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Abstract

Counterfactual Explanations (CEs) are a powerful technique
used to explain Machine Learning models by showing how
the input to a model should be minimally changed for the
model to produce a different output. Similar proposals have
been made in the context of Automated Planning, where CEs
have been characterised in terms of minimal modifications
to an existing plan that would result in the satisfaction of a
different goal. While such explanations may help diagnose
faults and reason about the characteristics of a plan, they
fail to capture higher-level properties of the problem being
solved. To address this limitation, we propose a novel expla-
nation paradigm that is based on counterfactual scenarios. In
particular, given a planning problem P and an LTLf formula
ψ defining desired properties of a plan, counterfactual scenar-
ios identify minimal modifications to P such that it admits
plans that comply with ψ. In this paper, we present two qual-
itative instantiations of counterfactual scenarios based on an
explicit quantification over plans that must satisfy ψ. We then
characterise the computational complexity of generating such
counterfactual scenarios when different types of changes are
allowed on P . We show that producing counterfactual sce-
narios is often only as expensive as computing a plan for P ,
thus demonstrating the practical viability of our proposal and
ultimately providing a framework to construct practical algo-
rithms in this area.

1 Introduction
The widespread adoption of AI solutions for consequential
decision-making tasks has fuelled considerable interest in
Explainable AI (XAI). This is particularly true in the area of
Machine Learning (ML), where black-box models are often
deployed in applications such as credit risk analysis (FICO
Community 2019) or bail approval (ProPublica 2016). In
these settings, most approaches focus on explaining single-
shot decisions (i.e., predictions) produced by ML models
but are often unable to explain more sophisticated decision-
making tasks involving multiple reasoning steps.

The planning community has long recognised the im-
portance of providing explanations for sequential decision-
making tasks (Chakraborti, Sreedharan, and Kambhampati
2020). As a result, a host of explainability approaches
have been proposed. Examples include model reconcil-
iation (Chakraborti et al. 2017; Sreedharan, Chakraborti,
and Kambhampati 2018), which focuses on resolving po-

tential discrepancies between an AI agent’s internal model
and a human’s mental model, and contrastive explana-
tions (Krarup et al. 2021; Krarup et al. 2024; Hoffmann
and Magazzeni 2019), which highlight differences between
a plan generated by an AI and a user-suggested alternative,
showing why the former was preferred.

Much less attention has been devoted to counterfac-
tual explanations, a popular explanation framework that is
favoured in XAI due to its intelligibility and alignment with
human reasoning (Byrne 2019). Counterfactuals are actively
studied in ML, where they are typically defined in terms of
minimally altered inputs for which the ML model gives a
different, more desirable output from that of the original in-
put (Karimi et al. 2023). Echoing this idea, recent work in
planning proposed to characterise counterfactuals in terms
of minimal modifications to an existing plan that would re-
sult in the satisfaction of a different goal (Belle 2023).

Counterfactuals defined in this way are well suited to rea-
son about local properties of a plan, i.e., diagnose faults in
it and potentially identify avenues for repair showing how a
plan would need to change for a desired outcome to be at-
tained. However, in many practical applications, users are
often interested in understanding how characteristics of a
planning problem may affect the quality of plans that can be
produced. In such cases, local counterfactual explanations
are of little use as they fail to capture properties of the plan-
ning problem being solved, leaving many unanswered ques-
tions about the fundamental relationships between problem
structure and plan properties.

Contributions. In this paper, we fill this gap and pro-
pose a novel explanation paradigm based on the concept of
counterfactual scenarios for automated planning problems.
Differently from existing proposals, our explanations rely
on counterfactual modifications of the planning problem it-
self, thus pointing users of planning software to what would
need to be changed in the original problem formulation for
a given course of action to be observed. More formally,
given a planning problem P and an LTLf (De Giacomo and
Vardi 2013) formula ψ defining desired properties of a plan,
counterfactual scenarios identify minimal modifications to
P such that it admits plans that comply with ψ. We inves-
tigate the computational complexity of generating such ex-
planations under counterfactual modifications that can alter
the initial state of P , the structure of its actions or its goals.
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We focus our analysis on two qualitative variants of counter-
factuals scenarios: existential counterfactual scenarios (∃),
which identify modifications to P such that it admits at least
one plan satisfying ψ, and universal counterfactual scenar-
ios (∀), which modify P in such a way that all its valid plans
satisfy ψ. We demonstrate the feasibility of our proposal by
showing that generating ∃ and ∀ counterfactual scenarios of-
ten has a computational complexity comparable to finding a
plan for the original problem, thus providing a foundation
for developing practical algorithms in this domain.

Related work. The challenge of explaining AI be-
haviours in sequential decision-making settings has gained
considerable attention (see, e.g., (Baier et al. 2025) for a re-
cent account). As a result, a host of approaches have been
proposed both in model-based and model-free settings (see,
e.g., Chakraborti, Sreedharan, and Kambhampati (2020) and
Milani et al. (2024) for a general overview). In the follow-
ing, we focus on counterfactual explanations for sequential
decision-making tasks, but refer the reader to Section 7 for a
broader discussion of related work in the planning literature.

While research on counterfactuals for sequential decision-
making is still in its infancy, several proposals have already
been put forward. For instance, counterfactuals for auto-
mated planning problems have been defined by Belle (2023)
as minimal modifications to an existing plan that would
result in the satisfaction of a different goal. This defini-
tion echoes existing characterisations of counterfactuals in
ML (Wachter, Mittelstadt, and Russell 2017) and is closely
related to the literature on plan repair (Fox et al. 2006).
However, differently from the aforementioned definition,
our counterfactuals identify changes in the planning prob-
lem itself and can thus be used to point to how changes in
the structure of a problem may affect plan properties.

