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Abstract

Recently, the Manna-Pnueli Hierarchy has been used to de-
fine the temporal logics LTL s+ and PPLTL+, which allow to
use finite-trace LTL y/PPLTL techniques in infinite-trace set-
tings while achieving the expressiveness of full LTL. In this
paper, we present the first actual solvers for reactive synthe-
sis in these logics. These are based on games on graphs that
leverage DFA-based techniques from LTL ;/PPLTL to con-
struct the game arena. We start with a symbolic solver based
on Emerson-Lei games, which reduces lower-class proper-
ties (guarantee, safety) to higher ones (recurrence, persis-
tence) before solving the game. We then introduce Manna-
Pnueli games, which natively embed Manna-Pnueli objec-
tives into the arena. These games are solved by composing
solutions to a DAG of simpler Emerson-Lei games, resulting
in a provably more efficient approach. We implemented the
solvers and practically evaluated their performance on arange
of representative formulas. The results show that Manna-
Pnueli games often offer significant advantages, though not
universally, indicating that combining both approaches could
further enhance practical performance.

1 Introduction

This paper is about devising actual solvers for reactive
synthesis in LTL;+ and PPLTL+, which can be seen as
a Manna-Pnueli normal form for Linear Temporal Logic
(LTL) based respectively on its finite trace variant LTL  and
on Pure Past LTL (PPLTL).

Reactive synthesis deals with synthesizing programs (aka
strategies) from temporal specifications, for systems (e.g.
agents, processes, protocols, controllers, robots) that interact
with their environments during their execution (Pnueli and
Rosner 1989; Finkbeiner 2016; Ehlers et al. 2017). The most
common specification language is possibly Linear Temporal
Logic (LTL) (Pnueli 1977). Reactive synthesis shares foun-
dational techniques with model checking, grounded in the
interplay between logic, automata, and games (Fijalkow et
al. 2023). For LTL, synthesis normally proceeds by: (1)
specifying the desired behavior with controllable and un-
controllable variables; (2) translating the specification into
an equivalent automaton over infinite words; (3) determiniz-
ing the automaton—unlike in model checking—to define a
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game between system and environment; and (4) solving the
game, typically with a parity objective, to derive a strategy
satisfying the original specification.

The symbolic techniques for model checking based on
Boolean encodings to compactly represent game arenas and
compute fixpoints can also be leveraged in reactive synthe-
sis. Nevertheless, differently from model checking, LTL
synthesis has struggled to achieve comparable efficiency,
primarily due to the inherent complexity of Step (3): the
determinization of nondeterministic Biichi automata (NBA),
a process known to be computationally challenging (Vardi
2007; Althoff, Thomas, and Wallmeier 2006).

In A, reactive synthesis is closely related to strong plan-
ning for temporally extended goals in fully observable non-
deterministic domains (Cimatti et al. 2003; Bacchus and Ka-
banza 1998; Bacchus and Kabanza 2000; Calvanese, De Gi-
acomo, and Vardi 2002; Baier, Fritz, and Mcllraith 2007;
Gerevini et al. 2009; De Giacomo and Rubin 2018; Cama-
cho, Bienvenu, and Mcllraith 2019). Plans are typically as-
sumed to terminate, and this has led to a focus on logics over
finite traces, rather than infinite ones, with LTL ¢, the finite-
trace variant of LTL, being a common choice (Gabbay et
al. 1980; Baier and Mcllraith 2006; De Giacomo and Vardi
2013; De Giacomo and Vardi 2015). In fact, LTL synthe-
sis (De Giacomo and Vardi 2015) is, along with the GR(1)
fragment of LTL (Piterman, Pnueli, and Sa’ar 2006), one of
the two major success stories in reactive synthesis to date.

The steps of the LTL ; synthesis algorithm closely mirror
Steps (1)—(4) outlined for LTL, potentially incurring similar
asymptotic blowups. Specifically, Step (2) yields a nonde-
terministic finite automaton (NFA) that can be exponentially
larger than the input formula, and Step (3) determinizes
it into a DFA, which can be exponentially larger than the
NFA. However, in practice, these worst-case blowups rarely
occur for LTL;: Step (2) is shared with model checking,
where it performs well; Step (3) benefits from the fact that
NFA determinization is rarely problematic in practice — in
fact, it is often observed that the resulting DFA is actually
smaller than the original NFA (Tabakov and Vardi 2005;
Armoni et al. 2006; Rozier and Vardi 2012; Tabakov, Rozier,
and Vardi 2012; Zhu et al. 2021).
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Moreover, tools like MONA (Klarlund, Mgller, and
Schwartzbach 2002), used by LTL; synthesizers to extract
automata, return DFAs in semi-symbolic form, i.e., transi-
tions are represented symbolically. This is a very important
aspect, because one other significant barrier that we may
underestimate in LTL and LTL synthesis is the alphabet
explosion problem. That is to say, once there are just 20
propositions, which is not a very large number, the alpha-
bet already has size 1 million, making explicit treatment of
the alphabet infeasible. Symbolic methods circumvent this
problem (to some extent).

These nice characteristics of LTL ; have enabled the com-
munity to build a first fully symbolic solver for LTL; syn-
thesis (Zhu et al. 2017b). Since then, a series of papers have
improved symbolic technology for LTL s synthesis signifi-
cantly (Bansal et al. 2020; De Giacomo and Favorito 2021;
Kankariya and Bansal 2024; Zhu and Favorito 2025). Fur-
thermore, the LTL ; technology has been extended to several
other cases, from safety and reachability (Zhu et al. 2017a;
Bansal et al. 2022; Aminof et al. 2025a) all the way to
GR(1) (De Giacomo et al. 2022).

These desirable properties are also exhibited by Pure-Past
LTL (PPLTL) (Lichtenstein, Pnueli, and Zuck 1985; De Gi-
acomo et al. 2020), which has recently emerged as an even
simpler alternative to LTL ¢, while maintaining the same ex-
pressive power (Bonassi et al. 2023b; Bonassi et al. 2023a;
Bonassi et al. 2024).

