynn (2018) for an overview.

An advantage of using SAT technology with cardinality
constraints instead of, say, integer linear programs is that
SAT naturally generalizes to counting problems and that op-
timized model counters are available (Fichte, Hecher, and
Hamiti 2021; Fichte et al. 2023; Korhonen and Jirvisalo
2023). Assume instead of searching one size-k odd cycle
transversal of a given graph, we wish to know how many
such OCTs there are (see Figure 1). The counting version of
SAT is called #SAT and asks, give a propositional formula ¢,
to compute the number of models #(() of ¢. Unfortunately,
we cannot simply take the formula ¢o from Figure 1 and
hand it to a #SAT solver in order to obtain the number of
OCTs of G, since we have no control of the behavior of a
CNF encoding of Zvev(G) gy < k. The cardinality con-
straint may introduce various auxiliary variables and poten-
tially will increase the number of models of the formula be-
yond the number of size-k OCTs. Our first question, thus, is
which encodings preserve the solution count?

Q1: Which cardinality encodings are parsimonious?

The next natural consideration is to identify under the
parsimonious encodings those that empirically perform well

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

in the model counting scenario. This line of reasoning
quickly leads to another question: While propagation prop-
erties are essential for answering satisfiability queries, they
are less relevant in the counting setting as all the mod-
els need to be considered anyway. Fundamentally more
important for counting are structural properties such as
the input’s treewidth (formal definition of such properties
will be given in the following sections). Indeed, it is as-
sumed that efficient model counting is only possible on
well-structured instances, which is reflected by the fact that
all state-of-the-art counters utilize structure of the input in
one way or the other (Fichte, Hecher, and Hamiti 2021;
Korhonen and Jérvisalo 2023). Let tw(y) be the treewidth
of the primal graph of ((again, formal definitions will fol-
low later; the primal graph contains a vertex for every vari-
able and connects variables appearing together in clauses).
By the quoted works, # () can only be computed efficiently
if tw(y) is small. Hence, a crucial property for an encod-
ing of a cardinality constraint > -_, ¢; < k is not necessar-
ily how many auxiliary variables it requires, but rather how
tw(e A (37, ¢; < k)) compares to tw(¢). Let us say that
an encoding is structure-aware (SAW) if there is a function
f: N = Nsuchthat tw (o A (32F_, 4, < k)) < f(tw(ep)).

Q2: Which cardinality encodings are structure-aware?

However, note that we cannot hope to obtain a cardinality
constraint for an arbitrarily slowly growing function f. The
reason is the following fact':

Fact 1 (folklore). Any circuit with n inputs of size poly(n)
that decides whether at least half of its inputs are true re-
quires a treewidth of Q(logn).

It is also easy to see that for any CNF ¢ of incidence
treewidth w (the incidence treewidth is the treewidth of the
bipartite graph that contains a vertex for every variable and
every clause, and that connects variables to the clauses con-
taining them) there is an equivalent circuit C' of treewidth w
(the circuit is essentially the incidence graph with an or-gate
for every clause and a single big-and gate connected to all
the or-gates). Since the incidence treewidth of a formula is
a lower bound for tw(y) (Samer and Szeider 2021), we get:

Corollary 1. Any CNF ¢ encoding a constraint y ., x;><k
has tw(p) € Q(log k).

1.1 Contribution of this Article

The contributions of this article are four fold: First, we pro-
vide an overview of existing encodings and analyze their im-
pact on the input’s treewidth. We also empirically analyze
the well-established implementation of many of these en-
codings available in the PySAT library (Ignatiev, Morgado,
and Marques-Silva 2018) to see which of them preserve the
number of solutions (but note that different implementations
of the same encoding could lead to different outcomes).
Second, we provide four cardinality constraints that are
both, parsimonious and structure-aware. Two of them are
build on a sequential or binary counter, respectively, which

ISee, e.g., the discussion in cstheory.stackexchange.com/
questions/26021/minimum-tree-width-of-circuit-for-majority.

79

we evaluate distributed along a tree decomposition. Two
more are obtained by balancing the given tree decomposition
before applying the structure-aware counters, which coinci-
dentally leads to structure-aware fotalizer encodings. We,
third, provide implementations of our structure-aware car-
dinality constraints in a first-order language. As a positive
side effect, our tool chain seemingly generalizes to cardinal-
ity constraints in answer set programming (ASP).

Finally, we created and make available to the scientific
community a benchmark set for #SAT based on highly struc-
tured formulas that additionally contain cardinality con-
straints. The benchmark set is described in Section 6 and
available on zenodo EENEEZENEAN.

Preliminary experiments reveal that these formulas are
rather challenging for modern model counters if cardinality
constraints from PySAT are used — supporting our hypothe-
sis that constraints that destroy the inputs structure are bad
for model counting. In contrast, we observe significantly
better performance on formulas in which the cardinality con-
straint was realized with structure-aware encodings.

1.2 Related Work

Cardinality constraints belong to the most important con-
straints in conceptional modeling (Olivé 2007, Chapter 4),
knowledge representation (Berre et al. 2018), constraint pro-
gramming (Rossi, van Beek, and Walsh 2006, Chapter 7),
and artificial intelligence (Russell and Norvig 2020, Chap-
ter 5). They are therefore an active field of research (Jo and
Cho 2025; Liang and Lin 2024; Zhang, Chen, and Hu 2023;
Leung and Wang 2022). For surveys, see for instance Wynn
(2018) or Tillmann et al. (2024).

Model counting has a long history in computational com-
plexity theory (Papadimitriou 2007, Chapter 18), and is a
central tool in symbolic artificial intelligence (Shaw and
Meel 2024) and probabilistic reasoning (Chavira and Dar-
wiche 2008). Cardinality constraints, however, received
less attention in this context. They were studied mainly
for counting in first-order logic theories (Téth and Kuzelka
2024; Malhotra and Serafini 2022) and to count the solution
of global constraints (Bianco et al. 2019).

It is folklore that model counting currently is only
tractable on structured instances, see for instance the discus-
sions in Korhonen and Jarvisalo (2023) and Fichte, Hecher,
and Hamiti (2021). We are, however, not aware of a work
that considers structural properties of cardinality constraints.
The closest is by Pichler et al. (2010) who study weighted
constraints in answer set programming, yet this does not di-
rectly relate to encoding techniques for such constraints.

1.3 Structure of this Article

Below, we provide the necessary background. In Sec-
tion 3, we review existing encodings of cardinality con-
straints and theoretically analyze whether they are parsimo-
nious or structure-aware. We propose novel encodings in
Section 4 that are both parsimonious and structure-aware.
Finally, we provide an implementation of these encodings in
Section 5 and empirically analyze them in Section 6.

cstheory.stackexchange.com/questions/26021/minimum-tree-width-of-circuit-for-majority
cstheory.stackexchange.com/questions/26021/minimum-tree-width-of-circuit-for-majority
https://zenodo.org/records/16884175

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

2 Preliminaries

An assignment of a propositional formula ¢ is a mapping
B: vars(¢) — {0,1} from its variables to the truth values.
If o evaluates to true under 3, we write 8 |= ¢ and say that 3
is a model of . We define models(p) == {5 | B = ¢ } and
let #(¢) = |models(p)|. The problem of computing the
value #(y) is called the model counting problem or #SAT.

