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Abstract

We propose a novel algorithm for epistemic planning based
on dynamic epistemic logic (DEL). The novelty is that we
limit the depth of reasoning of the planning agent to an up-
per bound b, meaning that the planning agent can only reason
about higher-order knowledge to at most (modal) depth b. We
then compute a plan requiring the lowest reasoning depth by
iteratively incrementing the value of b. The algorithm relies at
its core on a new type of “canonical” b-bisimulation contrac-
tion that guarantees unique minimal models by construction.
This yields smaller states wrt. standard bisimulation contrac-
tions, and enables to efficiently check for visited states. We
show soundness and completeness of our planning algorithm,
under suitable bounds on reasoning depth, and that, for a
bound b, it runs in (b+1)-EXPTIME. We implement the algo-
rithm in a novel epistemic planner, DAEDALUS, and compare
it to the EFP 2.0 planner on several benchmarks from the lit-
erature, showing effective performance improvements.

1 Introduction
Automated planning is central in AI research (Ghallab, Nau,
and Traverso 2004; Geffner and Bonet 2013). In fully ob-
servable and deterministic domains, the output of a plan-
ning algorithm (a planner) is a sequence of actions achiev-
ing the desired goal state from a given initial state. Epis-
temic planning is the enrichment of planning with epis-
temic notions, in particular knowledge and belief, including
higher-order knowledge, i.e., knowledge about what other
agents know, knowledge about what someone knows about
someone else, etc. One of the reference frameworks for
epistemic planning is dynamic epistemic logic (DEL) (Bal-
tag, Moss, and Solecki 1998) in which epistemic states
are represented as Kripke models. DEL planning was first
pursued by Bolander and Andersen (2011), but indepen-
dently conceived by others (Löwe, Pacuit, and Witzel 2011;
Pardo and Sadrzadeh 2012; Aucher 2012). Recently, a spe-
cial issue of the journal Artificial Intelligence (AIJ) was de-
voted to epistemic planning (Belle et al. 2022).

One of the main challenges in epistemic planning is its
high computational complexity: unrestricted DEL planning
has an undecidable plan existence problem (Bolander and
Andersen 2011). This has led researchers to seek more
tractable fragments, both theoretically and practically. In-
tuitively, a main source of complexity is the fact that DEL

planning allows agents to reason about others’ (higher-
order) knowledge up to any nesting level. Thus, limiting rea-
soning depth seems a promising approach to tame DEL plan-
ning’s complexity. This led to decidable fragments by, e.g.,
restricting actions to be propositional, so that the required
reasoning depth is bound by the modal depth of the goal for-
mula (Yu, Wen, and Liu 2013), or by imposing axioms on
the semantics leading to collapse higher-order reasoning to
lower-order (Burigana et al. 2023). An alternative to DEL
planning is the sentential approach, where states are mod-
elled as knowledge (or belief) bases, i.e., sets of formulas.
Here, decidable fragments have been single out by explic-
itly bounding the modal depth of formulas in states (Muise
et al. 2015; Muise et al. 2022).

Our paper is also concerned with taming the computa-
tional complexity of epistemic planning via restricting the
reasoning bound. However, it is not about achieving a well-
behaved, e.g. decidable, fragment of epistemic planning
by considering a framework with fixed reasoning bounds.
Rather, we propose an alternative algorithmic approach that
maintains the generality of unrestricted DEL planning, but
always computes a plan using the lowest reasoning depth.
This is achieved via an “iterative deepening” algorithm that
iteratively increments the allowed reasoning depth until a
solution is found. Thus we preserve full generality while
still achieving the computational benefits of keeping the rea-
soning depth as low as possible, hence giving us an al-
gorithm that “degrades gracefully” with the increased rea-
soning bounds required by epistemically intricate planning
tasks. For instance, an agent might activate complex higher-
order reasoning when playing an epistemic card game like
Hanabi, but not when making coffee. If making coffee does
not require any higher-order reasoning at all (i.e., it reason-
ing about the mental states of other agents is not needed),
our algorithm will find a plan at reasoning depth 0, collaps-
ing all the epistemic states into propositional ones.

Our contribution is fourfold: 1. We introduce canonical b-
bisimulation contractions as a compact, depth-bounded rep-
resentation of states; 2. We define an iterative-deepening al-
gorithm for computing plans with the lowest possible modal
depth; 3. We show soundness, completeness and complex-
ity results; and 4. We implement the algorithm in our novel
epistemic planner, DAEDALUS, and show effective improve-
ments wrt. the EFP 2.0 planner (Fabiano et al. 2020).
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w0:
has(a, 5)
has(b, 4)

w1:
has(a, 3)
has(b, 4)

w2:
has(a, 3)
has(b, 2)

w3:
has(a, 1)
has(b, 2)

w4:
has(a, 1)
has(b, 0)

s0 = b a b a

a, b a, b a, b a, b a, b

Figure 1: Epistemic state s0 of Example 1. Bullets represent
worlds, labelled by their name and the atoms they satisfy. The
actual world is circled. Edges represent the accessibility relations.

2 Preliminaries
Dynamic Epistemic Logic We recall the main concepts
of DEL. For a more complete account, see van Ditmarsch,
van der Hoek, and Kooi (2007). Let P be a finite set of
atomic propositions (atoms) and AG a finite set of agents.
The language L of multi-agent epistemic logic is given by:
φ ::= p | ¬φ | φ ∧ φ | �iφ (p ∈ P , i ∈ AG). Formula �iφ
is read as “agent i knows/believes that φ”. Symbols ∨, →
and ♦i are defined by abbreviation as usual.
Definition 1 (States). An (epistemic) model of L is a triple
M = (W,R,L) where: 1) W 6= ∅ is a finite set of (pos-
sible) worlds; 2) R : AG → 2W×W maps to each agent i
an accessibility relation Ri; 3) L : W → 2P maps to each
world w a label L(w). An (epistemic) state of L is a pair
s = (M,w), where w ∈W is the actual world.
We often write wRiv for (w, v) ∈ Ri. Truth of formulas
φ ∈ L in state (M,w) is defined inductively as follows,
with the standard clauses for propositional connectives:
(M,w) |= p iff p ∈ L(w)
(M,w) |= �iφ iff for all v, if wRiv then (M,v) |= φ

Example 1 (Consecutive Number Puzzle (van Ditmarsch
and Kooi 2015)). Agents a and b are given two consecu-
tive numbers na, nb ∈ [0, N ], only seeing their own number.
Let has(i, n) denote that agent i has number n. State s0
(Figure 1) has N = 5, na = 3 and nb = 4. We have s0 |=
�b
(
has(b, 4) ∧ (has(a, 3) ∨ has(a, 5))

)
∧ ¬�bhas(a, 3) ∧

¬�bhas(a, 5): b knows herself to have 4 and knows a to
have either 3 or 5, but b doesn’t know which of the two.

