
Cost-Optimal Delete-Free Classical Planning via Maximum Satisfiability

Masood Feyzbakhsh Rankooh , Andreas Niskanen , Matti Järvisalo
HIIT, Department of Computer Science, University of Helsinki, Finland
{masood.feyzbakhshrankooh,andreas.niskanen,matti.jarvisalo}@helsinki.fi

Abstract

We propose a maximum satisfiability (MaxSAT) based ap-
proach to cost-optimal delete-free planning, also known as
optimal relaxed planning. Relaxed planning is a central sub-
class of classical planning, consisting of computing the h+

heuristic for classical planning. As an alternative to the exist-
ing approaches to exactly computing h+, we propose a max-
imum satisfiability (MaxSAT) based approach, motivated by
the success of SAT-based planners and significant recent ad-
vances in MaxSAT solvers. Concretely, we both adapt a re-
cent answer set optimization approach to computing h+ for
MaxSAT, propose further MaxSAT encoding variants for both
representing cost-optimal plans and plan acyclicity, and com-
bine them for further runtime improvements. Overall, our
MaxSAT approach compares favourably to the current state-
of-the-art answer set optimization approach.

1 Introduction
Delete-free problems (Hoffmann 2005) constitute an impor-
tant class in classical planning (Ghallab, Nau, and Traverso
2016). Any classical planning problem with no negative pre-
conditions can be relaxed into a delete-free one by removing
negative effects of actions. Cost-optimal delete-free plan-
ning, i.e., computing the optimal cost h+ of a given delete-
free planning problem and an optimal plan witnessing the
value, has various motivations.

Firstly, various settings give naturally rise to inherently
delete-free planning problems, with e.g. join-order opti-
mization (Robinson, McIlraith, and Toman 2014) and the
minimal seed-set problem (Gefen and Brafman 2011) as
two examples. Secondly, iteratively solving and strengthen-
ing the delete-free relaxation of a planning problem (essen-
tially in the style of counterexample-guided abstraction re-
finement) allows for finding cost-optimal plans to the origi-
nal problem (Haslum 2012). Thirdly, as h+ is a lower bound
for the optimal cost of the non-relaxed problem, it is a quite
strong admissible planning heuristic. However, although
easier than cost-optimal classical planning in general, com-
puting h+ remains presumably hard to compute (Bylander
1994) and to approximate (Betz and Helmert 2009). In fact,
various polynomial-time computable admissible heuristics,
including hmax (Bonet and Geffner 1999), its cost-sharing
approximations (Mirkis and Domshlak 2007), and LM-
cut (Helmert and Domshlak 2009) providing lower bounds

for h+ have been introduced. Approaches to exactly de-
termining h+ fast enough for practical applications could
hence subsume such heuristics as more informative.

Various approaches to exactly computing h+ have been
proposed. These include early work on maximum sat-
isfiability (MaxSAT) (Zhang and Bacchus 2012) as well
as increasingly effective integer linear programming for-
mulations approaches (Imai and Fukunaga 2015), the use
of Boolean satisfiability (SAT) (Rankooh and Rintanen
2022b) solvers, and most recently answer set programming
(ASP) (Rankooh and Janhunen 2023). The use of sym-
bolic techniques such as (Max)SAT and ASP is in particu-
larly motivated by the success of SAT-based planners (Kautz
and Selman 1999; Rintanen, Heljanko, and Niemelä 2006;
Suda 2014), as classical planning tasks allow for natural
propositional representations.

Two key considerations for declarative encodings of
delete-free planning and thereby computing h+ are (i) how
cost-optimality is represented and (ii) how acyclicity of
plans as a central underlying constraint in the problem is en-
forced. The recent ASP-based approach (Rankooh and Jan-
hunen 2023), and in particular the so-called diagnostic en-
coding of cost-optimal relaxed plans as answer set optimiza-
tion using a vertex elimination encoding of plan acyclic-
ity (Rankooh and Rintanen 2022c), is the current state-
of-the-art approach to computing h+: this ASP-based ap-
proach was shown to outperform the earlier state-of-the-art
approach implementing similar ideas via integer linear pro-
gramming (Rankooh and Rintanen 2022a) which was ear-
lier shown to outperform an approach based on employing
a SAT solver iteratively in a way that allows for reasoning
about cost-optimality.

In this work, we harness recent advances in
MaxSAT (Bacchus, Järvisalo, and Martins 2021) for
cost-optimal delete-free planning. While MaxSAT has been
employed for delete-free planning (Zhang and Bacchus
2012), predating the recent advances in ILP and ASP-based
computation of h+ as well as many more recent advances in
MaxSAT solving, we go beyond (Zhang and Bacchus 2012)
where a simpler encoding and a more straightforward cycle
prevention approach was proposed by developing more
compact encodings and by employing modern MaxSAT
solvers. Indeed, with significant recent advances in various
types of increasingly efficient MaxSAT solvers (Bacchus,

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

783

Järvisalo, and Martins 2021), employing MaxSAT allows
for studying the suitability of a range of search techniques
for computing h+, whereas the choice of ASP solvers
remains today more limited.

In terms of problem encodings, we contribute to both the
choice of encodings of cost-optimality and the choice of
how plan acyclicity is enforced. In terms of the former,
we firstly consider a MaxSAT formulation of the diagno-
sis ASP encoding, and argue that the bijective relation be-
tween cost-optimal plans and supported models of the di-
agnostic ASP encoding transfers also to classical models
under an analogous MaxSAT encoding because the diag-
nostic ASP encoding essentially does not lean in any par-
ticular way on answer set semantics. Building on the ear-
lier SAT-based approach (Rankooh and Rintanen 2022b),
we also consider a so-called proposition-based variant of
the diagnostic MaxSAT encoding, which allows for achiev-
ing a more compact encoding of the objective function and
thereby smaller and worst-case fewer unsatisfiable cores in
the MaxSAT instances arising from the encoding. This im-
pact of unsatisfiable cores is in particular interesting as the
dominant algorithmic approaches implemented in modern
MaxSAT solvers are based on iteratively extracting unsat-
isfiable cores which are iteratively relaxed away towards
optimal solutions—specifically, more compact unsatisfiable
cores are intuitively beneficial for faster termination. In
terms of enforcing plan acyclicity, we propose a novel cy-
cle elimination encoding as an alternative to the so-far state-
of-the-art vertex elimination encoding. We evaluate state-
of-the-art MaxSAT solvers on he MaxSAT encodings both
individually as well as their combinations on standard clas-
sical planning problems against the current state-of-the-art
ASP-based approach. Our MaxSAT approach compares
favourably to the ASP-based approach, and we show that
further performance improvements are obtained using com-
binations for the MaxSAT encodings and by tuning unsatis-
fiability core extraction.

2 Preliminaries
We briefly recall necessary background.

2.1 Classical Planning and Relaxed Plans
A typical STRIPS planning problem is represented as a five-
tuple Π = ⟨X, I,A,G, cost⟩, where X is a finite set of
Boolean state variables (atomic propositions), I ⊆ X repre-
sents the initial state, G ⊆ X denotes the set of goal condi-
tions, and A is a finite set of actions. Each action a ∈ A is
described by the triple a = ⟨pre(a), add(a), del(a)⟩, where
pre(a), add(a), and del(a) are subsets of X specifying the
preconditions, positive effects, and negative effects, respec-
tively. The function cost : A → N0 assigns a non-negative
cost to each action.