The question is, can we use this technology to do LTL
synthesis? Recently (Aminof et al. 2025b) gave affirmative
answer to this question by exploiting Manna and Pnueli’s
normal form (Manna and Pnueli 1990). This normal form is
based on specifying finite trace properties, e.g. expressed
in LTL; (or PPLTL) and then requiring that the property
holds for some prefixes of infinite traces (guarantee proper-
ties), for all prefixes (safety properties), for infinitely many
prefixes (recurrence properties), or for all but finitely many
prefixes (persistence properties). Any LTL formula can be
expressed as a Boolean combination of these four classes.

How can we take advantage of Manna and Pnueli’s nor-
mal form? An answer is, first of all, in building the arena.
For each finite trace property, we can build the DFA, using
LTL; technology (Aminof et al. 2025b). Then, depending
on Manna and Pnueli’s class, we choose the accepting con-
dition to (guarantee) visit a final state once, (safety) never
leave the set of final states, (recurrence) visit some final
state infinitely often, (persistence) stay out of the set of final
states finitely many times. All these component automata
run in parallel, so we can take their product. In fact, we
can represent the product symbolically in a straightforward
way. To solve these temporal conditions, we have several
options. With a simple (polynomial) manipulation, we can
transform guarantee and safety properties, and correspond-
ing automata, into recurrence properties, see (Aminof et al.
2025b). What we get is an Emerson-Lei game where the
only temporal conditions are boolean combinations of recur-
rence and persistence (Emerson and Lei 1987). Such a game
can be solved symbolically through a fixpoint algorithm
based on compact semantic representations of Emerson-Lei
objectives, called Zielonka Trees (Hausmann, Lehaut, and
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Piterman 2024). Note that Emerson-Lei games can be re-
duced (with an exponential multiplicative factor) to parity
games, for which there are well-developed solvers. How-
ever, while in (Aminof et al. 2025b) it was shown that no
further determinization would be needed to generate the par-
ity automaton, we do need to handle possible permutations

(latest appearance records) which destroy the symbolic rep-

resentation. Instead, the Emerson-Lei approach preserves

the symbolic representation, which is used for the fixpoint
computation directly. We stress that both these solutions
are worst-case optimal and solve LTL s+ synthesis in 2EX-

PTIME and PPLTL+ synthesis in EXPTIME, respectively

(these problems are 2EXPTIME-complete and EXPTIME-

complete) (Aminof et al. 2025b). However, there is a sharp

difference in practical terms among them, since only the

Emerson-Lei based solution preserves the symbolic struc-

ture coming from the finite-trace properties.

Can we improve on the Emerson-Lei approach? In par-
ticular, can we avoid reducing guarantee and safety, which
do not require nested fixpoints, to recurrence, which indeed
requires nesting and complicates the Zielonka Tree? In this
paper we answer affirmatively. We introduce a new kind of
games called Manna-Pnueli games that handle the combi-
nation of conditions guarantee, safety, recurrence and per-
sistence directly. In particular, for such games, we give a
symbolic fixpoint solution analogous to that of Emerson-Lei
games in (Hausmann, Lehaut, and Piterman 2024), but ex-
ploiting the simplicity of guarantee and safety conditions to
simplify the fixpoint computation.

The contributions of this paper are as follows:
 First, we present a symbolic synthesizer based on

Emerson-Lei games, which reduces lower-class proper-

ties (guarantee, safety) to higher-class ones (recurrence,

persistence) before solving the game.

* We then introduce Manna-Pnueli games, which natively
deal with Manna-Pnueli objectives on the game arena.

* Next, we present a symbolic synthesizer based on these
new Manna-Pnueli games.

* We show that Manna-Pnueli games can be solved by
composing solutions to a DAG of simpler Emerson-Lei
games.

* We prove that this compositional approach to solving
Manna-Pnueli games is asymptotically more efficient
than the naive reduction to Emerson-Lei games.

* Finally, we implement both solvers using state-of-the-art
symbolic technology and evaluate their performance on a
range of representative formulas.

The results show that Manna-Pnueli games often offer sig-

nificant advantages, though not universally, suggesting that

combining both approaches could further enhance practical
performance.

2 Preliminaries

LTL+ and PPLTL+. We briefly recall the logics LTL y+
and PPLTL+ following (Aminof et al. 2025b). These logics
allow to express Boolean combinations of guarantee, safety,
recurrence, and persistence properties over finite traces;
the underlying finite trace properties are specified either in
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LTL; (De Giacomo and Vardi 2013), that is, in LTL eval-
uated over finite traces, or in PPLTL, that is, in pure past
LTL (De Giacomo et al. 2020). Note that in this paper we
use X for weak next and X[!] for strong next.

Formulas of LTL s+ (resp. PPLTL+) over a countable set
AP of propositions are constructed by the grammar

U0 2=V |30 | VIR | VP | UV [T AT | T

where the ® are finite trace LTL; (resp. PPLTL) formu-
las. We use [®] C (247)* to denote the set of finite traces
over 247 that satisfy a finite trace formula ®. Given a set
T C (24F)* of finite traces, we let 3T (VT') denote the set
of infinite traces 7 € (24F)“ such that at least one finite
prefix of 7 is (all finite prefixes of 7 are) contained in T
similarly, we let V3T (3VT') denote the set of infinite traces
for which infinitely many (all but finitely many) prefixes are
contained in 7. Then we evaluate LTL ;+/PPLTL+ formu-
las W over infinite traces using the extension [¥] C (247)
defined inductively by [¥ V '] = [T]U [T'], [T A T'] =
9] N (W], 0] = (247)% \ [¥], [Q¥] = Q[®] where
Q € {3,V,v3,3v}. The logics LTLy, PPLTL+, and LTL
define the same infinite-trace properties.

