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Abstract

We investigate LTL synthesis under structured assumptions
about the environment. In our setting, the environment is
viewed by the protagonist as a collection of peer agents act-
ing together in a shared world. In contrast to the symmetrical
frameworks typically studied in multi-agent systems, we take
a strikingly asymmetric first-person perspective in which the
protagonist ascribes a specification to each of its peer agents
and the world, capturing its understanding of their possible
strategies. We show that in this setting, LTL synthesis has the
same computational complexity as standard LTL synthesis,
i.e., 2EXPTIME-complete. We establish this via a sophisti-
cated, yet fully implementable, argument that builds on the
notion of traces compatible with strategies: we use the fact
that if the basic specification of the world and of each agent
is given in LTL then the sets of traces compatible with the
strategies describing the behaviors of the agents are omega-
regular. This enables the use of word-automata rather than
the more complicated tree-automata.

1 Introduction
We study LTL synthesis under environment assumptions,
where the agent assumes that the environment reacts to its
actions according to some specification, which can be ex-
ploited in realizing the agent’s specification (or task, or
goal) (Camacho, Bienvenu, and McIlraith 2018; Aminof et
al. 2018; Aminof et al. 2019). Such assumptions can take
many forms, ranging from fully observable nondetermin-
istic (FOND) domains (Cimatti et al. 2003; De Giacomo
and Rubin 2018; Camacho, Bienvenu, and McIlraith 2019;
Ghallab et al. 2025) — where synthesis is related to strong
planning — to non-Markovian domains where, for example,
the preconditions and effects of actions may depend on the
entire history (Gabaldon 2011; Brafman and De Giacomo
2019; Bonassi et al. 2024), to more general safety specifica-
tions (FONDs and their non-Markovian variants are specific
forms of safety specifications), and to LTL arbitrary spec-
ifications that include both safety and liveness conditions
(Aminof et al. 2019).

In this paper we consider environment assumptions that
have a certain structure. We assume that the protagonist
agent, the one for which we are introducing decision-making
abilities (i.e., synthesizing strategies for), sees the environ-
ment as composed of a finite set of peer agents acting along-

side itself in a shared world. The protagonist ascribes a spec-
ification to each of its peer agents and the world, capturing
its understanding of the possible strategies they may adopt.
The peer agents are assumed to be unaware of the specifica-
tions of the other agents (including of the protagonist), but
share with the protagonist the model of the world.

The specifications of all agents and the world itself are
expressed in Linear Temporal Logic (LTL) (Pnueli 1977),
which is arguably the most widely used specification lan-
guage for dynamic properties in verification (Clarke et al.
2018). These formulas are defined over a common set of
variables, including the possible actions of each agent and
the world’s reactions to such actions. Note that each agent
controls only its own actions (and the world its reactions).

In this structured environment, the protagonist aims to
devise a strategy to fulfill its own specification assuming
that all peers will employ strategies to realize their own
specifications in the shared world. This is clearly related
to rational decision-making in multi-agent systems (MAS)
(Wooldridge 2009), see related work below. However,
our setting induces a striking asymmetry, reflecting a first-
person perspective (that of the protagonist who is ascribing
specifications to its peers), in contrast to the more symmet-
rical situations typically studied in MAS.

We show that synthesis in this setting remains
2EXPTIME-complete, matching the complexity of standard
LTL synthesis. Moreover, we present an automata-theoretic
solution technique that is amenable to implementation in a
way analogous to standard synthesis.

To get these results, we take a detour through a sophisti-
cated, yet fully implementable, argument (cf. Technical In-
termezzo Section). We note that each peer agent has an in-
finite collection of possible strategies that realize its specifi-
cation despite the behavior of others, and each of them will
employ one such strategy. We define the notion of traces
consistent with some strategy in a given set. This notion of
consistency gives rise to a set of traces (a language), analo-
gous to the set of traces satisfying an LTL property. We show
that, if the set of strategies is defined through realizability
in LTL, then the consistent traces, while not themselves ex-
pressed in LTL, are still omega-regular properties. This al-
lows us to leverage automata-theoretic methods. Exploiting
this result, we develop a multi-layered approach: at the first
layer, we capture the set of traces compatible with the peers’
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strategies that realize their specification in the world; then,
we synthesize a protagonist’s strategy that realizes its spec-
ification in an environment defined by the first layer speci-
fication. Based on this construction, we develop a suitable
synthesis technique for our setting that remains within 2EX-
PTIME. In fact, as we discuss at the end of the paper, this
approach can be extended to arbitrary numbers of layers as
long as the assumptions remain acyclic.

