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Abstract

Probabilistic logic-based languages offer an expressive
framework for encoding uncertain information in a human-
interpretable way. Among existing formalisms, Probabilis-
tic Answer Set Programming (PASP) stands out for its ease
of modeling complex scenarios. The current definition of
PASP is limited to programs consisting of disjunctive rules
and probabilistic facts only. To enhance the expressivity of
the framework, we introduce Optimal Probabilistic Answer
Set Programming, which extends the language by allowing
the inclusion of weak constraints within PASP specifications.
We motivate this extension through some real-world applica-
tion scenarios and present a detailed computational complex-
ity analysis for both the inference and Most Probable Expla-
nation (MPE) tasks.

1 Introduction

Statistical Relational Artificial Intelligence (Raedt et al.
2016) is a research field that aims to combine the expres-
sivity of logic-based languages and the flexibility of prob-
ability theory and graphical models (Koller and Friedman
2009). A probabilistic logic program (PLP) (Riguzzi 2022)
is a logic program extended with constructs, such as prob-
abilistic facts (De Raedt, Kimmig, and Toivonen 2007), to
represent uncertain data. In this case, the Distribution Se-
mantics (DS) (Sato 1995) assigns a meaning to such pro-
grams, and it is adopted in tools such as PRISM (Sato
1995), ProbLog (De Raedt, Kimmig, and Toivonen 2007),
and cplint (Riguzzi and Swift 2011). The DS requires that
the underlying logic program has a 2-valued well-founded
model (Van Gelder, Ross, and Schlipf 1991). Among logic-
based formalisms, also Answer Set Programming (Brewka,
Eiter, and Truszczyriski 2011) (ASP) has been extended to
handle probabilistic reasoning leading to the introduction
Probabilistic ASP (PASP) (Cozman and Maua 2020). ASP
is a well-known formalism adopted in many real-world ap-
plications (Erdem, Gelfond, and Leone 2016; Falkner et al.
2018) thanks to its expressivity (Eiter and Gottlob 1995b;
Dantsin et al. 2001) and the availability of efficient and
well-maintained solvers (Gebser et al. 2019; Alviano et al.
2017). However, the DS semantics cannot be applied to
ASP extended with, for example, probabilistic facts, since
answer set programs may be associated with multiple mod-
els. To overcome this, the credal semantics (CS) was pro-
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posed (Cozman and Maud 2020). Currently, the CS focuses
on programs that do not contain weak constraints, which
makes it not handy to handle optimization criteria.

In this paper, we extend the CS with weak con-
straints (Buccafurri, Leone, and Rullo 2000), by introducing
the optimal probabilistic answer set programming frame-
work. We motivate this extension by showcasing how some
real-world problems involving optimization and probability
that can be naturally modeled with our formalism. Also, we
conduct a theoretical study on the computational complexity
of inference and Most Probable Explanation tasks.

The paper is structured as follows: Section 2 discusses
the needed background, Section 3 proposes the optimal
probabilistic answer set programming framework, Section 4
encodes real-world examples with our formalism, Sec-
tion 5 provides complexity results, Section 6 surveys related
works, and Section 7 concludes the paper.

2 Background

Computational Complexity. We introduce the relevant
counting complexity classes (Valiant 1979; Hemaspaandra
and Vollmer 1995), as well as the polynomial time hier-
archy (PH) (Stockmeyer 1976). Counting problems are
aimed at computing the number of solutions of an instance
of a given problem. In general, they fall into the com-
plexity classes introduced by Valiant (1979) and Hemas-
paandra and Vollmer (1995). Intuitively, for problems that
can be solved by a polynomial-time non-deterministic Tur-
ing machine (e.g., NP-complete), the function counting
the number of accepting paths of NP machines falls into
the class denoted by #P. Analogously, for an arbitrary
complexity class C, #C' denotes the set of functions that
count the number accepting paths of a polynomial-time non-
deterministic Turing machine with an oracle in the class C.
However, Hemaspaandra and Vollmer provided an alterna-
tive predicate-based definition.

Definition 1 (Hemaspaandra and Vollmer 1995). For a com-
plexity class K, # - K denotes the set of functions such that
for some K-computable binary predicate R and a polyno-
mial p it holds that for every input string x:

f(@) =Ry [ p(z)) = [yl A R(z,y)}]
That is, each function f € # - K counts the strings of
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polynomial length, denoted by y, w.r.t. the input size |z|,
such that the predicate R(x,y) holds.

Between the machine-based definition by Valiant (1979)
and the predicated-based definition by Hemaspaandra and
Vollmer (1995) there exits a strong relationship: as pointed
out by Hemaspaandra and Vollmer (1995), #NP =
#coNP whereas # - NP = # - coNP if and only if
NP = coNP. Moreover, it holds that # - NP C #NP =
#.PNP — dt.coNP (Durand, Hermann, and Kolaitis 2000).
This will be instrumental in our complexity study.

Definition 1 has been tailored also to decision problems,
in which we are interested in verifying the lower/upper
bounds of the number of solutions.

Definition 2 (Hemaspaandra and Vollmer 1995). Let K be
a complexity class and A a problem, then A € C - K if there
exists a function f € # - K and a polynomial-computable
function g such that x € A < f(x) > g(z).

That is, a problem A belongs to C - K if, for every input
x, the number of solutions for x can be computed by a func-
tion f € #-Kandz € Aiff f(x) > g(z), where g is a
polynomial-computable function.

The classes AL, ¥, and I} of the polynomial hierar-
chy (PH) (Stockmeyer 1976) are defined as (cf. (Garey and
Johnson 1979)): Ay = X =11’ = P and, forall k > 0

P borie P bore P =P
Ak+1:Pk7Ek+1:NPk7nk+1:coNPk’

where NP = X, coNP = TI¥, and PNP = AL,

In general, P¢ (resp. NP) denotes the class of prob-
lems solvable in polynomial time by a deterministic (resp.
nondeterministic) Turing machine equipped with an oracle
for a class C' problem. Using an oracle O € C' to solve a
problem means that such a problem can invoke O as a sub-
routine during its computation, where each oracle call is as-
sumed to take a single computation step. For further details
about NP-completeness and complexity theory, we refer the
reader to the dedicated literature (Papadimitriou 1994).