Automata on finite traces. A transition system 7' =
(%,Q,1,0) consists of a finite alphabet X, a finite set )
of states, a set I C () of initial states, and a transition re-
lation § C Q x X x Q. Forq € Q and a € X, we define
d(q,a) = {¢ € Q| (q,a,q") € §}. A transition system
is deterministic if |[I| = 1 and |6(g,a)] = 1 forall ¢ € Q
and a € X, and nondeterministic otherwise; for determinis-
tic transition systems, we write §(¢,a) = ¢’ where ¢’ € Q
is the state such that ¢’ € §(g, a) and denote the initial state
by ¢. A finite automaton A = (T, F) is a transition system
together with a set I’ C () of accepting states. If T is deter-
ministic, then A is a deterministic finite automaton (DFA),
otherwise it is a nondeterministic finite automaton (NFA). A
run of an automaton on a word w € X* is a path through
T starting at an initial state such that the sequence of tran-
sition labels of the path is w; a finite run is accepting if it
ends in an accepting state. An automaton accepts the lan-
guage L(.A) consisting of all finite words for which there is
an accepting run of A.

Finite trace LTL¢ and PPLTL formulas over AP can be
turned into equivalent finite automata (with alphabet 247),
accepting exactly the traces that satisfy the formulas. For
each LTL; formula ¢, there is an equivalent NFA of size

20(1¥D) and an equivalent DFA of size 9227V (De Giacomo
and Vardi 2015). For each PPLTL formula ¢, there is an
equivalent DFA of size 200D (De Giacomo et al. 2020).

Infinite-duration games on finite graphs. A game arena is
a finite directed graph A = (V,E C V x V) such that V' is
partitioned into the sets Vs and V, of game nodes controlled
by the system player and the environment player, respec-
tively. Define E(v) = {v/ € V | (v,v') € E} forv € V
and assume that E(v) # @ for all v € V. A play is a path
in A; let plays(A) denote the set of infinite plays over A. A
strategy for the system player is a functiono : V* - V; =V
that assigns a single game node o (vovy ... v,) € E(v,) to
any finite play vov; . .. v, € V*-V, thatends in a game node
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owned by the system player (v, € V;). A play vov; ... is
compatible with a strategy if for every ¢ such that v; € Vj,
vi+1 = o(vovy ... v;). An objective on an arena A is a set
O C plays(A) of plays; then a play is winning for the sys-
tem player if it is contained in O. Notions of strategies and
winning plays for the environment player are defined dually.
A strategy o wins a node v € V for a player if all plays
that are compatible with o and start at v are winning for
that player. Solving a game amounts to computing the set
of game nodes won by the two players, together with their
witnessing strategies.

Reactive synthesis and games. In the context of reactive
synthesis, we assume that the set AP of atomic propositions
is partitioned into sets X and Y, denoting system and en-
vironment actions, respectively. A (synthesis) strategy is a
function o : (2Y)* — 2%, and an outcome of such a strat-
egy is an infinite word (xo U yo)(z1 U 1) ... € (247)
such that 2,11 = o(yoy1 - .. y;) for all ¢ > 0. Thus, synthe-
sis strategies encode the behavior of transducers.

Definition 1. (Aminof et al. 2025b) The synthesis prob-
lem for LTL¢+ (resp. PPLTL+) asks for a given formula
U whether there is a strategy o such that every outcome of
o satisfies U, and if so, to return such a strategy.

Then a deterministic transition system 7' = (24P Q, ¢, §)
induces a game arena Ap QU x2XUQ x2X x
2Y E) with the system player owning nodes ¢ € @ and
the environment player owning all other nodes; the moves
are defined by putting E(q) = {q} x 2%, E(q,z)
{(¢,x)} x 2%, and E(q,z,y) = {6(q,x Uy)}. Plays
q0(q0,70)(qo, 70, Y0)q1(q1,71)(q1,71,¥1) - .. over Ar in-
duce runs goq; . .. of T on words (zg U yo)(z1 Uy1) - . ..

Hence the synthesis problem can be solved by transform-
ing the input formula into a deterministic transition system
and then solving the induced game with a suitable objective.

3 Synthesis via EL Games

It has been shown (Aminof et al. 2025b) that the synthesis
problem of LTL s+ (resp. PPLTL+) reduces to the solution
of games with so-called Emerson-Lei objectives. These are
Boolean combinations of recurrence and persistence objec-
tives, formally defined as follows.

Given a finite set I' of events, an Emerson-Lei (EL) for-
mula (over I') is a positive Boolean formula over atoms of
the shape GF a or FG a, where a € T'. We evaluate EL for-
mulas over infinite sequences of sets of events, that is, over
elements of (21). Given L1 Ly ... € (2V)%, we put

L1L2... ':GF(I
L1L2... |: FGa

54
-

Vi.3j > i.a € L,
3i.Vj >i.ael;

The evaluation of Boolean combinations (A, V) of EL for-
mulas and of Boolean constants (T,.L) is as expected. Given
a finite set (), an infinite sequence ™ = qopq; ... € Q“, a la-
beling function v : @ — 2T and an EL formula », we
denote v(q0)v(q1) - F o by T = .

An Emerson-Lei objective O = (I',~y, ¢) on a finite set @
is given in the form of a set I" of events, a labeling function
v : @ — 2' and an EL formula ¢ over I'; we generally
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assume that |T'| < |Q|. A sequence m € Q“ is contained in
O (by slight abuse of notation) if and only if 7 |= .

An Emerson-Lei automaton A = (T, 0O) is a transition
system 7" together with an EL objective on 7. Then A rec-
ognizes the (w-regular) language L(.A) of all infinite words
for which there is run 7 of 7" such that 7 € O.

An Emerson-Lei game G = (A, O) consists of a game
arena A = (V, E) together with an EL objective O on A,
specifying the winning plays. EL games are determined, that
is, every game node is won by exactly one of the players.