Related work. Our work is related to the literature on syn-
thesis in the context of MAS (Fagin et al. 1995; Wooldridge
2009; Albrecht and Stone 2018). Essentially, we can single
out two fundamental differences in our setting: the asymme-
try of agents’ assumptions and the first-person point of view
on the synthesis problem. The first characteristic makes it-
erated admissible refinement inapplicable (Berwanger 2007;
Brenguier, Raskin, and Sassolas 2014; Brenguier, Raskin,
and Sankur 2017). The second one sets our work apart from
the conventional third-person one of Multi-Agent Systems,
where the aim is synthesizing a strategy profile that satisfies
a desired property of the system, e.g., being in an Equilib-
rium (Gutierrez, Harrenstein, and Wooldridge 2015).

Among the MAS Synthesis problems, Rational Synthe-
sis (RS) deserves a special mention, as both third- and first-
person perspectives are combined. Indeed, weak-RS, con-
cerns with finding a strategy for a protagonist agent (first-
person) and a strategy profile in Equilibrium (third-person)
for the remaining ones such that the resulting outcome sat-
isfies the protagonist’s trace property (Fisman, Kupferman,
and Lustig 2010). While, strong-RS concerns with finding a
strategy for the protagonist such that all possible outcomes
resulting from an Equilibrium satisfy the protagonist’s trace
property (Kupferman, Perelli, and Vardi 2016). Note that
both forms of RS require to reason iteratively on the other
agents’ assumption to get the Equilibrium.

In Formal Methods, Distributed Synthesis (Pnueli and
Rosner 1990; Finkbeiner and Schewe 2005) is concerned
with a coalition of agents that cooperatively coordinates
to ensure a shared goal regardless of all possible behavior
of a single (adversarial) environment. However, the par-
tial visibility on the state of the local agents makes this
problem very difficult ranging from nonelementary, if state
visibility is hierarchical, to undecidable, otherwise. Solu-
tions for special cases based on assume-guarantee frame-
works have been recently proposed (Majumdar et al. 2020;
Schuppe and Tumova 2020; Fijalkow et al. 2022).

Finally, our synthesis problem can be expressed in Strat-
egy Logic (SL) (Mogavero et al. 2014), which quantifies di-
rectly over strategies, though this does not help in analyzing
its computational properties.

2 Preliminaries
The set of integers {1, . . . , k} is denoted [k]. For a set X ,
its powerset is denoted P(X), and the set of finite (resp. in-
finite) sequences of elements from X is denoted X∗ (resp.
Xω). The empty sequence is written ϵ. For a sequence β,
we write βi for its ith element; the first element is β0; the
length of a finite sequence is |β|; the prefix of β of length i
is denoted by β<i or β≤i−1; we write Inf(β) for the set of

elements appearing infinitely often in β, i.e., x ∈ Inf(β) iff
x = βi for infinitely many i. If β is a prefix of α we also say
that α extends β.

For a finite set AP of atomic propositions (aka atoms),
sequences over P(AP) are called traces. A trace property
(aka property) is a set P ⊆ P(AP)ω of infinite traces. If
τ ∈ P we say that τ satisfies P . If P is non-empty we say
that it is satisfiable. We will sometimes use logical operators
for operations on trace properties. In particular, for A,B ⊆
P(AP)ω , we may write ¬A for A’s complement (P(AP)ω \
A), write A ∨ B for the union A ∪ B, write A ∧ B for the
intersection A ∩ B, and write A ⇒ B for ¬A ∨ B, i.e. for
(P(AP)ω \A) ∪B.

2.1 Linear-time Temporal Logic (LTL)
Let AP be a set of atoms. The formulas of LTL over AP are
defined by the following BNF (where p ∈ AP):

φ ::=p |φ ∨ φ |¬φ |Xφ |φUφ

We use the usual abbreviations, φ ⊃ φ′ .= ¬φ ∨ φ′, true .
=

p ∨ ¬p, Fφ .
= trueUφ, Gφ .

= ¬F¬φ, etc. The size |φ|
of a formula φ is the number of symbols in it. A trace τ is
an infinite sequence of valuations of the atoms (we say that
the trace is over AP, to emphasize the atoms). For n ≥ 0,
write τn for the valuation at position n. Given a trace τ , an
integer n, and an LTL formula φ, the satisfaction relation
(τ, n) |= φ, stating that φ holds at step n of the sequence τ ,
is defined as follows: (τ, n) |= p iff p ∈ τn; (τ, n) |= φ1∨φ2

iff (τ, n) |= φ1 or (τ, n) |= φ2; (τ, n) |= ¬φ iff it is not the
case that (τ, n) |= φ; (τ, n) |= Xφ iff (τ, n + 1) |= φ;
and (τ, n) |= φ1 Uφ2 iff there exists m ≥ n such that:
(τ,m) |= φ2 and (τ, j) |= φ1 for all n ≤ j < m. We
write τ |= φ if (τ, 0) |= φ, read τ satisfies φ. Note that the
set of traces that satisfy φ is a trace property, and we will
sometimes blur the distinction between the formula φ and
this trace property.