Answer Set Programming. In Answer Set Programming
(ASP) (Calimeri et al. 2020) a term is either a variable (i.e.,
a string starting with an uppercase letter) or a constant (i.e., a
number or a string starting with a lowercase letter). An atom
is an expression of the form p(t1,...,t,), where p is predi-
cate of arity nand ¢4, . . . , t,, are terms. A literal is an atom a
or its negation not a, where not denotes negation as failure.
A literal is ground if it contains no variables. A literal is pos-
itive if it is of the form a, otherwise it is negative. Given a set
of literals .S, we denote by S and S~ the set of positive and
negative literals in .S, respectively. A rule is an expression
of the form hy;...;hy :— Iy, ..., 1, where hq, ..., hy, i
a disjunction of atoms called head and [y, ...,1, is a con-
junction of literals referred to as body. A weak constraint
is an expression of the form :~ Iy,... I, [w@l, ], where
l1,...,1, are literals referred to as body, w and [ are terms
referred to as weight and level, respectively, and ¢ is a (pos-
sibly empty) list of terms. If we do not specify the level (i.e.,
@), then it is assumed to be 0. For a rule r, we denote by
H, the set of atoms appearing in the head. For a rule r (resp.
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a weak constraint w) we denote by B,. (resp. B,,) the set of
literals appearing in the body. A rule  is said to be a fact if
|H,| = 1and B, =0, a constraint if H, = () and |B,.| > 0,
or normal if |H,| = 1 and |B,| > 0. A rule r is safe if
each variable appearing in H, and B, also appears in B;'.
The definition of safety also extends to weak constraints. A
weak constraint w is safe if each variable appearing in B,
w, [, and ¢ also appears in B;}. We only consider safe rules
and safe weak constraints.

An ASP program is a finite set of safe rules and weak
constraints. Given a program 7, R(7) and W(T) denote,
respectively, the rules and weak constraints of 7. A program
T is said to be normal if all the rules in 7 are normal and
plain it W(T) = 0.

For a program 7, we denote by Uy the set of constants
appearing in T referred to as Herbrand Universe, and by B
the set of ground atoms that can be obtained by predicates in
T and constants in U7, referred to as Herbrand Base. For a
rule r € R(T) (resp. a weak constraint w € W(T)), we de-
note by ground(r) (resp. ground(w)) the set of ground in-
stantiation of r (resp. w) obtained by mapping each variable
to a constant in Ur. Similarly, we denote by ground(T)
the union of ground instantiations for each rule and weak
constraint in 7.

Example 1. Let T be the following program:

c(l,2). c(2,1). d(1).
a(X,Y):— d(X), d(y).
b(Y):- c(X,Y), not a(Y¥,X).
~ b(X). [1@€X]

Then ground(T) denotes the following ground program

c(l,2). c(2,1). d(1). d(2).
a(l,1):—= d(1), d(1).
a(l,2):-— d(l1), d(2).
a(2,1):— d(2), d(1).
a(2,2):— d(2), d(2).
b(l):- ¢(1,1), not a(l,1).
b(2):- ¢(1,2), not a(2,1).
b(l):- ¢(2,1), not a(l,2).
b(2):- ¢c(2,2), not a(2,2).
i~ b(1) [1@1]

~ b(2) [1@2]

The dependency graph of T, denoted by G, is a labeled
directed graph whose node are atoms in By. G includes
a positive (resp. negative) edge from b to h if there exists a
rule 7 € ground(P) such that b € B;f (resp. not b € B,")
and h € H,.. The positive dependency graph of T, denoted
by G7+-, is obtained from G by considering only positive
edges. A component C' C By is a maximal set of atoms
that are strongly connected in G}t. A program 7 is said to
be stratified if G+ does not contain any loop involving neg-
ative edges and head-cycle-free (HCF) if there is no compo-
nent C' such that there exists a rule r € ground(T ) where
a,b € H(r) and a,b € C. HCF programs can be trans-
formed, in polynomial time, into normal programs by shift-
ing disjunctions (Dix, Gottlob, and Marek 1996).

An interpretation I C By is a set of atoms. A positive
(resp. negative) ground literal [ = a (resp. [ = not a) is
true w.r.t. I, denoted by I = [, if a € I (resp. a ¢ I),
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otherwise [ is false w.r.t. I, denoted by I [~ [. A disjunction
of ground literals I3 . . . ; I, is true w.r.t. Tif I = [;, for some
1 € {1,...,n}. A conjunction of ground literals Iy, ... [,
is true w.rt. I'if I = [, for each i € {1,...,n}. Let
r € ground(T), then r is satisfied w.r.t. I if r has a false
body w.r.t. I or a true head w.r.t. I. An interpretation [ is a
model of T if I satisfies each rule in ground(T).

Let 7 be a program and I be an interpretation, then 7~/
denotes the FLP-reduct (Faber, Pfeifer, and Leone 2011),
i.e., the program obtained from 7 by removing each rule
having a false body w.rt. I. A model I is an answer
set of T if I is C-mininal model of 77 (i.e., there is no
I' c I such that I’ is a model of 77). For an ASP T,
we denote with AS(T) the set of its answer sets. A pro-
gram 7 with no answer sets is termed incoherent. Let
M € AS(T), then weak constraints in ground(7) de-
fine the cost of M. More precisely, the set of weak con-
straint violations is defined as ws(T, M) = {(w,l,t) |:~
li,..., l,[w@lt] € ground(T),M = l1,...,1,}. Then,
for each integer level [, the cost of M is defined as
C(T,M,l) = > w. If there is only one level,

(w,l,t)ews(T,M)
we use C(T, M) (which is equivalent to C(7, M,0)). Let
My, My € AS(T), then M is dominated by M if there ex-
ists an integer level [ such that C(T, My,1) > C(T, Ma,1),
and for each I' > I, C(T,My,l') = C(T, Mz,l’). An an-
swer set M is also an optimal answer set for T if, for each
M’ € AS(T), M is not dominated by M'. We denote by

AS"(T) the set of optimal answer sets of 7.
Example 2 (Clique.). The following facts define a graph.

e(l,2). e(1,3). e(1l,4). e(2,3). e(3,4).

The problem of finding a clique in the graph can be en-
coded with the following ASP.

edge_(X,Y):— e(X,Y).

edge_(X,Y):— e(Y,X).

v(X) :— edge_(X,Y).

in(X);out (X) :— v(X).