A state is modeled as a subset of X . The successor
state s′ resulting from executing an action a in a state
s, denoted also by execa(s), is defined as s′ = (s \
del(a)) ∪ add(a), only if pre(a) ⊆ s. A sequence of ac-
tions (a plan) π = ⟨a1, a2, . . . , an⟩ is executable from s if
execan

(· · · execa2
(execa1

(s)) · · ·) is defined. The plan π is

a solution for Π if executing it on the initial state I yields
a state in which every g ∈ G holds. Its cost is the sum of
the individual action costs, and an optimal plan minimizes
this total cost. The delete relaxation of Π, denoted Π+, is
formed by replacing, for each action a ∈ A, the delete list
del(a) with the empty set. A plan for Π+ is called a relaxed
plan for Π, and its minimal cost is denoted by h+(Π) (with
h+(Π) =∞ if no relaxed plan exists).
Example 1 (Blocksworld Domain). The blocksworld do-
main is a classical planning benchmark in which a robot
arm can move blocks between a table and other blocks, with
the goal of reaching a desired stacking configuration. There
are three primitive action schemas:

• move-b-b(A,B,C): pick up block A from the top of
block B and place it onto the top of block C.
– pre(move-b-b(A,B,C)) =
{on(A,B), clear(A), clear(C)}

– add(move-b-b(A,B,C)) = {on(A,C), clear(B)}
– del(move-b-b(A,B,C)) = {on(A,B), clear(C)}

• move-b-t(A,B): pick up block A from the top of block
B and place it onto the table.
– pre(move-b-t(A,B)) = {on(A,B), clear(A)}
– add(move-b-t(A,B)) = {onTable(A), clear(B)}
– del(move-b-t(A,B)) = {on(A,B)}

• move-t-b(A,B): pick up block A from the table and
place it onto the top of block B.
– pre(move-t-b(A,B)) =
{onTable(A), clear(A), clear(B)}

– add(move-t-b(A,B)) = {on(A,B)}
– del(move-t-b(A,B)) = {onTable(A), clear(B)}
In this example problem, we have three blocks A, B, and

C. Initially, block A is on the table, block B is on block
A, and block C is on block B. Formally, the initial state
is I = {onTable(A), on(B,A), on(C,B), clear(C)}. The
goal is to stack block A on block C while retaining block C
on block B. Formally, G = {on(A,C), on(C,B)}.

The optimal valid plan with cost 4
is ⟨move-b-t(C,B),move-b-t(B,A),
move-t-b(C,B),move-t-b(A,C)⟩. An op-
timal relaxed plan (ignoring delete effects) is
⟨move-b-t(C,B),move-b-t(B,A),move-t-b(A,C)⟩
with cost 3, since the delete effect of on(C,B) by
move-b-t(C,B) is ignored in the relaxation.

2.2 Maximum Satisfiability (MaxSAT)
For a Boolean variable x there are two literals, x and ¬x. A
clause C is a disjunction (∨) of literals. A CNF formula F
is a conjunction (∧) of clauses. We denote by V (F) vari-
ables of F . An assignment τ : V (F) → {0, 1} maps vari-
ables to 0 (false) or 1 (true), and extending to literals via
τ(¬x) = 1 − τ(x), to clauses via τ(C) = max{τ(l) | l ∈
C}, and to formulas via τ(F) = min{τ(C) | C ∈ F}. The
Boolean satisfiability problem (SAT) (Biere et al. 2021) asks
if a given formula F is satisfiable, i.e., is there an assignment
τ with τ(F) = 1, i.e., a model of F ; if not, F is unsatis-
fiable. In (weighted partial) MaxSAT (Bacchus, Järvisalo,

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

784

and Martins 2021) the input consists of “hard” clauses Fhard,
“soft” clauses Fsoft, and a weight function w mapping each
soft clause C ∈ Fsoft to an integer w(C) ≥ 0. The task is
to find an assignment τ which satisfies Fhard and minimizes
cost c(τ) =

∑
C∈Fsoft

w(C)(1 − τ(C)) incurred by not sat-
isfying soft clauses.

Central to MaxSAT solving are unsatisfiable cores (Bac-
chus, Järvisalo, and Martins 2021). For a MaxSAT instance
(Fhard, Fsoft, w), a subset κ ⊆ Fsoft is a core for the instance
if Fhard ∧ κ is unsatisfiable. In the encodings we present,
the soft clauses will be unit clauses (i.e., consist of a single
literal) encoding a linear objective function; hence cores are
essentially clauses over subsets of objective literals. A core
κ is minimal, i.e., a minimal unsatisfiable subset (MUS), if
Fhard ∧ κ′ is satisfiable for each κ′ ⊂ κ.

2.3 Answer Set Programming (ASP)

ASP (Gelfond and Lifschitz 1988; Niemelä 1999) is a
declarative paradigm for solving search problems via logic
programs. In our context, a logic program consists of rules
that can be expressed in one of the following forms:

a ← b1, . . . , bn, not c1, . . . , not cm, (1)

{a} ← b1, . . . , bn, not c1, . . . , not cm. (2)

Here a, b1, . . . , bn, and c1, . . . , cm are propositional atoms,
and not represents default negation. Equation (1) is re-
ferred to as a normal rule, while Equation (2) is a choice
rule. For a rule r, we denote by body+(r) the set of atoms
appearing positively, and by body−(r) the set of atoms oc-
curring under negation. A rule is positive if body−(r) = ∅.

The signature of a program P , denoted At(P), is the set
of all atoms that occur in P . Its positive dependency graph,
DG+(P), is the directed graph whose nodes are the atoms in
At(P) and where there is an edge from an atom b to an atom
a if there exists a rule r in P with head a and b ∈ body+(r).

An interpretation is a subset I ⊆ At(P); the atoms in
I are assigned the truth value true, while those not in I
are false. An interpretation satisfies a normal rule if, in
the case that all literals in the body are true, the head is also
true. Any interpretation satisfies a choice rule uncondition-
ally. A (classical) model of a program is an interpretation
that satisfies every rule in P . Every positive normal pro-
gram, in which rules contain no negative body literals, has
a unique least model, denoted by LM(P), which is the in-
tersection of all its models. Given an interpretation I , the
Gelfond–Lifschitz reduct of a rule r, denoted rI , is obtained
by removing the negative literals; if any atom in body−(r)
is in I , then rI is discarded. If r is a choice rule, rI is also
discarded if its head is not in I . The reduct of a program P ,
written P I , is the set of all such reducts. An interpretation
I is a stable model if it satisfies I = LM(P I). Finally, an
interpretation is said to be supported if it consists exactly of
the heads of those rules whose bodies are satisfied; note that
while every stable model is supported, the converse is not
necessarily true.

1

2

3

4

5

6

(a) An example graph

1

2

3

4

5

6

(b) Vertex elimination graph
1

2

3

4

5

6

(c) Transitive closure graph

1

2

3

4

5

6

(d) Cycle elimination graph

Figure 1: Comparison of acyclicity encodings

2.4 Vertex Elimination Graphs

To encode acyclicity constraints effectively—as also em-
ployed in the recent ASP-based approach to cost-optimal
delete-free planning—we employ the concept of vertex
elimination graphs (Rose and Tarjan 1975). Let G = ⟨V,E⟩
be a directed graph, where V is the set of vertices and E
is the set of directed edges. An ordering of the vertices is
given by a bijection α : {1, . . . , n} → V . For each ver-
tex v ∈ V , the fill-in of v is defined as F (v) = {⟨x, y⟩ |
⟨x, v⟩ ∈ E, ⟨v, y⟩ ∈ E, x ̸= y}. The elimination of v
from G is performed by removing v and adding its fill-in,
yielding the graph G(v) = ⟨V \ {v}, E(v) ∪ F (v)⟩, where
E(v) = {⟨x, y⟩ ∈ E | x ̸= v and y ̸= v}.