In this article, we assume formulas ¢ to be in conjunc-
tive normal form (CNF), i.e., to be a conjunction of disjunc-
tions of literals. Unless stated otherwise, we denote the vari-
ables of ¢ with z1, ..., z, and its clauses with ¢y, ..., cp,.
Formulas in that form can be represented as an undirected
graph G, with vertices V(G,,) = {z1,...,z,} and edges
{{xi,x;} | z; and z; appear together in some clause ¢ }.
This graph is known as the primal graph of the formula and
can be used to describe structural properties of the formula.

2.1 Structure in Graphs and Formulas

A tree decomposition (TD) of a graph G is a pair (T, x) in
which T is a rooted tree and x: V(7)) — 2V(%) a mapping
from the nodes of 7' to sets of vertices of G, called bags. A
tree decomposition must satisfy the following properties:

Connectedness For every v € V(@) the induced subgraph
T[{t | v € x(¢)}] is non-empty and connected.

Covering For every edge uv € E(G) there is a bag ¢ with
{u,v} C x(t).

The width of a tree decomposition is max;ey (1) [x(f)] — 1,

and the treewidth tw(G) of G is the minimum width any

tree decomposition of G must have. Figure 2 provides an

example of a tree decomposition. We define the treewidth of

a formula as tw(p) = tw(G,,).

7d

{a,b,d} «—{d,e}—>{e, f,h}

0 — T —

{b.c} {e,g,h}

Figure 2: The treewidth of the graph from the introduction (left) is
at least two since it contains a cycle. It is also at most two by the
tree decomposition on the right.

It will often be convenient in the description of algorithms
to enforce some additional requirements on the tree decom-
position. For a set S C vars(p) we let a labeled tree decom-
position (7', x, d) of ¢ be a tree decomposition together with
amapping ¢: V(T) — S U {¢} for a special empty symbol
€ & vars(yp) such that:

Unique Label For every v € S there is exactly one bag
t € V(T) with §(¢) = v.

Well Behaved For all t € V(T') with §(¢) # € we have
0(t) € x(t) and ¢ has exactly one child in 7.

It is easy to transform a tree decomposition into a labeled
one without increasing its width by coping bags as needed.
Unless stated otherwise, in this article the set .S will always
be the set of variables involved in the cardinality constraint.

80

2.2 Logic Programming

While the focus of this article lies on propositional formu-
las and encodings therein, we realize our implementation in
Section 5 using logic programs under stable model seman-
tics (namely Answer Set Programming, ASP) (Gelfond and
Lifschitz 1991) to describe and produce the encodings of
the cardinality constraints. Conceptually, ground ASP is like
SAT, but we require a justification for every atom that is de-
rived (set to true). We refer the interested reader to the text-
book by Lifschitz (2019). Current ASP systems (Gebser et
al. 2012; Kaminski and Schaub 2021) offer a rich first-order
like non-ground language to model and solve problems us-
ing advanced modeling constructs, aggregates, and theory
reasoning. The use of first-order variables enables compact
representations of encodings without the need for direct con-
straint formulations in propositional logic.

Example 1. Recall the odd cycle transversal problem. As-
sume that a graph is given via a unary node and a binary
edge predicate, and let 1imit be the number of jokers. A
possible ASP encoding is given in the following box, based
on the ASP-Core-2 syntax (Calimeri et al. 2020).

s Every node gets 1 of 3 colors.
1{red(V); blue(V); joker (V) }1l :- node (V).
s No color collision (expect for jokers).
L :- edge(U,V), red(U), red(V).
1L :- edge(U,V), blue(U), blue(V).
% At most K jokers. This generates
) ru .
-

binom (n, K|

11es

.{V: Jjoker (V) }>K, limit (K).

Readers unfamiliar with ASP can skip the implementation
details in Section 5, as all the technical details are indepen-
dently presented in Section 4 and analyzed in Section 6.

3 Study of Existing Encodings

In this section we will briefly review commonly used encod-
ings for cardinality constraints and analyze whether they are
parsimonious and their impact on the formulas treewidth.
At the end of the description of every encoding, we added
a small box to summarize our findings (name of the encod-
ing, whether or not it is parsimonious, and the asymptotic
worst-case increase on the formulas treewidth):

(Encoding Parsimony | Treewidth J

An encoding is not necessarily well-defined and often the
term “encoding” refers to a family of encodings (for in-
stance, their are various ways to implement a sorting net-
work). In such cases, we refer to the implementation in
PySAT (Ignatiev, Morgado, and Marques-Silva 2018).

3.1 Naive (pairwise, binomial)

This approach has been presented in the introduction. It is
easy to see that in the worst case, the naive encoding (Rous-
sel and Manquinho 2021) can increase the treewidth by the
number of variables in the cardinality constraint. The rea-
son is that the pairwise comparisons of n variables forms a
size-n clique, which has treewidth n.

(Naive | v |

Q(n))

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

3.2 Sequential Counter

The sequential counter goes back to Sinz (2005) and exists
in different variants and refinements, see, e.g., (Wynn 2018).
The basic idea is to keep track of the count in sequential
order. To this end, we will use auxiliary variables of the
form s; ; which indicates that up to the ¢-th element, we al-
ready observed (counted) j true elements in {x1,...,x;}.
Initially, the counter can be at most 1, so —s; ; for j > 1:

N\ s (1)
1<j<k
Setting z; increases the counter by 1:
/\ (_‘IL'Z' \Y 5i,1)~ (2)
1<i<n
/\ (25 V 28i-1,5-1, Vi j)- 3

1<i<n1<j<k
We need to copy the value of the counter from step i—1 to i:

A N\ siciyVsig). 4
1<i<n 1<5<k
Realization of the cardinality constraint:
N (i V-sioig). &)

1<i<n
Theorem 1. The sequential counter encoding is not parsi-
monious, as it overcounts.
Proof. The encoding requires us to increase the count if we
pick an element z;. However, in any step 1 < ¢+ < k we can
also just increase the count without seeing a true literal. [

Without taking care of the sequential ordering, this imple-
mentation can increase the treewidth up to Q(n).

Theorem 2. Adding a k-cardinality sequential counter to a
formula with n variables can increase the treewidth to Q(n).

Proof. We will assume that the primal graph G, of ¢ is a
cycle. The formula could, for instance, be a set of implica-
tions: x1 — Xo, Tog —> T3, ..., Tn_1 — Ty, and x,, — 1.

Any random 3-regular graph on n vertices has
treewidth (n) with high probability, see for instance
Prop. 17 in Mehta and Reichman (2022) and (Friedman
2003; Alon and Milman 1985). Let us call this event E},
ie., Pr[E;] — 1 forn — oo.