:— in(X), in(Y), X!=Y, not edge_(X,Y).

This program has 12 answer sets, one per possible clique.

Example 3 (Maximal Clique). If we want to find the max-
imal clique, we can add to the program of Example 2 the
following weak constraint:

:~ out (X). [1Q1,X]

This requires finding the answer sets where the number of
out/1 atoms is minimized. There are two solutions (we only
report the in/1 facts, for brevity): {in(1),in(2),in(3)} and
{in(1),in(3),in(4)} both of size 3 with cost 1.

For simplicity we use the ASP acronym in place of ASP
program, the context will disambiguate the meaning.

Probabilistic Answer Set Programming. We consider a
probabilistic answer set program (PASP) P as a plain head-
cycle-free ASP 7 extended with a set of ground probabilis-
tic facts (De Raedt, Kimmig, and Toivonen 2007) F (i.e.,
P is a tuple (7, F)) of the form 7 :: a where a is an atom
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and © € [0,1] is its probability. We assume, as usual, that
probabilistic facts cannot appear in heads of rules and are
independent. A selection o is a subset of probabilistic facts
and identifies a world w,, i.e., an answer set program ob-
tained by adding to 7 each atom of a probabilistic fact in
o. Thus, a PASP with n probabilistic facts has 2™ selec-
tions and so 2" worlds. We denote with S and X the set of
selections and worlds, respectively. We consider the credal
semantics (CS) (Cozman and Maua 2020). Under the CS,
every world is required to have at least one answer set, i.e.,
to be coherent. The probability of a world w,, P(w,), is

P(w,)= [[ =~ J] —m) (1)
a;CWs a;iwe

With a slight abuse of notation, when we write P (o) for a
selection o we denote the probability of the corresponding
world w,, P(w,). The probability of a ground atom ¢ (we
consider a ground atom without loss of generality since we
can always insert in the program a rule with ¢ in the head and
a conjunction of ground literals in the body) is described by
a lower P(q) and an upper P(g) bound, where

P(q) = ) P(u,)
w,EX|VMeAS(w,), ME=q @)
P(q) = > P(wg).

w,EX|TIMEAS(w,), ME=q
A related task is computing the most probable explana-
tion (MPE): given a PASP P and a ground atom e (called
evidence), the most probable explanation for e is the selec-
tion o associated with the world with the highest probability
(computed with Equation (1)) in which e is cautiously (or
bravely) true. That is,

MPE(e) = arg max P(w,),
0c€S|IVMeAS(ws),ME=e

— 3)

MPE(e) = arg max P(w,).

ce€S|AMeAS(w, ), M=e
We denote with P(MPE(e)) (resp. P(MPE(e))) the proba-
bility of the world associated with MPE(e) (resp. MPE(e)).
Example 4 (Clique in Probabilistic Graph). Consider again
Example 2 and suppose that the e/2 facts are now proba-
bilistic, i.e., there is uncertainty between the connections:
0.1l::e(1,2). 0.2::e(1,3). 0.3::e(1,4).
0.4::e(2,3). 0.5::e(3,4).

The program has 32 worlds. For example, the world
where all the e/2 facts are included coincides with the pro-
gram of Example 2 and has probability 0.1 - 0.2 -0.3 - 0.4 -
0.5 = 0.0012. We can now ask, for example, for the proba-
bility of node 1 to be included in a clique (i.e., query the atom
in(1)), obtaining P(in(1)) = 0 and P(in(1)) = 0.496,
or for the probability that there exists a clique of size 3, by
adding qr : — in(A),in(B),in(C), Al =B, B! =C, Al =C
and asking qr, obtaining P(qr) = 0 and P(qr) = 0.0368.
For both cases, the lower probability is zero: this means that
there are no worlds where every answer set entails the query.
However; this is not true in general. The upper MPE state for
the same atom qr is MPE(qr) = {e(1,3),e(1,4),e(3,4)}
with probability P(MPE(gr)) = 0.0162.
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Quantified Answer Set Programming. Here, we intro-
duce Quantified Answer Set Programming (ASP(Q)) which
will be instrumental in our complexity studies. ASP(Q) ex-
tends ASP by introducing the concept of quantifiers over
(optimal) answer sets of ASP programs (Amendola, Ricca,
and Truszczynski 2019; Mazzotta, Ricca, and Truszczynski
2024). The usage of quantifiers allows modeling problems
throughout the entire PH as natural as modeling NP prob-
lems in ASP. An ASP(Q) program II is of the form:

Dl Tl ses Dn Tn : 07 (4)

where foreachi € {1,...,n}, T; is anormal ASP program,
0; € {Vv*t,35'}, and C is a normal program both plain and
stratified. An ASP(Q) program is said to be existential if
]y = 3, otherwise it is universal. The ASP(Q) semantics is
inductively defined as:

« 35T : C is coherent iff there exists M € AS” (T) such
that C' U fixz7 (M) is coherent.

« Vst T . C is coherent iff for each M € AS™(T), C U
fizy (M) is coherent.

« 3% T'II is coherent iff there exists M € AS™(T) such
that I 57 is coherent.

« 5! T is coherent iff for each M € AS™(T), Iy as is
coherent.

where fizr(M) = {a | a € M}U{ :— a |
a € Br \ M}, II is of the form (4), and Il =
Oy T1Ufier(M)...0,P, : C. For an existential ASP(Q)
program IT of the form (4), M € AS™ (T1) is a quantified
answer set of ILiff Os To Ufizy, (M;) ... 0, T, : Cis co-
herent. QAS(II) denotes the quantified answer sets of II.

3 Optimal Probabilistic ASP

Let us now introduce the Optimal Probabilistic Answer Set
Programming framework.

Definition 3. An optimal PASP P~ is a tuple (T, F, W),
where T is a plain head-cycle-free ASP, F is a set of proba-
bilistic facts, and VWV is a set of weak constraints.

That is, an optimal PASP is a PASP extended with a set
of weak constraints. Each world w, is now equipped with
a set of weak constraints imposing optimality criteria over
the possible answer sets. Thus, each w, may have zero (in
case it is incoherent) or more optimal answer sets. As for
PASP without weak constraints (which we call plain PASP),
we require that each w, is satisfiable, i.e., has at least one
(optimal) answer set. Clearly, if w, has only one answer set
A, then A will also be the optimal answer set.