Counterfactuals have also been investigated in the con-
text of sequential decision-making problems modelled by
Markov Decision Processes (MDPs). For instance, Kobialka
et al. (2025) studied the problem of generating counterfac-
tual strategies for MDPs by computing minimal modifica-
tions to an original strategy that would lead to reaching de-
sirable states high probability. Similar efforts have been
made in the Reinforcement Learning arena, as summarised
by Gajcin and Dusparic (2024). While the works above pro-
pose notions that vary based on the specific changes that can
be effected on a policy, they still frame counterfactuals as
minimally altered policies, differently from our counterfac-
tual scenarios. Finally, causality-based counterfactuals for
MDPs have been investigated (Tsirtsis, De, and Rodriguez
2021; Kazemi et al. 2024). In this line of work, counterfac-
tual explanations are defined in terms of paths that diverge
by at most k actions from a given initial path in the MDP,
again marking a key difference from our proposal.

Structure of the paper. In the next section, we moti-
vate and explain the need for counterfactual explanations
whose scope extends beyond existing proposals, while Sec-
tion 3 provides some background concepts on planning and
LTLf . Then, Section 4 presents our novel notion of counter-
factual scenarios, and in Section 5 we present three concrete
classes of counterfactuals that we are interested in analysing.

Butchery

Coffee Shop

Depot

Figure 1: The food delivery domain.

Section 6 proves computational complexity results for such
classes. Finally, we discuss the implications of our results
and draw our conclusions in Section 7 and Section 8.

2 A Motivating Example
To see what makes counterfactual scenarios interesting and
useful, let us consider an example based on the food delivery
domain originally formulated by Krarup et al. (2024).

Example 1. The domain features one driver, one truck and
three locations: a depot, a butchery, and a coffee shop. All
locations are connected by roads with no pedestrian access,
modelled by a predicate link(?from,?to) (links are di-
rected). Both the goods and the truck are initially located
at the depot (at(coffee,depot), at(meat,depot),
at(truck,depot)), while the driver is located at the
coffee shop (at(driver,coffee shop)). The goal
is for the driver to deliver meat to the butchery and cof-
fee beans to the coffee shop (at(meat,butchery) ∧
at(coffee,coffee shop)). To achieve this goal,

the following actions can be performed:

• load(?item,?truck,?loc): loads an item onto
the truck, provided both are at the same location.
When an item is loaded, it is removed from its
location and is marked as stored inside the truck
(¬at(?item,?truck) ∧ in(?item,?truck));

• unload(?item,?truck,?loc): removes an item
from the truck, making it available at the location where
it was unloaded;

• drive(?truck,?from,?to,?driver): allows to
drive the truck between two specified locations, provided
that they are connected by a road, i.e., link(?from,
?to) is true. The driver and the truck must start from the
same location for this action to be executable.

A visual representation of this problem is shown in Figure 1.

Existing approaches to define counterfactual explanations
for sequential problems assume the availability of an initial
action sequence from which the counterfactual explanation
can be obtained. However, there may be cases where the
planning problem does not admit a solution and the problem
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of generating counterfactuals for such instances becomes ill-
defined. For instance, the planning problem described in
Example 1 does not admit a solution, as the driver has no
way to reach the truck and carry out deliveries. As a con-
sequence, no initial action sequence can be determined to
seed the search for a counterfactual explanation. In situa-
tions where a solution is unattainable, our existential coun-
terfactual scenarios can help identify modifications to the
planning problem that would make the problem solvable, as
demonstrated in Example 2
Example 2. The planning problem described in Example 1
does not admit a solution, as the driver is initially located
away from the truck with no way to reach it. In such cases,
an existential counterfactual scenario highlights how the
initial problem should be changed for it to admit a solution.
A possible existential counterfactual scenario can therefore
be obtained by changing the initial location of the driver
from at(driver, coffee-shop) to at(driver,
depot). As a result, the new planning problem obtained
by implementing this change admits (at least) one plan:
• load(meat,truck,depot)

• load(coffee,truck,depot)

• drive(truck,depot,butchery,driver)

• unload(meat,truck,butchery)

• drive(truck,butchery,coffee-shop,driver)

• unload(coffee,truck,coffee shop)

The counterfactual scenario in Example 2 helps users of
planning software deal with unsolvable planning problems,
potentially identifying changes in the problem formulation
that determined unsolvability. These kind of explanations
can be used to complement existing efforts, e.g., (Eriksson,
Röger, and Helmert 2018; Eriksson and Helmert 2020) and
improve the user experience, debugging process, or overall
effectiveness of planning tools. However, existential coun-
terfactual scenarios also prove useful when planning prob-
lems are solvable to begin with, as discussed in Example 3.
Example 3. Consider the planning problem given by the
existential counterfactual scenario in Example 2. Suppose
now that the user requires that in some plans, the truck vis-
its the coffee shop before making a delivery to the butchery.
This can be captured by the following logical specification:

ψ := □
(
at(truck, coffee−shop)→⃝ at(truck, butchery)

)
∧
(
¬at(truck, butchery) U at(truck, coffee−shop)

)
Satisfying this requirement is impossible in the original

domain, as driving from the coffee shop to the butchery
would require a (directed) connection between the two loca-
tions. This fact can be highlighted by means of an existential
counterfactual scenario, showing how the preconditions of
the action drive should be minimally changed for some
valid plans to satisfy ψ. A possible solution to the problem
corresponds to a modified planning problem where the pre-
condition of the action is weakened to:

at(driver, coffee−shop) ∧
at(truck, coffee−shop) ∧
link(coffee−shop, butchery)



With this change, the truck is allowed to visit the butchery
after the coffee shop in some of the plans admitted by the
existential counterfactual scenario.