Furthermore, such random 3-regular graphs are Hamilto-
nian with high probability as well, see Thm. 1 in Robinson
and Wormald (1994). Let us call this event E},. Since both
E; and £}, individually have high probability, we have:

Pr[E, N Ey) = 1 — Pr[=(E; U Ey)]
> 1 — (Pr[~E:] + Pr[-Ey)),

as Pr[—E; U —~E}] < Pr[=E;] + Pr[-E}]. Hence, we ob-
tain Pr[E, N Ey] — 1 for n — oo, as Pr[-E;] — 0 and
Pr[-E,] — 0. Consequently, by constructing a random 3-
regular graph G, we eventually obtain one that has treewidth
Q(n) and is Hamiltonian. The Hamiltonian cycle will be
the primal graph G, of our formula ¢ as sketched above.
Clearly, this graph has treewidth 2. If we remove the edges
of G, from G, we obtain a perfect matching M since G is
3-regular. Such a matching can be seen as a partial order,
and any sequential counter necessarily introduces such an
ordering to . Hence, it may add M to G, resulting back in
G and thereby increasing the treewidth from 2 to Q(n). O

81

(v,5)

(v%,2)

(',2) (23,1) (4,1) (25,1)

(xla 1) (1‘2, 1)

Figure 3: Binary tree of nodes (v, m) for the totalizer encoding of
aset S = {z1,22,23,24, 25} and their corresponding maximal
counts m. The tree is balanced, the root corresponds to .S, and
leaves are singletons. Intuitively, the encoding precisely counts for
each node by means of exact child node counts.

We will see later, in Section 4, how we can guarantee a
treewidth increase up to k, which we then improve to log (k).

(Sequential Counter | X | Q(n) J

3.3 Sorting Networks

Another common approach to implement cardinality con-
straints are sorting networks (Batcher 1968; Abio et al.
2013). The high-level idea is to encode a sorting algorithm
that sorts the variables x4, ..., x, into new auxiliary vari-
ables y; ...,y,. Then to express, say, 2?21 xr; > ¢ wWe
just have to add the constraint y,,_.. Unfortunately, a sort-
ing network inherently solves all the cardinality constraints
forall ¢ € {1,...,n} at once and, thus, any such encoding
needs to have treewidth Q(logn) by Corollary 1. Similar
arguments hold for cardinality networks (Asin et al. 2009).
It is not trivial to make a statement about whether this
encoding is parsimonious, as it describes a family of en-
codings that could be implemented in various ways. Con-
ceptually, the sorting function implemented by the network
is total and, hence, these encodings are in theory parsimo-
nious. However, we empirically observed that, for instance,
the implementation of sorting networks in PySAT (Ignatiev,
Morgado, and Marques-Silva 2018) is not parsimonious.

(Sorting Networks | v (X) | Q(logn) J

3.4 Totalizer (Tree based, Bailleux & Boufkhad)

This encoding goes back to the work of Bailleux and
Boufkhad (2003) and was improved in various ways for ap-
plications in MAX-SAT, e.g., by Ogawa et al. (2013) and
Morgado, Ignatiev, and Marques-Silva (2014). The idea is to
iteratively split the variables into two sets of roughly equal
size, so one branch for a node with m elements considers

| 2| elements and the other branch concerns the remaining

2
m — | | elements. The leaf of these nodes contain original
literals in .S, as depicted in Figure 3.

Then, using such a binary tree with (v", m) being any

non-leaf node with child nodes (v?,m;) and (v/,m;), we
define > (a, 3,0) by the implication (v, Avp) — vy and
< (a,B,0) as vy — (V441 V vh,). It remains to define
the clauses for any node (v, m):

A [> (a,8,0)] A< (o, B,0)].
0<a<m,0<B<ma,
0<o<m,a+p=0c

(6)

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Example 2. Recall Figure 3 and note that for the leaf nodes
(elements in S) no clauses are required, each element x;€S
already indicates whether among {x;} the count is 0 or 1.
Then, the clauses for node (v',2) are:

o 0=0: (x1 Va2 V) A (-] Vo V),
e o=1: (mz1 Vo Vi) A (mvd V1) and
(1 V =22 Vi) A (m0d V 23),
o 0=2: (mx1V w2 V03).
Note that for =0 and c=2 there is only a single possibility
among {1, x2}; for c=1 we can either choose x1 or xs.

The totalizer is one of the selected encodings (next to sort-
ing networks) that is parsimonious in its original form.

Theorem 3. The totalizer encoding is parsimonious, i.e.,
correct and complete, as it does not overcount.

Proof. For each node (v, m) of the binary tree, the count
can go from 0 to m and the totalizer encoding ensures that
precisely one variable among {v{, ..., v’} is true. O

In contrast to the theorem, we empirically observed that
the implementation of the encoding in PySAT is not parsi-
monious. The input’s structure is not preserved here either.
Corollary 2. Adding a k-cardinality totalizer constraint to a
formula with n variables increases the treewidth up to Q(n).

Proof. We utilize the proof of Theorem 2, where we let n
be a power of 2, so the matching M relates 2 siblings of
Figure 3 (encoding adds more auxiliary variables). O

Q(n))

(Totalizer | v (X) |

4 Parsimony and Structure-Awareness

In this section we develop encodings for cardinality con-
straints that are parsimonious and structure-aware. The idea
underlying these encodings is that we guide the counter
along a given tree decomposition.

4.1 Structure-Aware Sequential Counter
Initially, for the leaf nodes of 7', the counter is 0:
teV (T):| children(t,T)|=0,0<j<k
Setting x sets the counter of node ¢ with 6(t) = x to i+1,
where i is the counter at child node {¢'}= children(t, T'):

@)

—St,5 N St0-

Stiq1 > (sp i A x), (8)
0<i<k
/\ St <> (sp i A). 9)
0<i<k)
‘We must not overcount for any element in the sequence:

Stk — .
Further, for unlabeled TD nodes ¢ € V(T), i.e., 6(t) = ¢,
we set the counter for ¢ with children(¢,T) = {t1,...,t0}
to ¢, if all child counters sum up to i:

N\ sei e \ (St AeveNse,a,). (11)
0<i<k i1,...,50]0<1, <k,
1<u<o,i=i1+...+i,
We must not overcount for any decomposition node:

/\ TSt Vo

Z‘la“'aio‘OSiuSk:
1<u<0,k<iq+...+io

12)

V TSty 00

82

Lemma 1. The Structure-Aware Sequential Counter is cor-
rect and complete.