Given an ordering α, the vertex elimination process pro-
duces a sequence G = G0, G1, . . . , Gn−1, where for each
i = 1, . . . , n− 1, the graph Gi is the α(i)-elimination graph
of Gi−1. The cumulative fill-in with respect to α is defined
as Fα(G) =

⋃n−1
i=1 Fi−1(α(i)), with Fi−1(α(i)) denoting

the fill-in computed in Gi−1 for vertex α(i). Finally, the
vertex elimination graph corresponding to the ordering α is
given by G∗

α = ⟨V, E ∪ Fα(G)⟩. A key property of this
construction is that if the original graph G contains a cycle,
then for any ordering α, the graph G∗

α will contain a cycle of
length two. This property is exploited to enforce acyclicity
in our encoding.

Example 2. Consider the cyclic graph presented in Fig-
ure 1a. Assume that elimination order is 2, 4, 6, 3, 5, 1. The
vertex elimination graph, produced by eliminating vertices
in this order is depicted in Figure 1b. The vertex elimination
graph has the cycle 1, 5, 1 of length 2.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

785

3 From ASP to MaxSAT Encoding of h+

In this section, we review the relaxed-planning heuristic h+

as an answer set program whose supported models corre-
spond exactly to relaxed plans. We begin by revisiting the
diagnostic encoding of h+ (Rankooh and Janhunen 2023)
which inverts the usual causal propagation and performs a
backward “diagnosis” from goal atoms to the actions that
support them. While it is already established that supported
models of such an encoding represent relaxed plans, we
demonstrate here that its classical models also admit a one-
to-one correspondence with valid relaxed plans. After pre-
senting the core rules of the diagnostic encoding and their
MaxSAT-equivalent clauses, we enforce acyclicity via the
vertex elimination method to eliminate invalid cyclic plans.

Although the SAT encoding of Rankooh and Rintanen
(2022b) may seem like a natural starting point for a MaxSAT
formulation, we deliberately base our encoding on the ASP-
based formulation of Rankooh and Janhunen (2023). While
both approaches share key mechanisms, such as vertex elim-
ination for enforcing acyclicity, they differ significantly in
motivation and formal underpinnings. The ASP encoding
builds on supported-model semantics and uses rule-based
ASP constructs, whereas the SAT formulation directly en-
codes the causal relaxed plan representation in proposi-
tional logic. Consequently, several distinctions emerge:
(1) some bidirectional implications in the SAT encoding be-
come single-directional in the ASP encoding and our for-
mulation, (2) the mutual exclusion constraint in the SAT
encoding is absent in the ASP encoding and our version,
as it is only necessary when minimizing proposition costs
rather than action costs, and (3) auxiliary variables used in
the SAT encoding’s acyclicity constraints are omitted in the
ASP encoding and in ours. Moreover, the ASP encoding of
Rankooh and Janhunen is more recent, reflects current state-
of-the-art in h+ computation, and—as reported later on—in
our experiments led to more efficient solving than adapting
the SAT encoding of Rankooh and Rintanen (2022b).

3.1 The Diagnostic Encoding
For the sake of simplicity, and without loss of generality,
assume that for any given relaxed planning problem, the
atoms in the initial state have always been removed from
preconditions and effects of all actions, and also from the
goal. Following the diagnostic encoding of relaxed planning
in (Rankooh and Janhunen 2023), given a relaxed planning
problem Π+ = ⟨X, ∅, A,G, cost⟩, the encoding Pd consists
of the following rules, where X is the set of atomic proposi-
tions, A the set of actions, and G ⊆ X the goals:

{ p}, p ∈ X, (3)
{ws(a, p)} ← p, p ∈ add(a), (4)

f ← p, notws(a1, p), . . . , notws(am, p), not f,

{a1, . . . , am} = {a | p ∈ add(a)}, (5)
dep(p, q)← ws(a, p), q ∈ pre(a), (6)

a← ws(a, p), p ∈ add(a), (7)
q ← a, q ∈ pre(a), (8)
g ← not g, g ∈ G. (9)

These rules allow any atom p to be assumed true (rule 3),
enforce that each true atom is provided by at least one well-
supporting action (rules 4–5), propagate support from ac-
tions back to their preconditions (rules 6 and 8), link each
well-support atom back to its action so that action costs can
be minimized (rule 7), and force every goal g to hold (rule 9).
Note that the symbol f of rule 5 is an auxiliary atom used to
ensure contradiction in the case that the body is true.

This encoding has been called “diagnostic” because it in-
verts the causal inference used in earlier encodings: rather
than propagating information from preconditions to depen-
dencies, from dependencies to well-support atoms, and from
well-support atoms to effects, it performs a backward anal-
ysis from effects through well-supports to dependencies and
then to preconditions (Rankooh and Janhunen 2023). By
viewing each achieved atom as an observation to be ex-
plained, the diagnostic encoding identifies supporting ac-
tions and traces their preconditions in reverse, thereby “diag-
nosing” which actions must have occurred to produce the de-
sired effects. This reversal of direction aligns with classical
notions of diagnostic reasoning in logic-based systems (Rus-
sell and Norvig 2010).

Let us define “acyclic models” as those models in which
the directed graph formed by the atoms dep(p, q) is acyclic.
It has been shown by Rankooh and Janhunen (2023) that
the diagnostic encoding admits an acyclic supported model
exactly when there exists a relaxed plan: every subset of
actions that can be ordered into a valid relaxed plan cor-
responds to an acyclic supported model in which precisely
those action atoms are true, and conversely every acyclic
supported model identifies a valid relaxed plan. This one-to-
one correspondence ensures that searching for acyclic sup-
ported models of the diagnostic program is equivalent to
enumerating all relaxed plans of the original planning task.

To guarantee that all produced models are acyclic, the
encoding adds two auxiliary rules that (i) simulate the ver-
tex elimination process given an elimination order α, and
(ii) forbid any cycle of length two:

dep(p, q) ← dep
(
p, α(i)

)
, dep

(
α(i), q

)
,

⟨p, q⟩ ∈ Fi−1(α(i)). (10)
f ← dep(p, q), dep(q, p), not f. (11)

We demonstrate with an example why guaranteeing acyclic-
ity in the produced models is essential for finding valid re-
laxed plans.
Example 3 (Cyclic Diagnostic Model). Consider the
Blocksworld problem of Example 1. Note that after
removing the atoms in the initial state from the goal,
the new goal becomes G = {on(A,C)}. Allowing
cyclic models in the diagnostic encoding admits the plan
⟨move-b-t(A,C), move-t-b(A,C)⟩, of cost 2, which
induces a cycle of length two between on(A,C) and
clear(A). A corresponding supported model in Pd contains
exactly
• Propositions: on(A,C), clear(A)

• Action atoms: move-b-t(A,C), move-t-b(A,C)

• Well-support atoms: ws(move-b-t(A,C), clear(A)),
ws(move-t-b(A,C), on(A,C))

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

786

• Dependency atoms: dep(clear(A), on(A,C)),
dep(on(A,C), clear(A))

However, it should be easy to check that if one only
considers acyclic models, the valid relaxed plan
⟨move-b-t(C,B),move-b-t(B,A),move-t-b(A,C)⟩
can be produced.

3.2 Equivalent MaxSAT Encoding
To obtain a MaxSAT encoding that faithfully mirrors the
supported-model semantics of Pd , one could apply Clark’s
completion (Clark 1977) to the logic program before trans-
lating it into CNF, enforcing that each predicate holds if and
only if at least one of its defining rule bodies is satisfied,
thereby eliminating unsupported classical models. However,
we show that the bijection in the case of supported models
also holds under the classical-model semantics of Pd : each
subset of actions admitting an ordering into a relaxed plan
induces an acyclic classical model in which precisely those
action atoms are true, and conversely every acyclic classical
model corresponds to a valid relaxed plan. This latter bijec-
tion means that Pd can readily be translated into MaxSAT
in a straightforward manner to produce a MaxSAT encoding
of h+ computation.