Example 3 showed how existential counterfactual scenar-
ios can result in changes that bring about at least one plan
satisfying user requirements. However, depending on the
application, users may be interested in changes that con-
strain the planning problem to have all its valid solutions
comply with a specification. Our universal counterfactual
scenarios can achieve this, as demonstrated in Example 4.
Example 4. Consider the existential counterfactual sce-
nario from Example 2. Suppose now that the user requires
that in all plans, the truck should always go back to the de-
pot (eventually) after completing all deliveries. This can be
expressed by the following logical specification:

ψ := □


(
at(meat, butchery) ∧
at(coffee, coffee−shop)

)
→

→ ♢at(truck, depot)


Universal counterfactual scenarios can help identifying

changes in the planning problem that would satisfy the re-
quirement above. For instance, strengthening the goal to:

at(meat, butchery) ∧
at(coffee, coffee−shop) ∧
at(truck, depot)


would result in the the truck eventually visiting the depot in
all plans admitted by the modified planning problem.

This section introduced the intuition behind counterfac-
tual scenarios, highlighting some use cases. What follows
will formally define our explanation framework and present
a detailed analysis of the computational complexity of de-
ciding the existence of such explanations.

3 Preliminaries
For the sake of this paper, we focus on classical planning,
adopting a general formulation with arbitrary formulae as
preconditions. While the definitions below easily general-
ize to numeric planning, we restrict ourselves to the classi-
cal, finite-state case because numeric planning is in general
undecidable thus making all the explainability problems ad-
dressed in this paper trivially undecidable as well.
Definition 1 (Planning problem). A (ground) planning
problem is a tuple P = ⟨F,A, I,G⟩ where:

1. F is a set of Boolean fluents;
2. A is a set of actions, where each a ∈ A comes with:

(a) a precondition prea expressed as a formula over F ; and
(b) a set of effects effa of the form f := v where f ∈ F and

v ∈ {⊤,⊥};1

3. I : F → {⊤,⊥} is the initial state encoded as a total
assignment of truth values to fluents in F ;

4. G is the goal condition expressed as a formula over F .
We indicate withP the set of all possible planning problems.

1For the sake of simplicity, we assume that in every action there
is at most one effect for a fluent f .
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Definition 2 (Plan state). A state for a planning problem
P = ⟨F,A, I,G⟩ is a total assignment s : F → {⊤,⊥} of
values to fluents.
Definition 3 (Applicable action). Given a planning problem
P = ⟨F,A, I,G⟩, an action a ∈ A is applicable in state s if
the formula prea is satisfied by the assignment of s.
Definition 4 (Successor state). Given a planning problem
P = ⟨F,A, I,G⟩ and a state s, the successor a(s) of an
applicable action a ∈ A is a state such that:

a(s)(f) :=

{
v if f := v ∈ effa
s(f) otherwise

Definition 5 (Sequential plan). A sequential plan for a
planning problem P = ⟨F,A, I,G⟩ is a sequence of actions
π = ⟨a0, . . . , an−1⟩ where ai ∈ A. When denoting s0 = I
and si+1 = ai(si), we say π is valid if every ai is applicable
in si−1 and sn |= G.

Given a planning problem P = ⟨F,A, I,G⟩, we write
ΠP for the set of all valid plans. Note that there is no reason
for a plan in classical planning for visiting twice the same
state, as any such plan can be cut into a shorter one that does
not. For this reason, we assume w.l.o.g. all plans in ΠP to
be devoid of state loops.

Our counterfactual scenarios are based on the notion of
satisfaction of an LTLf formula (De Giacomo and Vardi
2013). LTLf is a propositional modal logic interpreted over
finite words. We consider here the standard syntax of LTLf
where a formula ψ is defined by the following grammar:

ψ := p | ¬ψ | ψ ∨ ψ | ψ ∧ ψ
| ⃝ψ | ∼⃝ψ | ψ U ψ | ♢ψ | □ψ

where p ∈ F with F being some finite set of propositions.
The semantics is defined as usual in the literature (we omit

the formal definition because of space concerns), where:
⃝ψ and ∼⃝ψ are the strong and weak tomorrow operators
which state the truth of ψ at the next state (only if it exists,
in the case of the weak operator); ψ1 U ψ2 is the until op-
erator stating that ψ2 will happen in the future and ψ1 holds
everywhere until then; ♢ψ and □ψ are the eventually and
globally operators, definable respectively as ♢ψ ≡ ⊤ U ψ
and □ψ ≡ ¬♢¬ψ, which mandates ψ to hold somewhere in
the future or always in the future.

We recall that the satisfiability and validity problems for
LTLf , i.e., deciding respectively whether there exists a word
satisfying a given formula or whether all words satisfy a
given formula, are both PSPACE-complete (De Giacomo
and Vardi 2013), which also happens to be the same com-
putational complexity of the plan existence problem in clas-
sical planning (Bylander 1994).

With a slight abuse of notation, we say that a plan π sat-
isfies an LTLf formula ψ if ⟨s0, s1, . . . , sn⟩ |= ψ, where the
si are defined as in Definition 5.

4 Abstract Counterfactual Scenarios
In this section, we introduce a general and abstract formu-
lation of our counterfactual scenarios which can be instan-
tiated into several different kind of explanations depending

on the case at hand. In Section 5 we instantiate the frame-
work considering some interesting concrete classes of coun-
terfactuals which then will be studied in Section 6 from a
computational complexity perspective.

In the following, let P denote the class of all the possible
planning problems as in Definition 1.
Definition 6 (Possible changes). A possible-change rela-
tion is a relation C ⊆ P× P.

Intuitively, a possible-change relation describes abstractly
which classes of changes are admitted. Then, a counterfac-
tual scenario can be defined as a planning problem that can
be obtained by a minimal sequence of admitted changes.
This notion is formally defined by introducing an abstract
transition system whose worlds are planning problems.
Definition 7 (Counterfactual transition system). Let P be a
classical planning problem, and let C be a possible-change
relation. A counterfactual transition system for P and C is
the transition system C(P,C) := ⟨P, P, C⟩ where:

1. P is the set of worlds of the transition system;
2. P is the initial world of the system.
3. C is the accessibility relation of the system;

A path γ in C(P,C) is a sequence of problems
⟨P0, P1, . . . , Pn⟩ where P0 = P and (Pi, Pi+1) ∈ C for
each i ∈ [0, n− 1]. The cost of a path is its length |γ|.