In DEL, actions are represented by event models. These
are Kripke structures on a set of events, where each event
represents a possible perspective on an action defined via a
precondition and postconditions.
Definition 2 (Actions). An event model of L is a tuple
A = (E,Q, pre, post) where: 1) E 6= ∅ is a finite set of
events; 2) Q : AG → 2E×E maps to each agent i an acces-
sibility relation Qi; 3) pre : E → L maps to each event a
precondition; 4) post : E×P → Lmaps to each event-atom
pair a postcondition. An action of L is a pair α = (A, e)
where e ∈ E is the actual event.
We often write eQif for (e, f) ∈ Qi. We now introduce the
notion of modal depth of an action (sequence), which will
play a central role in our algorithm.
Definition 3 (Modal depth). The modal depth of formulas of
L is defined by: md(p) = 0 (for p ∈ P),md(¬φ) = md(φ),
md(φ1 ∧ φ2) = max{md(φ1),md(φ2)} and md(�iφ) =
1 +md(φ). The modal depth of an action α is the maximal

modal depth of its pre- and postconditions, i.e., md(α) =
max{md(pre(e)),md(post(e, p)) | e ∈ E, p ∈ P}. The
modal depth of π = α1, . . . , αl is md(π) =

∑
i≤lmd(αi).

An action is executed in a state via the product update.
Definition 4 (Product Update). Let s = ((W,R,L), w) be
a state and α = ((E,Q, pre, post), e) an action. We say
that α is applicable in s if s |= pre(e), and if so, the product
update of swith α is the state s⊗α = ((W ′, R′, L′), (w, e)):
W ′ = {(w, e) ∈W×E | (M,w) |= pre(e)}
R′i = {((w, e), (v, f)) ∈W ′×W ′ | wRiv and eQif}
L′((w, e)) = {p ∈ P | (M,w) |= post(e, p)}.

Example 2. We can define the public announcement of a
formula φ as the action ann(φ) = (({e}, Q, pre, post), e)
where Qi = {(e, e)} for all i, pre(e) = φ and post(e, p) =
p for all p ∈ P (Baltag, Moss, and Solecki 1998). Contin-
uing Example 1, α = ann(

∧
0≤k≤N ¬�bhas(a, k)) is the

public announcement of “b doesn’t know a’s number”. The
state s0 ⊗ α is achieved by deleting w4 from s0: That world
represents a situation where b has 0 and hence knows a to
have 1, contradicting the announcement.

We now extend the epistemic language L with dynamic
modalities [α]φ, where α = (A, e) is an action. We call
the extended language Ldyn , and we read [α]φ as “every
execution of α yields a state satisfying φ”. The semantics is:

s |= [α]φ iff s |= pre(e) implies s⊗ α |= φ
We often write [α1, . . . , αl]φ for [α1] . . . [αl]φ and define the
modal depth of [α]φ as md([α]φ) = md(α) + md(φ).

Epistemic Planning We recall the notions of epistemic
planning tasks and solutions (Aucher and Bolander 2013).
For a sequence π = α1, . . . , αl of actions and 1 ≤ k ≤ l,
π≤k denotes the prefix α1, . . . , αk of π, and s ⊗ π the state
s ⊗ α1 · · · ⊗ αl (if π is empty, this is just s). We say that π
is applicable in s if for all k, αk is applicable in s⊗ π≤k−1.
Definition 5. An (epistemic) planning task is a triple T =
(s0,A, φg), where s0 is a state (the initial state),A is a finite
set of actions, and φg ∈ L is the goal formula. A solution
(or plan) to T is a finite sequence π = α1, . . . , αl of actions
of A such that π is applicable in s0 and s0 |= [π]φg .

Bisimulations We recall bisimulations and bounded
bisimulations (Blackburn, Rijke, and Venema 2001).
Definition 6. Let b ≥ 0. A b-bisimulation between states
s = ((W,R,L), w) and s′ = ((W ′, R′, L′), w′) is a se-
quence Zb ⊆ · · · ⊆ Z0 ⊆ W ×W ′ s.t. (w,w′) ∈ Zb and
for all h < b:

[atom] If (w,w′) ∈ Z0, then L(w) = L(w′).
[forthh] If (w,w′) ∈ Zh+1 and wRiv, then there exists
v′ ∈W ′ such that w′R′iv

′ and (v, v′) ∈ Zh.
[backh] If (w,w′) ∈ Zh+1 and w′R′iv

′, then there exists
v ∈W such that wRiv and (v, v′) ∈ Zh.

If a b-bisimulation between s and s′ exists, s and s′ are b-
bisimilar, denoted s -b s

′. When (M,w) -b (M ′, w′),
we often simply write w -b w′, and call w and w′ b-
bisimilar (when M,M ′ are clear from the context). The b-
bisimulation class of a world w is [w]b = {v ∈ W | v -b
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w}. We say that s and s′ are bisimilar, denoted s - s′,
if there exists a single relation Z satisfying the conditions
above with the subscript on Z removed everywhere.

Note that s -b s
′ implies s -h s

′ for all h < b (similarly
for w -b w

′). Given a set Φ ⊆ L and states s, s′, we say
that s and s′ agree on Φ if, for all φ ∈ Φ, s |= φ iff s′ |= φ.

Proposition 1 (Blackburn, Rijke, and Venema 2001). Two
finite states are bisimilar iff they agree on L. They are b-
bisimilar iff they agree on {φ ∈ L | md(φ) ≤ b}.
Proposition 2 (van Ditmarsch, van der Hoek, and
Kooi 2007). Let s - s′ and let α be applicable in both s
and s′. Then, s⊗ α - s′ ⊗ α.

The following relatively recent result will play a central
role in our paper. Together with Proposition 1, it gives a
lower bound on the modal depth of formulas whose truth is
preserved after product updates (after action executions).

Proposition 3 (Bolander and Lequen 2022). Let s -b s
′

and let π be an action sequence applicable in both s and s′
with md(π) ≤ b. Then, s⊗ π -b−md(π) s

′ ⊗ π.

The cited source only formulates the result for individ-
ual actions (action sequences of length 1), but it generalizes
immediately. We now clarify the relevance of these results.
The modal depth of formulas formalizes the informal notion
of reasoning depth used in the introduction: e.g., reasoning
on the statement “a knows that b knows neither agent has 0”
requires a formula modal depth 2. Proposition 1 shows that
b-bisimilar states agree on all formulas up to modal depth b,
so an agent limited to reasoning depth b cannot distinguish
between them. Thus, the agent’s internal state could be any-
one of a given b-bisimulation class, e.g., a minimal one (see
next section for an elaboration on this). However, reason-
ing depth is not necessarily preserved under product updates.
For example, if s′0 is obtained from s0 (Figure 1) by deleting
w3 and w4, then s0 -1 s

′
0, since formulas of modal depth

≤ 1 are evaluated only in the actual world w1 and its imme-
diate neighbours, but s0 ⊗ α -1 s

′
0 ⊗ α does not hold when

α is the public announcement that “b doesn’t know a’s num-
ber” of Example 2. This action will remove the rightmost
world no matter whether it is applied to s0 or s′0, so when
applied to s′0, it will remove w2, and then e.g. ♦ahas(a, 3)
will be true in s0⊗α but not in s′0⊗α. So if an agent needs
to be able to reason to depth 1 about the state resulting from
executing α, it needs to be able to reason to at least to depth 2
about the state before the action. Proposition 3 then guaran-
tees that reasoning to depth 2 about the former state suffices,
since md(α) = 1. This is key in depth-bounded epistemic
planning, since planning is reasoning about possible future
states, and depth-bounded reasoning to depth b corresponds
to b-bisimulation invariance.