The probability of a query ¢ in an optimal PASP is com-
puted similarly to Equation (2). The only difference is that
the summation ranges over the optimal answer set. That is,
given an optimal PASP P~ the lower (resp. upper) proba-

bility P*(q) (resp. P (¢)) for a query ¢ are

P*(q) = > P(w,),
. weEXVMEAS™ (w,), Ml=q (5)
P (q) = > P(w,).

we€X|TAMEAS (we), Mi=q
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Similary, MPE for an evidence e is now computed by con-
sidering only optimal answer sets, i.e.,

MPE*(e) = arg max P(w,),
cESIVMEAS™ (ws),M=e ©)
MPE (¢) = arg max P(wy).
c€S|IMEAS™ (ws),M=e
In the following, we will often consider a PASP P =
(T,F) and its optimal counterpart P~ = (7, F,W). In

this case, for a query g, we denote with P(q) and P(q) the
probability computed by considering P and with P*(q) and
P’ (q) the probability computed by considering P~. That is,
to lighten the notation, we do not insert an explicit depen-
dence on P nor P~.

The next theorem relates the probability of a query com-
puted in a plain PASP to that computed in an optimal PASP.

Theorem 1. Let T, F, and W be a set of normal rules,
probabilistic facts, and weak constraints, respectively, and q
an atom (query). Let P = (T, F) and P~ = (T,F,W).
Then, P(q) < P*(q) and P (q) < P(g).

Proof. The number of worlds of P and P~ is the same, as is
the probability for each world, since the set of probabilistic
facts is the same. Consider a world w in P and its counter-
part w* for P~. Since AS*(w*) C AS(w), if the condition
for the world to contribute to the lower bound is satisfied for
P, then it will be satisfied for P~ but not vice versa (the
condition for P is stronger). Conversely, if the condition for
the world to contribute to the upper bound is satisfied for
P, then it will be satisfied for P but not vice versa (the
condition for P~ is stronger). O

Theorem 1 shows that the semantics of optimal PASP is
credal, i.e., is the set of all probability measures that domi-
nate an infinitely monotone Choquet capacity (Cozman and
Maua 2017). As in the credal semantics for plain PASP, the
distribution of the probability mass of a world over the opti-
mal answer set is left open. The only difference is that the set
of answer sets is a subset of those for plain PASP. Moreover,
the following theorems immediately hold.

Theorem 2. Let P = (T,F) with query q and P~ =
(T, F W) with W = {:~ ¢q [C]} with C < 0 or with W =
{:~ not q [C]} with C > 0. Then, P*(¢q) = P"(q) = P(q).

Theorem 3. Let P = (T,F) with query q¢ and P~ =
(T, F W) with W = {:~ q [C]} with C > 0 or with W =
{:~ not q [C]} with C' < 0. Then, P*(q) = P (q) = P(q).

The credal semantics is not defined when there is at least
one incoherent world. Incoherencies are usually due to con-
straints (or odd cycles through negation). The possibility
of using weak constraints allows us to relax “strong” con-
straints, making such problems coherent and interpretable
under the credal semantics.

Example 5 (Maximal Clique in Probabilistic Graph). Let
us now extend the program of Example 4 with the weak con-
straint of Example 3. This represents the maximal clique
in a probabilistic graph problem, a well-known task studied
in random graphs (Bldsius, Katzmann, and Stegehuis 2024).
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We can now ask, for example, for the probability that a cer-
tain node is included in a maximal clique or for the proba-
bility that the maximal clique has a size greater than k € N.
If the query is in(1) (as in Example 4), P*(q) = 0.1856 and
P"(q) = 0.496. For example, the world where all the edges
are included has 12 possible answer sets but only 2 of them
are optimal, and both have the query in it.

Example 6. Consider the program.

20
.3

oo

Q.0 oo
D e

Q

T

Q

n
b.

i~ gl [-1]

with query q. There are four worlds: wo = {} has only
one answer set, which is also optimal, without g, w1 = {a}
has 2 answer sets, {a,q} and {a,nq}, but only the first is
optimal, so this contributes to P*(q) and P~ (q), wa = {b}
and ws = {a,b} have only one answer set with q, which
is also optimal, so in both cases we have a contribution to
P*(q) and P"(q). Overall, P*(q) = P (q) = 0.44. If we
ignore the weak constraint, wy contributes only to the upper
probability, so P(q) = 0.44 while P(q) = 0.3. If the cost
associated with the constraint is > 0, wy has only one opti-
mal answer set without the query. So, in this case, the lower
and upper probability would be 0.3.

4 Modeling Examples

In this section, we demonstrate the modeling capabilities
of optimal PASP by encoding three well-known problems
within our framework.

Optimal Reviewer Assignment. The optimal reviewer
assignment task is a well-studied problem (Bhaisare and
Bharati 2025; Kalmukov 2020; Di Perro, Bernasconi, and
Ferilli 2025; Amendola et al. 2016) and consists of assigning
reviewers to articles for peer review. It has different flavors
and variations. For ease of explanation, here we consider
a simplified scenario in which each paper may be assigned
to at least one reviewer. Each reviewer may or may not be
available for a revision with a certain probability. The goal
is to try to assign each paper to at least one reviewer such
that the load among different reviewers is roughly the same.
The following P~ models this problem.

paper (pl) . paper (p2) .
0.6::reviewer(rl). 0.7::reviewer (r2).
willing(R,P) :— reviewer (R), paper(P).

assigned(R,P); skip(R,P) :— willing(R,P).
reviewed (P) : - assigned(_,P).
load(R,2) :—assigned(R,pl), assigned(R,p2).
load (R, 1) :—assigned (R, P), not load(R,2).
load(R,0) :—reviewer (R), not load(R,1).
delta(RO,R1,D):- load(RO,LO), load(R1l,L1),
1.0<=L1l, D=L1-LO.
:~ paper (P), not reviewed(P).
:~ delta(RO,R1,D). [DG@O,RO,R1]
none_assigned :- load(R,0).
at_least_one_assigned :- not none_assigned.