Proof. Correctness follows by the fact that the cardinality
constraint holds iff the constructed encoding is satisfiable.
The encoding ensures that for every assignment of .S, there is
precisely one unique assignment over the variables s; ;. [

4.2 Adaptation for CNF

Observe that the Formulas (7)—(12) can easily be turned into
CNF. However, for Formula (11) we require auxiliary vari-
ables, whereby a direct conversion would be in O(k™). We
can resolve this, by adding auxiliary variables for every dis-
junct in Formula (11). We assume any arbitrary total order
=< among tuples of the form p = (i1,...,%,) used in the
disjunction. Then, for each pair (i1, ..., ,), we define:

ap <> (S0 N oo A Sty i,)- (13)

We link tuples as in <, where for the <-largest element p’
and every successor relationship p; < p;41 we construct

Ayp/ > Ay and rp; <> Ap, V Cmp, .- (14)

Finally, we replace Formula (11) for the smallest pair p; by:

/\ sei 4 asp,. (15)
0<i<k

Theorem 4. Let ¢ be a formula and T = (T, x,0) be a
width-w tree decomposition of G,. Then, a sequential k-
cardinality constraint increases the width by at most 3k-+6.
Proof. Without loss of generality, we assume that all bags
have at most 2 children, which can be achieved by copying
bags (Bodlaender and Kloks 1996). From 7 we construct
aTD 7' = (T",x') of G, where T" is constructed from
T by replacing each node with | children(¢,7)| > 1 by a
path whose length corresponds to the number of tuples of
the form p = (i1, ..., 1,) in the disjunction of Formula (11).
Define for every ¢t € V(T') with | children(¢,T)| < 1:

X(8) = x(t)U{se; [0<j <k}
U{se ;| 0<j<k,t" € children(t,T)}.
For t with | children(¢,T")| > 1, let the ith node of the path
in T" be t; and let < be a total ordering among tuples. Define
X'(t:) =x(#®)U{st; [0<j <k}
U{sy; | 0<j <kt €children(t,T)}
U {aPi’ apzi} U {atpi+1 ‘ pi < pi+1}'

Indeed, all clauses are covered and the decomposition is
connected. Furthermore, |x'(¢)| < |x(¢)| + 3(k+1)+3. O

(SAW Sequential | 4 | Q(w + k) J

4.3 Theoretical Limits and Lower Bounds

With a sequential unary counter, we can not avoid an in-
crease of the treewidth up to k£, as variables s; ; form a grid,
see Figure 4.

Theorem 5. A k-cardinality constraint over n variables us-
ing a structure-aware sequential counter can increases the
treewidth by Q(min(n—Fk, k + 1)).

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

\ 4 >

o T 7
%
%
%, -
% N %
e 2 .]
< . P 3
‘o . %
. <,
S <, £ o
Yo % k2

<,

Figure 4: A sequential counter keeps track of increasing some
count j < k if an element x; is chosen (i < n), otherwise ex-
isting counts need to be propagated. Structure contains a (skewed)
(n—k) x (k+1) grid, which has treewidth > min(n—k, k+1).

Proof. An encoding by means of a sequential counter as-
sumes that if we set x; and if s;_;_;_; holds,then we require
to set s; ;. Consequently, we require links between s;_1 ;1
and s; ; forany 1 < ¢ < nand 1 < j < k. Further, we
need links between s;_1 ; and s; ;, as we don’t necessarily
set the i-th element x;. However, as visualized in Figure 4,
this induces a skewed grid, assuming the ¢-th column con-
cerns s; . (up to ¢ < n elements) and the j-th row is s, ;
with j < k (up to cardinality k). Since a (n — k) x (k+ 1)
grid has treewidth at least min((n — k), (k + 1)) (Diestel
2012, Chaper 12), the treewidth of the formula to which we
add the constraint may be increased by this value. O

Combining Theorems 4 and 5 implies that the structure-
aware sequential counter with bound % executed using a
width-w tree decomposition yields in general a formula of
treewidth ©(w + k). While this is already better than the
bounds of of Section 3 (which increase the treewidth in de-
pendence of the number of variables n), it does not hit the
theoretical lower bound of (w +log(k)) implied by Fact 1.

4.4 Logarithmic Treewidth via Binary Counter

We improve the dependency on k by using a binary counter
instead of a sequential one. The encoding works similarly
to Formulas (7)-(12), where every occurrence of s; ; is re-
placed by the binary encoding of j via variables b{ for
0 < 7' < [log(k + 1)]. To access the bit representation

of a number n, we let [n]; be a set of literals over bits b{/

that corresponds to the bit representation of n for node t.

Initially, for leaf nodes of T" we set the counters to 0:
teV (T):| children(¢,T)|=0,0<j<[log(k+1)]

Setting x increments in node ¢ € V(T') with §(t)=z the

counter at child node {t'}=children(¢,T’). This requires

that bits flip from the least significant 1-bit to the first O-bit:

A @A N beir) = (bri <> =bp). (A7)
0<i<[log(k+1)] 0<i’ <
From this 0-bit on to the most significant bit, we copy bits:
A (@A \/ —bei) = (bri <> bpi). (18)
0<i<[log(k+1)] 0<i’ <4
If x is not set, we also copy bits (same counter):
/\ -r — (bt,i — bt’,i)-
0<i<[log(k+1)]

(19)

83

‘We must not overcount for any element in the sequence:

(N i) > (20)
Uy E€[k]y
For t with 6(¢t) = € and children(t,T) = {t1,...,t,}, we

set the counter to ¢ if all child counters sum up to i:

/\lt,b d \/ /\(lt17b1 /\"'/\lt07bo)'

0<i<k,le p€E[i]t i1,...00]|0<in <k, (1)
1<u<o,i=i1+...+i0

Lty by €l11]eq 5eees
lto,bo Elio]to

We must not overcount for any decomposition node:

/\ \/ _'ltl,b1 V...V _‘ltmbo'

i1 yeerio0<iu<h, Ley oy €lir]eyeonslin by Elio)ts (22)
1<u<o,k<ii+...+io

When converting to CNF, the disjunction of Formula (21)
needs to be split using auxiliary variables. This works anal-
ogously to Section 4.2. Consequently, we obtain:

Theorem 6. Let ¢ be a formula and T = (T, x,9) be a
width-w tree decomposition of it. A k-cardinality constraint
over n variables using a structure-aware binary counter in-
creases the treewidth by at most 3log(k + 1) + 3.

Proof. The proof works similarly to Theorem 4. From T we
construct a TD 77 = (T”,x’) of G/, where we obtain 7"
from T by replacing nodes ¢ with | children(¢,T)| > 1 by a
path. For every node ¢ with | children(¢,T")| < 1 define:

X'(t) = x(@) U{br; | 0<j < [log(k+ 1)1}
U {by ;10 <j < log(k+1)],
t' € children(t,T)}.

For all t € V(T) with | children(¢,T)| > 1, let for the ith
node ¢; of the copied path:

X' (t) = x(t) U{be; | 0 < j < [log(k+1)]}
U {b; |0 <3 < [log(k +1)],
t" € children(t, T)}
Udap,, ap. .} Ufaspy | pi < pita}-
Then, |x'(¢)] < |x(t)] + 3[log(k + 1)] + 3, as desired. [
(SAW Bin-Sequent. | 7 | Q(w + log(k)) J

4.5 Structure-Aware Totalizer

The next encoding we present is a structure-aware version of
the totalizer. Essentially, the main difference between a to-
talizer and a sequential counter is that the sequential counter
adds up literals in a linear way (we could say, “a long a
path”), while the totalizer adds the literals using divide-and-
conquer (say, “a long a binary tree”). Since the structure-
aware version of the sequential counter already distributes
the linear counter a long a tree, what should a structure-
aware totalizer be? Of course, we need to distribute the
binary divide-and-conquer tree across the given tree decom-
position — without increasing its width! Note that it is, at
first, not obvious how to archive this, as the given tree de-
composition could, for instance, be a path.