Proposition 4. If two finite states s and s′ are b-bisimilar,
they agree on {φ ∈ Ldyn | md(φ) ≤ b}.1

Proof sketch. The proof is by induction on the structure of
φ, where the cases of the connectives and modalities in L

1Full proofs are available in the Appendix of the extended ver-
sion available at https://arxiv.org/abs/2406.01139.

wb:p
s = bscb =

wb−1:p w1:p w0:p w′b:p
TsU<

b =

Figure 2: Standard (bscb) and rooted (TsU<
b ) b-contractions of s

(Definition 9). As we have only one agent, we omit agent labels.

are exactly as in the proof of Proposition 1, and the case of
the dynamic modalities [α]ψ follows from Proposition 3 and
the definition of md([α]ψ).

3 Rooted and Canonical b-Contractions
A significant challenge for epistemic planners is to han-
dle the rapid growth of the size of states following up-
dates (Bolander and Andersen 2011), even when minimiz-
ing states using bisimulation contractions (Yu, Wen, and
Liu 2013; Fabiano et al. 2020; Bolander, Dissing, and Her-
rmann 2021a). Here we seek to model agents with a bound
on their reasoning depth (a bound on the modal depth of
the formulas they can reason with). We achieve this by us-
ing b-bisimulation contractions, abbreviated b-contractions.
These were introduced to epistemic planning by Yu, Wen,
and Liu (2013), defining the b-contraction bscb of a state
s = ((W,R,L), w) as the quotient structure of s wrt. -b,
i.e., bscb = ((W ′, R′, L′), [w]b) with W ′ = {[w]b | w ∈
W}, R′i = {([w]b, [v]b) | wRiv}, and L′([w]b) = L(w).
We call this the standard b-contraction of s. Unfortunately,
bscb is not always minimal (i.e., it does not have the smallest
number of worlds and edges) among the states b-bisimilar to
s, as the next example shows (Bolander and Burigana 2024).
Example 3. Consider the chain state s in Figure 2, left.
Since p is true in all worlds, and the length of the chain
is b, a minimal state b-bisimilar to s is a singleton state with
a loop (Figure 2, right). This is because the loop state pre-
serves all formulas up to depth b, cf. Proposition 1. However,
the standard b-contraction of s is simply s itself, as no two
worlds of s satisfy the same formulas up to depth b.
In the following, b ≥ 0 denotes a constant (a bound), s =
(M,wd) a state with M = (W,R,L), < a total order on W .

Rooted b-contractions. Recently, Bolander and Burig-
ana (2024) developed a novel type of b-contractions, called
rooted b-contractions, that guarantee minimality of con-
tracted states. We briefly state the definition and minimal-
ity result from that paper (Definitions 7–9 and Theorem 1
below), and refer the reader to the paper for further details.
Definition 7 (Depth and Bound). The depth d(w) of a world
w ∈W is the length of the shortest path from wd to w (∞ if
no such path exists). The bound of w is b(w) = b− d(w).
Definition 8. Let x, y ∈W with b(x), b(y) ≥ 0. We say that
x represents y, denoted x � y, if b(x) ≥ b(y) and x -b(y) y.
If furthermore b(x) > b(y), we say that x strictly represents
y, denoted by x � y. The set of maximal representatives of
W is the set Wmax = {x ∈ W | b(x) ≥ 0 and ¬∃y(y �
x)}. We also let Wmax

>0 = {x ∈ Wmax | b(x) > 0}.
For h ≤ b, the least h-representative of w is the world
min<h (w) = min<{v ∈ Wmax | v -h w}. The representa-
tive class of w ∈W is [w]b(w), compactly denoted JwK.
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Definition 9. The rooted b-contraction of s is TsU<b =
((W ′, R′, L′), JwdK), where:
W ′ = {JxK | x ∈Wmax}
R′i = {(JxK, Jmin<b(x)−1(y)K) | x ∈Wmax

>0 and xRiy}
L′(JxK) = L(x), for all JxK ∈W ′.

Theorem 1 (Bolander and Burigana 2024). TsU<b is a min-
imal state b-bisimilar to s, i.e., it has a minimal number of
worlds and edges among all states b-bisimilar to s.

Canonical b-contractions. Below, we devise a novel plan-
ning algorithm using graph search (Russell and Norvig
2010) to find plans. As we want to limit the reasoning depth
of the planning agent to some bound b, we can replace each
state s in the search tree by TsU<b , since Proposition 1 and
Theorem 1 together give us that TsU<b is a minimal state
preserving the truth of formulas up to depth b in s. Due
to the minimality of rooted b-contractions, this would guar-
antee minimality of the representation of each state in the
search tree. However, when using graph search for plan-
ning, we also need to be able to efficiently check whether
a computed state is already in the search tree. In our case,
this would amount to checking b-bisimilarity between the
computed state and existing states in the search tree, which
is costly. Bolander, Dissing, and Herrmann (2021a) found a
solution to this problem in the case of standard bisimulations
by devising a so-called ordered partition refinement algo-
rithm for computing bisimulation contractions guaranteeing
two bisimilar states to have identical contractions, hence re-
ducing bisimilarity checks to identity checks. Inspired by
this work, we define a notion of canonical b-contractions
guaranteeing two b-bisimilar states to have identical contrac-
tions, in turn providing fast state comparisons for our plan-
ning algorithm. Before giving the definition, we illustrate
the issue of rooted b-contractions with an example.
Example 4. Let s be the state in Figure 3, let t be a state
only differing from s by swapping the names of w1 and w2

(Figure 4), let the total order < on W (the world set of s
and t) be given by wi < wj iff i < j, and let b = 3. Then
b(w0) = 3, b(w1) = b(w2) = 2, and b(w3) = b(w4) = 1.
Since in both states no two worlds are 1-bisimilar, all worlds
of W are maximal representatives, so TsU<3 and TtU<3 (Fig-
ures 5 and 6) will contain a world JwK = [w]b(w) for each
w ∈ W . Note that both 3-contracted states only differ from
their original model by the deletion of a different “unneces-
sary” edge (as this depends on <). Hence, despite s and t
being isomorphic, TsU<3 and TtU<3 are not! This shows that
rooted b-contractions do not ensure unique representatives
of classes of b-bisimilar states.
Definition 10. The h-signature σh(w) of a world w is the
pair (L(w),Σh(w)), where the function Σh(w) maps to
each agent i a set Σh(w, i) = {σh−1(v) | wRiv} of (h−1)-
signatures, if h > 0, and ∅ otherwise. We call σb(w)(w) the
representative signature of w, compactly denoted σ(w).