[1@1,P]
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The first two lines state that there are two papers to review,
pl and p2, and two possible reviewers, r1 and r2, which are
available with a probability of 0.6 and 0.7, respectively. For
simplicity, we assume that every reviewer is willing to re-
view any paper (willing/2). A reviewer may (assigned/2)
or may not (skip/2) be assigned to a paper if he/she is will-
ing to review it. The load of a reviewer (load/2) is the num-
ber of papers he/she has to review. Lastly, delta/3 computes
the difference in number of papers assigned between each
pair of reviewers. There are two weak constraints: the first
(at level 1) minimizes the number of papers not reviewed
while the second (at level 0) minimizes the difference of
load among reviewers. We may be interested in computing
the probability that each reviewer is assigned to at lest one
paper, by asking the probability of at_least_one_assigned.

Scheduling Problem under No-Show Behavior. In the
patient scheduling problem and overbooking under no-show
behavior (Topuz et al. 2024; Cayirli, Yang, and Quek 2012;
Alaeddini et al. 2011; Dodaro et al. 2021), patients should
undergo different medical exams that require different re-
sources. A patient may not show up, so the facility adopts
overbooking to avoid leaving resources idle. However, this
may result in patients that actually show up, but do not have
the required resource assigned: in this case, they should be
refunded. The following optimal PASP models the problem.

0.4::show(l). 0.4::show(2). 0.4:
0.4::show(4). 0.4::show(5).
resource (1,chair). resource(3,bed).
resource (2, chair) . resource (4,bed).
exam(el,chair). exam(e2,bed).

take (1,el). take(2,e2). take(3,el).

:show (3) .

take (4,e2). take(5,e2).

require (P,R) : - take(P,E),exam(E,R) .

assign(P,R,Id) ; nAssign(P,R,Id) :- show(P),
require (P,R), res(R,Id).

:— assign(P1l,R,I), assign(P2,R,I), P1l!=P2.

fulfilled(P) :— show(P), assign(P,R,I).

refund_cost (P,2) :-show (P), not fulfilled(P).

resource_cost (R, 1) :—assign(P1l,chair,R) .

resource_cost (R,2) :—assign(P1l,bed,R) .

:~ refund_cost (R,C). [CQ@1l,R]

:~ resource_cost (R,C). [CRQO,R]

two_not_fulfilled:- show(A), show(B), A!=B,
not fulfilled(A), not fulfilled(B).

Probabilistic facts show(X) denote that the patient X €
{1,...,5} may or may not show up with probability 0.4
(for simplicity, we attach the same probability to each pa-
tient). Facts exam(FE, R) state that the exam F requires the
resource [2. For simplicity, we assume that there are two
exams, el and e2, and two types of resources, chair and
bed, each associated with an id (resource(ID, R)). Then,
take(P, E) states that the patient P takes the exam E. A re-
source of R with id Id can be assigned (assign(P, R, Id),
and in this case, the request of the patient has been fulfilled)
or not assigned (nAssign(P, R,Id)) to a patient P who
showed up and actually required that resource, and a re-
source cannot be assigned to two patients at the same time
(constraint). The predicate refound_cost(P, R) states that
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the cost for refunding a patient P that is present but not ful-
filled is R. Similarly, used resources are associated with a
cost through resource_cost/2. Two weak constraints state
that we want to minimize the cost of the refund (level 1) and
then the cost of the used resources (level 0). In this scenario,
we may be interested in computing the probability of having
two patients not fulfilled, by querying two_not_fulfilled.

Viral Marketing. The viral marketing problem is a well-
studied problem in decision theory (Van den Broeck et
al. 2010; Domingos and Richardson 2001; Azzolini et al.
2025). Here, we have a network of people, represented by a
graph. Some people may be targeted with an ad and could
buy a particular product. Other people are not directly tar-
geted by an ad, but they can buy the product as well, since
they are influenced by someone who bought the product.
The following optimal PASP, adapted from (Van den Broeck
et al. 2010), models the problem:

market (P) ; noMarket (P) :— person(P).
0.7::buys_from_viral (PO,P1) :-
person (P0), person(Pl), PO != P1.
0.2::buys_from_marketing (P) :—-person (P) .
buys (P) :— market (P), buys_from_marketing(P) .
buys (P) :— friend(P,F), buys(F),
buys_from_viral (P,F).
:~ market (P). [20Q@1,P]
:~ buys(P). [-50@1,P]

where, in addition, we have person/1 facts describing peo-
ple in the network and friend/2 facts denoting friend-
ship relations. We may decide to market (market(P)) or
not (nMarket(X)) each person P. The rule with 0.7 ::
buys_from _viral (PO, P1) in the head is a syntactic sugar
for writing a 0.7 :: buys_from_viral( PO, P1) probabilistic
fact for each pair of people P1 and P2. This states that the
shopping behavior of P1 is influenced with probability 0.7
by the behavior of P2. Similarly for the probability of buy-
ing from direct marketing (0.2 :: buys_from_marketing/1).
Then, a person P buys (buys(P)) if he/she is marketed and
buys from marketing or if he/she has a friend who bought the
product and influences him/her. The two weak constraints,
at the same priority level, state that marketing a particular
person has a certain cost, but if someone buys the product,
this gives a reward (i.e., the weak constraint is associated
with a negative cost). Here, we can ask, for example, for the
probability that a particular person buys a product. More-
over, by adding more involved constructs (Azzolini, Bellodi,
and Riguzzi 2022), we may be able to ask queries such as
whether at least 60% of the people will buy the product.

S Complexity Results

We consider propositional programs and the following deci-
sion problems.

Definition 4. Given an optimal PASP P~, a query q, and a
rational v, the

* brave inference task consists in checking whether
—x

P (q) >
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MPE / MPE* Complex. | Inference Complex.
MPE(e) | MPE(e) P(g) /P (q)
Plain NP (Th. 4) b PpNP
Weak Constr. | %F (Th.9) | & (Th.9) | C-coNP (Th. 14)

Table 1: Complexity results for plain and optimal PASP.

* cautious inference task consists in checking whether
P*(q) 2 .

Definition 5. Given an optimal PASP P~, an evidence e,

and a rational vy, the

* brave MPE task consists in

P(MPE (¢)) > v:

* cautious MPE task consists

P(MPE*(e)) > 7.