Theorem 1. Let A′ ⊆ A. There is a permutation π of the
actions in A′ that is a relaxed plan for Π iff Pd admits a
classical modelM with A′ = {a ∈ A | M |= a}.

Proof. (⇒) This direction is trivial, as every supported
model of Pd is also a classical model of it.

(⇐) Let M be a classical model of Pd . Rules (10) and
(11) guarantee that M is acyclic, and thus, X can be or-
dered by topological sorting. Let α be such an order. Let
A′ = { a ∈ A | M |= a}. We order all mem-
bers of A′ based on the maximum index of their precondi-
tions in α breaking ties arbitrarily, and produce the sequence
π = a1, ..., am. We show that π is a relaxed plan for Π. By
rules (5) and (9) all goals are produced by some action. By
rules (5), (7), and (8), preconditions of actions must be pro-
duced by some other actions. We only need to show that
preconditions of actions are provided when applying them.
Assume the contrary: for some i, there exists a precondition
p of ai not produced by aj for j < i. Then there exists
some k > i such thatM |= ws(ak, p). Assume that q is the
precondition of ak with maximum index according α. By
rule (6), p must have a larger index than q according to α
resulting in k < i, a contradiction.

In order to translate the diagnostic ASP encoding to CNF,
each normal rule is translated into an equivalent CNF clause.
Since the choice rule { p} p ∈ X yields the tautological
clause ¬p ∨ p, it does not impose any restriction and is thus
omitted. A similar argument is valid for the case of for-
mula (4). We also use the symmetry-reduced variables

e∗p,q =

{
dep(p, q) if p ≤ q,

¬ dep(q, p) if p > q.

By representing each unordered pair {p, q} with a single
variable e∗p,q the total number of dependency variables can

drop from |X|2 to |X|(|X|+ 1)/2. This method introduces
new orders to enforce a total order on members of X . How-
ever, since the sole purpose of orders in our encoding is to
prevent acyclicity, new orders can indeed be introduced as
long as they do not conflict with the original partial order.
Besides these modifications, the CNF clauses correspond di-
rectly to rules (5) – (9) in the logic program

¬p ∨
∨

a: p∈add(a)

ws(a, p), p ∈ X (12)

¬ws(a, p) ∨ e∗p,q, p ∈ add(a), q ∈ pre(a), a ∈ A (13)

¬ws(a, p) ∨ a, p ∈ add(a), a ∈ A (14)
¬a ∨ q, q ∈ pre(a), a ∈ A (15)
g, g ∈ G (16)

3.3 CNF Encoding of Acyclicity
Let ϕ be a propositional formula such that some atoms in it
represent edges of some directed graph G = (V,E). Here,
we call G the induced graph of ϕ and assume that e∗p,q in ϕ
represents the edge ⟨p, q⟩ in G. For any modelM of ϕ, we
define the induced graph of M as GM = (V,EM), such
that EM = {⟨p, q⟩|e∗p,q ∈ M}. We say that M is acyclic
if GM is acyclic. Our goal is to find ϕacyc such that ϕacyc

encodes the acyclicity of ϕ, i. e., M |= ϕ ∧ ϕacyc if and
only ifM is an acyclic model of ϕ.

To enforce acyclicity in the MaxSAT encoding, since we
use the symmetry-reduced variables, it suffices to include a
single family of clauses capturing the fill-in closure:

¬e∗p,α(i) ∨ ¬e
∗
α(i),q ∨ e∗p,q, ⟨p, q⟩ ∈ Fi−1(α(i)). (17)

These clauses implement the fill-in step of the vertex-
elimination process for each eliminated vertex α(i): when-
ever the dependencies p → α(i) and α(i) → q hold, it
forces the new “fill-in” dependency p→q. Conjoining these
clauses for all i simulates the entire vertex elimination pro-
cess and thus guarantees acyclicity without needing a sepa-
rate two-cycle prohibition.

3.4 Encoding the Objective Function
Each action a ∈ A is represented by a soft clause ¬a, so that
minimizing the total weight of violated soft clauses corre-
sponds directly to minimizing the cost of actions in the plan.
This “action-based” objective thus uses one soft clause per
action and can be rather large.

4 An Alternative Objective Representation
As an alternative to having action variables as soft clauses
to encoding the objective function, we propose an objective
representation which, by using extra clauses, often results in
a smaller number of soft clauses as well as smaller MUSes.

Concretely, we introduce for each proposition p ∈ X
and each cost c of actions that add p, a Boolean variable
cost(p, c), and use ¬ cost(p, c) as our soft clauses instead
of ¬a. In most planning problems |X| ≪ |A|. For ex-
ample, in the Blocksworld domain of Example 1 with n
blocks there are O(n3) actions but only O(n2) propositions.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

787

This yields far fewer soft clauses. Even more concretely,
consider a simplistic case where goal is to move a specific
block on another specific block, with n actions whose ef-
fects include this goal. To shift the cost accounting from
actions to propositions, for each action, we have exactly one
proposition responsible for representing its effect. Under the
action-based objective representation, the MUSes state that
at least one of the n actions must be true. In contrast, un-
der the proposition-based representation an analogous core
is unit, stating that the effect must be true. With these
intuitions, the proposition-based representation expectedly
most often results in smaller MUSes, which can have a
positive effect on both core-guided MaxSAT solvers (Mor-
gado, Dodaro, and Marques-Silva 2014; Martins et al. 2014;
Narodytska and Bacchus 2014; Alviano, Dodaro, and Ricca
2015; Ansótegui and Gabàs 2017) (resulting in more com-
pact reformulations of the working formulas) and implicit
hitting set MaxSAT solvers (Davies and Bacchus 2013a;
Davies and Bacchus 2013b; Saikko, Berg, and Järvisalo
2016) (resulting in tighter hitting set problems).

Since actions are included in the plan to prepare well-
support for at least one of their effects, such effects are the
natural candidates to represent the costs of the actions in the
objective function. Therefore, we introduce for each propo-
sition p ∈ X and each cost c of actions adding p, a Boolean
variable cost(p, c), intended to be true exactly when an ac-
tion of cost c is chosen to prepare well-support for p and
have p account for its cost. Concretely, for each action
a with add(a) = {p1, . . . , pk} (in some fixed order) and
cost(a) = c, for i = 1..k, we enforce

¬ws(a, pi) ∨
∨
j<i

ws(a, pj) ∨ cost(pi, c). (18)

Formula (18) guarantees that at least one of the propositions
well-supported by a represents its cost in the objective func-
tion. However, a single proposition may still represent mul-
tiple actions. To prevent this, we impose mutual exclusion
among the well-support atoms relevant to each proposition
with the following linear encoding based on the encoding
of sequential counters (Sinz 2005). For every p ∈ X , we
add formulas (19)–(21), where {a1, . . . , am} = {a | p ∈
add(a)}.
¬ws(ai, p) ∨ visSup(ai+1, p), i = 1..m− 1, (19)
¬ visSup(ai, p) ∨ visSup(ai+1, p), i = 2..m− 1, (20)
¬ visSup(ai, p) ∨ ¬ws(ai, p), i = 2..m. (21)

Formula (19) states that if action ai provides well-support
for p, then the well-support for p must already have been
visited before reaching ai+1 in the sequence a1, . . . , am.
Formula (20) propagates the “visited” marker along the se-
quence, carrying it forward to each subsequent action once it
appears. Formula (21) forbids any action ai from providing
well-support for p if the support has already been marked
as visited upon reaching ai, thus enforcing mutual exclusion
between all pairs of actions providing well-support for p.

Let ϕact be the conjunction of formulas (12)–(17), and
ϕprop be the conjunction of formulas (12)–(21). Note
that while ϕact allows for multiple actions providing well-
support for a single proposition, ϕprop disallows it via the

mutual exclusion formulas. The proposition-based encoding
remains correct as multiple well-support for a single propo-
sition can only result in a higher value of the objective func-
tion. Since ϕact subsumes ϕprop, based on the above we
have the following.

