Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Pruning with Belief Traps in Multi-agent Epistemic Planning

Biqing Fang, Fangzhen Lin
The Hong Kong University of Science and Technology, Hong Kong, China
biging.fang @connect.ust.hk, flin@cs.ust.hk

Abstract

Multi-agent epistemic planning (MEP) addresses planning
problems involving multiple agents with epistemic reasoning,
often requiring the consideration of nested beliefs. In this
paper, we extend the notion of traps in classical planning
to MEP, and call them belief traps, which are epistemic
formulas that once entailed by an epistemic state, remain
entailed by all successor states. Identifying belief traps can
sometimes improve MEP solving significantly. Here, we
consider two methods for identifying and using belief traps
to improve planning efficiency. Our first method adapts
a classical preprocessing algorithm with integration into
an MEP planner, simple-form construction of traps, and a
novel use of beneficial traps to guide search. The second
method systematically generalizes the belief lock strategy by
formalizing its underlying preservation condition. Our exper-
iments show that the new pruning techniques can accelerate
problem-solving in the domains with irreversible beliefs.

1 Introduction

Multi-agent epistemic planning (MEP) is a form of auto-
mated planning in which agents reason about knowledge
and belief (Baral et al. 2017; Belle et al. 2023). In contrast
to classical planning, MEP deals with epistemic goals and
epistemic action preconditions and effects, often requiring
agents to reason about what other agents know or believe,
and how those beliefs evolve as a result of actions. For
example, the goal may be for agent a to learn a secret g,
while ensuring that agent b neither knows ¢ nor knows
that agent a knows q. MEP is central to applications in
multi-agent coordination, social robotics, and human-robot
interaction (Thielscher 2017; Dissing and Bolander 2020;
Bolander, Dissing, and Herrmann 2021).

To illustrate the MEP problem, we use an example
derived from the Selective-communication (Kominis and
Geffner 2015) domain: There are several rooms in a corri-
dor. The agents can move from one room to a neighboring
room. When agent ¢ gives some information, all other
agents in the same room or in a neighboring room can hear
what was said. Initially, each agent is in one of the rooms.
The goal is for some agents to learn certain information
while some other agents do not.

Example 1. Consider an instance with four rooms and
three agents a,b, and c. Only agent a has the ability to

773

move, sense and communicate the information q at room i
using telly, (i) or its negation —q using tell,, (i). Initially, the
agents a,b and c are in room 1, 2, and 3, respectively, while
the information q is located in room 2. The goal is to ensure
that agents a and ¢ know q while b not.

RN OF M 4

Recently, Wan, Fang, and Liu (2021) proposed MEPK
(MEP with Knowledge bases), a planner using alternating
cover disjunctive formulas (ACDFs) to represent epistemic
states. These formulas offer complete expressive power
with respect to epistemic logic while maintaining tractabil-
ity under certain operations. MEPK supports the generation
of conditional policies, making it suitable for contingent
planning in complex multi-agent settings. To improve
the computational efficiency, two heuristic strategies are
proposed for MEPK (Fang and Lin 2024)

In this paper, we build on the heuristic search for
MEPK (Fang and Lin 2024) and introduce a general prun-
ing mechanism based on belief traps, which are epistemic
formulas that, once entailed by an epistemic state, remain
entailed by all its successor states. We present two methods
to detect such traps and show how they can be used to
recognize dead-end states during planning. This enables our
planner to prune large portions of the search space, thereby
improving both efficiency and scalability.

The first method builds on a recent preprocessing algo-
rithm that identifies traps in classical planning (Lipovetzky,
Muise, and Geffner 2016). We adopt it for epistemic plan-
ning with three non-trivial adaptations: (1) integration with
the state-of-the-art MEPK planner, (2) efficient construction
of belief traps using simple-form expressions, and (3) the
introduction of beneficial traps, a special type of traps that
help guide the search toward the goal.

The second method constitutes a systematic reformula-
tion and generalization of the belief lock strategy proposed
by (Fang and Lin 2024). While the original strategy assumes
that no action can reverse a certain belief, our approach
formalizes this idea using a general preservation condition.
This enables the detection of more complex belief traps by
examining the structure of preconditions and conditional
effects in action models.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Finally, we embed the proposed preprocessing algo-
rithm in MEPK, one of the state-of-the-art syntactic MEP
planners, and evaluate its performance against existing
algorithms. The results demonstrate that the new pruning
techniques significantly accelerate problem-solving in those
domains with irreversible beliefs. We also extend the scale
of instances and demonstrate that our strategies achieve
better performance on these extended benchmarks.

2 Related Work

Theoretical Work. Initial work by Bolander and An-
dersen (2011) and Lowe, Pacuit, and Witzel (2011)
introduced dynamic epistemic logic (DEL) (van Ditmarsch,
van der Hoek, and Kooi 2007) as a formalism for MEP.
In DEL-based MEP, states are represented by Kripke
models and actions as event models. However, Aucher
and Bolander (2013) demonstrated that MEP is undecidable
in general. This led to the identification of decidable
fragments (Yu, Wen, and Liu 2013; Cooper et al. 2016a),
including the well-known “gossip problem” (Cooper et al.
2016b), where complexity ranges from tractable to NP-
complete depending on the goal structure. Recently, two
works (Buckingham et al. 2024; Engesser, Herzig, and Per-
rotin 2024) have proposed novel semantics and formalisms
for reasoning about second-order false beliefs, although
these remain theoretical and lack implemented planners.

Implementations. Numerous systems have been devel-
oped to implement MEP solvers, each reflecting different
trade-offs between expressiveness and efficiency. Muise
et al. (2015; 2022) compiled restricted MEP problems into
classical planning using proper epistemic knowledge bases,
enabling the use of off-the-shelf planners for belief-level
planning. Similarly, the EL-O framework (Cooper et al.
2021) imposes syntactic restrictions to enable compilation
to classical planning. The EFP family of planners (Le et
al. 2018; Fabiano et al. 2020) leverages the m.A action
language and finitary S5-theories to describe MEP problems
semantically and manage reasoning about Kripke struc-
tures. More recently, Hu, Miller, and Lipovetzky (2022;
2023) proposed a modular approach to epistemic plan-
ning, in which the reasoning about epistemic formulas is
delegated to an external solver. Their planner supports
disjunctive preconditions and goals, and is particularly
notable for its applications in continuous domains.

3 Preliminaries

We follow the concepts and notations used in (Fang and Lin
2024). So in this section, we briefly review them here.

3.1 Multi-agent Modal Logic KD45,,

Consider a finite set of agents .A and a finite set of atoms P.
We use ¢ and 1 for formulas, ® and W for sets of formulas.

Definition 1. The language £ i ¢ of multi-agent modal logic
with common knowledge is generated by the BNF:

pu=p|-d|(dAP) | Bagp| Co, where

pEP,ac A ¢ € Lic. Lk is used for the language with-
out the C operator, and L for the propositional language.

774

Intuitively, B, ¢ means that agent a believes ¢ holds, and
C'¢ means ¢ is common belief among all agents.