Complexity results for PASP without weak constraints
(i.e., plain PASP) are well known. In particular, the au-
thors of (Maud and Cozman 2020) showed that the com-
plexity of the cautious MPE problem for HCF normal pro-
grams (the fragment we consider in this paper) is £, while
the complexity of cautious inference is PPVY. Note that
brave inference can be cast as cautious inference using the
relation P*(¢) = 1 — P (not q), so we can decide whether

P*(not q) < 1 — ~. However, this is not true for MPE " and
MPE*, therefore the two tasks must be studied separately.

We first show that brave and cautious cases have differ-
ent complexity for plain PASP. Then, we focus on the MPE
problem and show that, surprisingly, the complexity of the
brave and cautious cases for optimal PASP coincides. Fi-
nally, we shift the attention to the brave inference task for
optimal PASP (since the cautious case can be reconducted
to the brave one). Table 1 summarizes the completeness re-
sults for both plain and optimal PASP.

5.1 MPE

Maua and Cozman (2020) proved that the complexity of cau-
tious MPE for plain PASP is complete for Ef . However, to
the best of our knowledge, no completeness results are avail-
able for the brave MPE problem. To this end, the following
theorem provides a completeness results for such a problem.

Theorem 4. Let P be a plain PASP, e be an evidence,
and vy € [0,1] be a rational number. Deciding whether
P(MPE(e)) > ~v is NP-complete.

Proof (sketch). (Hardness) Let ® be a boolean formula in
conjunctive normal form over a set of propositional variables
V', then verifying the satisfiability of ® is NP-complete.
Such a problem can be encoded into a plain PASP P such
that P(MPE(e)) > 0.5!V] iff ® is satisfiable. More pre-
cisely, P is of the form (7, F), where F contains a proba-
bilistic fact of the form 0.5 :: v foreach v € V and T checks
the satisfiability of ®. Intuitively, each selection ¢ C F en-
codes a possible truth assignment for variables in V' and its
probability is 0.5/ 71 = 0.5/ Finally, w, admits an an-
swer set with evidence e iff the truth assignment encoded by
o satisfies ®. Thus, the thesis follows.

checking whether

in checking whether




Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

(Membership) Given a PASP P = (T, F), we can encode
the brave MPE problem with an HCF program 7~ that is co-
herent iff P(MPE(e)) > ~. Verifying the coherence of a
heady-cycle-free ASP is NP-complete (Dantsin et al. 2001).
More precisely, 7" is made of rules of the form “a ; na” for
each probabilistic fact a (with na being a fresh atom not ap-
pearing elsewhere) which guess a possible selection o C F.
Then, rules and weak constraints in 7 C 7" guess an opti-
mal answer set of the world w,, and finally two constraints
ensure that the evidence e is true in the guessed optimal an-
swer set, and the probability of o is greater or equal than .
Thus, 7' admits an answer set iff there exists o C F such
that P(c) > ~ and there exists M € AS (w,) such that
e € M, so P(MPE(e)) > . O

Theorem 4 completes the complexity study on MPE for
plain PASP, establishing that brave MPE is easier than the
cautious MPE for plain PASP. We now study the complexity
of MPE for optimal PASP.

First, we provide hardness for brave MPE via a reduc-
tion from the well-known Propositional Abduction Problem
(PAP) (Eiter and Gottlob 1995a). Recall that a PAP is de-
fined as a tuple of the form A = (V, T, H, M), where V is
a set of variables, T is a satisfiable propositional logic the-
ory over variables in V, H C V is a set of hypotheses (i.e.,
subset of the propositional variables), and M C V is a set
of manifestations (i.e., subset of the propositional variables).
A solution for A is a set of the hypothesis S C H such that
T U S is satisfiable and T'U S E M. Let sol(.A) be the set
of solutions to PAP, then deciding whether sol(A) # 0 is
P -complete (Eiter and Gottlob 1995a).

Theorem 5 (Hardness brave MPE). Let P~ be an optimal
PASP, e be an evidence, and ~y € [0, 1] be a rational number.

Deciding whether P(MPE (e)) > v is X5 -hard.

Proof (sketch). Let A = (V, T, H, M) be a PAP, then we can
encode A into an optimal PASP P~ = (7, F, W), where
JF contains a probabilistic fact of the form 0.5 :: s(x) for
each hypothesis * € H and 7 checks whether a candidate
solution S is a solution for A.

Intuitively, each selection o C F represents a candidate
solution S = {x € H | s(z) € o} for A and there exists

M € AS"(w,) such that e € M iff S is a solution for A.

Note that checking that S is a solution for A requires ver-
ifying that 7" U S is satisfiable and T"U S = M holds. To
verify that U S F M holds, we need to ensure that for
every truth assignment satisfying 7" U S, the manifestations
in M are satisfied as well. This is achieved by means of a
weak constraint in YV which adds a penalty if a truth assign-
ment satisfies the entailment. In this way, if there exists an
optimal answer set which satisfies the entailment then there
exists no assignment that does not satisfy the entailment, and
soT'U S E M holds.

Finally, since each ¢ C F has the same probability

(0.5/711), then sol(A) # 0 iff P(MPE (e)) > 0.5/41. O

Theorem 6 (Hardness cautious MPE). Let P~ be an opti-
mal PASP, e be an evidence, and vy € [0, 1] be a rational
number. Deciding whether P(MPE*(e)) > v is £ -hard.
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Proof. The proof follows directly by observing that each
PASP is indeed an optimal PASP where the underlying
ASP contains no weak constraints. Deciding whether
P(MPE*(e)) > « for a PASP is ¥¥"-hard (Maua and Coz-
man 2020) and so the thesis follows. ]

From Theorem 5 and 6 we can observe that weak con-
straints cause a jump in complexity for brave MPE, but they
do not introduce further complexity for cautious MPE. In-
deed, both problems are hard for 1.

We now provide memberships, which give us the com-
pleteness for cautious/brave MPE for optimal PASP. In both
cases, we rely on ASP(Q) which allows modeling this prob-
lem in a very natural fashion.

Theorem 7 (Membership brave MPE). Let P~ be an op-
timal PASP, e be an evidence, and v € [0, 1] be a rational

number. Deciding whether P(NMIPE (€)) > ~ is in .

Proof (sketch). Given an optimal PASP P~ = (T, F, W)
and an evidence e, verifying that P(MPE (e)) > ~ re-
quires checking the existence of a selection ¢ C F such
that P(0') > ~ and there exists M € AS”(w,) such that
ee€ M.