2.2 Automata and Games
Transition systems. A deterministic transition system
D = (Σ, Q, ι, δ) consists of a finite input alphabet Σ (typ-
ically Σ = P(AP)), a finite set Q of states, an initial state
ι ∈ Q, and a transition function δ : Q×Σ → Q. The size of
D is the number of its states. Let α = α0α1 · · · be a finite or
infinite sequence of letters in Σ. The run/path induced by α
(AKA the run of D on α) is the sequence q0q1 · · · of states
where q0 = ι and qi+1 = δ(qi, αi) for every i < |α|. We
extend δ to range over Q × Σ∗ as follows: δ(q, ϵ) = q, and
for n > 0, let δ(q, α0α1 · · ·αn) = δ(δ(q, α0 · · ·αn−1), αn).
Given k deterministic transition systems T1, . . . , Tk over the
same alphabet, i.e., Ti = (Σ, Qi, ιi, δi), for i ∈ [k], their
product T1×T2 . . .×Tk is the deterministic transition system
(Σ, Q′, ι′, δ′) where Q′ = Q1 × . . .×Qk, ι′ = (ι1, . . . , ιk),
and δ((q1, . . . , qk), a) = (δ1(q1, a), . . . , δk(qk, a)).

Automata. A deterministic automaton (or simply automa-
ton) A = (D,Acc) is a deterministic transition system
D = (Σ, Q, ι, δ) augmented with an acceptance condition
Acc. The acceptance condition can be thought of as a sub-
set of Qω , though it is usually not given as a set, but indi-
rectly using some other mechanism as we describe below.
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An infinite string α over Σ is accepted by A if its run ρ
is in Acc, in which case we also say that ρ is accepting or
that it satisfies the acceptance condition. The set of infi-
nite strings accepted by A is the language of A, which we
denote by L(A). We focus on Emerson-Lei acceptance con-
ditions, which generalize all traditional acceptance condi-
tions used for ω-regular languages (Emerson and Lei 1987;
Hausmann, Lehaut, and Piterman 2024).

Emerson-Lei (EL) acceptance conditions are described by
a triple (Γ, λ,B), where Γ is a finite set of labels, λ : Q →
P(Γ) is a labeling function that assigns to a state a (possibly
empty) subset of labels, and B : P(Γ) → {true, false} is a
Boolean function over the set Γ (treated as variables). For
a state q ∈ Q and a label l ∈ λ(q), we say that q visits
l. We will sometimes (but not always) write B as a Boolean
formula over the set Γ of variables, with the usual syntax and
semantics; e.g., the formula l1∧l2∧¬l3 denotes the Boolean
function that assigns true to a set Z ⊆ Γ iff Z contains l1
and l2 but not l3. Given a sequence ρ ∈ Qω , the set of
labels that are visited infinitely many times by states on ρ is
Infλ(ρ) =

⋃
{λ(q) : q ∈ Inf(ρ)}. A sequence ρ satisfies

the EL acceptance condition iff B(Infλ(ρ)) = true, i.e., iff
the set of labels that are visited infinitely often by states of
ρ satisfies B. An automaton A = (D, (Γ, λ,B)) with an
EL acceptance condition, is called a DELA (deterministic
Emerson-Lei automaton).

A very useful property of DELAs is that they are closed
under Boolean operations, with very simple constructions
(and trivial proofs).

Lemma 1 (DELA closed under Boolean operations).
1. Given a DELA A = (T, (Γ, λ,B)), the DELA

(T, (Γ, λ,¬B)) accepts the complement of L(A).
2. Given DELA Ai = (Ti, (Γi, λi, Bi)) for i ∈ [k], sup-

pose the Γi are pairwise disjoint, and the Ti have the
same alphabet. Let C be the DELA (T, (Γ, λ,B)) where:
T = T1 × · · · × Tk, Γ = ∪i∈[k]Γi, the labeling func-
tion λ is defined by letting λ(q1, · · · , qk) =

⋃
i∈[k] λi(qi),

and B =
∨

i∈[k]Bi (resp.
∧

i∈[k]Bi); then C accepts the
language

⋃
i∈[k] L(Ai) (resp.

⋂
i∈[k] L(Ai)).

The following Theorem says that one can compile formu-
las into automata.

Theorem 2 (Formulas to Automata). (Vardi and Wolper
1994; Safra 1988) Fix AP. Given an LTL formula φ over
AP, one can build a DELA Aφ = (T, (Γ, λ,B)) that ac-
cepts exactly the traces over AP that satisfy φ, whose size
|T | is at most 2EXP in |φ|, whose number of labels |Γ| is at
most EXP in |φ|, and whose function B can be written as a
Boolean formula of size linear in the number of labels.1

1Usually this result is cited for Rabin Automata and follows
two steps: from LTL to Nondeterministic Büchi Automata (Vardi
and Wolper 1994), and from such automata to Deterministic Rabin
Automata (Safra 1988). To get DELA is very easy: simply convert
the Rabin acceptance condition into an Emerson-Lei condition on
the same transition systems. This is done by labeling each state by
each of the sets in each of the Rabin pairs that it belongs to, and the
Boolean formula simply expresses the Rabin condition.