We let T and L represent true and false respectively. We
let \/ ® (resp. A ®) denote the disjunction (resp. conjunc-
tion) of members of ®. The modal depth of a formula ¢ in
L is the depth of nesting of modal operators in ¢.

Definition 2. A frame is a pair (W, R), where W is a
nonempty set of possible worlds; for each agent a € A,
R: A — 2W>W agsions to a an accessibility relation R,.

We say R, is serial if for any w € W, thereis w’ € W s.t.
wR,w'; R, is transitive if whenever wR,w; and wy Rqwo,
we get wR,wa; R, is Euclidean if whenever wR, w1 and
wRaws, we get wi Rywy. A KDA45,, frame is a frame whose
accessibility relations are serial, transitive, and Euclidean.

Definition 3. A Kripke model is a triple M = (W, R, V),
where (W, R) is a frame, and V : W — 27 a valuation map.
A pointed Kripke model is a pair s = (M, w), where M is a
Kripke model and w a world of M, called the actual world.
Definition 4. Let s = (M, w) be a pointed Kripke model
where M =(W, R, V). We interpret formulas in Lxc by
induction: M, w = piffp € V(w); M, w = —¢iff M, w =
o, Myw = o A iff Myw = ¢ and M, w | ¢; M,w =
Bo¢ iff for all v s.t. wRev, M,v = ¢; M,w | C¢ iff
for all v s.t. wRAv, M,v = ¢, where R 4 is the transitive
closure of the union of R, fora € A.

A model of ¢ is a KD45,, Kripke model (M,w) s.t.
M,w | ¢. We say ¢ is satisfiable if ¢ has a model. We
say ¢ entails 1, written ¢ = 1, if any model of ¢ is also
a model of 1. We use C*¢ to denote ¢ A C'¢p, and say
that ¢ entails ¢y w.r.t. constraint ~, written ¢ |=, 1, if
¢ A C*y = ¢ A C*v. The notation of entailment under
constraint vy is used in MEPK to support reasoning with
propositional constraint, which is introduced later.

3.2 Modeling Framework of MEPK

We briefly introduce the MEPK modeling framework.
Please refer to (Wan, Fang, and Liu 2021) for more details.

Definition 5. A multi-agent epistemic planning problem Q
is a tuple (A, P,D,S,Z, G,~), where A is a set of agents;
P is a set of atoms; D is a set of deterministic actions; S is a
set of sensing actions; Z € L is the initial knowledge base;
G € Ly is the goal; and vy € Ly is the constraint.

The propositional constraint « is similar to the domain
closure axiom in classical planning domains (Lin 2004).
For example, in a domain with four rooms, the constraint
Vi, (at(a,i) A /\jzl’j#(ﬂat(mj)) indicates that the
agent can be in exactly one room at a time.

There are three types of actions: ontic, communication,
and sensing actions. The first two types share the same
representation, called deterministic actions.

Definition 6. A deterministic action is a pair (pre, eff),
where pre € Lk is the precondition; eff is a set of
conditional effects, each of which is a pair (c, e), where c,
e € L indicate the condition and effect, respectively.
Definition 7. A sensing action is a triple (pre, pos, neg)
of Ly formulas, where pre, pos, and neg indicate the
precondition, the positive result, and the negative result.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Sensing actions are used to gather information from the
environment. For example, agents can sense the status of
the lighting in a room (denoted by ¢), which leads to two
possible results: the light is on (pos) or “not on” (neg). In
contingent planning, the search graph branches on sensing
actions according to these two outcomes.

An action a is executable w.r.t. a knowledge base (KB)
¢ € L if ¢ = pre(a). This means that a is executable
in each model of ¢. Suppose a is executable w.r.t. ¢.
The progression of ¢ w.r.t. a is defined by resorting to a
higher-order revision operator o, and a higher-order update
operator ©.,, where 7y is a constraint.

The basic idea of these two operators is to reduce
the change of higher-order epistemic formulas to that
of lower-order epistemic formulas, and as a basis, it re-
sorts to a change of propositional formulas. For example,
Ba($AByt))or Ba(¢/ AByt') = Ba((¢0,68')ABy(to10')),
where ¢, ¢’ € Lq are propositional formulas; v, " € Lk,
and oy is Satoh’s revision operator (Satoh 1988), see Ap-
pendix A for formal introduction of o.. Higher-order belief
update operator ¢, is similar except that it is reduced to
Winslett’s update operator ¢, (Winslett 1988). Intuitively,
the distinction between revision and update lies in how
model closeness is evaluated: revision, v oy selects from the
models of u those that are closest to models of 1) as a whole,
whereas update, 1) ¢ p considers each model M of 1 indi-
vidually and selects the models of y that are closest to M.

The following is the progression for the sensing action.

Definition 8. Let ¢ € Lg, and a a sensing action. If
¢ A pos(a) is propositionally unsatisfiable w.r.t. -+, then
the progression of ¢ w.r.t. a with positive result is L.
Otherwise, the result is ¢ o, pos(a). The progression of ¢
w.r.t. a with negative result neg(a) is defined similarly.

We use the following progression for deterministic action.

Definition 9. Let ¢ € Lk, and a a deterministic ac-

tion where eff (a) {{c1,e1), - ,{cn,en)}. Suppose
Ciyy oo ¢, are all the ¢;’s st. ¢ | ¢. Then the
progression of ¢ w.r.t. a is defined as ((¢po~ €;,) -+)0y €4,

We now introduce the concepts of action tree, which is
essential for defining a solution.

Definition 10. The progression of ¢ w.r.t. a se-

quence of actions is inductively defined as follows:

prog(¢,€) = ¢, where e represents the empty sequence;

prog(e, (a; o)) = prog(prog(¢,a),o) if ¢ |= pre(a), and

undefined otherwise.

Definition 11. Let Q be an MEP problem (A, P, D, S,Z, G,
~). The set 7 of action trees is inductively defined:

1. eisin T, here € represents the empty tree;

2. ifageDandT € T,thenay; T isin T;

3. ifas € S, T, T~ € T,thenas; (Tt | T7)isin T.

Definition 12. Let Q be an MEP problem (A, P, D, 8,7, G,
~v). Let T be an action tree. ~We say a branch

o of T achieves the goal if prog(Z,o) is defined, and

prog(Z,0) = G; and if prog(Z,o) is not L, we say o

properly achieves the goal. We say 7' is a solution of Q if

each branch of T achieves the goal, and at least one branch

properly achieves the goal.

775

Algorithm 1: Planning

Input: An MEP problem Q = (A, P, D,S,Z,G,7).
Output: A solution or null.

1 if 7 |= G then

2 | return an empty tree

3 while there are unexplored nodes do
Choose the next node n with some method
explore(n)
if initial node is labeled with goal then
L return build_plan

if initial state is labeled with dead then
L return null

O 0 9N LB~

10 return null

sense’t—'@”Hht@right@tellp(‘l-) P

- right ight tell,(4)
sense — b @ /;\ s /D @
\/ \/

Figure 1: A solution to an instance of Selective-communication.

To illustrate the above concepts, we continue the example
in the Introduction.

Example 1. (continued) We formally model the example:

o The atoms are: at(i,r), meaning agent i is in room r;
and q, meaning the secret information.