This can be encoded in ASP(Q) by a program II of the
form 3%t T 3% T, : C, where the program 7 ; checks the
existence of a selection o C F, 7o = T UW checks the
existence of an optimal answer set of w,, and finally the
program C' imposes that evidence e must be satisfied and
P(c) > ~. Thus, IT is coherent iff P(MPE " (e)) > . Veri-
fying the coherence of II is X1’ -complete (Mazzotta, Ricca,
and Truszczynski 2024), and so the thesis follows. O

Based on the approach of the proof (sketch) of Theorem 7
we can also provide a membership result for cautious MPE.

Theorem 8 (Membership cautious MPE). Let P~ be an op-
timal PASP, e be an evidence, and v € [0, 1] be a rational
number. Deciding whether P(MPE*(€)) > v is in X1,

Proof (sketch). Given an optimal PASP P~ = (T, F, W),
verifying that P(MPE*(e)) > ~ requires checking the exis-
tence of a selection o C F such that P(o) > ~ and for each
M e AS" (w,), e € M.

Also here we can build an ASP(Q) program II of the form
35t T, 3% T4 : C, where the program 7 checks the exis-
tence of a selection o C F, then 75 checks the existence
of an optimal answer set of w,, and finally the program C'
imposes that evidence e must be satisfied and P(c) > ~.

To guarantee that e is cautiously entailed (i.e., for every
optimal answer set), we use a weak constraint in the pro-
gram 7T 5 which adds a penalty, at the lowest level, to each
M € AS”(w,) such that e € M. In this way, if an opti-
mal answer set of 7T 5 satisfies evidence e, then e is satisfied
in every optimal answer set of w,. Thus, II is coherent iff
P(MPE*(e)) > «. Verifying the coherence of II is ©2-
complete (Mazzotta, Ricca, and Truszczynski 2024), and so
the thesis follows. (]

Theorem 9 (Complexity cautious and brave MPE). Given
an optimal PASP P~, an evidence e, and a rational number
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€ [0,1], deciding whether (i) P(MPE*(e)) > ~ is $%'-
complete and (ii) P(MPE " (e)) > ~ is XL -complete.

Proof. The proof follows from theorems 5-8. O

5.2 Inference

We now study the complexity of the brave inference prob-
lem. This problem can be reduced to a counting problem and
so we rely on the counting complexity classes by Hemas-
paandra and Vollmer (1995).

First, we recall the complexity of the brave reasoning for
the ASP fragment considered in this paper (i.e., HCF pro-
grams with weak constraints), which will be instrumental in
what follows.

Theorem 10 (Buccafurri, Leone, and Rullo 2000). Let T be
an HCF program with weak constraints and q be an atom,

then verify whether there exists M € AS ’ (T) such that q €
M is AL -complete.

To prove hardness of inference in optimal PASP, we pro-
vide a reduction from the answer set counting problem for
arbitrary ASP programs. To this end, we first recall the
reduct-based stability check by Alviano et al. (2019) that
will be instrumental to our reduction. Let 7 be an ASP and
I C By be an interpretation, then cl(7,1) = A dl(r,I),

reT!
where cl(r, I) denotes the disjunction:

'V aviV -a

a€H (r)NI a€B(r)t

Moreover, cl(I) = \/ —a denotes the disjunction impos-

acl
ing that at least one of the true atoms w.r.t. I should be false.

Theorem 11 (Alviano et al. 2019). Let T be an ASP pro-

gram, and I C By be an interpretation. Then I € AS(T)
iff the formula cl(T,I) A cl(I) is unsatisfiable.

By exploiting this reduct-based stability check, it is pos-
sible to encode the answer counting problem for arbitrary
ASP programs into an optimal PASP. To this end, we need
to generalize the reduct-based stability check by Alviano et
al. (2019) in such a way that (¢) the obtained formula does
not depend on the current interpretation and (#4) it is equiv-
alent to cl(P,I) A cl-(I) after that an interpretation I is
enforced.

Definition 6. Let T be an ASP, then reduct(T) = A d,,
reT
with d,. being of the form:

(V ov(V —av(

a€H, a€B(r)*

Vo

not a€B(r)~

where for each a € B, aP is a fresh atom.

Definition 7. Let T be an ASP, then subset(T) denotes the
following formula:

( /\ a® < a? A—a) A ( \/ a) A ( /\ —af — —a)
a€EBT a€BT a€EBT

where for each a € Br, aP and a® are fresh atoms.
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Lemma 1. Let T be an ASP, and I C By then cl(T,I) A
clc (I) is satisfiable iff reduct(T) A subset(T) A fiz(I) is
satisfiable, where fix(I) is the following formula:

(/\a”)/\ /\ —aP

acl a€B7\1

Proof (sketch). Let I C By and ¢; = reduct(T) A
subset(T) A fiz(I). Intuitively, the subformula fiz(I) en-
forces the interpretation I in ¢; by means of fresh propo-
sitional variables of the form a? for each a € By. Thus,
by construction, each truth assignment satisfying ¢y, is such
that aP is true iff a is true w.r.t. I. This means that the
formula ¢; can be simplified accordingly. After this simpli-
fication, it is possible to observe that the obtained formula
is equal to ¢l(T, I) A clc (I) modulo variable renaming, and
so the thesis follows. (|

From Lemma 1, it is possible to encode the answer set
counting problem into an optimal PASP. The answer set
counting problem is # - coNP-complete (Fichte et al. 2017).
Thus, from Hemaspaandra and Vollmer (1995), the deci-
sional counterpart of such a problem (i.e., deciding whether
an ASP 7 admits at least k answer sets) is C' - coNP-
complete. Based on these observations, we reduce the an-
swer set counting problem to the brave inference task for
optimal PASP, which gives the hardness result.

Theorem 12 (Hardness brave inference). Let P~ be an opti-
mal PASP, q be an atom, and +y be a rational number in [0, 1],

then verifying whether P’ (q) > v is hard for C - coNP.

Proof (sketch). Given an ASP 7T and an integer k, it is pos-
sible to construct an optimal PASP P~ = (7, F, W) such
that P" (unsat) > k - 0.51B71iff | AS(T)| > k.