Given a planning problem P ′ and a possible-change re-
lation C, we denote as ΓC(P

′) all the paths ending in P ′

in C(P,C). We denote as ∆P
C(P

′) = minγ∈ΓC(P ′) |γ| the
minimum cost of reaching P ′.
Definition 8. Given a planning problem P = ⟨F,A, I,G⟩,
an LTLf formula ψ defined over the alphabet F and a
possible-change relation C, an existential counterfactual
scenario is a planning problem Ξ∃(P,ψ,C) such that:

Ξ∃(P,ψ,C) := argmin
P ′ ∈ P s.t.

∃π′ ∈ ΠP ′ s.t.
π′|=ψ

∆P
C(P

′)

Similarly, a universal counterfactual scenario is a planning
problem Ξ∀(P,ψ,C) such that:

Ξ∀(P,ψ,C) := argmin
P ′ ∈ P s.t.

ΠP ′ ̸= ∅ and
∀π′∈ΠP ′π′|=ψ

∆P
C(P

′)

Note that existential and universal counterfactuals might not
exist if there is no problem P ′ reachable in C(P,C) admit-
ting a valid plan that satisfies ψ.

Moreover, our definitions do not rule out the possibility
that a counterfactual scenario for a problem P is P itself.
However, this behaviour is unlikely to happen in practical
settings and depends on the type of counterfactual scenario
being sought. Typically, users of planning tools are inter-
ested in explaining a plan π after it has been generated by
a planner. When searching for an existential counterfactual
scenario, it is possible for Ξ∃(P,ψ,C) to be equal to P ,
because the planner might have picked a plan not satisfy-
ing ψ non-deterministically from the pool of existing plans.
However, if the user is interested in universal counterfactual
scenarios, then Ξ∀(P,ψ,C) for P cannot be P itself since
the existence of π would violate Definition 8.
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5 Concrete Classes of Counterfactuals
The definitions of existential and universal counterfactual
scenarios given in the previous section are intentionally
quite abstract and general, and in applications they need to
be instantiated over concrete classes of possible-change re-
lations. In this section, we describe three possible such in-
stantiations, which define as many different classes of coun-
terfactual scenarios that are interesting in practice. Then,
Section 6 will study the associated decision problems from
a complexity-theoretic standpoint. In particular, we focus on
counterfactuals where we allow changes in the initial state,
the goal conditions or the action preconditions. For the sake
of this paper, we exclude the possibility of modifying the
effects of actions for two reasons. First, for counterfactu-
als to be useful in practice, they need to be plausible: they
should represent scenarios that could realistically occur or
be implemented, rather than propose unachievable changes
to an action’s effects (e.g., proposing the complete removal
of all resource consumption following the execution of an
action, which might be practically impossible). Second,
from a technical standpoint, one needs to be very careful
when choosing which effects are allowed to be changed to
avoid constructing trivial counterfactuals (e.g., achieving the
goal from the first action by adding a goal state itself goal
as an effect). Nonetheless, the framework introduced in the
previous section can easily accommodate the change of ef-
fects and one can describe the plausibility constraints in the
possible-change relation.

We start from the simplest instance of our framework,
where only changes to the initial state are allowed. To for-
malise this requirement, we define a possible-change rela-
tion that admits problems that differ for the initial state only.
Let F be a set of fluents, then:

Cinit :=

{
(P, P ′)

∣∣∣∣∣P = ⟨F,A, I,G⟩, P ′ = ⟨F,A, I ′, G⟩
I = I ′ except at most one fluent

}
Note that single edits can change the assignment of at

most one single fluent in the initial state, so the distance be-
tween two different initial states is the minimum number of
edits needed to change one into the other.

A slightly more involved definition arises when one wants
to admit changes to the goal conditions. In contrast to initial
states, goals are expressed as arbitrary Boolean formulas,
therefore a slight change may be more semantically relevant
than it appears. To capture this nuance, when comparing two
different goal conditions we count the number of differing
truth assignments of the conditions, and we only admit to
add or remove one truth assignment at a time, obtaining the
following definition:

Cgoal :=

{
(P, P ′)

∣∣∣∣∣P = ⟨F,A, I,G⟩, P ′ = ⟨F,A, I,G′⟩
#
[
(G ∧ ¬G′) ∨ (G′ ∧ ¬G)

]
= 1

}
where #[ϕ] is the number of truth assignments of ϕ.

Note that the definition of Cgoal considers both changes
that strengthen the goal condition, i.e., that remove goal

states, and those that weaken the condition, i.e., that add goal
states. However, note that, for existential counterfactuals,
strengthening the goal is never useful, because if a plan sat-
isfying ψ does not exist, removing goal states will not help.
Conversely, weakening the goal is always sufficient, because
adding a state reachable by a valid plan always costs less
than adding it and removing something else.

For universal counterfactuals, instead, weakening is never
useful, because if a plan not satisfying ψ exists, it cannot dis-
appear by adding goal states. However, note that strength-
ening the goal is not the only option in the universal case,
because a counterfactual may be found by considering an
entirely disjoint set of goal states.

A class of counterfactual scenarios that is apparently sim-
ilar to the latter is that obtained by admitting changes to
actions’ preconditions. In this case we define a possible-
change relation that admits only problems where the only
change is the precondition of a single action where a single
truth assignment has been added or removed.

Cact :=


(P, P ′)

∣∣∣∣∣∣∣∣∣∣∣∣

P = ⟨F,A, I,G⟩, P ′ = ⟨F,A′, I, G⟩
A \A′ = A′ \A = {a}

effa = effa′

#

[
∨
(prea ∧ ¬prea′)
(prea′ ∧ ¬prea)

]
= 1


Note that for this class of counterfactuals we can observe,

similarly to the previous case, that in the existential case
only weakening the preconditions make sense. Although
the definitions of Cgoal and Cact present many similarities,
shortly we will see in Section 6 that they are computationally
quite different.