The sensing action is sense = {pre, pos, neq): the agent
checks whether q or —q, where pre = at(a,2), meaning
that agent i knows she is at the room 2; pos = Bg(q),
meaning that agent i observes the positive result; neqg =
B, (—q), meaning that agent i observes the negative result.

* The communication actions are tell,(r)
(at(a,r),{eff, | n € {1,2,3,4}}): agent a share
what she knows about q to agents in the same and
neighboring rooms, e.g., eff 3 = (at(a,3), Byqg A B.q);
Another communication action tell,,(r) which shares the
negative information —q is similarly defined.

The initial KB is at(a,1) N \,c4(=Biq A =B;—q),
indicating that agent a is initially in room 1, and no agent
has any beliefs about q or its negation.

The goal is (B.qV B.—q) A\ (—mBpq) A (—By—q), indicat-
ing that agent c believes q or its negation, while agent b
remains unaware.

The constraint is \/?:1 (at(a,i) A /\?Zl’j#(ﬂat(a,j)),
indicating that the agent can be in exactly one room at a
time.

Figure 1 is a feasible solution for Example 1.
The action tree is a solution because both the se-
quences of (right; sense+;right; right;tell,(4)) and
(right; sense—; right; right;tell, (4)) achieve the goal.
Node 1 is the initial node. The sensing action, sense,
produces two possible results: ¢ and —q. In the planning
process, nodes 6 and 10 are found to entail the goal.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

The planner uses a knowledge base to model an epistemic
state. When an action is performed, the current KB is
progressed with the action’s effects via belief change.
MEPK adopts a general algorithm for contingent planning
(To, Son, and Pontelli 2011) as the planning algorithm.

Algorithm 1 outlines the framework. The algorithm takes
an MEP problem as input and finds a solution or returns
“null” if no solution is found. Each node n is a knowledge
base. Within the loop, it selects an unexplored node n using
a specific method such as breadth-first search (BFS) or
heuristic search (Heu). The selected node n is then explored.
During exploration, the search graph is expanded and the
labels goal and dead are propagated throughout the graph to
indicate whether a node can lead to the goal or a dead-end.
If, after this exploration, the initial node becomes goal-
reachable, the algorithm build_plan simply constructs the
plan with the nodes labeled goal from the expanded graph
and returns this plan as the solution (may be suboptimal in
terms of solution size). If the initial state is determined to
be dead, indicating that no action tree can route from the
initial node while ensuring all its terminals entail the goal,
the algorithm returns “null”. Intuitively, this framework
performs forward search by iteratively expanding the search
graph and verifying whether an AND/OR tree can be
constructed that leads from the initial node to the goal.

4 Our Methods

We present two approaches to identify traps for pruning in
MERP. The first focuses on simple beliefs by extending a pre-
processing algorithm from classical planning (Lipovetzky,
Muise, and Geffner 2016). We also introduce a new notion,
the beneficial trap, which captures belief formulas that are
semantically aligned with the goal and can guide the search
toward it. The second targets complex beliefs by generaliz-
ing a recent belief lock strategy (Fang and Lin 2024).

4.1 Belief Trap Graph
Below are definitions of belief traps and dead-end formulas.

Definition 13. A belief trap is a formula ¢ € L such that
if a state 1) |= ¢, any successor state ¥’ = ¢.

Definition 14. A dead-end formula is a formula ¢ € Lg
such that if a state 1) |= ¢, any successor state ¥’ £ goal.

We now present MEPTrapper in Algorithm 2, designed
to detect dead-end formulas. The main idea is to construct
a belief trap graph, where the vertices represent simple
belief expressions that conflict with the goal. The algorithm
then traverses the graph, tagging each vertex to determine
whether it is a trap, and ultimately returns the trap formulas.
Intuitively, the algorithm starts from a candidate set of states
and iteratively prunes those that can transition outside the
set. If no such transitions remain, the formulas in this set
are confirmed as belief traps.

The Algorithm 2 MEPTrapper takes an MEP problem as
input and outputs a set of dead-end formulas. The algorithm
consists of two primary stages: building the belief trap
graph and extracting traps.

In the graph construction stage, the algorithm initializes
a graph starting with a placeholder node, denoted as L

776

Algorithm 2: MEPTrapper

Input: An MEP problem Q = (A,P,D,S,Z, G,~).
QOutput: A set of dead-end formulas ®.

/* Building the belief trap graph */
1 Initialize a labeled acyclic directed graph G = (V, E)
2 V<« {Ll}/x L is a placeholder node */

3 E«{}
4 foreach agent i € Ado

5 foreach atom p € P do
6 foreach belief) € {B;p, B;—p, ~B;p, ~B;=p,
7 = BipV =B;=p,~B;p A =B;=p} do
8 if G A 1 is unsatisfiable w.r.t. v then
9 L | V< VUu{y}
10 foreach vertex v € V do

11 foreach actiona € DU S do

12 if pre(a) is consistent with v then
13 compute the progression of v: prog(v, a)
14 foreach vertex v’ € V do
15 if prog(v, a) £ v then
16 L | E<+ EU{(v,a,v")}
/* Extracting the trap */
17 Initialize tags t,, <— true foreachv € V'
18 t) < false;
19 v« L
20 TrapTagger(v*)
21 foreach vertexv € V do
22 if t, = true then
23 L | 2+ dUw
24 return ¢

(line 2). For each agent and each grounded proposition p, it
generates simple belief expressions such as B;q and —B;q,
as well as their logical combinations (line 6). Here, we limit
the enumeration to simple-form belief expressions for effi-
ciency, and this decision is based on two key considerations:
Reasoning and progression are computationally lightweight
via simple set operations in classical planning, but become
time-consuming in MEP due to the higher-order belief
change. Unlike classical planning, where the number of
states is finite, the state-transition systems induced by MEP
problems can be infinite (Bolander 2017). For instance,
MEP allows formulas like B, Byq, B,ByB.q, and so on.
If a belief expression is unsatisfiable with the goal w.r.t. ~
(line 8), it is added to the vertex set.

The edges of the graph are then constructed by iterating
over each vertex v and each action a. If the precondition is
consistent with v, the algorithm computes the progression,
and add an edge from v to all vertices that are entailed
by the progression (lines 14-16). We call those vertices
entailed by the progression a-children of v.

To illustrate the above graph construction step, let us
continue Example 1. The algorithm begins by constructing
a graph where the vertices represent belief expressions that

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Algorithm 3: TrapTagger

Input: A vertex v*.
1 Let V}, be all the predecessors of v*
2 if V,, = 0 then
3 | return

4 foreachv c V), do

5 foreach action a € DUS do

6 ifV(v,a,v") € E, t,, = false then
7 t, < false

8 L break

9 foreach v € V,, do
10 | TrapTagger(v)

conflict with the goal: _L (the placeholder node), Byq, By—q,
and ~B.q A =~ B.—q, while the edges represent actions. A
partial belief trap graph is shown in Figure 2. The ontic
actions left and right are applicable to every vertex, and
their effects do not change the beliefs. Therefore, these
actions result in self-loop edges. Consider the vertex Bpq.
The applicable communication actions are tell,(i) and
tell,(i). The progression through tell,(2) is entailed by
Bjp—q, resulting in an edge from Byq to By—q. Now, con-
sider the vertex =B.q A =B.—q. An edge from this vertex
to Byq (resp. By—q) is added through the progression of the
action tell,(3) (resp. tell,(3)). However, the progressions
of =B.g A ~B.—g w.r.t. tell,(3) and tell,,(3) do not entail
any other vertices. As a result, two edges pointing to the
placeholder node are added.