Two-player games on automata. An arena is a tuple
(A,A,B) where A,B are disjoint sets of variables and a
A is an automaton with alphabet Σ = P(A ∪B). We infor-
mally describe a two-player game played on A. The play-
ers (aka opponents) are called Adam and Eve. Adam con-
trols variables from A and Eve from B. The game proceeds
by the players pushing a pebble along the transition system
of A as follows: if the pebble is currently in q, first Adam
moves by selecting A′ ⊆ A, then Eve moves by selecting
B′ ⊆ B, and the position in the game is updated to the state
δ(q, (A′ ∪ B′)). Starting at the initial state, this interaction
generates an infinite run, and Adam is declared the winner if
the run is accepting.

We now describe this game formally. A play π = A0 ·B0 ·
A1·B1 · · · is an element of (P(A)·P(B))ω; this play is an al-
ternative representation of the trace (A0∪B0)(A1∪B1) · · · ,
induced by π. A history h is a finite prefix of a play. A strat-
egy for Adam is a function σ : (P(A) ·P(B))∗ → P(A) that
maps histories ending in Eve’s moves (including the empty
history since Adam moves first) to an Adam move. A strat-
egy for Eve is a function σ : (P(A) ·P(B))∗ ·P(A) → P(B)
that maps histories ending in Adam’s moves to an Eve move.
A play π is consistent with a strategy if for every history
π<i in the domain of σ we have that πi = σ(π<i). If σ
is a strategy for Adam and δ is a strategy for Eve then we
write PLAY(σ, δ) for the unique play consistent with both
these strategies. We say that a strategy σ for Adam (resp.
Eve) is winning if for all strategies δ for Eve (resp. Adam)
we have that PLAY(σ, δ) is accepted (resp. not accepted) by
A. Deciding if a given player has a winning strategy (and
returning such a strategy if one exists) is called solving the
game for that player. To emphasize the arena (A,A,B) we
may write “solving the game on the arena (A,A,B)”, and
if the sets A,B are understood, then we may write “solving
the game on the automaton A”. It will be technically con-
venient to sometimes blur the distinction between traces and
plays. E.g., we say that a play π satisfies a trace property
P if the trace induced by π is in P; we say that a trace τ
is consistent with a strategy σ if the play that induces τ is
consistent with σ.

Theorem 3. (Hausmann, Lehaut, and Piterman 2024;
Aminof et al. 2025) Games on DELAs can be solved in time
polynomial in the size of the arena, exponential in the num-
ber of labels, and polynomial in the size of the formula.2

3 Synthesis under Assumptions
In nondeterministic planning, one purpose of the planning
domain is to specify the rules of conduct that the agent thinks
will be obeyed by the environment. Instead of allowing the
environment to choose any effect in response to an agent

2Games on automata, such as ours, are notational variants of
traditional games played on bipartite directed-graphs without edge-
labels. Indeed, one can convert a game on an automaton into a
traditional model by introducing for q ∈ Q and A ∈ A, a new
vertex qA, and replacing each edge of the form δ(q,A ∪ B) = q′

by an edge from q to qA (controlled by Adam), and an edge from
qA to q′ (controlled by Eve). The label of qA is usually taken to be
the same as that of q.
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action, the domain limits the environment’s choices (action
effects). A generalization of this is to limit the environment
to a non-empty set χ of strategies that the agent thinks could
be used — indeed, under this view, a planning domain in-
duces the set of environment strategies that resolve the non-
determinism at every step by picking one of the available
transitions in the domain. Such a non-empty set χ of envi-
ronment strategies is the assumption that the agent has about
its environment, i.e., it is the agent’s view of the possible
environments it might face. This strategy view of the envi-
ronment unites nondeterministic planning and reactive syn-
thesis (Aminof et al. 2019), and we will follow it here. Ob-
serve that viewing the environment as employing strategies
does not necessarily imply that the agent considers the en-
vironment to be sentient or rational, it simply means that,
at every point in time, the next action effect is a function
of the history of the interaction between the agent and the
environment thus far.