Theorem 1. (McNaughton 1993; Zielonka 1998) Emerson-
Lei games with n nodes and k Emerson-Lei events can be
solved in time O(k!-nF+2) € 20(k1ogn) - \winning strategies
require at most k! memory values.

Recently, a symbolic algorithm for the solution of EL
games has been proposed (Hausmann, Lehaut, and Piterman
2024). This algorithm leverages Zielonka trees, that is, suc-
cinct semantic representations of EL objectives, to transform
EL objectives into equivalent fixpoint equation systems. EL
game solution then can be performed by symbolic solution
of the corresponding equation system. The resulting algo-
rithm realizes the time bound stated in Theorem 1.

Remark 1. Strategy extraction for EL games works as de-
scribed in (Hausmann, Lehaut, and Piterman 2024). Leaves
in Zielonka trees are labelled with sets of events, thought
of as a memory of recently visited events. Winning strategies
then use leaves in Zielonka trees as memory values and com-
bine the events of current game nodes with the events in the
current memory values to update the set of recently visited
events and obtain new memory values. Strategies are based
on existential subtrees of Zielonka trees, reducing strategy
sizes (Dziembowski, Jurdzinski, and Walukiewicz 1997).
Next, we show how this symbolic solution algorithm for
EL games can be used for LTL s+ (resp. PPLTL+) synthesis.
Consider an input LTL s+ or PPLTL+ formula ¥ given in
positive normal form, that is, given as a positive Boolean
formula over k atoms Q; ®,; where Q; € {3,V, 3V, v3}, and
where all ®; are LTL (resp. PPLTL) formulas. The synthe-
sis algorithm transforms W into an equivalent EL. automaton

and then solves the EL game induced by this automaton.
Step 1. For each ¢ € [k], convert the finite trace for-

mula ®; into an equivalent DFA (D;, F;) where D;
(247 Qi, 4, 0;). Assume without loss of generality that ¢;
does not have incoming transitions. If Q; = V, then add ¢; to
F; and turn every non-accepting state into a non-accepting
sink state (for ¢ ¢ F; and all @ € X, put §;(q,a) = q); if
Q; = 4, then remove ¢; from F; and turn every accepting
state into an accepting sink state (for ¢ € F; and all a € X,
put d;(¢,a) = ¢q). Construct the product transition system
Dy = Hie[k] D; and let Qg denote the state space of Dy.

We point out that turning (non)accepting states into sinks
in Step 1. does not increase the size of automata. For 7 such
that Q; = V or Q; = 3, the resulting automata intuitively
incorporate memory on whether a (non)accepting state has
been visited so far, or not. The following is immediate.
Lemma 1. Let Q; = 3 (resp. Q; = V). Then an infinite
path in D; visits F; (resp. Q; \ F;) at least once if and only
if the run eventually visits only states from F; (resp. Q;\ F;).
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Forqg = (q1,...,qx) € Q, let Ly = {i € [k] | ¢ €
F;,Q; € {V,3}} denote the local events for which the cor-
responding automaton is in an accepting state in q.

Step 2. Define the EL objective O = (T, 7, ) by putting
I' = [k] and y(q1,...,qx) = {i € [k] | ¢ € Fi} for
(¢1,---,qr) € Qu. Depending on the shape of Q;, define
@i to be GFi (if Q; € {3,V,V3}), or FG1i (if Q; = 3V).
The EL formula ¢ is obtained from the input formula ¥ by
replacing each atom QQ;®; with ;. Define the deterministic
EL automaton Ay = (Dy, O).

Proposition 1. (Aminof et al. 2025b) The formula V¥ is
equivalent to the EL automaton Ay.

Step 3. Solve the EL game induced by Ayg. If the system
player wins the initial state (¢1,...,tx) of Dy, then extract
a witnessing strategy.

Theorem 2. The LTL ¢+ (resp. PPLTL+) synthesis problem
can be decided symbolically via EL games in 2EXPTIME
(resp. EXPTIME).

In more detail, consider an input formula ¥ of size n and
consisting of k recurrence and persistence formulas and d
guarantee and safety formulas. The constructed EL game
over Ay is of size at most n’ = 22" (resp. n’ = 2") and
the objective O has k + d events. By Theorem 1, it can be
solved in time 20 ((k+d)logn’)

Remark 2. All steps in the described synthesis algorithm
are open to symbolic implementation.

The construction of individual DFAs for finite trace sub-
formulas in Steps 1. and 2. is based on the powerset con-
struction which is amenable to symbolic implementation,
and taking the product of the individual automata in Step
3. is an inherently symbolic operation. Finally, the game
solution in Step 4. can be implemented using the symbolic
algorithm for EL game solution from (Hausmann, Lehaut,
and Piterman 2024).

Remark 3. Transducers for realizable specifications V are
obtained by extracting a winning strategy for the system
player in the EL game induced by Ay (see Remark 1).

4 MP Automata and Games

Next, we introduce automata and games with objectives that
support, in addition to the Boolean combinations of recur-
rence and persistence allowed in EL objectives, also combi-
nations with guarantee and safety objectives. We call such
objectives Manna-Pnueli (MP) objectives. Adding guaran-
tee and safety properties to EL objectives enables a direct
translation from LTL;+ (resp. PPLTL+) formulas to au-
tomata, as the structure of the resulting objectives directly
corresponds to the high-level structure of formulas. In Sec-
tion 5 below, MP automata and the solution of MP games
will be instrumental to an alternative solution of the synthe-
sis problem for LTL s+ (resp. PPLTL+).

Given a finite set I' of events, a Manna-Pnueli formula is
a positive Boolean formula over atoms of the shape GF a,
FGa, F a, or G a, where a € I". We refer to events that occur
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in a concrete formula only in atoms of the shape F a or G a as
local events, and as Emerson-Lei events to all other events.
Given L1 Ly ... € (21')“, we put
L1 L2 PN ): Fa
Ll L2 . ’: Ga

54
-~

di.a € L;
Vi.a € L;

All other operators are evaluated in the same way as for EL
formulas; denote v(qo)Y(q1)... F ¢ by ™ = ¢, where
v : @ — 2 is a labelling function, and 7 = qoq; ... € Q¥.