Proposition 2. Every model of ϕprop, when restricted to the
atoms of ϕact, is a model of ϕact. Further, for every model
M of ϕact there is a modelM′ of ϕprop with∑

p∈X
M′|=cost(p,c)

c ≤
∑
a∈A
M|=a

cost(a) .

MUSes and Landmarks. As noted by Zhang and Bac-
chus (2012), when representing the objective function via
soft clauses over actions, unsatisfiable cores correspond pre-
cisely to disjunctive action landmarks, i.e., sets of actions
at least one of which must be executed in every valid plan
to achieve the goal (Helmert and Domshlak 2009). In con-
trast, with the proposition-based objective representation,
cores can be interpreted as disjunctive fact landmarks, i.e.,
sets of fact at least one of which must hold at some point
in any solution plan (Hoffmann, Porteous, and Sebastia
2004). In classical planning, disjunctive action landmarks
often encompass a very large number of alternatives, re-
flecting diverse ways to satisfy certain preconditions or ef-
fects (Büchner et al. 2023). By comparison, disjunctive fact
landmarks typically consist of only a few facts: for exam-
ple, the LAMA planner’s landmark generator limits each
disjunctive fact landmark to at most four facts with the intu-
ition that smaller disjunctions represent stronger necessary
conditions (Richter, Helmert, and Westphal 2008).

5 Alternative Encoding of Acyclicity
We base our new encoding on the encoding of the transi-
tive closure graph. The transitive closure graph of a directed
graph G = ⟨V,E⟩ is the graph G+ = ⟨V,E+⟩, where E+ =
{⟨u, v⟩ | there exists a non-empty path from u to v in G}.
The transitive closure graph of a directed graph captures all
reachability relationships in G, making it a comprehensive
representation of the graph’s connectivity.

If there exists a cycle v1, v2, . . . , vk, v1 in G, then G+ will
include edges ⟨vi, vj⟩ and ⟨vj , vi⟩ for all i and j in the cycle
because each vertex is reachable from every other vertex in
the cycle through paths in G. On a side note, while G+

may also be defined with self-loops for each vi in the cycle
(as each vertex is reachable from itself through a non-empty
path), we focus here on cycles of length two because they
form the basis for cycle detection in the transitive closure-
based encoding, as explained next.

5.1 Transitive Closure-Based Encoding
We start by reviewing an encoding based on the transitive
closure method as employed e.g. in (Cussens 2008). As in
the case of the vertex elimination based encoding, we also
use variables e∗x,y to reduce symmetry in its representation.
If there is an edge in G from p to q, and an edge in G+ from

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

788

q to r, then there must be an edge from p to r in G+:

¬e∗p,q ∨ ¬e∗q,r ∨ e∗p,r, ⟨p, q⟩ ∈ E, ⟨q, r⟩ ∈ E+. (22)

This formula ensures that all paths in G are correctly re-
flected in edges of G+. Due to the reduced symmetry
in the representation, achieved by distinguishing e∗p,q from
dep(p, q), there is no need to separately detect cycles of
length two, as such cycles are inherently prohibited. Encod-
ing the entire transitive closure of a graph can be expensive
as it includes reachability information for all pairs of vertices
even when unnecessary for detecting cycles. A straight-
forward analysis shows that the encoding requires O(|V |2)
propositional atoms and O(|V ||E|) clauses. This motivates
the development of alternative, more succinct methods for
encoding acyclicity to avoid the overhead associated with
constructing G+ in its entirety.

5.2 A Novel Cycle Elimination based Encoding
Let ϕ be a propositional formula with G = (V,E) as its
induced directed graph and G+ = (V,E+). The transpose
(or reverse graph) GT is defined as GT = (V,ET), where
ET = {(u, v) | (v, u) ∈ E}. Here, we use GT mainly
as an illustrational tool to describe how, given a vertex p,
one can construct a formula that eliminates all cycles go-
ing through p. To encode acyclicity, instead of encoding the
transitive closure of G, one may encode the transitive clo-
sure of GT by the method described above. Replacing G
with GT in formulas (22), we construct ϕ+ as the encoding
of the transitive closure graph of GT . Formally, after due
index renaming, we can express ϕ+ as

∧
p∈V ϕG

p , where ϕG
p

is the conjunction of

¬e∗p,q ∨ ¬e∗q,r ∨ e∗p,r, ⟨p, q⟩ ∈ E+, ⟨q, r⟩ ∈ E. (23)

A key observation here is that for any modelM of ϕ ∧ ϕG
p ,

and every outgoing edge ⟨p, q⟩ of p in G+
M, we must have

M |= e∗p,q . This automatically eliminates all cycles includ-
ing p from all possible models.

Lemma 3. Let u ∈ V ,M be a model for ϕ ∧ ϕG
u , GM =

(V,EM) the induced graph ofM, and G+
M = (V,E+

M) the
transitive closure of GM. If ⟨u, v⟩ ∈ E+

M thenM |= e∗u,v .

Proof. If ⟨u, v⟩ ∈ E+
M, then there must exist a path u =

u0, u1, . . . , uk = v in EM. By induction on k, we show that
M |= e∗u,v . For k = 1, the claim holds trivially. Assume
that the claim holds for k = m. We show that it also holds
for k = m+ 1. Let u = u0, u1, . . . , um+1 = v be a path in
EM. Then clearly u = u0, u1, . . . , um is a path in EM, and
by induction hypothesis,M |= e∗u,um

. SinceM |= e∗um,v ,
by (23) we haveM |= e∗u,v .

We immediately have that ϕ+ encodes acyclicity of ϕ.

Proposition 4. Every model of ϕ ∧ ϕ+, when restricted to
the atoms of ϕ, is an acyclic model of ϕ. Moreover, every
acyclic model of ϕ can be extended to a model of ϕ ∧ ϕ+.

Intuitively, one can think of ϕ+ as eliminating cycles “ver-
tex by vertex”: for each v, ϕG

v rules out all cycles containing

v, and since every cycle must visit some vertex, the con-
junction over all v removes all cycles. However, one may
observe that once all cycles containing v have been elimi-
nated, there will be no point in considering edges adjacent
to v when eliminating further cycles.

Recall that a strongly connected component (SCC) of a di-
rected graph is a maximal subgraph in which every vertex is
reachable from every other vertex. Since no cycle can span
multiple SCCs, cycle detection, and therefore cycle elimi-
nation, can be performed independently within each SCC.
However, with edges adjacent to v having been eliminated,
the SCCs of G containing v may no longer be strongly con-
nected, and the newly found SCCs might be smaller than
before. Based on these intuitions, we introduce the cycle
elimination process of G.

For a given graph G, let the cycle elimination fill-in of
vertex v be the set of all incoming edges of v in G+. Given
an ordering α on vertices, let G = Gce

0 , Gce
1 , . . . , Gce

n−1 be a
series of graphs such that for each i = 1, . . . , n−1, the graph
Gce

i is produced by first removing α(i) and all its adjacent
edges from Gce

i−1, and then, removing all edges going out of
any strongly connected components. The cumulative fill-in
with respect to α is defined as F ce

α (G) =
⋃n−1

i=1 F ce
i−1(α(i)),

with F ce
i−1(α(i)) denoting the cycle elimination fill-in of ver-

tex α(i) in Gce
i−1. Finally, the cycle elimination graph corre-

sponding to the ordering α is given by G+
α = ⟨V, F ce

α (G)⟩.
Note that G+

α is trivially a subgraph of G+. However, G+
α

can be a strict subgraph of G+. That is because F ce
i−1(α(i))

can be a strict subset of the set of incoming edges of α(i) in
G+. Despite this, we show that, G+

α preserves the acyclicity
properties of G regardless of ordering α,

Lemma 5. If G has a cycle, G+
α has a cycle of length two.