In the h-signature of w, the label L(w) describes what
atoms hold at w and an (h−1)-signature σh−1(v) ∈
Σh(w, i) represents agent i’s knowledge/beliefs at v up to
depth h−1. All (h−1)-signatures map to each agent a set

of (h−2)-signatures, and so on until 0-signatures, which
only contain worlds labels. Hence, the h-signature of w
captures the model structure up to depth h from w. This
will allow us to prove that two worlds are h-bisimilar iff
they have the same h-signature (Lemma 1). In what fol-
lows, h ≥ 0 denotes a constant, and M = (W,R,L) and
M ′ = (W ′, R′, L′) two models with x ∈W and x′ ∈W ′.
Lemma 1. x -h x

′ iff σh(x) = σh(x′).

Proof sketch. (⇒) Induction on h. For h = 0, x -0 x
′ iff

L(x) = L′(x′) iff σ0(x) = σ0(x′). For h > 0, x -h x′

implies L(x) = L′(x′), and for all i ∈ AG, the sets of
(h−1)-signatures of i-accessible worlds are equal (i.h. and
Definition 10). (⇐) Assume σh(x) = σh(x′). Letting Zg =
{(w,w′) | σg(w) = σg(w

′)} for g ≤ h, Zh, . . . , Z0 is an h-
bisimulation between x and x′ (i.h. and Definition 10).

As P and AG are fixed finite sets, we can assume a fixed
total order on them. This induces a fixed total order l on
signatures as in Bolander, Dissing, and Herrmann (2021a).
From this, we define the notion of canonical signatures.

Definition 11. The canonical signature to depth h (h ≤ b)
of a world w ∈ W is the representative signature σ?h(w) =
minl{σ(v) | v ∈Wmax and σh(v) = σh(w)}.
Definition 12. The canonical b-contraction of s is the state
TsU?b = ((W ′, R′, L′), σ(wd)), where:
W ′ = {σ(x) | x ∈Wmax}
R′i = {(σ(x), σ?b(x)−1(y)) | x ∈Wmax

>0 and xRiy}
L′(σ(x)) = L(x), for all σ(x) ∈W ′.
Note that canonical b-contractions only differ from rooted

b-contractions by the naming of worlds (σ(x) instead of JxK)
and by the choice of representative of the class of worlds that
are (b(x)−1)-bisimilar to y in the definition of R′i (using
σ?b(x)−1(y) instead of Jmin<b(x)−1(y)K). This means that the
proof of Theorem 1 carries directly over to this setting:

Theorem 2. TsU?b is a minimal state b-bisimilar to s.

Furthermore, canonical b-contractions enjoy the follow-
ing identity property:

Theorem 3. s -b t iff TsU?b = TtU?b .

Proof sketch. (⇐): by Theorem 2. (⇒): We use Lemma 1
and Definitions 11–12 to show that TsU?b and TtU?b have the
same worlds and accessibility relations, and Definition 12 to
show that they have the same labels.

Example 5. Theorem 3 ensures that b-bisimilar states have
identical canonical b-contractions, unlike rooted contrac-
tions where this might not even hold for isomorphic states
(cf. Example 4). We identified the problem to be that the
choice of “unnecessary” edges to be deleted depended on
the total order on W , i.e., on the naming of worlds. Canoni-
cal b-contractions solve this problem, as the choice of “rep-
resentative edges” is uniquely determined by the signatures,
which are naming independent. In particular, referring
again to Example 4, since b(w3) = 1 in s when b = 3,
the edge (w3, w2) of s is replaced by (σ(w3), σ?0(w2)) in
TsU?b , where σ?0(w2) = minl{σ(v) | v ∈ Wmax, σ0(v) =
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w0:p

w1:q w2:q

w3:r w4:r

Figure 3: State s.

w0:p

w2:q w1:q

w3:r w4:r

Figure 4: State t.

[w0]3:p

[w1]2:q [w2]2:q

[w3]1:r [w4]1:r

Figure 5: State TsU<
3 .

[w0]3:p

[w2]2:q [w1]2:q

[w3]1:r [w4]1:r

Figure 6: State TtU<
3 .

σ0(w2)} = minl{σ(v) | v ∈ Wmax, L(v) = L(w2) =
{q}}, showing that the end node of the edge only depends on
the fixed total order on signatures and the label of worlds.

4 Iterative Bound-Deepening Search
Unlike more typical search strategies aimed at computing a
plan that is as short as possible, our goal is to find a plan
with a modal depth as low as possible (Definition 3). To
this end, we impose a bound b on the reasoning depth of
the planning agent (the modal depth of formulas it can rea-
son about), which in turn allows us to use b-contractions to
reduce state sizes. To make the intution underlying our al-
gorithm clearer, we first introduce some new helpful notions
and corresponding results.

Definition 13. A state s′ is called an exact representation
of a state s if s′ - s. The state s′ is called an approximate
representation (or simply approximation) of s if s′ -b s for
some b ≥ 0. In this case, s′ is also called a b-approximation
of s. If s′ is an approximate, but not an exact, representation
of s, we call it a proper approximation.

Proposition 5. If s is an exact representation of s′, then
the two states agree on Ldyn . If s is a b-approximation of
s′, then they agree on all Ldyn -formulas of modal depth
at most b. In particular, given a state s, its canonical b-
contraction TsU?b is a b-approximation of s and agrees with
it on all Ldyn -formulas of modal depth at most b.

Proof. The first statement follows directly from Proposi-
tion 1, as any formula of Ldyn is equivalent to a formula in
L (van Ditmarsch, van der Hoek, and Kooi 2007). The sec-
ond statement follows from Proposition 4. The third state-
ment follows from the second statement and Theorem 2.

To check whether an action sequence π is a solution
to a planning task (s0,A, φg), we need to check whether
s0 |= [π]φg (Definition 5). Proposition 5 gives us that this
is equivalent to checking whether Ts0U

?
md([π]φg)

|= [π]φg .
Thus to check whether a particular action sequence π is a
solution, we can always replace the true initial state s0 by
Ts0U

?
md([π]φg)

, or by any other Ts0U
?
b with b ≥ md([π]φg).

This will be exploited in our algorithm below. The algorithm
starts out with an initial value of the bound b and attempts to
compute a solution from the b-contracted initial state Ts0U

?
b.

If this fails, b is incremented, and a new search is performed.