Fortunately, we can resolve this issue purely on the graph-
theoretic layer while reusing our structure-aware sequential

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

counter. A result from structural graph theory states that any
tree decomposition of width w can be transformed into a
binary, balanced decomposition of with at most 4w + 3 (El-
berfeld, Jakoby, and Tantau 2010). Binary here means that
every node has at most two children, and balanced means
that the length of the longest path from the root to one of the
leaves is bounded by O(logn). We obtain a structure-aware
totalizer by first applying the just mentioned transformation
on the given tree decomposition, followed by the structure-
aware encodings discussed in the previous section — yield-
ing the following result as a special case of Theorem 4.

Corollary 3. Let ¢ be a formula and T = (T, x,9) be a
width-w tree decomposition of it. A k-cardinality constraint
over n variables using a structure-aware totalizer increases
the treewidth to at most 4w—+3k+9.

[SAW Totalizer | 7 | Qw+k))

As in Section 4.4, we can also use binary counters to ob-
tain the following special case of Theorem 6.

Corollary 4. Let ¢ be a formula and T = (T, x,9) be a
width-w tree decomposition of it. A k-cardinality constraint
over n variables using a structure-aware binary totalizer in-
creases the treewidth to at most 4w+3log(k+1)+6.

(SAW Bin-Totalizer | v | Q(w+log(k) |

Summarizing this section, we developed structure-aware
versions of the sequential and binary counter. The shape of
the tree decomposition (7', x) used to produce the encoding
determines its behavior: If the decomposition is trivial (e.g.,
V(T) = {t} and x(t) = V(G)), our encoding is equiv-
alent to the naive encoding; if 7" is a path, our encodings
are precisely the sequential counter (or its binary version);
and if 7" is a binary, balanced tree, our encodings reassem-
ble the totalizer encoding — see Figure 5. Of course, the
structure-aware encodings also work for all other shapes of
tree decompositions (which do not correspond to classical
encodings) and always preserve the input’s structure.

Form of the Tree Decomposition

Single Bag Path Balanced Tree
Naive Encoding Sequential Counter Totalizer

Structure-Aware Version

Figure 5: Visualization of how the tree decomposition defines
structure-awareness for the used cardinality constraint encoding.

5 Prototypical Implementation

Since the encoding of structure-aware constraints can be
cumbersome, we decided to utilize logic programming
(ASP) to generate formulas in CNF. The advantage of this
formalism for generating CNF formulas is that we obtain
a compact and easy-to-read encoding, without losing #SAT
performance. In more detail, our toolchain works as follows:
First, we generate a tree decomposition with the htd de-
composition library (Abseher, Musliu, and Woltran 2017),

84

which is based on efficient heuristics and provides a vari-
ety of additional options for obtaining normalized represen-
tations. We add the given formula and the resulting tree
decomposition to a fact representation and ground using
gringo (Kaminski and Schaub 2021). After grounding, we
simplify and pre-evaluate the obtained grounded rules via
the ASP solver clingo (Gebser et al. 2012). Then, we use
existing translation tools from ASP to SAT (Janhunen 2006;
Bomanson and Janhunen 2013). The complete command
line carried out in the process is:

gringo —-output smodels | clasp --pre=
smodels | lp2normal2 | 1p2lp2 | lp2sat

5.1 ASP Encodings

We provide both the sequential and the binary encoding by
means of logic programs. This avoids cumbersome SAT
generators and therefore allows for easy maintainability and
readability in first-order like representation. However, one
has to be careful when it comes to avoiding substantial
blowups due to grounding, which is particularly true when
utilizing aggregates. While it is known that grounding has to
cause an exponential blowup in general (Gebser et al. 2012),
practical encodings are of bounded predicate arity (Eiter et
al. 2007) and without substantial blowup in rule sizes.
Independent of the implementation, we formalize cardi-
nality constraints by the predicates card and 1imit. The
first is ternary and specifies that for a cardinality constraint
C aterm T shall be counted as mode M, whereas 1imit
is binary and gives for C the highest count K we may reach
among all (term, mode) tuples for C specified by card.

Example 3. Ifwe want to add a single cardinality constraint
C over a set L of literals (given as signed integer) on top of a
logical formula ¢, we specify the constraint as follows: The
cardinality constraint has an upper limit k: card (C, k).
For every literal [€ L, we define that it is contained in the
cardinality constraint, if it is assigned accordingly. To this
end, we assume that variable assignments are decided by a
predicate t rue(l) that holds the set of true literals:

1<0,
1>0,

true(1l).
true (1) .

card(C,1l,neg) :-
card(C,1l,pos) :-

The sequential encoding is established by means of the
following two non-ground ASP rules.

cnt (C,T,E) :- node(T),limit (C,K),E<=K,
E= {1,M,X: label(T,X),card(C,X,M) ;

D,t,T’: cnt(C,T’,D),child(T,T")}.
'\l :- node(T),limit(C,_),—-cnt(C,T,_).

Intuitively, the first rule sums up the counts for child nodes
of T" as well as the number of elements of the cardinality
constraints that are in the labeling for 7". Then, it stores the
result if it is < k for the cardinality bound k. The second
rule prohibits counts that are > k, as no sum < k has been
derived for constraint C' and node 7T'.

The binary encoding is slightly more involved, requiring
careful bit twiddling within ASP. Here, the second rule stays

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

the same as above, while we rewrite the first rule such that
the cnt predicate now indicates that the P-th bit is set to 1.

cnt (C,T,P) :- node(T),limit (C,K),E<=K,
E= {1,M,X: label(T,X),card(C,X,M) ;
2x%xP’,t,T’: cnt(C,T’,P’),child(T,T"),

0<=P’<=P}, (E/ (2%xxP))&1=1,bit (C,P) .

6 Experimental Evaluation

To evaluate our structure-aware cardinality constraints, we
need a benchmark set that (1) contains instances of low
treewidth, and (2) has a counting objective that must be scal-
able independent of the instances treewidth.

An interesting combinatorial problem that fits these needs
is the odd cycle transversal problem (OCT), which we al-
ready used as an example in the introduction. The in-
put to this problem is an undirected graph G and a num-
ber k, and the question is whether we can delete k ver-
tices from G such that the remaining graph is bipartite
(i.e., such that all odd cycles traverse through the k se-
lected nodes, hence the name). Besides many interesting
applications in computational biology (Hiiffner 2009) and
quantum computing (Goodrich, Sullivan, and Humble 2018;
Goodrich, Horton, and Sullivan 2021), the problem has in
particular the property that the minimum size of an OCT in
G is independent of the treewidth of GG. This can be seen as
the family of star graphs in which we replace every leaf with
a triangle has treewidth 2, but an unbounded OCT; and the
other way around since the family of fully-connected bipar-
tite graphs has unbounded treewidth, but an OCT of size 0.
For our benchmark set, we define the family of star-chain
graphs S,, as being a chain of n stars, each having n — 1
leaves. Let then Sy, ; for k € {1,...,n — 1} be the graph
obtained by taking .S,, and replacing k leaves of every star
with a triangle, see Table 1 for some examples.