Proof. Let u1, u2, . . . , uk, u1 be a cycle in G, and u1 =
α(m). Without loss of generality, we assume that u1 is or-
dered before all other vertices of the cycle. Therefore the
cycle must exist in Gce

m−1. Therefore, the edge ⟨u1, uk⟩
must exist in F ce

m−1(u1). We conclude that G+
α has the cycle

u1, uk, u1 of length two.

Lemma 5 shows that to encode acyclicity, one only needs
to encode the cycle elimination process, with cycles of
length two inherently being prevented by the definition of
atoms e∗x,y . Let ϕ+

α be defined as∧
i=1..|V |

ϕ
Gce

i−1

α(i) .

We show that ϕ+
α encodes the acyclicity of ϕ.

Theorem 6. Every model of ϕ ∧ ϕ+
α , when restricted to the

atoms of ϕ, is an acyclic model of ϕ. Moreover, every acyclic
model of ϕ can be extended to a model of ϕ ∧ ϕ+

α .

Proof. Let M+ be a model of ϕ ∧ ϕ+
α , M be the restric-

tion ofM+ to the atoms of ϕ, and G+
M and GM be the in-

duced graph ofM+ andM, respectively. Assume thatM
is cyclic. Lemma 3 shows that G+

M is the cycle elimination
graph of GM corresponding to the ordering α. Therefore,

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

789

by Lemma 5, G+
M has a cycle of length two, which is a con-

tradiction given the definition of the e∗ atoms.
On the other hand, assume thatM is an acyclic model of

ϕ. By Proposition 4,M can be extended to a model of ϕ ∧
ϕ+. However, by definition, ϕ+

α subsumes ϕ+. We conclude
thatM can be extended to a model of ϕ ∧ ϕ+

α .

Although the worst-case size complexity of ϕ+
α remains

O(|V ||E|), the cycle-elimination process considers the se-
quence of graphs Gce

1 , . . . , Gce
n−1, where each Gce

i is ob-
tained by removing a single vertex from Gce

i−1. As i in-
creases, the strongly connected components of Gce

i become
both more numerous and smaller, which in practice often
yields significantly more compact encodings.

Example 4. Let G = Gce
0 be the graph in Figure 1a. The

transitive closure G+ of G is shown in Figure 1c. For cycle
elimination, assume that α orders the vertices by their la-
bel. The cycle elimination fill-in of vertex 1 is the incoming
edges of 1 in G+, which can be seen added to G in Figure 1d.
To produce Gce

1 , note that after removing 1 from G, the re-
sulting graph is acyclic. Therefore, Gce

1 has five singleton
strongly connected components and no edges, and the cycle
elimination process adds no further edges to Figure 1d. The
cycle elimination graph has the cycle 1, 2, 1 of length two.

6 Empirical Evaluation
We empirically evaluate our MaxSAT approaches to com-
puting h+. Our goals are to (i) evaluate the relative per-
formance of state-of-the-art MaxSAT solvers against the
ASP-based approach representing the current state of the
art for computing h+; and (ii) evaluate the relative perfor-
mance of our MaxSAT encoding variants, including com-
binations of the encodings in both sequential and parallel
settings. We integrated the encodings into the HSP* plan-
ner (Haslum 2015). The implementation is publicly avail-
able at https://bitbucket.org/coreo-group/opth. We use the
STRIPS planning benchmarks from the planning repository
(https://github.com/AI-Planning/classical-domains) used in
the previous works proposing computing h+ via SAT, in-
teger linear programming, and ASP, and also both the op-
timal and so-called satisficing tracks of IPC 2023. As the
ASP approach has been shown to outperform the other ap-
proaches on the same benchmark set we focus on compar-
ing our MaxSAT approaches to the ASP approach. Fol-
lowing (Rankooh and Janhunen 2023), we use version
Clasp 3.3.10 as the solver in its core-guided optimization
mode (Andres et al. 2012). The experiments were run on
2.50-GHz Intel Xeon Gold 6248 CPUs under per-instance
and per-solver 1800-second time and 16 GB memory limits.

MaxSAT vs ASP on Action-Based Encoding. First, we an-
alyze the relative performance of various modern MaxSAT
solvers and Clasp on the ASP and MaxSAT formulations
of the action-based objective representation using the ver-
tex elimination (VE) encoding of acyclicity. In particu-
lar, this is the encoding variant shown to perform best us-
ing ASP (Rankooh and Janhunen 2023). We consider four
modern MaxSAT solvers as state-of-the-art representatives

of solvers implementing different types of MaxSAT algo-
rithms: MaxHS (Davies and Bacchus 2013a; Davies and
Bacchus 2013b) (version 5.0.0) implementing the implicit
hitting set approach to MaxSAT based on iteratively com-
puting cores and hitting sets of the so-far found cores; Pa-
cose (Paxian, Reimer, and Becker 2018) (version MSE2024)
implementing the solution-improving approach based on it-
eratively querying a SAT solver for better solutions; UWr-
MaxSAT (Piotrów 2020) (version 1.7.0) implementing the
core-guided approach in terms of the OLL (Andres et al.
2012; Morgado, Dodaro, and Marques-Silva 2014) algo-
rithm; and WMaxCDCL (Li et al. 2022; Li et al. 2025)
(version MSE2024) implementing a clause learning boosted
branch-and-bound approach to MaxSAT.

Figure 2 shows the number of instances solved (y-axis)
by each solver under different per-instance time limits (x-
axis). We observe that on this encoding variant, Clasp out-
performs the MaxSAT solvers up to a per-instance time limit
of approximately 30 seconds, beyond which UWrMaxSAT
outperforms the other solvers. The solution-improving ap-
proach (Pacose) and implicit hitting set approach (MaxHS)
exhibit weakest performance. Among the MaxSAT solvers,
The core-guided UWrMaxSAT solver outperforms the other
solvers consistently. Based on this, we fix UWrMaxSAT as
the MaxSAT solver for the remaining experiments.

Core extraction is the main source of empirical com-
plexity in the core-guided approach implemented in UWr-
MaxSAT. In principle, the solver would benefit from com-
puting a subset-minimal unsatisfiable core at each iteration,
as the sizes of cores computed directly translates into a
blow-up of the working formula at each iteration. However,
in practice core minimization cannot always be performed
exhaustively, as the minimization requires additional SAT
solver calls and decreases the overall performance of the
solver especially because it forces the SAT solver to prove
minimality. This is why UWrMaxSAT includes a hard-
coded conflict limit (of 500 conflicts) for each SAT solver
call within the core minimization routine. However, we ob-
served that this does not reflect well actual time spent in core
minimization on the heterogeneous planning benchmark set.
In particular, by enforcing a wall-clock limit on the whole
core-minimization routing at each iteration resulted in no-
ticeably better improvements; see Figure 3 where the de-
fault UWrMaxSAT limit is compared to a 0.1-second limit.
For the remaining experiments, we employ UWrMaxSAT
with 0.1-second per-iteration time limit for core minimiza-
tion. We emphasize that, beyond observing that 0.1 seconds
and 0.01 yielded similar performance, improving somewhat
over a 1-second limit, we did not attempt to further optimize
the value of this parameter for performance—it is likely
that more fine-grained strategies for choosing this parame-
ter could result in further performance improvements.