A Manna-Pnueli objective O = (I',, ¢) on a finite set Q)
consists of a set I of events, a labeling function vy : Q — or
and an MP formula ¢ over T'; assume that |T'| < |Q]. A
sequence m € Q¥ is contained in O if and only if T = .

We point out that like EL objectives, MP objectives are w-
regular (that is, they can be transformed to parity objectives);
however, unlike EL objectives, MP objectives are not prefix
independent (that is, there may be ui,us € Q*, v € Q¥
such that u;v € O but ugv ¢ O).

A Manna-Pnueli automaton A = (T, 0) is a transition
system 1" with set Q) of states together with a Manna-Pnueli
objective on (). Then A recognizes the (w-regular) language
L(A) consisting of all infinite words for which there is a run
m of T such that T € O.

A Manna-Pnueli game G = (A, O) consists of a game
arena A = (V, E) together with a Manna-Pnueli objective
O on A. By definition, MP games are determined.

Example 1. Consider the game G with events a, b, ¢, d, with
Manna-Pnueli objective ¢ = (GFaAGFbAGd)V (FG—=bA
F ¢) and with node ownership indicated by circles (system
player) and boxes (environment player).

In this example the system player wins every node by a
strategy that uses memory to alternatingly move from the
node labelled with d to the nodes labelled with a,d and b, d,
respectively; the strategy always moves from the node la-
belled with a to the node labelled with c.

G

Any play following this strategy either avoids the node la-
belled with just a forever and infinitely often visits the nodes
labeled with a,d and b, d (and then satisfies GF a N GF b A
Gd), or it eventually only visits the two bottom right nodes
(and then satisfies FG—b A F ¢).

5 Synthesis via MP Games

We now show how LTL ;+ and PPLTL+ synthesis both re-
duce to the solution of MP games. To this end, we consider
an input LTL ¢+ or PPLTL+ formula ¥ given in positive nor-
mal form over k finite trace formulas, as in Section 3. The
synthesis algorithm transforms ¥ to an equivalent determin-
istic MP automaton and solves the MP game induced by
the automaton. We point out that the transformation from
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U to an MP automaton is immediate (and does, unlike the
construction in Section 3, not transform any states into sink
states), as MP automata natively embed the high-level struc-
ture of LTL s+ and PPLTL+ formulas.

Step 1a. Convert the finite trace formulas ®; into equiva-
lent DFAs (D;, F;) with D; = (247, Qy,15,0;). f Q; =V,
then add ¢; to F;; if Q; = 3, then remove ¢; from F;. Con-
struct the product transition system Dy, = [ [, Di-

Step 2a. Define the Manna-Pnueli objective O’
(I',7, ¢) by putting I' = [k] and (g1, ..., qx) = {i € [k] |
q; € F;} for (q1,...,qx) € Q. Depending on the shape of
Q;, define p; tobe Fi (if Q; = 3), Gi (if Q; = V), GF i (if
Q; =V3), or FGi (if Q; = 3V). The Manna-Pnueli formula
 is obtained from the input formula ¥ by replacing each
atom Q,;®; with ;. Define the deterministic Manna-Pnueli
automaton Ay, = (Dy,0").

Step 3a.
the system player wins the initial state (¢1, ..
then extract a witnessing strategy.

We show correctness of the simpler automata construction
in Step la. To this end, define the objective O; = (I';, i, ¢;)
on D;, where I'; = [1] and ~; : D; — [1] maps nodes
from F; to {1}, and all other nodes to (). Then showing the
following lemma is immediate.

Lemma 2. Let w be an infinite trace. For all i € [k], we
have © |= Q;®; if and only if € L(D;, O;).

Proposition 2. The formula V is equivalent to the MP au-
tomaton Aj,.

The proof is by induction over ¥, using Lemma 2 for the
base cases.

Theorem 3. The LTL¢+ (resp. PPLTL+) synthesis prob-
lem can be decided symbolically via MP games in 2EXP-
TIME (resp. EXPTIME).

In more detail, consider an input formula ¥ of size n
and with k recurrence and persistence formulas, and d guar-
antuee and safety formulas. The constructed game over A%,
is of size at most n’ = 22" (resp. n’ = 2") and has k EL
events and d local events.

While the MP automata construction described in Step
la. is natural and straightforward, it has the drawback that
the resulting automata do not incorporate memory for lo-
cal events. A more efficient procedure is obtained by us-
ing the automata construction from Section 3 (Step 1.) that
adds sink states and incorporates memory for local events
at no extra cost (Lemma 1). In what follows, we assume
that the latter automata construction is used in the construc-
tion of A%,. Then the synthesis game can be solved in time
20(klogn’) by reduction to a composition of EL games (as
described in Section 6 below, see Theorem 4). This indi-
cates that the proposed synthesis method can handle guaran-
tee and safety properties “for free”. It improves significantly
over the reduction to EL games from Section 3 which solves
the synthesis problem in time 2€((d+k)logn") (Corollary 1).

Remark 4. For realizable specifications U, transducers are
obtained by extracting a winning strategy for the system
player from the MP game induced by A, (see Remark 5).

Solve the Manna-Pnueli game induced by Ay, If
.y Lk) of D(I/’
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6 Solution of MP Games

We show how MP games can be reduced (symbolically) to
EL games. Such reductions enable the use of the solution al-
gorithm for EL games from (Hausmann, Lehaut, and Piter-
man 2024) to symbolically solve MP games.

Fix a Manna-Pnueli game G = (A, O) with arena A =
(V, E) and objective O = (T',7,¢), and assume w.l.o.g.
that each atom in ¢ uses a unique event. Let G have n = |V/|
nodes, m edges, k EL events, and d local events.