After the graph is constructed, the trap extraction stage
begins. All vertices are initialized as potential traps except
for the placeholder node 1, which is tagged as not a trap
(lines 17-18). The TrapTagger procedure then propagates
trap information through the graph in reverse, starting from
L (line 20).

For example, in the graph shown in Figure 2, the vertex
—B.qg A 7B;q has a tell,(4)-child and a tell,,(4)-child,
both pointing to L. Since all successors under these actions
are already tagged as non-traps, this vertex is also marked as
not a trap. In contrast, the vertices Byq and Bp—q have no
action a such that all a-children are non-traps. Therefore,
their tags remain true and are returned as part of the final
dead-end formula.

Algorithm 3 describes the TrapTagger procedure in
detail. Given a vertex v*, the algorithm identifies all of its
predecessors. For each predecessor v, it checks whether
there exists an action a such that all a-successors of v have
been tagged as non-traps. If so, v is also tagged as not a trap,
and the procedure recursively continues the propagation to
its predecessors.

Now, we show the correctness of the algorithms.

Theorem 1. Let & = {¢1, o, ...} be the set of formulas
returned by the algorithm MEPTrapper. Then each ¢; € ®
is a dead-end formula.

Proof. Let v be a vertex where t,, = true, and the corre-

77

tell,(2)
tell, (2)
left/right
p b tell,(3) tell,(3) -t
@q ; ﬁch A _'BC_'q] Bb_l\q:)
left/right telly(4) telln(4) left/right

I

Figure 2: Partial belief trap graph for dead-end formulas.

sponding formula ¢; = v is included in the output set ®. To
establish that ¢; is a dead-end formula, we need to demon-
strate that for any state ¢ where ¢ = ¢;, the progression
of ¢) under any applicable action a does not entail the goal.
The trap tagging algorithm ensures that ¢, = true iff for
every applicable action a, at least one of its a-child (i.e.,
vertex v’ where (v, a,v’) € E) must also be a trap because
its tag will be turned into false otherwise (lines 6-7, Algo-
rithm 3). This guarantees that from any state 1 that entails
¢;, its progression under any applicable action a necessarily
results in a state that entails some formula ¢; € ®.

Since all such ¢; = v’ are, by construction, mutually
exclusive with the goal (lines 8-9, Algorithm 2), it follows
that no successor state entails the goal. Therefore, ¢; is a
dead-end formula. O

The intuition behind is as follows. Each belief expression
¢; selected into the final output set & is known to be
inconsistent with the goal. No matter which action is
applied, the resulting successor state remains within the
trap set, that is, also satisfies a vertex in ®, and therefore
are also inconsistent with the goal. Informally, we identify
belief conditions that form closed “pockets” in the belief
space from which it is impossible to escape toward a
goal-satisfying state. These pockets are traps, and because
they are also goal-inconsistent, they are dead-ends.

The original preprocessing algorithm for classical plan-
ning has a runtime that is exponential in parameter &, the
number of terms present in the DNF formula representing
the trap (Lipovetzky, Muise, and Geffner 2016). In our
algorithms, considering only a candidate set of beliefs
(line 6) amounts to set k£ to 1, and it runs only in time
O(JA]? - [P|? - |DUS]) (lines 10-16), where |A| - |P| limits
the maximum number of vertices of the belief trap graph
(lines 4-9). Since we focus on simple belief expressions and
the modal depth of the formulas is limited to 1 to build the
graph, the preprocessing process remains efficient.

Furthermore, because the belief trap graph is constructed
solely based on the domain’s action theory and the goal
formula, one advantage is that it only needs to be run once
per domain-goal pair. The resulting traps can then be reused
across multiple problem instances that share the same
domain and goal, even if their initial KBs are different.

The application of the MEPTrapper algorithm to an MEP
problem is straightforward: whenever a new node (a new
KB ¢) is generated, it is marked as a dead-end if ¢ is a dead-
end formula, which means it will not be explored anymore.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

4.2 Beneficial Trap

We now introduce beneficial traps, a novel concept aimed at
improving search efficiency.

Definition 15. A beneficial trap is a trap such that
goal = ¢.

Intuitively, a beneficial trap can potentially progress to
a state that entails the goal. Consider an example from the
Selective-communication domain with four agents, where
the goal is (~Byq) A (=By—q) A (Beq V Bemg) A (Bag Vv
By—q). In this case, (Bqq V By—q) is a beneficial trap, as it
can lead to the goal after agent a doing a single action that
tells the information to agent ¢’s room but not to b’s.

The idea is similar to the use of subgoals in classical
planning, but with important differences. In our setting,
goals are arbitrary KD45 formulas and are defined via
entailment. Moreover, unlike classical subgoals, beneficial
traps are epistemic formulas that are preserved across all
successor states, making them more robust and reliable as
intermediate targets during search.

The computation of beneficial traps is similar to the com-
putation of dead-end formulas. To build belief trap graph for
beneficial traps, we modify the Algorithm 2 by replacing the
condition in line 8 with (G |=). Figure 3 is a partial belief
trap graph for identifying beneficial traps. The tagging
process begins from the vertex T, and then concludes with
the identification of the beneficial trap B.q V B.—q.

The application of beneficial trap to above algorithms is
similar to dead-end formulas: whenever a new node (a new
KB ¢) is generated, its priority is promoted if ¢ is identified
as a beneficial trap. Here, we only increase the priority
rather than ensuring it is searched first, as a beneficial trap
can also lead the search to a dead-end. Consider the same
example above: (Bgyq V Bg—q). If agent a shares g with
agent ¢ while agent b stays in a neighboring room, the
successor state becomes a dead-end state.

4.3 General Belief Lock

To efficiently construct the belief trap graph, we focused on
simple belief expressions. However, there are traps in more
complex forms that cannot be captured by the previously
defined simple belief expressions. For example, in the
Gossip domain (formalized later), where the goal could be
By, sy or a more complex formula such as B, (sp A Sc V 84),
leading to an exponential number of possibilities w.r.t. the
number of agents. To address such cases, we extend the
belief lock strategy to handle these more complex scenarios.
We introduce two definitions for the original belief lock.

Definition 16. Given an MEP problem Q with constraint
~v. A formula 1 is unreachable from ¢ if prog(¢,) = L or
prog(¢, T) =~ 1 for any action sequence 7.

Definition 17. Given an MEP problem Q with deterministic
actions D and sensing actions S. The formula ¢ is said to
be strongly preserved if the following hold:

1. e; =y ¢, where (c;, e;) € eff (d), for any d € D;
2. pos(s) ey —¢ and neg(s) =, —¢ forany s € S.