Usually, instead of providing an environment speci-
fication χ explicitly as a set, one provides instead an
environment-enforceable trace-property P (often as the set
of traces that satisfy an LTL formula) which induces the as-
sumption χ as the set of environment-strategies that enforce
P . For example, a planning domain can be specified this
way by an LTL formula that expresses that all transitions
along a trace are only those allowed by the transition rela-
tion of the domain. The LTL synthesis under assumptions
problem is the following (Aminof et al. 2019): given LTL
formulae φ0 and φenv, find a strategy of the agent such that
PLAY(σ0, σenv) satisfies φ0 for every environment strategy
σenv that enforces φenv. While these notions have been given
for the case of an agent in a monolithic environment, we now
make use of them for environments with agent peers.

3.1 Synthesis under Multi-Agent Environment
Assumptions

We consider an agent, called agent 0 that is trying to enforce
the LTL goal φ0. As discussed in the introduction, we will
focus on the following natural case regarding the informa-
tion the protagonist has about its environment. First, that
its environment consists of N other agents, called agent 1,
agent 2, . . . , agentN , and the rest of the environment, called
env, that all the agents are operating in, e.g., env may cap-
ture the relevant physical and communication-infrastructure
of the world. We now describe agent 0’s specification of its
environment, i.e., of the set of strategies that it thinks agents
i (for i ≥ 1) and env may use.

1. Agent 0 assumes that env will use a strategy that enforces
the LTL formula φenv (in particular, agent 0 assumes that
env makes no assumptions about any of the agents). For
this to make sense, φenv should be enforceable by env.

2. Agent 0 assumes that agent i (for i ≥ 1) will use a strat-
egy that enforces the LTL formula φi under the assump-
tion that the environment will enforce φenv (in particular,
agent 0 assumes that the other agents make no assump-
tions about any of the other agents). For this to make
sense, φi should be enforceable under the assumption that
the environment will enforce φenv.

The computational problem is to decide, given
φ0, · · · , φN , φenv, if there is an agent 0 strategy that
enforces φ0 under these stated assumptions, and return such
a strategy if there is one. Note that if N = 0 we are in
the case of a single agent and a monolithic environment,
and this computational problem is simply synthesis under
assumptions (Aminof et al. 2019).
Remark 1. Our approach reflects a first-person view from
the perspective of the agent 0 (the protagonist). This re-
sults in an asymmetry in our formalisation, i.e., agent 0 is
treated differently to agents i ≥ 1. In contrast, if every
agent has an assumption about every other agent, and if
we were synthesizing strategies for all the agents, Game-
Theoretic solutions concepts based on equilibria would be
more appropriate (Fisman, Kupferman, and Lustig 2010;
Gutierrez, Harrenstein, and Wooldridge 2015; Kupferman,
Perelli, and Vardi 2016; Wooldridge et al. 2016; Gutierrez
et al. 2020).

Fix N ≥ 0. An actor is an element of the set V =
{0, 1, · · · , N, env}. The actor env is called the environment
(referred to as “the world” in the introduction), and the other
actors are called agents. Let X and Y be a partition of AP
into two disjoint finite sets of Boolean variables, called the
agent variables and environment variables, respectively. We
assume that X is partitioned into N + 1 disjoint parts, i.e.,
X0, · · · ,XN , where Xa is controlled by agent a. For con-
venience, we will also write Xenv = Y. Then, P(Xv) is the
set of actor v’s moves.
Remark 2. In our formalisation we will assume that, in
each step, all the agents move simultaneously and then env
responds. We make this choice since it reflects the turn-
taking assumption typical in single-agent nondeterministic
planning where an agent move is followed by the environ-
ment’s response (Geffner and Bonet 2013), and because si-
multaneous moves are quite general (and can be relatively
easily weakened to turn-based moves if one wishes).

A play π = X0 · Y0 · X1 · Y1 · · · is an element of
(P(X) ·P(Y))ω; this play is an alternative representation of
the trace (X0∪Y0)(X1∪Y1) · · · , induced by π. A history h
is a finite prefix of a play. As in the two-player case, it will
be technically convenient to sometimes blur the distinction
between traces and plays.

Since the agents move first, and simultaneously, we de-
fine their strategies as follows. A strategy for agent a is
a function σa : (P(X) · P(Y))∗ → P(Xa), i.e., it as-
signs to every history that ends in an environment move
(as well as the empty history since the agents move first)
an agent a move. A strategy for the environment is a func-
tion σenv : (P(X) · P(Y))∗ · P(X) → P(Y), i.e., it assigns
to every history that ends in the agents’ moves an environ-
ment move. A strategy for actor v is called a v-strategy. Let
Z ⊆ V be a non-empty set of actors. A strategy profile for Z
is a function σ̄, with domain Z, that assigns to every v ∈ Z
a v-strategy σ̄(v). If Z is the set of all actors, then we call σ̄
a full strategy profile, otherwise it is a partial strategy pro-
file. A play or history ρ is consistent with a v-strategy σ if
for every proper prefix ρ<i in the domain of σ we have that
ρi ∩Xv = σ(ρ<i). Say that ρ is consistent with a strategy
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profile σ̄ if it is consistent with every strategy in the range
of σ̄. If σ̄ is a full strategy profile, write PLAY(σ̄) for the
unique play consistent with σ̄.