Defining plausible scenarios. In concrete applications,
not all possible changes in either the initial state, the goal or
the action preconditions might be acceptable. For instance,
in Example 1, at(truck, depot) and at(truck,
butchery) cannot be both initially true, otherwise the
model would allow the truck to be in two locations at the
same time. Hence, one needs to impose additional plausi-
bility constraints to control which changes are allowed to
the planning problem. This can be easily achieved by lever-
aging the expressive power of LTLf . In the following, let
ϕinit, ϕact, ϕgoal denote three propositional formulae defin-
ing plausibility constraints for the initial state, action pre-
conditions and goal conditions respectively. To limit the
changes in Cinit , we simply conjoin the plausibility con-
straints (without temporal operators) in ϕinit with ψ; in this
way, we obviously constrain the possible initial states, be-
cause of the semantics of LTLf . For Cgoal , we conjoin the
formula ♢(∼⃝⊥ ∧ ϕgoal) into ψ. Essentially, we are forcing
ϕgoal to hold on all the final states of a plan (where ∼⃝⊥
holds). Finally, if we want to impose a propositional plau-
sibility constraint on the precondition of an action a, we as-
sume w.l.o.g. that there exists a fluent fa that is set to true by
the effects of action a and falsified by the effects of all the
other actions. Then, we add the formula □(⃝ fa → ϕact),
forcing the formula ϕact to hold in the state where action a
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Initial State Goals Action Preconditions
Cinit Cgoal Cact

Ξ∃ PSPACE-c. PSPACE-c. PSPACE-c.
Theorem 2 Theorem 3 Theorem 5

Ξ∀ PSPACE-c. PSPACE-c. ∈ NEXPNP

Theorem 2 Theorem 4 Theorem 6

Table 1: Overview of the computational complexity results.

has been applied. In all three cases above, imposing plausi-
bility constraints can be done by simply extending the for-
mula ψ without complicating the problem further. As such,
we do not need to explicitly consider plausibility constraints
in the theoretical analysis presented in the next section.

6 The Hardness of Finding Counterfactuals
In this section we study the computational complexity of
finding counterfactuals of the kinds introduced in Section 5.
We will see that the decision problem for most of them
surprisingly remains PSPACE-complete, which is the same
complexity as finding a plan in the first place. A complete
picture of the results is available in Table 1.

In our framework, the quality of plans is evaluated in
terms of the satisfaction of an LTLf formula ψ over the flu-
ents F . Therefore, we need a way to link the two worlds
of planning and LTLf . To this end, we can leverage a well-
known result stating that any classical planning problem can
be translated into a suitable LTLf formula that represents the
plans of the problem and the states visited by those plans.

Proposition 1 (Cialdea Mayer et al. (2007)). For any clas-
sical planning problem P = ⟨F,A, I,G⟩ there exist:

1. an LTLf formula [P ] over the alphabet A ∪ F such that
from any model of [P ] one can extract in polynomial time
a plan for P (not necessarily reaching the goal);

2. an LTLf formula [P ]G over the alphabet A∪F such that
from any model of [P ]G one can extract in polynomial
time a solution plan for P (i.e., reaching the goal);

The extraction in polynomial time is actually a simple
projection of the propositions from A in the model of the
LTLf formula: if proposition a is true at a given time point
it means action a is executed in that step. Similarly, the
propositions from F encode the states visited by the plan.

Since the counterfactual scenarios are minimal objects,
minimizing the number of edits, finding one is an optimiza-
tion problem. Therefore, as is customary in complexity the-
ory, our analysis is concerned with the decision problem as-
sociated with such an optimization problem.

Definition 9 (Counterfactual scenario existence problem).
LetC ⊆ P×P be a possible-change relation. The existential
counterfactual scenario existence problem under C, de-
noted CSEP∃(C), is the problem of deciding, given a plan-

ning problem P , an LTLf formula ψ, and a budget K ≥ 0,
whether Ξ∃(P,ψ,C) exists and ∆P

C(Ξ∃(P,ψ,C)) ≤ K.
The universal counterfactual scenario existence problem

under C, denoted CSEP∀(C), is defined similarly over
Ξ∀(P,ψ,C).

Our first result is that counterfactual scenario existence
problems are, in general, PSPACE-hard.
Theorem 1. Let F be a set of fluents and C ⊆ P × P be
a possible-change relation over F . Then, both CSEP∃(C)
and CSEP∀(C) are PSPACE-hard.

Proof. We go by reduction from the plan existence prob-
lem of classical planning which is known to be PSPACE-
complete (Bylander 1994). Given P = ⟨F,A, I,G⟩, it is
sufficient to ask for an existential or universal counterfac-
tual scenario for a trivial formula ψ := ⊤ and a cost K = 0.
The formula is trivially always satisfied, and the zero cost
ensure to be unable to make any change to P . Then, since
both the existential and the universal definitions require the
counterfactual to have at least a solution, the counterfactual
exists if and only if P has a solution in the first place.

Following Theorem 1, we can now focus specifically on
showing that the decision problems for most of our partic-
ular classes of counterfactual scenarios belong to PSPACE
and are therefore PSPACE-complete.

As in Section 5, we start from the class of counterfactuals
where only changes to the initial state are admitted.
Theorem 2. Both CSEP∃(Cinit ) and CSEP∀(Cinit) are
PSPACE-complete.

Proof. Let P = ⟨F,A, I,G⟩, ψ an LTLf formula, and let
K ≥ 0 be the cost. We proceed as follows. If K = 0, we
define I ′ = I . Otherwise, we loop through all the possible
alternative initial states I ′ which differs from I of at most K
fluents. In both cases, for all the considered I ′, we test the
satisfiability of ψ ∧ [P ]G, in the case of CSEP∃(Cinit ), or
the validity of [P ]G → ψ in the case of CSEP∀(Cinit ) (see
also Proposition 1). If we find any I ′ for which the test is
successful, we found an existential (or universal) counterfac-
tual, otherwise we reply negatively. Since satisfiability and
validity for LTLf is PSPACE-complete, and we only need
an additional polynomial number of bits to count all the pos-
sible exponential initial states I ′, the above procedure uses
polynomial space, so CSEP∃(Cinit ) and CSEP∀(Cinit ) are
PSPACE-complete.