Graph Image OCT treewidth
Ss >—‘—< 0 1
S30 6 2

Table 1: Four examples of the chain-star family and corresponding
minimum size of an odd cycle transversal and the treewidth.

Trivially, the treewidth of every S, j, is at most 2 and the
minimum size of an odd cycle transversal is kn, since each
triangle must contribute a node to the OCT. Furthermore,
the number of minimum-size odd cycle transversals in .S, i,
is exactly 2 - 4™, Our benchmark set consists of 190 graphs
Sy withn e {2,...,20}and k € {1,...,n — 1}.

85

6.1 Benchmark Scenario

We run our experiments on a server equipped with two
AMD EPYC 7702 64-core processors operating at a max-
imum clock speed of 3353.5149 MHz. The server has
a total of 504 GB of RAM and runs Arch Linux with
kernel version 6.13.5-archl-1. For each graph S, j
in the benchmark set we counted the number of odd cycle
transversals of size kn, i.e., the ones of minimum size. In
the experiments reported here we used the model counter
d4 (Lagniez and Marquis 2017) as back end; we obtained
similar figures (not reported in this article) using the coun-
ters SharpSAT-TD (Korhonen and Jarvisalo 2023) and
GPMC (Suzuki, Hashimoto, and Sakai 2017). We used
the PySAT library (Ignatiev, Morgado, and Marques-Silva
2018) to encode existing cardinality constraints as discussed
in Section 3, and well-known ASP tools (Janhunen 2006;
Bomanson and Janhunen 2013) to generate SAT encodings
of structure-aware cardinality constraints. For each instance
we measured the complete time of the run, that is, including
time to read and write the instance, to produce the encod-
ing, and for running the model counter. Each encoding had
a maximum time budget of 600 seconds per instance.

6.2 Experimental Results

In the light of Q2, we first analyzed the impact of the var-
ious encodings on the input’s treewidth. Figure 6 shows
for every instance the (heuristically computed) treewidth of
the corresponding formula together with one of the cardi-
nality constraints. As mentioned before, all formulas have
treewidth 2 without the cardinality constraint, and the used
heuristic (Abseher, Musliu, and Woltran 2017) found a tree
decomposition of width at most 3 for all of them (red dashed
line). The blue line shows the asymptotic bound guaranteed
by our structure-aware sequential counter.

x| x seq
card
* x sort
x totalizer
% mtotalizer
x kmtotalizer
—— SAW_bound
3000 ---- Baseline

5000

4000

2000

1000

Figure 6: For each instance in the benchmark set (z-axis), the plot
contains a cross for the treewidth of every encoding (y-axis). The
blue line is the bound of our structure-aware sequential counter.

Two observations are relevant: First, there is no cross un-
der the blue curve, which means none of the traditional en-
codings increases the inputs treewidth less than our encod-
ing on any instance. Second, as predicted by our theoretical
analysis in Section 3, the classical cardinality constraints can
increase the treewidth quite dramatically — regularly by over
500, sometimes even by more than 2000.

We next compare the classical sequential counter to our

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

structure-aware version (SAW) that we introduced in Sec-
tion 4.1. The dots in Figure 7 presents these results in a scat-
ter plot that contains one dot for every instance, whereby the
z-coordinate is the time (in seconds) that the structure-aware
encoding needed, and the y coordinate the time required by
the classical sequential counter.

600 1 GHNED 000E® @ © ° ° o0 »
//,
° //'
500 A L x
/// x
///
400 4 e x
.
-
-
4 X
300 4 7
° ’
° 7
.
///
2004 ® e X
/,/ x
-
1004 o o §
.
o 7 x l
.
0] Baodx % X x x
T T T T T T T
0 100 200 300 400 500 600

Figure 7: Dots: Comparison of a sequential counter (y-axis in sec-
onds) with its structure-aware counter part (x-axis). A dot is green
if the structure-aware encoding performs better on that instance,
it would be red otherwise (no such instance). Crosses: Compari-
son of the structure-aware binary counter (z-axis) to the structure-
aware sequential counter (y-axis).

We can observe that there is not a single instance within
the benchmark set on which the structure-aware sequential
counter performs worse than its classical counter part. To
bring this result into perspective, we emphasis that the in-
stances in the benchmark set are well-structured (the SAT
formulas all have treewidth two without the cardinality con-
straint), i.e., counting a solution without the cardinality con-
straint should be easy. The insight that a cardinality con-
straint that is structure-aware performs noticeably better
highlights the relevance of Q2 and underlines that model
counting is currently only feasible on structured instances.

The crosses in Figure 7 compare the binary version (Sec-
tion 4.4) of our structure-aware counter with its sequential
version. Here we observe that the binary version does not
provide any additional improvement. We suspect this is the
case due to the increased complexity in the encoding.

Figure 8 presents a cumulative function plot that compares
the performance of our structure-aware encodings to all car-
dinality constraint encodings available in PySAT (including
the ones that are not parsimonious). It reveals that the gen-
erated benchmark set is indeed very challenging as the best
performing #S AT encoding (the sequential counter, shown
in brown) is only able to solve about 12% of the instances.
In contrast, our structure-aware sequential (green) and bi-
nary (red) encodings outperform all other encodings with a
margin and solve 37% of the instances.

Another interesting finding is that counting via native an-
swer set enumeration (violet) directly in ASP outperforms
the route over #SAT if cardinality constraints are involved.
This again highlights the importance of structure and Q2 as
the other encodings strip the structure from the formula.

86

1.0 — saw_totalizer_bin _'_'_,_..o—'—'—"'—

saw_totalizer_seq
saw_seq

saw_bin
enumerate

seq

mtotalizer

—— kmtotalizer

card

totalizer

sort

0.8

0.6 -

0.4

0.21

0.0

6 160 260 360 460 560 660
Figure 8: For each encoding the plot contains the percentage of

instances that can be solved within the time defined by the x-axis.

For our final experiment, we compare to the fotalizer ver-
sion of our structure-aware encodings (Section 4.5). Recall
that this is essentially the same encoding, but applied af-
ter we have transformed the given tree decomposition into a
binary, balanced one (i.e., every node has at most 2 chil-
dren and the depth of the decomposition is bounded by
O(logn)). We implemented a simple routine based on (El-
berfeld, Jakoby, and Tantau 2010) that, given a width-w tree
decomposition, outputs a binary, balanced decomposition
of width at most 4w + 3. Figure 8 contains our structure-
aware sequential counter (green) and binary counter (red), as
well as their totalizer versions (and blue). The total-
izer version of the sequential counter performs slightly bet-
ter than its normal version — the performance improvement
we expected. The totalizer version of the binary counter,
however, improves the performance more than we had ex-
pected — indeed, this version is able to solve all instances in
the benchmark set within the given time limit. We suspect
that this encoding combines the best of both worlds: The
structure of the formula is only increased by a logarithmic
factor, while used auxiliary variables are minimized.

