Melbourne, Australia. November 11-17, 2025.
ISSN: 2334-1033
ISBN: 978-1-956792-08-9
Copyright © 2025 International Joint Conferences on Artificial Intelligence Organization
Standard automated planning employs first-order formulas under closed-world semantics to achieve a goal with a given set of actions from an initial state. We follow a line of research that aims to incorporate background knowledge into automated planning problems, for example by means of ontologies, which are usually interpreted under open-world semantics. We present a new approach for planning with DL-Lite ontologies that combines the advantages of ontology-based action conditions provided by explicit-input knowledge and action bases (eKABs) and ontology-aware action effects under the coherence update semantics. We show that the complexity of the resulting formalism is not higher than that of previous approaches, and provide an implementation via a polynomial compilation into classical planning. An evaluation on existing and new benchmarks examines the performance of a planning system on different variants of our compilation.