Let us now consider counterfactuals where the goal condi-
tion can be edited. Here, the existential and universal coun-
terfactuals need to be addressed separately.
Theorem 3. CSEP∃(Cgoal) is PSPACE-complete.

Proof. In this class of counterfactuals, changing the goal
can be done by adding or removing truth assignments of the
goal condition. Recall that, as observed in Section 5, for the
existential counterfactuals, only weakening the goal makes
sense, i.e., adding truth assignments.

Let θ := ψ ∧ [P ] (see Proposition 1), and we test the
satisfiability of θ (which can be done in polynomial space,
as we recall). Then:
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Algorithm 1 Algorithm for CSEP∀(Cgoal)

Require: P = ⟨F,A, I,G⟩, ψ LTLf , K ≥ 0
1: counter← 0
2: for every truth assignment ν |= G do
3: if [P ]ν ∧ ¬ψ is satisfiable then
4: counter← counter + 1
5: end if
6: end for
7: if counter > K then
8: return false
9: else if counter = K then

10: return whether [P ]G ∧ ψ is satisfiable
11: else
12: return whether [P ] ∧ ψ is satisfiable
13: end if

1. if K = 0, and θ is satisfiable, P is an existential coun-
terfactual for itself of cost zero, so we reply positively;
otherwise, we reply negatively;

2. ifK > 0, and θ is satisfiable, then we extract the last state
s reached by the corresponding model of θ, and we define
P ′ = ⟨F,A, I,G′⟩ where G′ := G ∨ s; then we know
a plan for P ′ satisfying ψ exists; if θ is unsatisfiable, we
reply negatively.

All of the above can be done in polynomial space, therefore
CSEP∃(Cgoal) is PSPACE-complete.

The case of CSEP∀(Cgoal) is a bit more involved. Our
solution is shown in Algorithm 1. Intuitively, the algorithm
counts how many goal states are reachable by plans that do
not satisfy ψ (lines 2 to 6). This amount of goal states have
to be removed from the goal in any case, so we do not ac-
tually store them, we only count how many they are. Then,
if the amount is greater than the maximum allowed cost, we
reply negatively (line 7). Otherwise, we have to be careful.
The definition of universal counterfactual (Definition 8) for-
bids trivial solutions where the problem has no plans at all
(and hence trivially all their plans would satisfy ψ). So we
need to check whether there actually exists at least a plan
satisfying ψ. However, if we already reached the maximum
allowed cost (line 9), such a plan must reach the original
goal condition, because we do not have margin to add any-
thing within the cost, so return positively if and only if a plan
of the original problem exists that satisfies ψ (line 10). If in-
stead the amount of assignments to be removed is strictly
below the allowed cost (line 11), we have margin to ensure
the set of solution plans is not empty, so we reply positively
if and only if there is a plan reaching any goal state while
satisfying ψ (line 12). Let us now prove formally the sound-
ness of Algorithm 1.

Theorem 4. CSEP∀(Cgoal) is PSPACE-complete.

Proof. We want to prove that Algorithm 1 returns true if
and only if there exists a universal counterfactual scenario
Ξ∀(P,ψ,Cgoal) of cost less than or equal to K. So sup-
pose that the latter is the case and let Ξ∀(P,ψ,Cgoal) =
⟨F,A, I,G′⟩. In this proof, with some abuse of notation, we

will denote as G and G′ the set of goal states that satisfy the
G and G′ formulas. As one can easily go from one repre-
sentation to the other, this should not cause any ambiguity.

Let us now define as S ⊆ G the subset of goal states
reached by any plan of P that does not satisfy ψ. Note that
such goal states must in any case be removed from G so
the cost of Ξ∀(P,ψ,Cgoal) is at least |S|. Since the cost of
Ξ∀(P,ψ,Cgoal) stays within K we know |S| ≤ K, other-
wise we would need to overflow the cost to edit G to G′.
Therefore the counter variable at the end of the for loop in
Algorithm 1 must be less than or equal toK so the algorithm
does not reply false in Line 8. So now we have two cases:

1. if |S| = K, we know G′ = G \ S, because we can only
afford to remove S and not to edit G in any other way.
Now, since Ξ∀(P,ψ,Cgoal) is a universal counterfactual
and by definition it has at least one plan satisfying ψ, the
check at Line 10 returns true.

2. If |S| < K, then G′ = G \ S ∪ S′ where S′ is some
set of goal states that G′ adds with regards to G. Then,
since Ξ∀(P,ψ,Cgoal) is a universal counterfactual and by
definition it has at least one plan satisfying ψ, the check
at Line 12 returns true.

Vice versa, suppose Algorithm 1 returns true. We build
a set G′ of goal states that will define the counterfactual
Ξ∀(P,ψ,Cgoal) = ⟨F,A, I,G′⟩. Let S ⊆ G be the sub-
set of goal states reached by any plan of P that does not
satisfy ψ. Its size |S| is the value the variable counter holds
at line 6. Since we return true we know |S| ≤ K, so we
have two cases:

1. we return true at line 10, hence |S| = K and [P ]G ∧ ψ is
satisfiable. So we set G′ = G \S to build our counterfac-
tual: any plan reaching a goal state in G′ must satisfy ψ
(because it does not satisfy ¬ψ), and we know the set of
plans is not empty because [P ]G ∧ ψ is satisfiable.

2. We return true at line 12, hence |S| < K and [P ] ∧ ψ
is satisfiable. So there exists a plan of P (not necessarily
reaching G, see Proposition 1) that satisfies ψ. Let s be
the goal state reached by such a plan. We setG′ = G\S∪
{s} to build our counterfactual: in this way we ensure the
set of plans satisfying ψ is not empty, and we stay below
the cost K.