7 Conclusion and Outlook

We studied cardinality constraints in the context of model
counting and showed that none of the famous encodings
is parsimonious and structure-aware. Based on this insight
and since model counting is feasible on well-structured in-
stances, we developed encodings that are both, parsimonious
and structure-aware. Our experiments revealed that existing
encodings eradicate the input’s treewidth (Figure 6), while
our encodings perform significantly better (Figure 8). This
is strong indicator that structure counts for counting.

Our benchmarks were performed on handcrafted in-
stances on which we have full control over the treewidth.
Further research is needed to analyze the performance of
structure-aware encodings on real world instances. Due to
the magnitude of the performance improvement, structure-
aware cardinality constraints may also turn out to be use-
ful in areas where structure is less important, for instance in
classical SAT or MAX-SAT. Since we described our encod-
ings in ASP, they can also be used in this formalism.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Acknowledgments

This research was supported by the Austrian Science Fund
(FWF) grant 10.55776/J4656.

References

Abio, I.; Nieuwenhuis, R.; Oliveras, A.; and Rodriguez-
Carbonell, E. 2013. A Parametric Approach for Smaller
and Better Encodings of Cardinality Constraints. In Schulte,
C., ed., Principles and Practice of Constraint Programming
- 19th International Conference, CP 2013, Uppsala, Swe-
den, September 16-20, 2013. Proceedings, volume 8124 of
Lecture Notes in Computer Science, 80-96. Springer.

Abseher, M.; Musliu, N.; and Woltran, S. 2017. htd - A
Free, Open-Source Framework for (Customized) Tree De-
compositions and Beyond. In /4th International Conference
on the Integration of Al and OR Techniques in Constraint
Programming (CPAIOR), volume 10335 of LNCS, 376-386.
Springer.

Alon, N., and Milman, V. D. 1985. lambday, Isoperimetric
Inequalities for Graphs, and Superconcentrators. J. Comb.
Theory B 38(1):73-88.

Asin, R.; Nieuwenhuis, R.; Oliveras, A.; and Rodriguez-
Carbonell, E. 2009. Cardinality Networks and Their Ap-
plications. In Kullmann, O., ed., Theory and Applications
of Satisfiability Testing - SAT 2009, 12th International Con-
ference, SAT 2009, Swansea, UK, June 30 - July 3, 2009.
Proceedings, volume 5584 of Lecture Notes in Computer
Science, 167-180. Springer.

Bailleux, O., and Boufkhad, Y. 2003. Efficient CNF En-
coding of Boolean Cardinality Constraints. In Rossi, F.,
ed., Principles and Practice of Constraint Programming -
CP 2003, 9th International Conference, CP 2003, Kinsale,
Ireland, September 29 - October 3, 2003, Proceedings, vol-
ume 2833 of Lecture Notes in Computer Science, 108—122.
Springer.

Batcher, K. E. 1968. Sorting Networks and Their Applica-
tions. In American Federation of Information Processing So-
cieties: AFIPS Conference Proceedings: 1968 Spring Joint
Computer Conference, Atlantic City, NJ, USA, 30 April - 2
May 1968, volume 32 of AFIPS Conference Proceedings,
307-314. Thomson Book Company, Washington D.C.

Berre, D. L.; Marquis, P.; Mengel, S.; and Wallon, R. 2018.
Pseudo-Boolean Constraints from a Knowledge Representa-
tion Perspective. In Lang, J., ed., Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelli-
gence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden,
1891-1897. ijcai.org.

Bianco, G. L.; Lorca, X.; Truchet, C.; and Pesant, G. 2019.

Revisiting Counting Solutions for the Global Cardinality
Constraint. J. Artif. Intell. Res. 66:411-441.

Bodlaender, H. L., and Kloks, T. 1996. Efficient and Con-
structive Algorithms for the Pathwidth and Treewidth of
Graphs. Journal of Algorithms 21(2):358—402.

Bomanson, J., and Janhunen, T. 2013. Normalizing Cardi-
nality Rules Using Merging and Sorting Constructions. In
LPNMR, volume 8148 of LNCS, 187-199. Springer.

87

Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski,
R.; Krennwallner, T.; Leone, N.; Maratea, M.; Ricca, F.;
and Schaub, T. 2020. ASP-Core-2 Input Language Format.
Theory Pract. Log. Program. 20(2):294-309.

Chavira, M., and Darwiche, A. 2008. On Probabilistic In-
ference by Weighted Model Counting. Artif. Intell. 172(6-
T):772-799.

Diestel, R. 2012. Graph Theory, 4th Edition, volume 173 of
Graduate texts in mathematics. Springer.

Eiter, T.; Faber, W.; Fink, M.; and Woltran, S. 2007. Com-
plexity results for answer set programming with bounded
predicate arities and implications. Annals of Mathematics
and Artif. Intell. 51(2-4):123-165.

Elberfeld, M.; Jakoby, A.; and Tantau, T. 2010. Logspace
Versions of the Theorems of Bodlaender and Courcelle.
In 51th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2010, October 23-26, 2010, Las Vegas,
Nevada, USA, 143—152. IEEE Computer Society.

Fichte, J. K.; Hecher, M.; Morak, M.; Thier, P.; and Woltran,
S. 2023. Solving Projected Model Counting by Utilizing
Treewidth and its Limits. Artif. Intell. 314:103810.

Fichte, J. K.; Hecher, M.; and Hamiti, F. 2021. The Model
Counting Competition 2020. ACM Journal of Experimental
Algorithmics 26(1):1-26.

Friedman, J. 2003. A Proof of Alon’s Second Eigenvalue
Conjecture. In Larmore, L. L., and Goemans, M. X., eds.,
Proceedings of the 35th Annual ACM Symposium on Theory
of Computing, June 9-11, 2003, San Diego, CA, USA, 720—
724. ACM.

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Morgan & Claypool.

Gelfond, M., and Lifschitz, V. 1991. Classical Negation
in Logic Programs and Disjunctive Databases. New Gener.
Comput. 9(3/4):365-386.

Goodrich, T. D.; Horton, E.; and Sullivan, B. D. 2021.
An Updated Experimental Evaluation of Graph Bipartiza-
tion Methods. ACM J. Exp. Algorithmics 26:12:1-12:24.

Goodrich, T. D.; Sullivan, B. D.; and Humble, T. S. 2018.
Optimizing Adiabatic Quantum Program Compilation Us-
ing a Graph-Theoretic Framework. Quantum Inf. Process.
17(5):118.

Hiiffner, F. 2009. Algorithm Engineering for Optimal Graph
Bipartization. J. Graph Algorithms Appl. 13(2):77-98.

Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2018.
PySAT: A Python Toolkit for Prototyping with SAT Oracles.
In SAT, 428-437.

Janhunen, T. 2006. Some (In)Translatability Results for
Normal Logic Programs and Propositional Theories. Jour-
nal of Applied Non-Classical Logics 16(1-2):35-86.