An assumption for actor v is a non-empty set Θv of partial
strategy profiles for V \ {v}, i.e., for all the actors except
v. A common special case of assumptions are rectangular
ones. An assumption Θv is rectangular if it is determined
by its projections projw(Θv) for w ̸= v, where projw(Θv) is
the set of all w-strategies appearing in profiles in Θv . That
is, Θv is rectangular iff every profile σ̄, satisfying σ̄(w) ∈
projw(Θv) for every w, is in Θv .

We say that σv enforces P assuming Θv if for every
σ̄ ∈ Θv , extending it to a full strategy profile σ̄′ by letting
σ̄′(v) = σv (and σ̄′(w) = σ̄(w) for w ̸= v) we have that
PLAY(σ̄′) satisfies P . Given P and Θv , deciding whether
actor v has a strategy that enforces P assuming Θv (and op-
tionally returning such a strategy), is called the synthesis un-
der assumption problem for actor v. We observe that in the
special case of a single agent (i.e. N = 0), such an agent’s
assumption Θ0 is simply a set of strategies for the environ-
ment. When this (nonempty) set of environment strategies
is specified as those that enforce an LTL formula φenv, and
the trace property P is specified as the set of traces satisfy-
ing an LTL formula φ, then the definition above coincides
with the definition from (Aminof et al. 2019) of synthesis
under assumption of φo under the assumption φenv. Thus,
our definition above is a generalization of the definition of
synthesis under assumption from (Aminof et al. 2019).

Basic synthesis problem. We now describe the problem
of LTL synthesis under multi-agent environment assump-
tions. Fix N ≥ 0, and for every actor v ∈ V let ϕv be
an LTL formula.

1. Let Ωenv be the set of env-strategies that enforce ϕenv.

2. For every agent a ̸= 0, let Θa be the rectangular assump-
tion where projw(Θa) = Ωenv if w = env, and otherwise
projw(Θa) is the set of all w-strategies. Define Ωa to be
the set of a-strategies that enforce ϕa assuming Θa.

3. Let Θ0 be the rectangular assumption for agent 0 defined
by letting projw(Θ0) = Ωw for all w.

We say that an agent 0 strategy enforces ϕ0 under
ϕ1, · · · , ϕN , ϕenv if it enforces ϕ0 assuming Θ0.

Problem 1 (LTL synthesis under multi-agent environment
assumptions). Given LTL formulas ϕ0, ϕ1, · · · , ϕN , ϕenv,
decide if there is an agent 0 strategy that enforces ϕ0 un-
der ϕ1, · · · , ϕN , ϕenv, and return such a strategy if there is
one.

4 Technical Intermezzo
When we do not have peer agents, i.e., N = 0, our problem
reduces to the one studied in (Aminof et al. 2019) where the
agent’s goal is given by an LTL formula φ0, and the envi-
ronment assumption is given by an environment-enforceable
LTL formula φenv. In this case, it is known (Aminof et al.
2019) that the following are equivalent: there is an agent
strategy enforcing φ0 under the assumption φenv, iff there is
an agent strategy enforcing the LTL formula φenv ⇒ φ0. In

other words, synthesis under assumptions and synthesis of
the implication formula are equirealizable. In fact, looking
for an agent strategy enforcing the formula φenv ⇒ φ0 has
been the standard approach for many years for handling as-
sumptions. Only later it was observed and argued (Aminof
et al. 2019; Aminof, De Giacomo, and Rubin 2021) that this
logical implication, at the level of the LTL specification, may
not be the correct general approach for synthesis under as-
sumptions, and the strategy-based view was promoted.

It is important to note that even in this simple case, of a
single agent, synthesis under assumption and synthesizing
for the implication φenv ⇒ φ0 are equirealizable, but not
equivalent, problems. That is, while every strategy that en-
forces φenv ⇒ φ0 also enforces φ0 under the assumption
φenv, the converse is not true (Aminof et al. 2019). How-
ever, one can obtain equivalence, and not merely equireal-
izabilty, if one considers, as the agent’s goal, instead of the
LTL implication formula φenv ⇒ φ0, the following more
general implication of trace properties (Aminof et al. 2024):
“if a trace is consistent with an environment strategy that
enforces ψ then it also satisfies φ”. We now generalize this
result to the multi-agent setting.