Let us now focus on the last class of counterfactuals con-
sidered in Section 5, namely those where actions’ precondi-
tions are allowed to change. As we will see, even though the
existential counterfactuals are again relatively easy to find
(i.e., still in polynomial space), universal counterfactuals
may be more involved. We start with the easier case, which
nevertheless requires some additional background. Given a
finite set of propositions F , let ω : F → N be a weighting
function for F . Then, given an LTLf formula over F , one
may ask for a word of minimum weight, where the weight of
a word is the sum of the weights of all the propositions true
in any time step. Then, the following is known:

Proposition 2 (Dodaro, Fionda, and Greco (2022)). Decid-
ing whether an LTLf formula has a model of weight at most
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k is PSPACE-complete. A minimal model can be produced
in polynomial space as well.

The above proposition is at the core of the following so-
lution for CSEP∃(Cact).

Theorem 5. CSEP∃(Cact) is PSPACE-complete.

Proof. Let P = ⟨F,A, I,G⟩ be a planning problem, ψ an
LTLf formula, and K ≥ 0. Recall from an observation in
Section 5 that it only makes sense to look for counterfactuals
that weaken the precondition of some actions. We proceed
as follows. We define Arelax as a set of actions equal to
A except that each action has its precondition set to true.
Then, we let Prelax = ⟨F,A ∪ Arelax , I, G⟩, and we define
a weighting function ω such that ω(a) = 0 for all a ∈ A and
ω(a) = 1 for all a ∈ Arelax . Then, we consider the formula
θ := [Prelax ]G ∧ ψ, and look for a model of minimal weight
according to ω. Recall from Section 3 that this can be done
in polynomial space. Then, we return true if and only if θ is
satisfiable and the minimal model has weight at most K.

To see that the above procedure is correct, suppose on one
hand that θ is indeed satisfiable with a minimal model of
weight L ≤ K. We can extract each occurrence of an action
a from Arelax in the model, and define as Sa the set of all
the states the action a was applied to in the model. We then
define our counterfactual Ξ∃(P,ψ,Cact) = ⟨F,A′, I, G⟩
whereA′ is defined asA except that the precondition of each
a ∈ A is disjuncted with all the states in Sa. Now, note that
this is an existential counterfactual because, by construction,
there is a plan of Ξ∃(P,ψ,Cact) satisfying ψ. It also has
cost L ≤ K, by the way we defined ω.

Vice versa, suppose a counterfactual Ξ∃(P,ψ,Cact) =
⟨F,A′, I, G⟩ exists with cost L ≤ K. Then, let Sa be the
set of states added to prea in A′. Let π be the plan that wit-
nesses the counterfactual, i.e., a plan that satisfies ψ. We can
assume w.l.o.g. that π visits all the states in Sa at least once,
otherwise there would be a counterfactual of lower cost built
by not adding the non-visited state to prea. Then, we can
construct a model of θ of minimum weight by setting propo-
sition arelax or a to true respectively each time an action a
is applied in π to a state s ∈ Sa or s ̸∈ Sa. Since each usage
of an arelax has cost 1, the cost of the model is L ≤ K.

The complexity of CSEP∀(Cact) concludes this section.
However, this case is more involved. To proceed, let us re-
call a standard ingredient of complexity theory. Oracle ma-
chines are a standard tool (see e.g., Arora and Barak (2009))
for the study of the relationship between complexity classes.
An Oracle machine is a Turing machine with an associated
oracle language O. At any time, the machine can query
whether s ∈ O for some string s and get the answer in con-
stant time. When we study the computational complexity of
a problem, by counting the oracle computation as a single
computation step we isolate the main algorithm solving the
problem from its sub-problems, clarifying the relationship
between them.

What we can show here is that CSEP∀(Cact) belongs to
the class NEXPNP, which is the class of problems solvable in
nondeterministic exponential time when given access to an
oracle for an NP problem. This class is also often denoted

as ΣEXP2 , referring to its second place in the exponential
hierarchy. Note that NEXP ⊆ NEXPNP ⊆ EXPSPACE but
it is not known whether NEXP = NEXPNP unless P = NP.

In our case, the NP problem to be used as oracle is
SAT, i.e., propositional satisfiability, the prototypical NP-
complete problem. We use a call to a SAT oracle to test
bounded LTLf satisfiability, i.e., satisfiability of an LTLf
formula restricted to models of bounded length. Many ap-
proaches exist in literature to solve LTL and LTLf satisfia-
bility (or equivalently model checking) through an iteration
of SAT queries (Clarke et al. 2001; Geatti et al. 2024). In
particular, we can state the following.

Proposition 3 (Geatti et al. (2024)). Given an LTLf formula
ψ and a bound B > 0, in time polynomial in B and in the
size ofψ one can produce a propositional formula enc(ψ,B)
such that enc(ψ,B) is satisfiable if and only if ψ has a model
of length at most B.

With Proposition 3 in place we can proceed.

Theorem 6. CSEP∀(Cact) belongs to NEXPNP.

Proof. The solution is shown in Algorithm 2. Follow-
ing the definition of universal counterfactual, we non-
deterministically guess a number of actions to be edited and
the states to be added or removed and we build a candidate
counterfactual P ′. Then we need to check first if the prob-
lem has any solution plan at all, and then if all its solution
plans satisfy ψ. For both checks we invoke the NP oracle,
whose calls are underlined in Algorithm 2:

1. the first check tests the satisfiability of enc([P ′]G, 2
|F |),

which by Proposition 3 corresponds to testing the satisfi-
ability of [P ′]G over models of length at most 2|F |. We
know this bound is sufficient because solution plans of
classical planning problems do not have any reason to
visit the same state twice, and after 2|F | steps we are sure
to find a repetition.