Impact of Objective Representations. We now turn to
evaluating the impact of the choice of objective representa-
tion (action-based vs proposition-based) on MaxSAT solver
performance, using the vertex elimination encoding of acy-
clity in both cases. The action-based MaxSAT encoding (see
Figure 4) dominates the proposition-based ASP encoding,

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

790

https://bitbucket.org/coreo-group/opth
https://github.com/AI-Planning/classical-domains

Figure 2: MaxSAT vs Clasp on action encod-
ing and acyclicity by VE

Figure 3: Impact of core minimization limit
on UWrMaxSAT: default (x) vs 0.1 s (y)

Figure 4: Action vs proposition-based
MaxSAT encoding vs action-based ASP

Figure 5: Action and proposition-based
MaxSAT in parallel vs two-threaded Clasp

Figure 6: Cycle elimination vs transitive clo-
sure

Figure 7: Impact of acyclicity encodings

with more instances solved using the MaxSAT solver at any
per-instance time limit. The same holds for the action-based
encoding solved with MaxSAT for time limit > 1 second.

Interestingly, the proposition-based encoding yields bet-
ter performance for time limits less that ≈ 5 seconds, and
the action-based encoding yields better performance for time
limits > 5 seconds. This motivates investigating whether the
two encodings can be used for further overall runtime im-
provements across different time limits. For this, we run the
MaxSAT solver on both encodings in parallel, allocating one
core for each of the encodings, terminating both cores when
the first of the two terminates. This straightfoward approach
turns out to significantly outperform running Clasp in paral-
lel mode on two threads (as directly offered by Clasp) on the
action-based ASP encoding; see Figure 5.

Impact of Acyclicity Encodings. Finally, we investigate
the impact of the acyclicity encodings on MaxSAT perfor-
mance. We present results here using the proposition-based
encoding; the results under the action-based encoding are
similar. Figure 6 shows pair-wise comparisons of MaxSAT
solver performance under cycle elimination based against
transitive closure based acyclicity. Cycle elimination is con-
sistently more effective than transitive closure, showing that
it, as a refinement of the transitive closure based encoding,
indeed yields better performance. Figure 7 shows the num-
ber of instances solved (y-axis) for different time limits (x-
axis) for each of the encodings. While noticeably different in
terms of the clauses the encodings introduce, overall perfor-

mance using either cycle elimination or vertex elimination is
quite similar. Here we also include a straightforward “mixed
encoding”, which refers to making an instance-specific de-
cision on whether to use cycle elimination or vertex elimi-
nation by choosing the encoding resulting in fewer clauses.
While the size of SAT encodings does not necessarily corre-
late with MaxSAT solver performance in practice, this sim-
plistic heuristic improves on the two individual encodings in
terms of the number of instances solved for time limits < 1
second; such fast runtimes are of interest in particular to-
wards employing the MaxSAT-based approach to computing
h+ as heuristic guidance repeatedly in state-space planners.

7 Conclusions
We proposed MaxSAT for cost-optimal delete-free clas-
sical planning. We detailed a MaxSAT encoding analo-
gous to a state-of-the-art ASP approach, and proposed the
proposition-based encoding of cost-optimality which can re-
sult in a smaller numbers of soft clauses and thereby allow
MaxSAT solvers leverage smaller unsatisfiable cores during
search. We also proposed an alternative cycle elimination
encoding for plan acyclicity. A state-of-the-art core-guided
MaxSAT solver using the proposition-based encoding out-
performs the ASP approach. Further performance improve-
ments (also over multi-threaded ASP solving) are achieved
by solving in parallel the action-based and the proposition-
based encodings. The new cycle elimination based encoding
of acyclicity may be of interest also beyond planning.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

791

Acknowledgements
The work is financially supported by Research Council of
Finland under grants 347588 (AN) and 356046 (MFR, MJ),
and Helsinki Institute for Information Technology HIIT
(MFR). The authors wish to thank the Finnish Comput-
ing Competence Infrastructure (FCCI) for supporting this
project with computational and data storage resources.

References
Alviano, M.; Dodaro, C.; and Ricca, F. 2015. A MaxSAT
algorithm using cardinality constraints of bounded size. In
Yang, Q., and Wooldridge, M. J., eds., Proceedings of the
Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-
31, 2015, 2677–2683. AAAI Press.
Andres, B.; Kaufmann, B.; Matheis, O.; and Schaub, T.
2012. Unsatisfiability-based optimization in clasp. In
Dovier, A., and Costa, V. S., eds., Technical Communica-
tions of the 28th International Conference on Logic Pro-
gramming, ICLP 2012, September 4-8, 2012, Budapest,
Hungary, volume 17 of LIPIcs, 211–221. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik.
Ansótegui, C., and Gabàs, J. 2017. WPM3: an (in)complete
algorithm for weighted partial MaxSAT. Artif. Intell.
250:37–57.
Bacchus, F.; Järvisalo, M.; and Martins, R. 2021. Maxi-
mum satisfiability. In Biere, A.; Heule, M.; van Maaren, H.;
and Walsh, T., eds., Handbook of Satisfiability - Second Edi-
tion, volume 336 of Frontiers in Artificial Intelligence and
Applications. IOS Press. 929–991.
Betz, C., and Helmert, M. 2009. Planning with h+ in the-
ory and practice. In KI 2009: Advances in Artificial Intelli-
gence, 32nd Annual German Conference on AI, Paderborn,
Germany, September 15-18, 2009., volume 5803 of Lecture
Notes in Computer Science, 9–16. Springer.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2021. Handbook of Satisfiability - Second Edition, volume
336 of Frontiers in Artificial Intelligence and Applications.
IOS Press.
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Biundo, S., and Fox, M., eds.,
Recent Advances in AI Planning, 5th European Conference
on Planning, ECP’99, Durham, UK, September 8-10, 1999,
Proceedings, volume 1809 of Lecture Notes in Computer
Science, 360–372. Springer.
Büchner, C.; Christen, R.; Eriksson, S.; and Keller, T. 2023.
DALAI – disjunctive action landmarks all in. In Proceedings
of the International Planning Competition 2023 (IPC-2023)
– Planner Abstracts.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artif. Intell. 69(1-2):165–204.
Clark, K. L. 1977. Negation as failure. In Gallaire, H.,
and Minker, J., eds., Logic and Data Bases, Symposium
on Logic and Data Bases, Centre d’études et de recherches
de Toulouse, France, 1977, Advances in Data Base Theory,
293–322. New York: Plemum Press.

Cussens, J. 2008. Bayesian network learning by compiling
to weighted MAX-SAT. In McAllester, D. A., and Myl-
lymäki, P., eds., UAI 2008, Proceedings of the 24th Confer-
ence in Uncertainty in Artificial Intelligence, Helsinki, Fin-
land, July 9-12, 2008, 105–112. AUAI Press.
Davies, J., and Bacchus, F. 2013a. Exploiting the power
of MIP solvers in MaxSAT. In Järvisalo, M., and Gelder,
A. V., eds., Theory and Applications of Satisfiability Testing
- SAT 2013 - 16th International Conference, Helsinki, Fin-
land, July 8-12, 2013. Proceedings, volume 7962 of Lecture
Notes in Computer Science, 166–181. Springer.
Davies, J., and Bacchus, F. 2013b. Postponing optimization
to speed up MaxSAT solving. In Schulte, C., ed., Principles
and Practice of Constraint Programming - 19th Interna-
tional Conference, CP 2013, Uppsala, Sweden, September
16-20, 2013. Proceedings, volume 8124 of Lecture Notes in
Computer Science, 247–262. Springer.
Gefen, A., and Brafman, R. I. 2011. The minimal seed set
problem. In Proceedings of the 21st International Confer-
ence on Automated Planning and Scheduling, ICAPS 2011,
Freiburg, Germany June 11-16, 2011. AAAI.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Logic Programming,
Proceedings of the Fifth International Conference and Sym-
posium, Seattle, Washington, USA, August 15-19, 1988 (2
Volumes), 1070–1080.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge, UK: Cambridge Univer-
sity Press.
Haslum, P. 2012. Incremental lower bounds for additive
cost planning problems. In Proceedings of the Twenty-
Second International Conference on Automated Planning
and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil,
June 25-19, 2012. AAAI.
Haslum, P. 2015. HSP* code and documentation
http://users.cecs.anu.edu.au/patrik/un-hsps.html.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling, ICAPS 2009, Thessaloniki,
Greece, September 19-23, 2009. AAAI.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. J. Artif. Intell. Res. 22:215–278.
Hoffmann, J. 2005. Where “ignoring delete lists” works:
Local search topology in planning benchmarks. Journal of
Artificial Intelligence Research 24:685–758.
Imai, T., and Fukunaga, A. 2015. On a practical, integer-
linear programming model for delete-free tasks and its use
as a heuristic for cost-optimal planning. Journal of Artificial
Intelligence Research 54:631–677.
Kautz, H. A., and Selman, B. 1999. Unifying SAT-based
and graph-based planning. In Dean, T., ed., Proceedings of
the Sixteenth International Joint Conference on Artificial In-
telligence, IJCAI 99, Stockholm, Sweden, July 31 - August 6,
1999. 2 Volumes, 1450 pages, 318–325. Morgan Kaufmann.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