We start by formalizing some key notions. Let σ be a v-
strategy, for some actor v ∈ V . A play π extending a history
h is consistent with σ from h if for every i ≥ |h|, if π<i

is in the domain of σ then πi = σ(π<i) ∩ Xv . A play π
is consistent with a strategy profile σ̄ from h if it is consis-
tent from h with every strategy in the range of σ̄. For a full
strategy profile σ̄, the σ̄-extension of h is the unique play
PLAY(σ̄)h such that (i) the play PLAY(σ̄)h extends h, and
(ii) for every actor v, the play PLAY(σ̄)h is consistent with
the v-strategy σ̄(v) from h (note that this definition does not
require h or any of its prefixes to be consistent with σ̄). Intu-
itively, PLAY(σ̄)h is the result of playing the strategies in σ̄
starting from h. Given a trace property P , an actor v, and a
v-strategy σv , we say that σv enforces P from h if for every
full strategy profile σ̄ with σ̄(v) = σv (i.e., in which actor v
uses σv), we have that the σ̄-extension of h satisfies P . If h
is the empty sequence, then the definition of consistent with
σ from h (resp. PLAY(σ̄)h, resp. enforces P from h) coin-
cides with the definition of consistent (resp. PLAY(σ̄), resp.
enforces P) from Section 3.1.

Remark 3. For every actor v, every trace τ is consistent
with some strategy profile for V \ {v}. For example, the
strategy profile σ̄ that at time n, regardless of what the actual
history is, outputs the relevant portions of the n’th letter of
τ . More formally, for w ̸= v, the strategy σ̄(w) is defined,
for a history h = X0 · Y0 · · ·Xn−1 · Yn−1 · z (where z ⊆ X
are the agents’ moves if w = env, and otherwise z is the
empty word) to be σ̄(w)(h) = τn ∩ Xw. This means, in
particular, that a v-strategy σv enforces P (resp. from h) iff
every play consistent with σv (resp. from h) is in P .

Observe that the setting given above captures, in particu-
lar, the dynamics and the definitions of histories, strategies,
and enforcement of the two-player games on automata from
Section 2.2 by taking N = 0, agent 0 being identified with
Adam, and env identified with Eve.
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The set of traces consistent with a strategy σ (resp. strat-
egy profile σ̄) is denoted Cns(σ) (resp. Cns(σ̄)). Extend
this to sets of strategies, and sets of strategy profiles, in the
natural way: e.g., for a set Ξ of strategy profiles we have
Cns(Ξ) .

=
⋃

σ̄∈Ξ Cns(σ̄). Write Enfv(P) (resp. Enfv(φ))
for the set of v-strategies that enforce P (resp. the set of
traces that satisfy the LTL formula φ), and say that P (resp.
φ) is v-enforceable if this set of strategies is not empty.

We are now ready to generalize the result in (Aminof et
al. 2024).

Theorem 4. Given an actor v, a trace property P , and an
assumption Θv for v, a v-strategy σv enforces P assuming
Θv iff σv enforces Cns(Θv) ⇒ P (i.e., the set of v-strategies
that enforce P assuming Θv is Enfv(Cns(Θv) ⇒ P)).

Proof. For the first direction, assume that σv enforces P as-
suming Θv , and let π be a play consistent with σv . If π is
consistent with some σ̄ ∈ Θv then it follows that π is con-
sistent with the full strategy profile σ̄′ obtained by letting
σ̄′(v) = σv , and σ̄′(w) = σ̄(w) for w ̸= v. Hence, by our
assumption on σv , it follows that π ∈ P , and thus π satisfies
Cns(Θv) ⇒ P . If, on the other hand, π is not consistent
with any σ̄ ∈ Θv , then π /∈ Cns(Θv), so it again satisfies
Cns(Θv) ⇒ P .

For the other direction, assume that σv enforces
Cns(Θv) ⇒ P , take some σ̄ ∈ Θv , and its extension σ̄′

to a full strategy profile obtained by letting σ̄′(v) = σv and
σ̄′(w) = σ̄(w) for w ̸= v. Observe that π = PLAY(σ̄′) ∈
Cns(Θv), and that π satisfies Cns(Θv) ⇒ P by our assump-
tion on σv . It follows that π satisfies P .

Intuitively, the theorem above says that σv achieves P
playing against any strategy profile in Θv iff: for every play
π consistent with σv , if π is consistent with some strategy
profile in Θv then π satisfies P . This allows us to trans-
form the synthesis under assumption problem for actor v
to an equivalent synthesis problem with no assumption (by
“folding” the assumption into the new trace property for v).
Observe that this has the important advantage of turning a
problem that talks about strategy profiles into one that deals
with only trace properties. Nonetheless, one still needs to
reason about strategy profiles in order to capture the set of
traces Cns(Θv).

It is interesting to note that there are usually infinitely
many traces consistent with any strategy profile in Θv , and
that Cns(Θv) “throws” together all these traces for all the
strategy profiles in Θv into one bag, without keeping track
of which traces are consistent with which strategy profiles.
Somewhat surprisingly, the theorem above shows that this
lost information is not needed in order to solve the synthesis
under assumption problem.