778

T
tell, (2) tell,,(3) tell,(3) tell, (2)
telly(3) v tell,,(3)
@M%quﬁq?%i@
left/right left/right left/right

Figure 3: Partial belief trap graph for beneficial traps.

The above two conditions imply that the action model
of the domain restricts agents from entering certain states.
For example, the formula B,at(a,1), which denotes that
agent a knows she is in room 1, is not strongly preserved
because the effects of the action right entail the negation
of Byat(a,1). In contrast, the formula B, sp, which means
agent a knows the secret of agent b, is strongly preserved
since no actions in the Gossip domain can alter this belief.

The original proposition of belief lock (Fang and Lin
2024) can be rewritten as the following corollary and propo-
sition.

Corollary 1. If formula ¢ € L is strongly preserved, then
¢ is a belief trap.

Proposition 1. Given an MEP problem QO with goal G
and constraint . Let ¢ and ¢ be two KBs. Then G is
unreachable from ¢ if (1) G =y —¢; (2) ¢ =4 ¢; and (3) ¢
is strongly preserved.

Proposition 1 can be applied to find dead-end formulas
before planning. Intuitively, the conditions indicate that
once the KB progresses into a specific belief state, and
the domain cannot alter the situation further, then the KB
indicates a trap. This property allows the planner to identify
dead-end formulas in advance.

However, some dead-ends may be overlooked because
the conditions of the proposition are strong.

Example 2 (Gossip). There are three agents a, b, and c.
Each of them has her own secret S,, Sy, and s.. They can
call each other and exchange all the secrets they know.

The communication actions, sharey(i,j) and
sharen (i, j) allow agent i to call agent j to exchange all
the secrets or their negations that they know. For instance,
let one of the conditional effects of share,(c,a) be {(c,e),
where ¢ = B,—s. N Bys.\N—By,—s., and e = B,—s.. This
conditional effect means that if agent c believes the negation
of s. and a knows nothing about s, then a receives —s..

Here is an instance for this domain: The initial KB is
Basa A Bpsp A Be—se, meaning that initially each agent
knows her own secret or its negation.

The goal is B,sy N\ By—s. AN 7 B.s,, meaning that agent
a knows the secret of agent b and the negation of agent ¢’
secret, while agent c does not know the secret of a.

The constraint is T as there are no domain-specific
properties, such as agents’ locations.

A solution to this example is for agents b and ¢ to com-
municate first, followed by communication between agents
a and b, ensuring that agent ¢ does not learn agent a’s secret.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

According to the Definition 17, B.s, is not strongly pre-
served, as the conditional effect e |=, —Bg,s.. However it is
indeed a dead-end formula because once the KB progresses
into the state that entails B,—s., the precondition is no
longer satisfied, causing the KB to become “stuck” in a trap.

To address this limitation, we introduce a general belief
lock strategy to identify additional traps that are not covered
by the original belief lock strategy.

Definition 18. Given an MEP problem Q with deterministic
actions D and sensing actions S. The formula ¢ € Lk is
said to be generally preserved if the following hold:

1. For any d € D and (c¢;,e;) € eff (d): Either e; f=, -,
or ¢ A pre(d) or ¢ A ¢; is unsatisfiable;

2. Forany s € S: Either pos(s) &~ —¢ and neg(s) -, -,
or ¢ A pre(s) is unsatisfiable.

Technically, our approach extends the original belief lock
strategy by replacing the strong preservation condition with
a general one. Instead of requiring that no action can contra-
dict a belief, the general preservation condition only requires
that the conditions of all potential effects that could alter the
belief become unsatisfied after it is established. For instance,
in a variant of the Gossip problem from Example 2, agent
a can obtain either s. or its negation —~s.. However, once
one of these is obtained, the condition of the corresponding
conditional effect, - B,s. A~ B,s., becomes unsatisfiable.

Corollary 2. If the formula ¢ € Ly is generally preserved,
then ¢ is a belief trap.

proof sketch. Given a state (KB) v and a generally pre-
served formula ¢ we show that if ¢ |=, ¢, then any
progression of ¢ w.r.t. action sequences 7 entails ¢. This
can be proved by induction on arbitrary action sequences 7.
For the base case where 7 consists of only one action ¢, we
show that the single-step progression i) w.r.t. action ¢ entails
¢. For the induction step where 7 consists of two or more
actions. We recursively apply the result from the base case
and obtain that any progression will entail ¢. The complete
proof follows and generalizes the structure of Proposi-
tion 1’s proof in (Fang and Lin 2024), accommodating the
weaker conditions of general preservation. O

Then the following corollary is straightforward.

Corollary 3. Given an MEP problem Q with goal G and
constraint 7. If the formula ¢ € L is generally preserved
and G |= ¢, then ¢ is a beneficial trap.

Based on Corollary 2, we have following proposition.

Proposition 2 (General Belief Lock). Given an MEP
problem Q with goal G and constraint 7. Let ¢ and 1) be
two KBs. Then G is unreachable from ¢ if (1) G =, —¢;
(2) ¥ =+ ¢; and (3) ¢ is generally preserved.

Beyond identifying dead-end formulas using Propo-
sition 2, we can also leverage Corollary 3 to identify
beneficial traps. Compared to the simple belief expressions
in the MEPTrapper algorithm, this approach enables the
identification of more complex forms of belief traps, such
as formulas like B, (sp A Sc V 84).

779

To apply the general belief lock strategy, we analyze the
goal prior to planning. For each term in goal formula, we
verify whether it satisfies the conditions in Corollary 3 and
Proposition 2, categorizing it as either a beneficial trap or a
dead-end formula. This process is similar to the MEPTrap-
per algorithm. All traps identified during preprocessing
are subsequently leveraged for pruning during the planning
phase, enhancing the overall efficiency of the planner.

5 Experimentation

All the experiments are run on Linux with a 2.90GHz CPU
and 16GB RAM. The time limit for each run is set to 2 hours.
We conduct two experiments. First, we consider only the
hard benchmark since the previous algorithms have already
get optimal results on the easy benchmark. Second, we
extend the scale of instances on some domains to further
demonstrate the efficiency in these new instances.

In addition to the Selective-communication and Gossip
domains introduced earlier, the existing hard bench-
mark (Fang and Lin 2024) also includes three other
domains: Collaboration-and-communication (Kominis and
Geffner 2015). Finding-the-truth (Wan, Fang, and Liu
2021), and Hexa Game (van Ditmarsch 2001). Below we
give the description of each domain.

Collaboration-and-communication: CC(n). There is a
corridor of four rooms. n boxes are located in some of
the rooms. Two agents can move back and forth along this
corridor. When an agent enters a room, she can see if a box
is in the room. An agent can communicate information to
another agent. Furthermore, there is a variant with a cheat
action, denoted as TCC(n). The cheat action means agent @
can mislead agent 5 about whether box b is in room 7.

Finding-the-truth: FT(n). There are two boxes located
in n rooms. Two agents start with wrong beliefs about the
positions of the boxes. The agents can move between the
rooms and check if a box is in a room. The goal is for the
agents to find out the true locations of the boxes.