4.1 Description of the Planning Algorithm
We now describe our planning Algorithm 1 called Iterative
Bound-Deepening Search (IBDS). The algorithm builds a
search tree. Each node of the tree contains a contracted state

TsU?b representing some true state s. Thus each node state
is an approximate representation of the corresponding true
state (Definition 13 and Proposition 5). Formally, a node
of the search tree is a pair n = (s, b), where s is the state
of n (denoted n.state) and b is the (depth) bound (denoted
n.bound). The bound b is intended to guarantee that n.state
is at least a b-approximation of the corresponding true state,
and hence agrees with all formulas of the true state up to
modal depth b (Proposition 5). Later, in Lemma 2, we for-
mally prove that this property holds for all nodes in the
search tree. For now, we only provide informal arguments.

To compute TsU?b , we use bounded partition refinements
(Bolander and Lequen 2022), a variation of standard par-
tition refinements (Paige and Tarjan 1987). The algorithm
manipulates via refinement operations a partition P0 of W
(initially calculated wrt. labels): for each element B ∈ P0,
called a block, and for each relation Ri, a refinement pro-
duces a new partition P1 by splitting the worlds of B wrt.
which blocks of P0 they can access via Ri. Refinements
are applied recursively until the sequence [P0, . . . , Pb] of
partitions is computed. This gives the bounded bisimula-
tion classes on W : the blocks of Ph are the h-bisimulation
classes of W (Bolander and Lequen 2022, Prop. 7). Canon-
ical b-contractions are then obtained from the partitions by
following Definition 12.

In IBDS (line 1), the integer b ≥ 0 denotes the global
maximum modal depth of the formulas that we evaluate. Ini-
tially, we let b = md(φg) (line 2). We then iteratively call
the BOUNDEDSEARCH algorithm over increasing values of
b until a plan π is found (lines 2-4). BOUNDEDSEARCH
uses breadth-first search (BFS) starting from the initial node
n0 = INITNODE(s0,b) = (Ts0U

?
b,b) (line 6). In the first

call to BOUNDEDSEARCH, b has value md(φg), implying
that the state Ts0U

?
b of the root note n0 at least md(φg)-

approximates the true initial state s0. This is sufficient to
check whether the goal formula is satisfied in the true ini-
tial state s0, since the root state Ts0U

?
b and s0 will agree on

φg (Proposition 5). But we are not guaranteed that they will
also agree on [π]φg , for non-empty action sequences π.

We keep track of the nodes to be expanded in the frontier
queue, and of the states encountered during search in the
visited set. While frontier contains a node n = (s, b),
we extract it from the queue, mark its state as visited and
check whether it satisfies the goal formula. If it does,
we return the plan that led to s (line 11). Otherwise,
we process n by generating child nodes n′ for all actions
α with b ≥ md(α) + md(φg) that are applicable in s
(lines 12-14). Each such child node is initialized as n′ =
CHILDNODE((s, b), α) = INITNODE(s ⊗ α, b−md(α)) =
(Ts⊗ αU?b−md(α), b−md(α)) (lines 17-20). If n′.state was
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Algorithm 1 Iterative Bound-Deepening Search

1: function IBDS((s0,A, φg))
2: for b← md(φg) to∞ do
3: π ← BOUNDEDSEARCH((s0,A, φg),b)
4: if π 6= fail then return π
5: function BOUNDEDSEARCH((s0,A, φg), b)
6: frontier ← 〈INITNODE(s0, b)〉
7: visited ← ∅
8: while ¬frontier .EMPTY() do
9: (s, b)← frontier .POP()

10: visited .PUSH(s)
11: if s |= φg then return plan to s
12: for all α ∈ A such that b ≥ md(α) + md(φg) do
13: if α is applicable in s then
14: n′ ← CHILDNODE((s, b), α)
15: if n′.state /∈ visited then frontier .PUSH(n′)
16: return fail

17: function INITNODE(s, b)
18: return

(
TsU?b , b

)
19: function CHILDNODE((s, b), α)
20: return INITNODE(s⊗ α, b−md(α))

Algorithm 2 Improved initialization and child generation

1: function INITNODE(s, b, was bisim)
2: return

(
TsU?b , b, (TsU

?
b - s) ∧ was bisim

)
3: function CHILDNODE((s, b, is bisim), α)
4: if is bisim then return INITNODE(s⊗ α, b, true)
5: else return INITNODE(s⊗ α, b−md(α), false)

not previously visited, we push n′ onto frontier and con-
tinue the search (line 15). Since n′.state is a canonically con-
tracted state, Theorem 3 implies that to verify if n′.state has
already been visited, it suffices to check whether n′.state ∈
visited . Consider now any added child node n′. Since we in-
tended for the bound b of a node to guarantee that it at least b-
approximates the corresponding true state, we need to show
that this is preserved when moving from n to n′. In other
words, we need to guarantee that if s is a b-approximation of
some true state t, then n′.state is an n′.bound-approximation
of t ⊗ α. If s is a b-approximation of t, then by Propo-
sition 3, s ⊗ α is a (b−md(α))-approximation of t ⊗ α.
Theorem 2 then gives that also n′.state = Ts⊗ αU?b−md(α)

is a (b−md(α))-approximation of t ⊗ α, and as n′.bound
= b−md(α), this shows the required. Note furthermore that
as b ≥ md(α) + md(φg), then n′.bound ≥ md(φg). Since
n′.state is n′.bound-approximating the true child state t⊗α,
this guarantees that n′.state agrees with the true child state
on the goal formula, and hence that we can correctly ver-
ify whether the goal has been achieved after executing α by
checking its truth-value in n′.state.

Finally, if the frontier is empty and no plan was found,we
return fail and proceed to the next iteration of IBDS.

As seen, the IBDS strategy attempts to compute plans

with the lowest possible modal depth (lowest value of b).
Moreover, by keeping track of node bounds we can reduce
the size of visited states via bounded contractions. As we
now show, this reduction can be further improved by finding
lower bounds for contractions.

4.2 Improving Bounds for Contractions
We now show how to achieve tighter bounds for contrac-
tions, further improving the algorithm. As explained above,
a state s of the search tree is guaranteed to b-approximate
the corresponding true state t. Sometimes, however, it might
be that s is even an exact representation of t, i.e., bisimilar
to it. In other words, bounded contractions do not always
yield proper approximations (Definition 13). We use this
key observation to improve our algorithm as follows. We
now let a node be a triple n = (s, b, is bisim), where the b-
contracted state s = TtU?b (t being the true state) and b are as
above, and is bisim (denoted n.is bisim) is a boolean repre-
senting whether TtU?b - t holds, i.e., whether the state of a
node is an exact representation of the true state (is bisim
true) or not (is bisim false). We exploit this new infor-
mation to improve functions INITNODE and CHILDNODE
(Algorithm 2). INITNODE now takes an extra boolean pa-
rameter was bisim being true if all states of the antecedents
of the node being initialized are exact representations, and
it initializes a new node n′ together with its bisimilarity
information (line 2). We then initialize the frontier with
〈INITNODE(s0, b, true)〉 in line 6 of BOUNDEDSEARCH.
CHILDNODE now generates a child node n′, from a node
n = (s, b, is bisim) and an action α, as follows. If is bisim
is true (line 4), then the node state s is bisimilar to the true
state t, and hence also s⊗α - t⊗α, by Proposition 2. Thus
also the state of the child node is an exact representation of
the corresponding true state, and we can hence preserve the
current bound by letting n′.bound = b. If is bisim is false
(line 5), then we only know that s is a b-approximation of
the true state and we proceed as in Algorithm 1.