792

Li, C.; Xu, Z.; Coll, J.; Manyà, F.; Habet, D.; and He, K.
2022. Boosting branch-and-bound MaxSAT solvers with
clause learning. AI Commun. 35(2):131–151.
Li, S.; Li, C.; Coll, J.; Habet, D.; and Manyà, F. 2025.
Improving the lower bound in branch-and-bound algorithms
for MaxSAT. In Walsh, T.; Shah, J.; and Kolter, Z., eds.,
AAAI-25, Sponsored by the Association for the Advance-
ment of Artificial Intelligence, February 25 - March 4, 2025,
Philadelphia, PA, USA, 11272–11281. AAAI Press.
Martins, R.; Joshi, S.; Manquinho, V.; and Lynce, I.
2014. Incremental cardinality constraints for MaxSAT. In
O’Sullivan, B., ed., Principles and Practice of Constraint
Programming - 20th International Conference, CP 2014,
Lyon, France, September 8-12, 2014. Proceedings, vol-
ume 8656 of Lecture Notes in Computer Science, 531–548.
Springer.
Mirkis, V., and Domshlak, C. 2007. Cost-sharing approx-
imations for h+. In Proceedings of the Seventeenth Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS 2007, Providence, Rhode Island, USA, Septem-
ber 22-26, 2007, 240–247. AAAI.
Morgado, A.; Dodaro, C.; and Marques-Silva, J. 2014.
Core-guided MaxSAT with soft cardinality constraints. In
O’Sullivan, B., ed., Principles and Practice of Constraint
Programming - 20th International Conference, CP 2014,
Lyon, France, September 8-12, 2014. Proceedings, vol-
ume 8656 of Lecture Notes in Computer Science, 564–573.
Springer.
Narodytska, N., and Bacchus, F. 2014. Maximum satis-
fiability using core-guided MaxSAT resolution. In Brod-
ley, C. E., and Stone, P., eds., Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, July 27 -
31, 2014, Québec City, Québec, Canada, 2717–2723. AAAI
Press.
Niemelä, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence 25(3-4):241–273.
Paxian, T.; Reimer, S.; and Becker, B. 2018. Dynamic poly-
nomial watchdog encoding for solving weighted MaxSAT.
In Beyersdorff, O., and Wintersteiger, C. M., eds., Theory
and Applications of Satisfiability Testing - SAT 2018 - 21st
International Conference, SAT 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July
9-12, 2018, Proceedings, volume 10929 of Lecture Notes in
Computer Science, 37–53. Springer.
Piotrów, M. 2020. UwrMaxSAT: Efficient solver for
MaxSAT and pseudo-boolean problems. In 32nd IEEE In-
ternational Conference on Tools with Artificial Intelligence,
ICTAI 2020, Baltimore, MD, USA, November 9-11, 2020,
132–136. IEEE.
Rankooh, M. F., and Janhunen, T. 2023. Capturing (optimal)
relaxed plans with stable and supported models of logic pro-
grams. Theory Pract. Log. Program. 23(4):782–796.
Rankooh, M. F., and Rintanen, J. 2022a. Efficient computa-
tion and informative estimation of h+ by integer and linear
programming. In Proceedings of the Thirty-Second Interna-
tional Conference on Automated Planning and Scheduling,

ICAPS 2022, Singapore (virtual), June 13-24, 2022, 71–79.
AAAI Press.
Rankooh, M. F., and Rintanen, J. 2022b. Efficient encoding
of cost optimal delete-free planning as SAT. In Thirty-Sixth
AAAI Conference on Artificial Intelligence, AAAI 2022, Vir-
tual Event, February 22 - March 1, 2022, 9910–9917. AAAI
Press.
Rankooh, M. F., and Rintanen, J. 2022c. Propositional en-
codings of acyclicity and reachability by using vertex elimi-
nation. In Thirty-Sixth AAAI Conference on Artificial Intelli-
gence, AAAI 2022, 2022 Virtual Event, February 22 - March
1, 2022, 5861–5868. AAAI Press.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Fox, D., and Gomes, C. P., eds., Pro-
ceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17,
2008, 975–982. AAAI Press.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artif. Intell. 170(12-13):1031–1080.
Robinson, N.; McIlraith, S. A.; and Toman, D. 2014. Cost-
based query optimization via AI planning. In Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intel-
ligence, July 27 -31, 2014, Québec City, Québec, Canada,
2344–2351. AAAI Press.
Rose, D. J., and Tarjan, R. E. 1975. Algorithmic aspects of
vertex elimination. In Rounds, W. C.; Martin, N.; Carlyle,
J. W.; and Harrison, M. A., eds., Proceedings of the 7th An-
nual ACM Symposium on Theory of Computing, May 5-7,
1975, Albuquerque, New Mexico, USA, 245–254. ACM.
Russell, S. J., and Norvig, P. 2010. Artificial Intelligence -
A Modern Approach, Third International Edition. Pearson
Education.
Saikko, P.; Berg, J.; and Järvisalo, M. 2016. LMHS: A
SAT-IP hybrid MaxSAT solver. In Creignou, N., and Berre,
D. L., eds., Theory and Applications of Satisfiability Test-
ing - SAT 2016 - 19th International Conference, Bordeaux,
France, July 5-8, 2016, Proceedings, volume 9710 of Lec-
ture Notes in Computer Science, 539–546. Springer.
Sinz, C. 2005. Towards an optimal CNF encoding of
boolean cardinality constraints. In van Beek, P., ed., Prin-
ciples and Practice of Constraint Programming - CP 2005,
11th International Conference, CP 2005, Sitges, Spain, Oc-
tober 1-5, 2005, Proceedings, volume 3709 of Lecture Notes
in Computer Science, 827–831. Springer.
Suda, M. 2014. Property directed reachability for automated
planning. J. Artif. Intell. Res. 50:265–319.
Zhang, L., and Bacchus, F. 2012. MaxSAT heuristics for
cost optimal planning. In Hoffmann, J., and Selman, B.,
eds., Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, July 22-26, 2012, Toronto, Ontario,
Canada, 1846–1852. AAAI Press.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

793

	Introduction
	Preliminaries
	Classical Planning and Relaxed Plans
	Maximum Satisfiability (MaxSAT)
	Answer Set Programming (ASP)
	Vertex Elimination Graphs

	From ASP to MaxSAT Encoding of h+
	The Diagnostic Encoding
	Equivalent MaxSAT Encoding
	CNF Encoding of Acyclicity
	Encoding the Objective Function

	An Alternative Objective Representation
	Alternative Encoding of Acyclicity
	Transitive Closure-Based Encoding
	A Novel Cycle Elimination based Encoding

	Empirical Evaluation
	Conclusions