Hexa Game: HG(n). There are n agents and n cards,
each with a unique color. Initially, everyone is holding a
card, and can only see the color of her own card. A player
can ask a question to another player whether her card is of
a certain color. The goal is for some agents to know others’
cards. HG(n)* denotes a variant with different goals.

Grapevine: Grap(n, m). A few agents meet in a villa with
n rooms. Each agent has her own secret to share with others.
Each agent can move between the rooms, and broadcast her
secret to the agents in the same room. The goal is that some
get to know the secrets of some agents while some other do
not. m indicate the modal depth for each instance.

5.1 Results on Hard Benchmark

Table 1' present the results on the hard benchmark. The
comparison includes the baseline algorithms BFS and
Heu (Wan, Fang, and Liu 2021), their enhanced versions
(BFST and Heu™), variants further improved with the belief
lock strategy (BFSTK and HeuK), and our proposed
versions incorporating the trap-based strategy (*7T).

'Code & data be available at https://github.com/sysulic/MEPK

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Instance BFS BFS* BFSTK BES*T | Heu \ Heu* HeutK \ Heu*T
CC(3) 176 (17/1590) 49 (28/845) 47 (28/845) 46 (28/845) 34 (16 /766) 3 (15/167) 2 (15/167) 2 (15/167)
CC(4) 5864 (33/15780) | 163 (58/2934) 161 (58/2934) 152 (58/2934) 250 (17/3927) 2 (24/268) 2 (24/268) 2 (24/268)
CC(5) - - - - - 458 (84/2487) 364 (84/2487) 351 (84/2487)
$CC(4) 49 (7/1115) 65 (19/1472) 64 (19/1472) 60 (19/1472) 17 (9/829) 7 (14/466) 6 (14 /466) 6 (14/466)
+CC(5) 478 (7/1701) 1547 (14/3912) | 1484 (14/3912) | 1227 (14/3912) 101 (12/748) 114 (12/748) 99 (12/748) 88 (12/748)
+CC(6) 2456 (4/1709) 2309 (4/1709) 2123 (4/1709) 1764 (4/1709) 6 (4/42) 6 (4/42) 7 (4/42) 6 (4/42)
FT(4) - 1 (20/192) 1 (20/192) 1 (20/192) 6 (22/625) 0 (25/126) 0 (25/126) 0 (25/126)
FT(5) - 1 (23/157) 1 (23/157) 1 (23/157) 13 (19/486) 3 (35/199) 2 (35/199) 2 (35/199)
FT(6) - 2 (23/157) 3 (23/157) 2 (23/157) 83 (22/892) 6 (29/195) 5 (29/195) 5 (29/195)
FT(7) - 5 (23/157) 5 (23/157) 5 (23/157) 276 (55/1158) 11 (29/195) 12 (29/195) 10 (29/195)
FT(8) - 11 (23/157) 10 (23/157) 11 (23/157) 447 (41/1016) 28 (29/195) 25 (29/195) 23 (29/195)
HG(4) 14 (35/2128) 12 (59/2076) 8 (59/2076) 10 (59/2076) || 2167 (45/35508) 6 (35/1459) 5 (35/1459) 4 (35/1459)
HG(4)* 77 (71/4774) 73 (71/4810) 72 (71/4810) 66 (71/4810) || 1836 (71/32843) 73 (71/4892) 63 (71/4892) 56 (71/4892)
HG(5) 9 (23/1447) 18 (23/2029) 16 (23/2029) 15 (23/2029) - 2 (27/678) 2 (27/678) 2 (27/678)
HG(6) 167 (47/4092) 682 (47/10744) | 665 (47/10744) | 572 (47/10744) - 825 (63/11264) | 674 (63/11264) | 682 (63/11264)
HG(7) 713 (47/7598) 130 (49/2967) 125 (49/2967) 118 (49/2967) - 5365 (69/26400) | 4881 (69/26400) | 4880 (69 /26400)
Gossip(6) - - - 162 (9/1764) 4 (10/224) 5 (10/224) 2 (10/190) 3 (10/190)
Gossip(7) - - - - 32 (10/425) 37 (10/425) 38 (10/453) 35 (10/453)
Gossip(8) - - - 779 (10/2082) 73 (10/593) 83 (10/593) 77 (10/615) 1095 (10/2728)
Gossip(9) | 1252 (4/1779) 1416 (4/1779) 1307 (4/1751) 6 (47108) 4 4/73) 54/73) 4 4/73) 4 (4/73)
Gossip(10) | 1437 (4/1402) 1565 (4/1402) 1373 (4/1369) 12 (57135) 211 (6/591) 236 (6/591) 179 (6/591) 12 (5/135)
SC(16,7) 59 (50/1404) 46 (58/1189) 8 (58/446) 1 (54/106) 41 (63/1063) 46 (64 /1077) 6 (56/382) 1 (54/106)
SC(16,8) 190 (54/2323) 119 (62/1861) 8 (62/471) 1 (587114) 63 (54/1258) 104 (56/1617) 3 (60/218) 1 (587114)
SC(16,14) - - 78 (70/1166) 3 (647128) 1126 (69/4121) | 2600 (72/7397) 26 (82/590) 3 (647128)
SC(24,7) 260 (72/2053) 259 (84/2082) 34 (84/704) 4 (787161) 122 (80/1282) 94 (72/1069) 13 (97/361) 7 (787228)
SC(24.,8) 639 (74 /3069) 675 (87/3160) 44 (87/742) 5 (827170) 569 (89 /2656) 126 (81/1147) 16 (93/382) 8 (857222)
SC(24,14) - - 793 (93/2617) 11 (90/184) - - 67 (104 /582) 35 (907343)
Grap(4,1) 11 (6/1206) 10 (6/1206) 7 (6/832) 1 (8/188) 1 (10/179) 2 (10/179) 1 (10/179) 5 (19/604)
Grap(4,2) 66 (7/3939) 64 (7/3939) 31 (7/2341) 2 (107248) 1 (10/211) 1 (10/211) 2 (10/247) 1 (10/148)
Grap(4,3) 797 (8/12315) 730 (8/12315) 349 (8/8472) 2 (137127) 46 (15/2199) 56 (15/2199) 45 (19/2280) 1 (147165)
Grap(5,1) 171 (7/2767) 160 (7/2767) 79 (7/1721) 14 (97416) 28 (18/909) 32 (18/909) 15 (13/475) 7 (147159)
Grap(5,2) 563 (8/5359) 555 (8/5359) 342 (8/4146) 8 (11/203) 10 (12/433) 12 (12/433) 19 (16/659) 16 (167587)
Grap(5,3) - - 3135 (9/13234) 14 (147232) - - 105 (20/1926) 6 (15/162)

Table 1: Experimental results on hard benchmark. First column indicate the name of instance, followed by subsequent columns presenting
the results from various algorithms. Each result is represented as T'(A/ B), indicating T seconds of run time, A nodes for the size of plan, B
nodes expanded across the entire search graph. “—” indicates timeout. The results with smallest number of expanded nodes are in boldface.