We can think of the new algorithm as having two different
modes for generating child nodes: An exact mode – invoked
if in the path leading to the new node all states are exact
representations, and an approximate mode – when some of
the states are approximations. The algorithm starts in ex-
act mode and, while it runs in this mode, the bound is pre-
served, as we are guaranteed that no information is lost due
to bounded contractions. As soon as we generate an approxi-
mate state, we enter into the approximate mode and continue
the search as in Algorithm 1. To avoid ambiguity, from now
on we refer to Algorithm 1 as APPROX-IBDS and to the im-
proved version as MIXED-IBDS.

MIXED-IBDS improves APPROX-IBDS in several ways.
First, the number of iterations in MIXED-IBDS is reduced
in general. Consider a path n0

α1−→ · · · αl−→ nl visited
by BOUNDEDSEARCH(T,b), and let nk = (sk, bk, µk) for
each 0 ≤ k ≤ l. In APPROX-IBDS, we have bk = b −∑
h≤kmd(αh), as we subtract the modal depth of each ap-

plied action from the initial bound (line 20). In MIXED-IBDS
this does not necessarily happen for each action, so MIXED-
IBDS will generally be able to expand more nodes and add
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MIXED-IBDS(T ) BOUNDEDSEARCH(T, 2) BOUNDEDSEARCH(T, 3) BOUNDEDSEARCH(T, 4)

(5, 4) (3, 4) (3, 2) (1, 2) (1, 0)

b a bb a

a, b a, b a, b a, b a, b

n0 = (Ts0U?
2, 2, false) = (Ts′1U

?
2, 2, false) = n′1

(5, 4) (3, 4) (3, 2) (1, 2) (1, 0)

b a b aa

a, b a, b a, b a, b a, b

n′0 = (Ts0U?
3, 3, false)

(3, 4) (3, 2) (1, 2) (1, 0)

a ab a

a, b a, b a, b

n1 = (Ts1U?
2, 2, false)

anna,b

annb,a

(5, 4) (3, 4) (3, 2) (1, 2) (1, 0)

b a b a

a, b a, b a, b a, b a, b

n′′0 = (Ts0U?
4, 4, true)

(5, 4) (3, 4) (3, 2) (1, 2)

b a b

a, b a, b a, b a, b

n′′1 = (Tt1U?
4, 4, true)

(3, 4) (3, 2)

a

a, b a, b

n′′2 = (Tt2U?
4, 4, true)

(3, 4)

a, b

n′′3 = (Tt3U?
4, 4, true)

annb,a

anna,b annb,a

Figure 7: Partial execution of MIXED-IBDS on the planning task T of Example 6. Gray worlds and edges denote the parts of a state that are
removed due to bounded contractions (e.g., the rightmost world of s0 is not included in Ts0U?

2). For brevity, each world is labelled by a pair
(x, y), meaning that in that world agents a and b have numbers x and y, respectively. Dashed borders denote nodes that can not be expanded
with any action, and double borders denote nodes that satisfy the goal.

more children without increasing the bound b, hence gen-
erally require fewer iterations of BOUNDEDSEARCH. Sec-
ond, we improve bounds for contractions: As less iterations
are needed, the global bound b is smaller, so we can take
b-contractions with lower values of b, further reducing the
size of states. Finally, we implemented an important op-
timization in MIXED-IBDS (omitted in the pseudocode for
readability): We preserve all nodes n of the search tree with
n.is bisim = true across different iterations of MIXED-
IBDS, as in each iteration they would simply be recomputed
as in the previous ones. As we show in our experiments, this
optimization avoids redundant computation and provides ef-
fective improvements wrt. APPROX-IBDS.
Example 6. We now show the execution of MIXED-IBDS
on the planning task T = (s0, {anna,b, annb,a}, φg), where
s0 is from Figure 1, anni,j = ann(

∧
0≤k≤N ¬�ihas(j, k))

(Example 2) is the public announcement of the fact that
agent i does not know j’s number, and φg = �b�ahas(b, 4).
The algorithm invokes BOUNDEDSEARCH with increasing
reasoning bounds b, starting from b = md(φg) = 2.

b = 2: The algorithm performs a BFS starting from
the initial node n0 = INITNODE(s0, 2, true). INITN-
ODE first computes the canonical 2-contraction of s0, rep-
resented by n0 in Figure 7. By Proposition 1, s0 6-
Ts0U

?
2 since they disagree on ♦a♦b♦ahas(b, 0), so we get

n0 = (Ts0U
?
2, 2, false). After extracting n0 from the fron-

tier (line 9), since Ts0U
?
2 6|= φg and both actions have modal

depth 1, the condition b ≥ md(α) +md(φg) (line 12) fails,
so no children are generated and the search continues.

b = 3: With the same reasoning as above, we get n′0 =
(Ts0U

?
3, 3, false). Since Ts0U

?
3 6|= φg and both actions are

applicable in Ts0U
?
3 satisfying b ≥ md(α) + md(φg), we

generate n1 = (Ts1U
?
2, 2, false) and n′1 = (Ts′1U

?
2, 2, false),

where s1 = Ts0U
?
3 ⊗ anna,b and s′1 = Ts0U

?
3 ⊗ annb,a. As

shown in Example 2, public announcements delete worlds
that do not satisfy the announced formula. Thus, anna,b re-
moves the leftmost world from Ts0U

?
3 (as in that world agent

a knows that b has number 4), and annb,a deletes the right-
most one. Note that Ts′1U

?
2 = Ts0U

?
2, so n0 and n′1 are iden-

tical; in Figure 7 we merge them for clarity, despite being
separate nodes. Both n1 and n′1 have bound 2, which is
insufficient to proceed (as previously shown), so the search
advances to the next iteration.

b = 4: Due to space constraints, we only describe
the path of the search tree induced by the action sequence
π = annb,a, anna,b, annb,a (shown in Figure 7). Since
Ts0U

?
4 (Figure 7) and s0 are isomorphic, they are also bisim-

ilar, so the initial node of the path is n′′0 = (Ts0U
?
4, 4, true).