In the first step, equip the arena A with additional memory
to store the local events that have been visited (or violated)
in a play so far. If A already has memory for the local events,
then this step can be skipped. This is the case in our synthe-
sis algorithm when using the automata construction given in
Section 3, Step 1.: by Lemma 1, each state ¢ in Dy comes
with memory L, for the local events.

An immediate, but costly, reduction from MP games to
EL games then is to simply treat all local events as Emerson-
Lei events. The synthesis algorithm described in Section 3
above is based on this reduction.

This first reduction can be improved by instead reducing
MP games to directed acyclic graphs (DAGs) of EL games
with simplified objectives. The simplified EL objectives are
obtained by partially evaluating the original MP objective
according to the local events from the auxiliary memory.
Then the reduced DAG of EL games can be solved by solv-
ing the individual EL games in a bottom-up fashion. The
alternative synthesis algorithm given in Section 5 leverages
this improved reduction.

Arena transformation. In the transformed arena A’, the
nodes from the MP game G are annotated with sets of local
events, acting as memory values that keep track of the F-
events that have occurred so far and the G-events that have
occurred in every game step so far. The moves in A’ are the
same as in A, but update the memory whenever an F-event
occurs for the first time, or a G-event does not occur for the
first time.

Let I'r and I'g denote the sets of F- and G-events in ¢,
respectively and put I'r ¢ = I'r UT'g. Let ', denote the set
of Emerson-Lei events in ¢.

We define a memory update function upd that takes as
input a game node v € V and a current memory value L C
Ik, and computes the set upd(v, L) obtained from L by
removing all G-events that do not occur at v, and adding all
F-events that occur at v. Formally, we put

upd(v,L) = (LN~(v)) NTcgU (LU~(v)) NTE.

Then the reduced game arena A’ = (V’/, E’) incorpo-
rating the auxiliary memory is defined by putting V' =
V x 2%¢ and E'(v,L) = E(v) x {upd(v,L)}; nodes
(v, L) € V' are owned by the owner of v in G.

The memory update is defined in such a way that (not) vis-
iting a local event once in a play on A corresponds to even-
tually forever (not) having the event in the auxiliary memory
inaplay on A'.

We also define a labelling function v/(v, L) = (y(v) N
Tec) U {L}, marking nodes (v, L) € V' with the union of
the Emerson-Lei events of v and the local events from the
auxiliary memory L.
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Reduction to EL. Games. Define the EL objective O; =
(T',~', ¢1), where the EL formula ¢, is obtained from ¢
by replacing all atoms of shape Fa or Ga in ¢ with GF a.
The objective O consists of plays for which the EL events
visited by the corresponding play in the original game to-
gether with the events from the auxiliary memory satisfy the
adapted formula. We obtain an EL game G; = (A4’,0q) of
size O(n - 2¢) that has k + d EL events.

Lemma 3. The games G and G, are equivalent.

Sketch. The claim follows by showing that (not) visiting a
local event once in G corresponds to eventually (not) having
this event in the auxiliary memory forever in G (similar
to Lemma 1). Thus atoms Fa and Ga in G correspond to
atoms GF ¢ in GG;. In fact, we could also choose FGa to
represent local atoms in G. O

Using Theorem 1, we thus obtain

Corollary 1. Manna-Pnueli games with n nodes, k
Emerson-Lei events and d local events can be solved in time
O((k+d)!-(n-2%)k+d+2) ¢ 90(d(ktd)logn) - yyinning strate-
gies require at most (k + d)! memory values.

The above bound on solution time improves to O((k-+d)!-
nktd+2) ¢ 20((k+d)logn) for cames over arenas that have
memory for local events (such as the arenas constructed in
Sections 3 and 5). In such cases, the arena transformation is
not required so that G; has just n nodes and k+d EL events.

Reduction to Compositions of EL. Games. Whenever the
memory value L changes by a move in the arena A’, at least
one G-event is permanently removed from L, or at least one
F-event is permanently added to L. As there are finitely
many events, the memory changes finitely often. Conse-
quently, the memory values partition the arena A’ into 2/l
subarenas; we denote the subarena with the memory val-
ues fixed to L by A’ . Together with the memory changing
moves, the partition of A’ into the arenas A’ forms a DAG
with top and bottom subarenas Afc and AfF, respectively.

Given an MP formula ¢ and a set L C I'r g of local
events, we let 17, denote the formula that is obtained from
1 by evaluating F- and G-atoms according to L, that is by
replacing atoms Fa and Ga with T if @ € L, and with L
otherwise. We point out that 1)1, does not contain any F- and
G-atoms and hence is an EL formula.

Given a play m € plays(A), we define the set of F- and
G-events that are satisfied by 7 by

I'eg(m)={ceTle|mnEFctU{ceTls|n = Gcl.

The following lemma relates MP objectives to (simpli-
fied) EL objectives; the proof is immediate.

Lemma 4. For all plays © € plays(A) we have 7 = ¢ if
and only if T = ory ¢ (x)-

Based on Lemma 4, we simplify the objective formula ¢4
from G by using, for each subarena A’ , the simpler objec-
tive .. Formally, we define w2 = \/| orec (Agep Infa A
©r). This formula expresses the existence of some memory
value L such that the auxiliary memory eventually stabilizes
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to L and such that ¢, is satisfied. Plays satisfying this for-
mula eventually stay within some subarena A’ forever and
satisfy ¢r,. We put Oy = (I',7/, ¢2) and let G5 denote the
EL game (A’, O3).

Example 2. We demonstrate the reduction of MP games to
DAGs of EL games for the game from Example 1 (not de-
picting labelings with events for readability). The objectives
of the individual subgames are as follows.

wp =p[Gd— L Fe— 1]=1

]
P} =<p[Gd'—>J_,FC»—>T} =FG-b
¢ay = ¢lGd— T,Fe— L] =GFaAGFbD
Pfear = ¢[Gd— T,Fe— T] = (GFaAGFb) VFG-b
Giay

Gieay

Dashed edges depict changes in the memory for local
events (corresponding to first-time visits of event ¢ or —d,
respectively); they descend in the DAG. Dotted edges de-
pict winning strategies for each subgame. An overall win-
ning strategy is obtained by using additional memory to keep
track of the current subgame and by always moving accord-
ing to the winning strategy for the current subgame.