By importing the new pruning techniques, the improved
results are underlined. Specifically, BFSTT expands fewer
nodes than BFSTK in 16 instances, and Heu™ T surpasses
Heu"K in 12 cases, demonstrating the efficiency of the
algorithms. Overall, BFSTT and Heu™ T together achieve
the lowest node expansion in 28 out of 33 instances. Turning
to runtime, BFSTT achieves a time reduction of more than
80% compared to BFSTK in 16 instances, and Heu™T
achieves over 45% time savings compared to Heu™K in
10 instances. These results collectively show the practical
effectiveness of the trap-based strategy in significantly
reducing both the search space and the computational cost.

One reason our pruning approaches bring improvements
in the bottom three domains is that epistemic planning
problems exhibit certain characteristics. Specifically, not
all agent beliefs are reversible. For example, in the Gossip
domain, agents share and receive secrets without any
retraction. However, in domains where agents can reverse
their beliefs about all propositions, such as the domain of FT
where the agents can change their beliefs about box posi-
tions, and the variant of Collaboration-and-communication
with the cheat action, where agents can mislead others by
providing incorrect box positions, BFESTT and Heu™ T offer
no improvements over BFS™(K) and Heu™ (K).

5.2 Results on Extended Benchmark

To further showcase the effectiveness of the proposed
pruning techniques in domains specifically tailored to

780

Domain | BFSTT | Heu"™ | Heu'K | Heu'T
Gossip 3 (4095) | 6 (1004) | 8 (705) | 17 (591)
SC 13 (3) 0 (682) 0 (14) 10 (4)

Grapevine 0 (4959) | 0 (7012) | 0 (6648) | 20 (604)

Table 2: Experimental results on extended benchmark.

highlight their advantages, we extend the scale (e.g., the
number of agents and rooms) of three domains: Gossip,
Selective-communication, and Grapevine, resulting in a
total of 20 instances for each domain (60 instances in total).

Table 2 summarizes the results of four best-performing
algorithms for each domain. Similar to Table 1, we define
the best result as the run with the smallest number of
expanded nodes during search. For each result N(T), N
denotes the number of instances (out of 20) in which the
algorithm achieved the best result, and T is the average
runtime (in seconds) across all 20 instances.

As shown in the table, Heu™T outperforms the other
algorithms in the Gossip and Grapevine domains, achieving
the best result in 17 and 20 instances, respectively, with
significantly lower average runtimes. In contrast, BFS™TT
demonstrates superior performance in the SC domain,
achieving the best result in 13 out of 20 instances. These
results highlight the effectiveness of the proposed trap-
based pruning techniques, particularly in domains where
the search space is large.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

6 Discussion

There are two main paradigms for modeling and solving
MEP problems: the semantic approach, which represents
states as epistemic models (e.g., DEL), and the syntactic
approach, where states are represented as knowledge bases,
i.e., sets of formulas known to hold. In this work, we adopt
the syntactic approach, following the design of MEPK, for
two main reasons. First, MEPK provides an expressive
framework capable of modeling a broad range of MEP
problems, including those involving disjunctive beliefs,
which are unsupported by some other planners such as
RP-MEP (Muise et al. 2022). Second, MEPK demonstrates
strong empirical scalability in the context of MEP, handling
planning problems with up to 24 agents and plan size
reaching 73 steps among the largest scales reported to date.
For an overview of the connections between semantic and
syntactic approach, we refer readers to a nice introduction
by Bolander (2017).

MEP is still an emerging area of research. One of
the current challenges lies in the lack of standardized
benchmarks for evaluating epistemic planners. Existing
planners often differ in their input languages and the logical
fragments they target, making direct comparisons difficult.
The planner most closely related to our work is RP-MEP,
whose performance is comparable to the baseline (BFS and
Heu) of MEPK, which was analyzed in previous work on
MEPK (Wan, Fang, and Liu 2021). Although cross-planner
comparisons are inherently difficult, two prior works (Wan,
Fang, and Liu 2021; Muise et al. 2022) have provided lim-
ited yet insightful comparisons across different approaches.

Despite their effectiveness, the proposed pruning tech-
niques have limitations, which suggest directions for future
work. For example, the belief trap graph currently considers
only simple-form belief expressions with limited modal
depth. In addition, even when combined with the general
belief lock strategy, the overall preprocessing procedure is
sound but not complete, meaning that some traps may still
be missed. Developing an algorithm that is both complete
and similarly efficient would be an interesting direction
for future research. Another promising direction is the
development of benchmarks that better reflect real-world
scenarios. For instance, one could model household robots
that help resolve conflicts and handle false-belief tasks in
complex family environments.

7 Conclusions

This paper proposed two approaches to improve the effi-
ciency of multi-agent epistemic planning by identifying
and utilizing belief traps for pruning. The first approach
adapts classical planning techniques to identify simple-form
expressions for belief traps, and introduces beneficial traps
to guide search toward goal state. The second approach
generalizes the belief lock strategy to detect complex traps
by analyzing action models. Our experiments on existing
and extended benchmarks show that the new pruning
techniques can accelerate problem-solving compared to the
previous heuristic search algorithms for MEPK.

781

A Higher-order Belief Revision

The higher-order revision operator of MEPK is defined
on ACDF, a normal form for KD45,, to support efficient
reasoning and progression. First, we introduce the cover
modality and ACDF. Let §a¢ stand for —B,—¢, and §a<I>

to represent the conjunction of B,¢ where ¢ € .

Definition 19. Let a € A, and ® a finite set of formlllas.
The cover modality is defined as: V,® = B,(\/ ®) A B, ®.

Intuitively, V,® means that each world considered possi-
ble by agent a satisfies an element of ®, and each element of
® is satisfied by some world considered possible by agent a.

Definition 20. The set of cover disjunctive formulas (CDFs)
is inductively defined as: 1. A propositional term, i.e., a
conjunction of propositional literals, is a CDF; 2. If ¢ is a
propositional CDF, and for each a € B C A, ®,, is a finite
set of CDFs, then ¢g A A 4c8Va®P, is a CDF, called a CDF
term; 3. If @ is a non-empty finite set of CDF terms, then
\/ @ is a CDF, called a disjunctive CDF.

Definition 21. An alternating CDF (ACDF) is a CDF with
no modal operators of an agent directly nested within those
of the same agent.

For example, V,{V,{—¢}} is an ACDF; but the CDF
Va{Va{—q}} is not since it happens that V, directly
appears after V,. Hales, French, and Davies (2012) intro-
duced the notion of ACDFs, and showed that in KD45,,,
every formula in L is equivalent to such a formula.

Let & x, ® denote {(¢,¢') | ¢ € &,¢ €
d' p N ¢ issatisfiable w.r.t. v}, Next, we introduce
the higher-order revision operator.