Following the computation of the path, we can show that the
reasoning bound is sufficiently high to visit all nodes (up-
dates are computed as in the previous iteration). It can also
be shown that no other previously visited path leads to a
goal state. Thus, node n′′3 is going to be eventually visited,
and since n′′3 .state |= φg the action sequence π is returned.

5 Soundness, Completeness and Complexity
In the following, T = (s0,A, φg) is a planning task and
b ≥ md(φg) a constant. For a sequence π = α1, . . . , αl
of actions, path(π) denotes a path n0

α1−→ · · · αl−→ nl in the
graph visited by BOUNDEDSEARCH(T,b).
Lemma 2. Let nk = (tk, bk, µk) be the last node of
path(π), where π = α1, . . . , αk. Then:
(1) If µk = true , then tk - s0 ⊗ π;
(2) If µk = false , then tk -bk s0 ⊗ π;
(3) bk ≥ b− Σi≤kmd(αi) and bk ≥ md(φg).

Proof sketch. By induction on k. Base case (k = 0): Imme-
diate by construction, Proposition 5, and b ≥ md(φg). In-
duction (k > 0): Assume the properties for nk−1. If µk−1 is
true , Proposition 2 gives (1-2), and the bound is unchanged.
Otherwise, (1) is trivial, (2) follows by Proposition 3, and
the bound decreases by md(αk), preserving (3).

Theorem 4 (Soundness). If BOUNDEDSEARCH(T,b) re-
turns an action sequence π, then π is a solution to T .

Proof. Let nk = (tk, bk, µk) be the last node of path(π).
From line 11 of the algorithm, we get tk |= φg . Since tk -bk
s0⊗π and bk ≥ md(φg) (by Lemma 2), Proposition 1 gives
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us that tk and s0⊗π agree on formulas up to depth md(φg),
and hence s0 ⊗ π |= φg . Thus, π is a solution to T .

We now present the parameters used for our completeness
and complexity results, originally introduced in the context
of epistemic plan verification (van de Pol, van Rooij, and
Szymanik 2018; Bolander and Lequen 2022). We let a =
|AG|, p = |P|, c = max{md(α) | α ∈ A}, o = md(φg),
and u be the maximal allowed solution length. We use |T |
for the size of T , i.e., the sum of the sizes of s0, A and φg .
Theorem 5 (Completeness). If T has a solution of length u,
then BOUNDEDSEARCH(T, cu+o) will find a solution to it.

Proof sketch. Assume T has a solution π of length u.
Lemma 2 is then used to prove that the search tree con-
structed by BOUNDEDSEARCH(T,b) will contain path(π)
when b ≥ cu+o. When the last node of the path is reached,
Lemma 2 and Proposition 1 ensure that the goal formula
holds, so the algorithm finds a solution.

Theorem 5 shows that BOUNDEDSEARCH will always
solve a planning task T if the bound is high enough. Since
IBDS calls BOUNDEDSEARCH iteratively with increasing
bounds, it will eventually find a solution if one exists.
Theorem 6 (Complexity). BOUNDEDSEARCH(T, b) runs
in time |T |O(1) expb+1

2 O(a+p).2

Proof sketch. The algorithm explores a search tree where
each node corresponds to a canonically b-contracted state.
By induction on b, we show that the number and size of such
states are both bounded by expb+1

2 O(a+p). For each node,
at most O(|T |) updates, b-contractions and formulas checks
are performed, each taking time polynomial in |T | and the
size of the state.

The theorem shows that computing epistemic plans is
tractable when we put a fixed bound on the reasoning depth
and the numbers of agents and atoms (b, a and p). This
might be a quite realistic assumptions for many practical
applications. The theorem generalises several existing re-
sults. If c = 0, then BOUNDEDSEARCH(T, o) will find
a solution to T (Theorem 5), and it will do so in time
|T |O(1) expo+1

2 O(a+p) (Theorem 6). This shows that we
can solve propositional planning tasks (i.e., tasks where all
pre- and postconditions are propositional) in (md(φg)+1)-
EXPTIME, hence providing a new proof of an existing re-
sult (Yu, Wen, and Liu 2013; Maubert 2014). Also, if
b = cu + o, then BOUNDEDSEARCH(T,b) is complete
(Theorem 5), and it runs in time |T |O(1) expb+1

2 O(a+p)
(Theorem 6). This proves that the plan existence problem in
epistemic planning is fixed-parameter tractable (FPT) with
parameters a, c, o, p and u, generalizing the existing FPT
result for epistemic plan verification (Bolander and Lequen
2022). As the aforementioned paper shows that plan verifi-
cation is not FPT for any subset of these parameters, this is
the strongest FPT result for the plan existence problem that
one can get (with the given parameter set).

2Where the iterated exponential expn
a x is defined as follows:

exp0
a x = x and expn+1

a x = a(expn
a x).

6 Experimental Evaluation
We have compared MIXED-IBDS against three baseline con-
figurations of IBDS: 1. APPROX-IBDS; 2. EXACT-IBDS (a
version that always runs in exact mode by choosing a suffi-
ciently large initial search bound); and 3. ROOTED-IBDS (a
variant of MIXED-IBDS where canonical b-contractions are
replaced by rooted b-contractions, cf. Definition 9).3 The
algorithms were implemented in C++17 in the novel epis-
temic planner DAEDALUS (DynAmic Epistemic and Dox-
Astic Logic Universal Solver).4 We tested each configu-
ration on 406 instances (20 minutes timeout) from 9 epis-
temic planning domains (described in the Appendix): Active
Muddy Child, Collaboration through Communication, Se-
lective Communication (Kominis and Geffner 2015), Coin
in the Box (Baral et al. 2015), Consecutive Numbers (van
Ditmarsch and Kooi 2015), Gossip (Attamah et al. 2014;
van Ditmarsch 2016; van Ditmarsch et al. 2017), Grapevine
(Muise et al. 2015) and Tiger (Herzig et al. 2000), plus a
novel domain called Eavesdropping. Recently, Bolander,
Dissing, and Herrmann (2021a) developed a DEL solver that
constructs policies (mappings from states to actions), which
are more general than sequential plans considered in this pa-
per, so we can not directly compare the two approaches.