Lemma 5. The games G and G4 are equivalent.

Sketch. For one direction, use a winning strategy for G to
play in Go, simply ignoring memory values. By construc-
tion, the resulting plays in G2 eventually stay within one
subgame G, and are winning by Lemma 4. For the con-
verse direction, a winning strategy for G provides, for each
set L of local events, a strategy to play in the subgame G ..
In G, let system player always follow the strategy for the
subgame that corresponds to the local events visited so far.
The resulting plays in GG are again winning by Lemma 4. [

Remark 5 (Strategy extraction). For each EL subgame G,
construct a winning strategy oy, (according to Remark 1).
An overall strategy o for G uses auxiliary memory 276 to
keep track of the local events that have been satisfied / vi-
olated so far. This memory identifies, at each point, a sub-
game Gp. Define o to always play according to o, where
L is the current content of the auxiliary memory.

Due to its particular DAG structure, the game G2 can
be solved by solving the subgames G, (played over arena
A’ with objective ¢r,) individually, starting from the bot-
tom game Gr.. Once a subgame G';, has been solved, all
edges in the remaining subgames that lead to anode v € G,
are marked as winning or losing, depending on whether v
is winning or losing in G;. Then G, is removed from the
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LydiaSyft+

[LTLf +/PPLTL+ formula \I/]

y parser

Boolean formula over QZ@J

Sect. ;/ \Sect. 5

EL game Ay | MP game A,
¥ =~

Sect. 6

DAG of EL games

Thm. 4

[output: “(un)realizable”, strategy}

Figure 1: Overall structure of the implementation

DAG and one of the remaining bottom subgames is picked
and solved in turn. Thus G5 can be solved by solving at most
24 EL, games, each of which has at most n nodes, m edges,
and an objective with at most k EL events. The overall time
complexity of solving G5 in this way is in O(2%-m - k!-n*).
Note that we have m < n2.

Theorem 4. Manna-Pnueli games with n nodes, k
Emerson-Lei events and d local events can be solved in time
O(k!-n*+2.29) ¢ 20(d+klogn) - \inning strategies require
at most k! - 2% memory values.

The above bounds improve to a solution time O(m - k! -
n*) € 20(klogn) and strategy size k! for games over arenas
that have memory for local events. Thus the solution com-
plexity for MP games with memory for local events is the
same as for EL games.

The dependency on the number of events in Theo-
rem 1 (and in Corollary 1) is factorial while the dependency
on the number of local events in Theorem 4 is exponential.

7 Implementation

We implemented a prototype LydiaSyft+ (Hausmann et al.
2025) (see Figure 1) that realizes both our method and
the existing approach based on a reduction to Emerson-Lei
games as described in Section 3. While LydiaSyft+ is the
first implementation of an LTL ;+/PPLTL+ synthesizer, it
also enables a direct empirical comparison between the two
approaches.

Synthesis via EL solver. We implemented an
LTL;+/PPLTL+ synthesis procedure LydiaSyft+-EL
based on a reduction to EL games, using the symbolic
EL solution algorithm. For LTL;+ synthesis, we lever-
age the existing LTL ;-to-DFA translator LydiaSyft (Zhu
and Favorito 2025) as a backend to translate LTL for-
mula components to explicit-state deterministic finite
automata (DFAs). These DFAs are tailored according to
the reduction in (Aminof et al. 2025b) (cf. Step 1. in
Section 3) and transformed into symbolic representation
using Binary Decision Diagrams (BDDs) (Bryant 1992;
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Figure 2: A simple planning domain

Zhu et al. 2017b). For PPLTL+ synthesis, we implemented
a direct symbolic DFA construction based on the method
described in (Bonassi et al. 2023b), which also serves
as the first direct translator from PPLTL+ to symbolic
DFA. Since all DFAs are in symbolic representation,
we can avoid explicitly computing their cross-product.
Instead, we perform an on-the-fly product construction
during the EL game solving, which is carried out using
symbolic fixpoint computations as in (Zhu et al. 2017b;
Hausmann, Lehaut, and Piterman 2024).

Synthesis via MP solver. We also implemented the MP
based approach to LTL ;+/PPLTL+ synthesis, described in
Section 5. Given an MP game G = (V, E, (', v, ¢)), the
core component in solving the game involves constructing a
directed acyclic graph (DAG) of EL games. These EL games
are then solved in a bottom-up order along the DAG. Note
that each EL game in the DAG is obtained by evaluating the
local events in the MP condition ¢. We encode ¢ symboli-
cally using BDDs for efficient evaluation and simplification.

8 Experiments

All experiments were conducted on a laptop running 64-bit
Ubuntu 22.04.4 LTS, with an i5-1245U CPU with 12 cores
and 32GB of memory. Time-out was set to one hour.