2. the second check tests the satisfiability of the formula
enc([P ′]G ∧ ¬ψ, 2|F |) which by Proposition 3 corre-
sponds to the satisfiability of [P ′]G ∧ ¬ψ over models of
length at most 2|F |, a bound that is chosen for the same
reason outlined above. Since we accept when [P ′]G ∧¬ψ
is not satisfiable this corresponds to checking the valid-
ity of [P ′]G → ψ, which corresponds to the fact that all
solution plans of P ′ satisfy ψ.

Theorem 6 shows that CSEP∀(Cact) has a NEXPNP up-
per bound, but a matching lower bound is still missing and
not trivial to prove. Theorem 1 shows that the class of
CSEP∃(C) and CSEP∀(C) problems have a PSPACE core
that cannot be avoided, made of the interconnection of two
PSPACE-complete problems, namely classical planning and
LTLf satisfiability. However, the possible-change relation
C can be arbitrarily complex. For the practically relevant
classes of counterfactuals that we chose to study, the com-
plexity has turned out to be relatively low, but theoretically
one may devise classes of possible-change relations that eas-
ily cause complexity to increase arbitrarily, as evidence of
the formal flexibility of our framework.
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Algorithm 2 Algorithm for CSEP∀(Cact)

Require: P = ⟨F,A, I,G⟩, ψ LTLf , K ≥ 0
1: for i← 1 to K do
2: guess action a and state s
3: guess add ∈ {true, false}
4: if add then
5: pre′a ← prea ∨ s
6: else
7: pre′a ← prea ∧ ¬s
8: end if
9: end for

10: if enc([P ′]G, 2
|F |) is satisfiable and

enc([P ′]G ∧ ¬ψ, 2|F |) is not satisfiable
11: then
12: accept
13: else
14: reject
15: end if

7 Discussion
This paper introduced counterfactual scenarios, a novel ex-
planation paradigm for automated planning problems. Dif-
ferently from existing proposals, our explanations identify
minimal modifications to a planning problem such that it
admits plans that comply with user-specified requirements,
here captured by means of LTLf formulae. Given that our
proposal is the first of its kind, in this paper we set to inves-
tigate the computational complexity of generating this type
of explanations and explored potential theoretical barriers to
our proposal. Our analysis revealed that computing coun-
terfactual scenarios is, in most cases, only as expensive as
solving planning problems. This somewhat surprising re-
sult suggests that, for a significant class of problems, the
additional step of identifying changes to a planning problem
necessary to achieve a desired outcome does not introduce a
prohibitive increase in complexity.

Our counterfactual scenarios are strongly related to the
literature on model repair. For instance, work by Lin and
Bercher addresses a setting where a flawed domain is re-
paired to fit a plan that serves as a witness (Lin and Bercher
2021; Lin and Bercher 2023), often accounting for a notion
of minimality of change (Lin et al. 2025). Although this
line of work bears some similarities to our proposal, here we
considered the more general problem of generating modifi-
cations that comply with an arbitrary LTLf formula, rather
than fixing existing domains based on specific plan exam-
ples. This is a major departure point, as our counterfac-
tual scenarios can accommodate complex behaviours cap-
tured by abstract and highly expressive LTLf formulae, and
are guaranteed to return modified domains where all (or at
least one) plans adhere to such behaviours. This profound
technical difference is also reflected in the divergent com-
putational complexities we obtained: most of our problems
are PSPACE-complete, while the setting considered by Lin
and Bercher typically yields NP-complete problems. An-
other critical difference between our work and model repair
is the inherent plausibility requirement. Our counterfactuals

are designed to generate actionable and plausible insights,
pointing to what would need to be changed in a planning do-
main for a given behaviour to be observed. As such, changes
suggested by our counterfactuals are not necessarily aimed
at fixing a flawed domain; rather, they must be plausible
(according to a domain-dependent notion of plausibility).
This crucial requirement motivated our initial choice of us-
ing LTLf formulae to capture plausibility and marks another
fundamental difference from work on model repair.

Our work fits within the broader scope of explainable
automated planning and introduces a novel explanation
paradigm that takes a fundamentally different approach than
both model reconciliation and contrastive explanations. Un-
like model reconciliation, our counterfactual scenarios do
not operate on the premise of reconciling a human’s mental
model with an agent’s. Our approach focuses on identifying
systematic modifications to a planning problem that would
enable or enforce specific properties on the resulting plans,
as captured by an LTLf formula. As such, our counterfactu-
als are prescriptive and prospective, answering the question
“How can I change the planning problem so that plans sat-
isfying a given property become possible?”. This marks a
crucial difference from contrastive explanations, which have
typically been defined to address the question: “Why did
the agent choose action A instead of action B in a plan?”.
Contrastive explanations are inherently local and retrospec-
tive, providing a justification for a specific choice made for
a given planning problem. Our explanations have a global
scope, identifying modifications that affect the entire plan-
ning problem space to enable or enforce a class of solutions
characterized by an LTLf formula. This is particularly ev-
ident in the universal setting, where there is a sharp con-
trast with the local and specific comparison inherent in con-
trastive explanations.

8 Future Work

The findings presented here have profound implications for
the practical application of our counterfactuals, suggesting
that existing planning algorithms could be leveraged to sup-
port the generation of counterfactual scenarios. Our future
work will focus on the development of efficient algorithms
for the generation of counterfactual scenarios. Our efforts
will initially concentrate on the classical planning setting
and the use of LTLf specifications as described in this paper.
Given the strong link with model repair, we believe it would
be interesting to investigate whether some of the algorith-
mic techniques developed in that space could be adapted to
compute counterfactual scenarios, particularly if plausibility
constraints could be integrated. Once a robust algorithmic
foundation is established for this setting, it would be inter-
esting to explore the generation of counterfactual scenarios
for different planning formalisms, such as those addressing
numeric domains, as well as considering alternative specifi-
cation languages over finite traces, such as CTL for proba-
bilistic systems (Baier and Katoen 2008).
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