We now analyze the results of MIXED-IBDS against the
baseline configurations (Figure 8) and EFP 2.0 (Figure 9).5
MIXED vs. EXACT. EXACT-IBDS solved 302 instances
(74.4%), while MIXED-IBDS solved 362 (89.2%), ∼15%
more. Since EXACT-IBDS always runs in exact mode, i.e.,
no state is approximated by bounded contractions, bounded
contractions behave like standard bisimulation contractions.
Thus, MIXED-IBDS computes smaller states than EXACT-
IBDS, improving runtimes on the vast majority of the cases,
(except for Consecutive Numbers, discussed below), and of-
ten finding solutions to instances where EXACT-IBDS timed
out, as evidenced by the vertical streak of marks in the time
plot (Figure 8a). By computing the average speedup (the
average of the ratios of the running times) of MIXED-IBDS
wrt. EXACT-IBDS, we see that the former configuration is
87.7 times faster than the latter, with most significant im-
provements on Active Muddy Child (211.9×) and Eaves-
dropping (376.7×), where visited states have a considerable
sizes. Specifically, in Eavesdropping the size of states grows
exponentially after each action, but since MIXED-IBDS takes
0-contractions, it collapses states to singleton states, while
EXACT-IBDS keeps them in full. Finally, in the Consecutive
Numbers domain (red star marks), MIXED-IBDS needs |π|
iterations to compute plan π (cf. Example 6), while EXACT-
IBDS only takes one, as the initial search bound is already
large enough, and it returns a plan more quickly.
MIXED vs. APPROX. APPROX-IBDS solved 354 instances
(∼2% less than MIXED-IBDS). MIXED-IBDS outperforms
APPROX-IBDS in Tiger (3.1×), Coin in the Box (3.4×), and
Grapevine (74.4×), and is comparable to APPROX-IBDS in
the remaining domains (6× average speedup).

3All configurations rely on the same data structures and func-
tions, except for ROOTED-IBDS, which uses rooted b-contractions.

4Available at https://github.com/a-burigana/daedalus.
5Raw data of tests results are in the Appendix.
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Figure 8: Scatter plots of the running times, in seconds, of the algorithms using a logarithmic scale. From left to right, the plots compare the
running times of MIXED-IBDS (y-axis) with those of EXACT-IBDS, APPROX-IBDS and ROOTED-IBDS, respectively (x-axis). Color and shape
of instances denote their domain. The diagonals (grey dashed lines) separate instances based on which algorithm found a solution faster.

MIXED vs. ROOTED. ROOTED-IBDS solved 236 instances
(∼31% less than MIXED-IBDS). The average speedup of
MIXED-IBDS wrt. ROOTED-IBDS is 57.2×. As expected,
canonical b-contractions allow to efficiently check for vis-
ited states via set-membership checks. Instead, with rooted
b-contractions, we have to rely on less efficient techniques
involving repeated invocations of bounded partition refine-
ment, incurring a significant overhead (cf. Section 4).
MIXED-IBDS vs. EFP 2.0. EFP 2.0 is based on the mA∗
action language (Baral et al. 2015) and uses a possibil-
ity semantics for DEL, which improves over Kripke-based
implementations (Fabiano et al. 2020). Since mA∗ does
not have the full expressivity of DEL, we could only com-
pare EFP 2.0 with MIXED-IBDS on a subset of our bench-
mark tasks (220 tasks in total, excluding Active Muddy
Child, Consecutive Numbers, and Eavesdropping). EFP 2.0
solved 95 instances (42.2%), while MIXED-IBDS solved 189
(85.9%). To account for EFP 2.0’s overhead in construct-
ing initial states from formulas, we allowed 10 extra min-
utes per test, but many still timed out. On instances solved
by both, MIXED-IBDS was 279.5× faster on average. EFP
2.0 is faster in the Gossip domain (light blue stars above
the diagonal in Figure 9), as its possibility semantics en-
ables efficient reuse of previously computed information,
especially for private announcements (Fabiano et al. 2020;
Burigana, Felli, and Montali 2023), present in Gossip.

7 Discussion
Our IBDS algorithm provides a novel perspective on DEL-
planning. Instead of searching for plans by iterating on
plan length, we iterate on reasoning bound (modal depth).
The average modal depth of solutions is 6.9 overall, and 2.4
when excluding the Consecutive Numbers domain that was
specifically designed to exploit maximal reasoning depths.
This suggests that most planning tasks can be solved with
low reasoning depths, an interesting avenue for further ex-
ploration. Our novel search strategy improves state-of-the-
art (EFP 2.0), showing that fully general DEL planners can
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Figure 9: Scatter plot of MIXED-IBDS (y-axis) vs. EFP 2.0 (x-axis).

be efficient. We conjecture that our approach can also be
adapted to outperform the planner of (Bolander, Dissing,
and Herrmann 2021b), as their method relies on standard
bisimulation contractions only.

Our paper considered only single-pointed states, but the
multi-pointed case can be covered by translating into single-
pointed states (Bolander, Dissing, and Herrmann 2021a).

As shown, MIXED-IBDS performs better than EXACT-
IBDS in Consecutive Numbers, as it requires more iterations
to find a bound that admits a plan. We plan to tackle this
issue in the future, e.g. by doubling the bound at each itera-
tion, and/or via heuristics to “guess” a better initial bound.
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ning. In Gal, K.; Nowé, A.; Nalepa, G. J.; Fairstein, R.; and
Radulescu, R., eds., ECAI 2023 - 26th European Conference
on Artificial Intelligence, September 30 - October 4, 2023,
Kraków, Poland - Including 12th Conference on Prestigious
Applications of Intelligent Systems (PAIS 2023), volume 372
of Frontiers in Artificial Intelligence and Applications, 319–
326. IOS Press.
Burigana, A.; Felli, P.; and Montali, M. 2023. DELPHIC:
Practical DEL planning via possibilities. In Gaggl, S. A.;
Martinez, M. V.; and Ortiz, M., eds., Logics in Artificial In-
telligence - 18th European Conference, JELIA 2023, Dres-
den, Germany, September 20-22, 2023, Proceedings, vol-
ume 14281 of Lecture Notes in Computer Science, 579–594.
Springer.
Fabiano, F.; Burigana, A.; Dovier, A.; and Pontelli, E. 2020.
EFP 2.0: A multi-agent epistemic solver with multiple e-
state representations. In Beck, J. C.; Buffet, O.; Hoffmann,
J.; Karpas, E.; and Sohrabi, S., eds., Proceedings of the Thir-
tieth International Conference on Automated Planning and
Scheduling, Nancy, France, October 26-30, 2020, 101–109.
AAAI Press.
Geffner, H., and Bonet, B. 2013. A Concise Introduction
to Models and Methods for Automated Planning. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
planning - theory and practice. Elsevier.
Herzig, A.; Lang, J.; Longin, D.; and Polacsek, T. 2000.
A Logic for Planning under Partial Observability. In Kautz,
H. A., and Porter, B. W., eds., Proceedings of the Seven-
teenth National Conference on Artificial Intelligence and
Twelfth Conference on on Innovative Applications of Arti-
ficial Intelligence, July 30 - August 3, 2000, Austin, Texas,
USA, 768–773. AAAI Press / The MIT Press.
Kominis, F., and Geffner, H. 2015. Beliefs In Mul-
tiagent Planning: From One Agent to Many. In Braf-
man, R. I.; Domshlak, C.; Haslum, P.; and Zilberstein, S.,
eds., Proceedings of the Twenty-Fifth International Confer-
ence on Automated Planning and Scheduling, ICAPS 2015,
Jerusalem, Israel, June 7-11, 2015, 147–155. AAAI Press.
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