Comparing LTL s+ and LTL;. We construct the bench-
mark example based on a simple planning problem in a non-
deterministic domain, illustrated in Figure 2. In this domain,
a robot starts at state O and chooses an action from the set
{alpha, beta, gamma} to move to the next state. However,
the actual next state also depends on the response of the envi-
ronment, which is nondeterministic to the robot. For exam-
ple, if the robot is in state 0 and takes action beta, the robot
may move to either state 1 or state 2. We can describe this
domain in either LTL; or LTL;+. The core is that we just
use the formula to specify safety conditions that represent
the transitions of the domain following the robot action and
the environment response. In this case, we have an LTL
formula ® p caturing the traces of the domain, and an LTL f
formula ®,.; specifying that exactly one action is executed
at each step. The objective of the robot is given by the LTL ¢
formula @ ,,,; = F(A A F(B A Xfalse)), specifying that the
robot must eventually visit A and then visit B at the end of
the finite trace; recall that X stands for “weak next”. Ulti-
mately, we have the overall LTL specification describing
the planning problem as: & = o0t A (Pp = Pyoar)-

To construct the corresponding LTL y+ specification for

817

—8— Emerson-Lei Manna-Pnueli

=
o
=]
L

Wall Time (seconds)
=
2

i

1)
L
:

=

=)
o
:

1 2 3 4 5 6 7 8 9
Benchmark instance

Figure 3: Runtime of LTL s+ synthesis, counter-games

the same domain, we note that both ®,.; and ¢ represent
safety conditions. This allows us to simply add universal
quantification V in front of ®,.; and ® . For the objective,
instead of simply requiring the robot to visit A and then (or
meanwhile) B once, we make it more difficult by requiring
that the robot should “visit A and subsequently (or simulta-
neously) visit B” infinitely often. This leads to the LTL ¢+
specification ¥ = VO, A (VOp — VIPg0ar).

We run both problems using LydiaSyft for LTL ; synthe-
sis on ® and LydiaSyft+ (both using the MP solver and the
EL solver) for LTL s+ synthesis on ¥, and observe that both
solvers complete within a few milliseconds. Recall that ¥
encodes a more complex objective involving a recurrence
formula. This confirms that there is no overhead in con-
structing the arena for LTL s+ with respect to LTL f, and that
the more complex fixpoint computation required for LTL ¢+
does not compromise performance.

Comparing MP solver and the EL solver. We next com-
pare the scalability of the MP solver and the EL solver. The
first benchmark is inspired by the counter-game introduced
in (Zhu et al. 2020). We adapt the basic game setting which
involves an n-bit binary counter. We use V®p to describe
the behaviour of the counter, including both the value transi-
tions and the response of the environment to grant requests
to increment the counter. The formula V3®,44 represents
agent requests to increase the counter value, while 3®, cap-
tures the goal condition that the counter eventually reaches
its maximum value, i.e., all bits are set to 1. The LTL ¢+
formulas in this series then are defined as

U =VY(Pinit A Pine A Pp,) = (VIPoqq — 3P,), where
Dipit = o Ao A1 Ambg AL by
DPipe = G(add — (X(Co) N XX(C()) N XXX(C()))
(—c; A =b;) — X(=b; A —eip1)) A
(mei A b ) — X(b; A =¢iq1)) A
) = X(b; A —¢ip1)) A
(cl A b ) — X(=b; A ciy1))
D44 = Fadd A X(false))
D, =F(bg A... ANby_1 AX(false))

(
CI)Bi = E
(

(
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In this benchmark, all variables b; and ¢; are environment
variables, since they are used to describe the status of the
counter. The variable add is an agent variable, used to re-
quest an increment of the counter. All the formulas in this
benchmark are realizable as well. Figure 3 shows that the
MP solver significantly outperforms the EL solver, solving
more instances with lower runtime.

To check scaling as the game conditions increase, we con-
struct a benchmark consisting of formulas formed as con-
junctions of subformulas in the form of V4 — 3, referred to
as (V3 — 3)-Pattern, and is defined as:

U = Ai<i<,, (VIF(e; A X(false)) — FF(a; A X(false)) )

Each LTL; formula component is very simple. But the
number of recurrence and guarantee formulas increases with
n. Each a; is an agent variable, while each e; is an environ-
ment variable; all formulas in this series are realizable.

Figure 4 shows the running time on the (V3 — 3)-Pattern
benchmarks. The MP solver is able to solve more instances
within the time limit, and consistently takes less time than
the EL solver, demonstrating the superior performance of
the MP solver.

A natural question is whether there are cases for which
the EL solver performs better than the MP solver in practice.
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We construct a specific benchmark, the instances of which
contain only guarantee formulas (3). More specifically, the
formulas, referred to as 3-Pattern, are defined as follows:

U = Aicic,, IF((a; V ei) A X(false))

Since instances contain only local events, one might ex-
pect the MP solver to outperform the EL solver. However,
the results in Figure 5 show that the EL solver is able to solve
a substantially larger number of instances within the time
limit and consistently takes less time than the MP solver
on instances that both solvers can handle. To understand
why this happens, one has to consider that while the EL
solver computes a nested fixpoint, having to reduce 3(-) to
V3(-), the automata construction for 3(-) introduces loops
on the accepting states, thus shortcutting the corresponding
nested fixpoint. On the other hand, the MP solver must first
construct a DAG, where each node corresponds to a rela-
tively (but in this case not significantly) simpler EL game.
Moreover, the MP solver can only conclude ‘“realizable”
when all these games have been solved, resulting in greater
overall computational overhead.

9 Discussion

We have implemented synthesizers for LTL;+ (and
PPLTL+) based on reductions to EL and MP games. We
have introduced MP games and showed that theoretically
solvers based on MP games have better computational char-
acteristics than EL solvers. In practice, experimental re-
sults indicate that while the MP solver often performs better
than the EL solver, this is not always the case, since there
is a trade-off between efficiency gains obtained by solving
DAGs of simpler EL games versus the higher cost associated
to the construction of these DAGs. This indicates that fine-
tuning may be needed to strike the perfect balance between
which local events should be treated by the DAG construc-
tion and which should be left to the EL solver. We leave this
for future work.

We also plan to explore a recently proposed alternative
game construction that combines the benefits of the EL and
the MP reductions, eliding the DAG construction by inte-
grating local events into the existing EL events, instead of
adding auxiliary EL events (Duret-Lutz 2025).

We conclude by briefly mentioning obligation properties,
that is, Boolean combinations of guarantee, 3(-), and safety,
V() formulas. Synthesis for these formulas reduces to the
solution of MP games without EL events, indicating that
particularly good synthesis performance can be obtained for
such formulas. Again, we leave this for future work.
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