Definition 22. Let ¢ and ¢’ be ACDFs, v a DNF formula.
The revision of ¢ with ¢’ under ~, denoted ¢ o, ¢', is
recursively defined as follows:

1. When ¢ and ¢’ are propositional, the result is ¢os (¢’ A7),
where o is Satoh’s revision operator (Satoh 1988).

2. When Qb = ¢0 A /\ aEBvaq)av ¢/ = ¢6 A /\ aEB’vaq):z’

and ¢ A ¢’ is satisfiable w.r.t. 7, ¢ o ¢’ is defined as:
(¢0 On ¢6) A /\ aEB—B/va(I)a A /\ aEB/—Bva(I); AT

where m = A\ wennB Val(Pa 0y V @) U (P 0, V @4)]
if @ A ¢ is propositionally satisfiable w.r.t. ~; Oth-
erwise, T = A aepnn Vo[PE U (P, — @V)], where
i = {doy ¢ | (6,¢) € Pa %y {VP,}}. and
O = {¢ € P/, |thereexistsa¢p € D! s.t. ¢ —, ¢'}.

3. (V@) oy (V) =V{doyd'| (¢, ¢) € Dx, P}

For Rule 2, the first case of = is for the pur-
pose of the conjunction property: V,® A V, 9 &
Va[® A (V®) U A(\P)]. For second case of m, we
explain ®* and ¢/, — ¢!/, Recall that \/ @, is the belief of
agent a, and each ¢ € @, is a possibility for agent a. When
there exist possibilities of ®/, that are consistent with the
new belief \/ ®/,, we revise them with the new belief. Also,
among all the new possibilities, we remove those which are
strongly entailed by an element of ®, getting &/, — O/,

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in Planning and Scheduling

Acknowledgements

We are grateful to anonymous reviewers whose comments
and suggestions have helped us improve the paper.

References

Aucher, G., and Bolander, T. 2013. Undecidability in epis-
temic planning. In IJCAI, 27-33.

Baral, C.; Bolander, T.; van Ditmarsch, H.; and Mcllrath,
S. 2017. Epistemic planning (dagstuhl seminar 17231).
Dagstuhl Reports 7(6).

Belle, V.; Bolander, T.; Herzig, A.; and Nebel, B. 2023.
Epistemic planning: Perspectives on the special issue. Arti-
ficial Intelligence 316:103842.

Bolander, T., and Andersen, M. B. 2011. Epistemic planning
for single and multi-agent systems. Journal of Applied Non-
Classical Logics 21(1):9-34.

Bolander, T.; Dissing, L.; and Herrmann, N. 2021. Del-
based epistemic planning for human-robot collaboration:
Theory and implementation. In KR, 120-129.

Bolander, T. 2017. A gentle introduction to epistemic plan-
ning: The del approach. arXiv preprint arXiv:1703.02192.

Buckingham, D.; Scheutz, M.; Son, T. C.; and Fabiano, F.
2024. Action language ma* with higher-order action observ-
ability. In KR-2024, 210-220.

Cooper, M. C.; Herzig, A.; Maffre, F.; Maris, F.; and
Régnier, P. 2016a. A simple account of multi-agent epis-
temic planning. In ECAI, 193-201.

Cooper, M. C.; Herzig, A.; Maffre, F.; Maris, F.; and
Régnier, P. 2016b. Simple epistemic planning: Generalised
gossiping. In ECAI, 1563-1564.

Cooper, M. C.; Herzig, A.; Maffre, F.; Maris, F.; Per-
rotin, E.; and Régnier, P. 2021. A lightweight epistemic
logic and its application to planning. Artificial Intelligence
298:103437.

Dissing, L., and Bolander, T. 2020. Implementing theory of
mind on a robot using dynamic epistemic logic. In IJCAI,
1615-1621.

Engesser, T.; Herzig, A.; and Perrotin, E. 2024. Towards
epistemic-doxastic planning with observation and revision.
In AAAI-2024, 10501-10508.

Fabiano, F.; Burigana, A.; Dovier, A.; and Pontelli, E. 2020.
Efp 2.0: A multi-agent epistemic solver with multiple e-state
representations. In ICAPS, volume 30, 101-109.

Fang, B., and Lin, F. 2024. Heuristic strategies for accel-
erating multi-agent epistemic planning. In KR-2024, 1912~
1920.

Hales, J.; French, T.; and Davies, R. 2012. Refinement quan-
tified logics of knowledge and belief for multiple agents. In
Advances in Modal Logic, volume 9, 317-338.

Hu, G.; Miller, T.; and Lipovetzky, N. 2022. Planning with
perspectives—decomposing epistemic planning using func-
tional strips. Journal of Artificial Intelligence Research
75:489-539.

782

Hu, G.; Miller, T.; and Lipovetzky, N. 2023. Planning with
multi-agent belief using justified perspectives. In ICAPS,
volume 33, 180-188.

Kominis, F., and Geffner, H. 2015. Beliefs in multiagent
planning: From one agent to many. In /ICAPS, 147-155.

Le, T.; Fabiano, F.; Son, T. C.; and Pontelli, E. 2018. EFP
and PG-EFP: epistemic forward search planners in multi-
agent domains. In ICAPS, 161-170.

Lin, F. 2004. Discovering state invariants. KR 4:536-544.

Lipovetzky, N.; Muise, C.; and Geffner, H. 2016. Traps,
invariants, and dead-ends. In ICAPS, volume 26, 211-215.

Lowe, B.; Pacuit, E.; and Witzel, A. 2011. DEL planning
and some tractable cases. In Proceedings of the Third Inter-
national Workshop on Logic, Rationality, and Interaction,
179-192.

Muise, C. J.; Belle, V.; Felli, P.; Mcllraith, S. A.; Miller,
T.; Pearce, A. R.; and Sonenberg, L. 2015. Planning over
multi-agent epistemic states: A classical planning approach.
In AAAI, 3327-3334.

Muise, C.; Belle, V.; Felli, P.; Mcllraith, S.; Miller, T,;
Pearce, A. R.; and Sonenberg, L. 2022. Efficient multi-
agent epistemic planning: Teaching planners about nested
belief. Artificial Intelligence 302:103605.

Satoh, K. 1988. Nonmonotonic reasoning by minimal belief
revision. In Proc. the First International Conference on Fifth
Generation Computer Systems.

Thielscher, M. 2017. Gdl-iii: A description language for
epistemic general game playing. In IJCAI, 1276-1282.

To, S. T.; Son, T. C.; and Pontelli, E. 2011. Contingent
planning as and/or forward search with disjunctive represen-
tation. In ICAPS, 258-265.

van Ditmarsch, H.; van der Hoek, W.; and Kooi, B. P. 2007.
Dynamic epistemic logic. Springer.

van Ditmarsch, H. 2001. Knowledge games. Bulletin of
Economic Research 249-273.

Wan, H.; Fang, B.; and Liu, Y. 2021. A general multi-agent
epistemic planner based on higher-order belief change. Ar-
tificial Intelligence 301:103562.

Winslett, M. 1988. Reasoning about action using a possible
models approach. In AAAL

Yu, Q.; Wen, X.; and Liu, Y. 2013. Multi-agent epistemic

explanatory diagnosis via reasoning about actions. In IJCAI,
1183-1190.

	Introduction
	Related Work
	Preliminaries
	Multi-agent Modal Logic KD45n
	Modeling Framework of MEPK

	Our Methods
	Belief Trap Graph
	Beneficial Trap
	General Belief Lock

	Experimentation
	Results on Hard Benchmark
	Results on Extended Benchmark

	Discussion
	Conclusions
	Higher-order Belief Revision