Jo, W., and Cho, H. 2025. DCC: Differentiable Cardinality
Constraints for Partial Index Tracking. In Walsh, T.; Shah,
J.; and Kolter, Z., eds., AAAI-25, Sponsored by the Associa-
tion for the Advancement of Artificial Intelligence, February
25 - March 4, 2025, Philadelphia, PA, USA, 11264—-11271.
AAAI Press.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Kaminski, R., and Schaub, T. 2021. On the Founda-
tions of Grounding in Answer Set Programming. CoRR
abs/2108.04769.

Korhonen, T., and Jérvisalo, M. 2023. SharpSAT-
TD in Model Counting Competitions 2021-2023. CoRR
abs/2308.15819.

Lagniez, J.-M., and Marquis, P. 2017. An Improved
Decision-DNNF Compiler. In 26¢h International Joint Con-
ference on Artificial Intelligence (IJCAI), 667-673. ij-
cai.org.

Leung, M., and Wang, J. 2022. Cardinality-Constrained
Portfolio Selection Based on Collaborative Neurodynamic
Optimization. Neural Networks 145:68-79.

Liang, Y., and Lin, G. 2024. Relaxed Method for Optimiza-
tion Problems with Cardinality Constraints. J. Glob. Optim.
88(2):359-375.

Lifschitz, V. 2019. Answer Set Programming. Springer.

Malhotra, S., and Serafini, L. 2022. Weighted Model Count-
ing in FO2 with Cardinality Constraints and Counting Quan-
tifiers: A Closed Form Formula. In Thirty-Sixth AAAI Con-
ference on Artificial Intelligence, AAAI 2022, Thirty-Fourth
Conference on Innovative Applications of Artificial Intelli-
gence, IAAI 2022, The Twelveth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2022 Virtual Event,
February 22 - March 1, 2022, 5817-5824. AAAI Press.

Mehta, H., and Reichman, D. 2022. Local Treewidth of
Random and Noisy Graphs with Applications to Stopping
Contagion in Networks. In Chakrabarti, A., and Swamy,
C., eds., Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RAN-
DOM 2022, September 19-21, 2022, University of Illinois,
Urbana-Champaign, USA (Virtual Conference), volume 245
of LIPIcs, 7:1-7:17. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik.

Morgado, A.; Ignatiev, A.; and Marques-Silva, J. 2014.
MSCG: Robust Core-Guided MaxSAT Solving. J. Satisf.
Boolean Model. Comput. 9(1):129-134.

Ogawa, T.; Liu, Y.; Hasegawa, R.; Koshimura, M.; and Fu-
jita, H. 2013. Modulo Based CNF Encoding of Cardinality
Constraints and Its Application to MaxSAT Solvers. In 25th
IEEE International Conference on Tools with Artificial In-
telligence, ICTAI 2013, Herndon, VA, USA, November 4-6,
2013, 9-17. IEEE Computer Society.

Olivé, A. 2007. Conceptual Modeling of Information Sys-
tems. Springer.

Papadimitriou, C. H. 2007. Computational Complexity.
Academic Internet Publ.

Pichler, R.; Rimmele, S.; Szeider, S.; and Woltran, S.
2010. Tractable Answer-Set Programming with Weight
Constraints: Bounded Treewidth Is not Enough. In Lin, F;
Sattler, U.; and Truszczynski, M., eds., Principles of Knowl-
edge Representation and Reasoning: Proceedings of the
Twelfth International Conference, KR 2010, Toronto, On-
tario, Canada, May 9-13, 2010. AAAI Press.

Robinson, R. W., and Wormald, N. C. 1994. Almost All

88

Regular Graphs Are Hamiltonian. Random Struct. Algo-
rithms 5(2):363-374.

Rossi, F.; van Beek, P.; and Walsh, T., eds. 2006. Hand-
book of Constraint Programming, volume 2 of Foundations
of Artificial Intelligence. Elsevier.

Roussel, O., and Manquinho, V. 2021. Pseudo-Boolean
and Cardinality Constraints. In Biere, A.; Heule, M.; van
Maaren, H.; and Walsh, T., eds., Handbook of Satisfiabil-
ity - Second Edition, volume 336 of Frontiers in Artificial
Intelligence and Applications. 10S Press. 1087-1129.

Russell, S., and Norvig, P. 2020. Artificial Intelligence: A
Modern Approach (4th Edition). Pearson.

Samer, M., and Szeider, S. 2021. Fixed-Parameter Tractabil-
ity. In Handbook of Satisfiability - Second Edition, Frontiers
in Artificial Intelligence and Applications. IOS Press. 693—
736.

Shaw, A., and Meel, K. S. 2024. Model Counting in the
Wild. In Marquis, P.; Ortiz, M.; and Pagnucco, M., eds.,
Proceedings of the 21st International Conference on Princi-
ples of Knowledge Representation and Reasoning, KR 2024,
Hanoi, Vietnam. November 2-8, 2024.

Sinz, C. 2005. Towards an Optimal CNF Encoding of
Boolean Cardinality Constraints. In van Beek, P., ed., Prin-
ciples and Practice of Constraint Programming - CP 2005,
11th International Conference, CP 2005, Sitges, Spain, Oc-
tober 1-5, 2005, Proceedings, volume 3709 of Lecture Notes
in Computer Science, 827-831. Springer.

Suzuki, R.; Hashimoto, K.; and Sakai, M. 2017. Improve-
ment of Projected Model-Counting Solver with Component
Decomposition using SAT Solving in Components. Tech-
nical report, Technical report, JSAI Technical Report, SIG-
FPAI-103-B506.

Tillmann, A. M.; Bienstock, D.; Lodi, A.; and Schwartz, A.
2024. Cardinality Minimization, Constraints, and Regular-
ization: A Survey. SIAM Rev. 66(3):403-477.

To6th, J., and Kuzelka, O. 2024. Complexity of Weighted
First-Order Model Counting in the Two-Variable Fragment
with Counting Quantifiers: A Bound to Beat. In Marquis,
P.; Ortiz, M.; and Pagnucco, M., eds., Proceedings of the
21st International Conference on Principles of Knowledge
Representation and Reasoning, KR 2024, Hanoi, Vietnam.
November 2-8, 2024.

Wynn, E. 2018. A Comparison of Encodings for Cardinality
Constraints in a SAT Solver. CoRR abs/1810.12975.
Zhang, Z.; Chen, W.; and Hu, X. 2023. A Knowledge-
Based Constructive Estimation of Distribution Algorithm

for Bi-Objective Portfolio Optimization with Cardinality
Constraints. Appl. Soft Comput. 146:110652.

	Introduction
	Contribution of this Article
	Related Work
	Structure of this Article

	Preliminaries
	Structure in Graphs and Formulas
	Logic Programming

	Study of Existing Encodings
	Naive (pairwise, binomial)
	Sequential Counter
	Sorting Networks
	Totalizer (Tree based, Bailleux & Boufkhad)

	Parsimony and Structure-Awareness
	Structure-Aware Sequential Counter
	Adaptation for CNF
	Theoretical Limits and Lower Bounds
	Logarithmic Treewidth via Binary Counter
	Structure-Aware Totalizer

	Prototypical Implementation
	ASP Encodings

	Experimental Evaluation
	Benchmark Scenario
	Experimental Results

	Conclusion and Outlook