More precisely, F contains a probabilistic fact of the form
0.5 :: a for each a € By and so, each selection ¢ C F is
indeed an interpretation I over B which has an associated
probability of 0.5/57!. Then, 7 guesses a truth assignment
for the variables in ¢; and checks whether it satisfies ¢ or
not. Finally, W contains a weak constraint which adds a
penalty to the assignments that do not satisfy ¢;. Thus, the
truth assignments that satisfy ¢ are preferred. This means
that an optimal answer set contains the query unsat (i.e.
the guessed truth assignment does not satisfy ¢y) iff ¢y is
unsatisfiable and so, P~ (unsat) > k-0.5/B71 iff there exists
at least k& answer set. Thus, the thesis follows. O

We now provide membership results.

Theorem 13 (Membership brave inference). Let P~ be an
optimal PASP, q be an atom, and v € [0,1] be a rational

number. Then, verifying whether F*(q) >~isinC - coNP.

Proof. With slight modifications, we can apply the method-
ology employed by Cozman and Maud (2017) for proving
the complexity of brave inference for plain PASP.

Let P~ = (T,F,W) be an optimal PASP. We can con-
struct a non-deterministic Turing Machine T'Mp~ such that
for each p; :: a; € F, with p; = p;/v; for some (smallest)
integers p; and v;, it chooses one among v; computation
paths. For u; of these computation paths, a; is considered
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true in the current selection while, for the v; — y; remaining
ones, a; is considered false. This means that such a ma-
chine has [, »; computation paths, and for each selection
o C F there are Haiea i - Haief\a(ui — 1) compu-
tation paths. Each of these paths is polynomial w.r.t. the
input size and returns yes iff 3M € AS"(w,) such that
q € M. From Theorem 10, verifying the existence of such
M is A¥-complete problem. Thus, from Definition 1.5
of Hemaspaandra and Vollmer (1995), the function f that
count the number of accepting path of T Mp~ belongs to
#-AP = 4. PNP_ Moreover, from Theorem 1.5 of Hemas-
paandra and Vollmer (1995) # - PNP = 4t . coNP. Thus,
fe# coNP. Let S = {0 C F|IM € AS (wy),q €
M} be the set of selection which bravely satisfies the query
q, then the number of accepting paths of T'Mp~ is:

f(PN):Z(H i - H (Vi — 1))

€S a;€0 a;, €EF \o

Let g(P~) =7 - ( I1
piai €P™, pi=pi/vi

iff f(P~) > g(P"™), and so, the problem isin C-coNP. O

v;) then, P~ (¢) > v

Theorem 14. Let P~ be an optimal PASP, q be an atom,
and v € [0, 1] be a rational number. Then, verifying whether

P (q) > 7 is C - coNP-complete.
Proof. The thesis follows from Theorem 12 and 13. O

6 Related Work

For stratified programs, where every world has a unique
stable model (which also coincides with the well-founded
model), there exist many approaches (Sato 1995; Muggleton
2003; Meert, Struyf, and Blockeel 2010; Van den Broeck et
al. 2010; Riguzzi and Swift 2011), although none of these
considers weak constraints or any other optimality crite-
ria. The authors of (Azzolini and Riguzzi 2021) proposed
a framework based on the distribution semantics (so, one
model per world) where each probabilistic fact has an asso-
ciated range and the goal is to find the optimal value within
this range such that the probability of a query is maximized
(which is similar to the task of parameter learning (Riguzzi
2022)). This is different from our approach, as we consider
optimality over answer sets and do not aim at finding a prob-
ability value within a given range.

If we consider probabilistic extensions of ASP, the
credal semantics and the L-credal semantics (Rocha and
Gagliardi Cozman 2022), which extends the CS by lifting
the requirement of having at least one model per world (but
introduces a third “undefined” truth value), are the most sim-
ilar to our proposal. However, for both, no optimality state-
ments are considered. In this paper, we extend the CS with
weak constraints. An interesting future work could be to
frame our approach in the context of the L-credal semantics.
The smProbLog semantics (Totis, De Raedt, and Kimmig
2023) focuses on normal ASP (so no weak constraints) ex-
tended with probabilistic facts. However, instead of consid-
ering the contribution of a world to the lower and/or upper
bounds, it assumes a uniform probability distribution over
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the answer sets of a world (in line with the maximum en-
tropy principle). That is, each world w contributes to the
probability of a query with a value of P(w) (computed as
in Equation 1) divided by the number of answer sets of w in
which the query is present. This is a specialization of the CS,
since the CS assumes no probability distribution over the
answer sets. Thus, the probability of a query computed un-
der the smProbLog semantics always falls within the lower
and upper bounds defined by the CS. Furthermore, the sm-
ProbLog semantics considers a third truth value, “inconsis-
tent”, to also support worlds without models.

Another semantics, though substantially different from
our approach, is LPMLN (Lee, Talsania, and Wang 2017).
An LPMLN program consists of normal ASP rules associ-
ated with a weight (so € R instead of € [0, 1]). Those rules
are called “soft”, in contrast to hard rules, which are asso-
ciated with infinite weight. Each stable model is assigned a
weight and then a probability by dividing its weight by the
sum of all weights. The probability of the query is the sum
of the probabilities of the models containing the query. Dif-
ferently from us (and from the CS), LPMLN does not have
the distinction between world and model for each world;
rather, it considers only the stable models of a program. This
makes it easier to compute, for example, the most probable
answer set (which the authors call MAP, but usually MAP in
statistical relational artificial intelligence is a different and
substantially harder problem), since weak constraints can be
used off-the-shelf (Lee, Talsania, and Wang 2017). Note that
LPMLN considers weak constraints only for the computa-
tion of such an answer set and not as part of the program.

7 Conclusions

In this paper, we extend the credal semantics for Probabilis-
tic Answer Set Programming to handle weak constraints,
thus introducing the optimal PASP framework. We motivate
our proposal by encoding, in an easy and intuitive way, three
real-world problems requiring to reason on both optimality
criteria and probabilities, namely: Optimal Reviewer As-
signment, Scheduling Problem under No Show Behaviour,
and Viral Marketing. Moreover, we formalized the inference
and MPE tasks and provided a complexity study, precisely
placing them in the complexity landscape.

As a future work, we plan to develop a complexity-
aware solver for handling such programs, e.g., resorting
to knowledge compilation (Darwiche and Marquis 2002)
and/or ASP(Q) (Mazzotta, Ricca, and Truszczynski 2024).
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