Corollary 5. Fix an actor v, a trace-property G, w-
enforceable trace properties Pw for w ̸= v, and a rectan-
gular assumption Θ for v such that projw(Θ) = Enfw(Pw)
for w ̸= v. A v-strategy enforces G assuming Θ iff it en-
forces (∧w ̸=vCns(Enfw(Pw))) ⇒ G.

In case N = 0 and w = env, the set Cns(Enfw(Pw)) of
traces has been studied and called the core of Pw (Aminof

et al. 2024) 3. We define the multi-agent analogue:

Definition 1. For an actor v and a trace property P , we call
Cns(Enfv(P)) the v-core of P , written Corev(P).

Recall from Section 2 that an LTL formula ϕ is often used
to refer to the set of traces that satisfy it. Consequently, we
may sometimes write Corev(ϕ). Similarly, recall from Sec-
tion 3.1 that we will blur the distinction between a play and
the trace that it induces. The following characterization of
the v-core will be used in the proof of correctness of our
synthesis algorithm:

Theorem 6 (Characterization of the v-core). Fix a trace
property P and an actor v. A play π is in the v-core of
P iff: (i) π satisfies P; and (ii) for every proper prefix h of
π, there is a v-strategy that enforces P from h.

Proof. For the first direction, assume that π is in the v-core
of P , and let σv be a strategy witnessing this, i.e., a v-
strategy enforcing P with which π is consistent. Since π
is consistent with a strategy enforcing P it satisfies P , and
thus item (i) holds. For item (ii), given a proper prefix h
of π, observe that σv enforces P from h. Indeed, since π is
consistent with σv , then so is h; hence, for every full strategy
profile σ̄ with σ̄(v) = σv , the σ̄-extension of h is consistent
with σv , and thus satisfies P .

For the other direction, assume that items (i) and (ii) hold,
and for every proper prefix h of π pick a v-strategy σh that
enforces P from h. Define a v-strategy σv as follows for an
h′ in its domain: if h′ = π<i is a prefix of π then define
σv(h

′) = πi ∩Xv; otherwise, let σv(h′) = σh(h′), where h
is the longest common prefix of h′ and π. Observe that π is
consistent with σv and thus, to show that π is in the v-core
of P , it suffices to show that every play π′ consistent with σv
satisfies P . If π′ = π then it satisfies P by item (i). If π′ ̸= π
then let h be the longest common prefix of π and π′, and
observe that σv and σh agree on every history that extends
h. It follows that π′ is consistent with σh from h, and so π′

is the σ̄-extension of h for some full strategy profile σ̄ with
σ̄(v) = σh. Hence, by item (ii), π′ satisfies P .

We now show how to reduce the question of whether an
actor v enforces an ω-regular property P to the question of
whether a certain player (Eve if v = env, and Adam oth-
erwise) has a winning strategy in a two-player game on a
DELA whose language is P .

Definition 2 (Arena induced by a DELA and an actor).
Given an actor v, and a DELA A with L(A) ⊆ P(AP)ω ,
define Av = (A,A,B) to be the arena obtained by parti-
tioning AP into the sets A,B as follows: If v is an agent
let A = Xv and B = (∪w ̸=vX

w), and if v = env let
A = (∪w ̸=vX

w) and B = Xv .

In the definition above, intuitively, if the actor v is an
agent then Adam represents v and gets to make its moves
(seeing the moves of all the previous rounds), while Eve
gets to make the moves for env and all the other agents

3Note that here, the notion of core is unrelated to the one of
Core Equilibrium (Osborne and Rubinstein 1994), for which a Syn-
thesis problem has been studied in (Gutierrez et al. 2023).
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(seeing the moves of all the previous rounds, as well as the
move of actor v in this round); in case v is the environ-
ment, then Eve represents v and gets to makes its moves,
while Adam makes the moves of all the agents. We write
player(v) for the player that represents v. Observe that
when v = env, the strategies of v in the multi-tier setting
are exactly the same (i.e, they are functions with the same
domain and co-domain) as the strategies of player(v) (i.e.,
Eve) in the game over the arena Av; but when v is an agent
the strategies of v and those of player(v) have the same co-
domains but not the same domain (since the variables in AP
are not partitioned the same way between A and B in Av as
they are partitioned between X and Y in the multi-tier set-
ting). However, this is a mere technicality since the strings
in these two different domains contain exactly the same in-
formation, only interleaved differently. Indeed, consider the
bijection, between the domain of Adam strategies and the
domain of v-strategies, that maps h = A0 · B0 · · ·An · Bn

to h′ = X0 · Y0 · · ·Xn · Yn, where Xi = Ai ∪ Bi \ Y
and Yi = Bi ∩Y, for every i. The bijection between histo-
ries also induces a bijection between v-strategies and Adam
strategies, that maps a v-strategy σv : (X · Y)∗ → Xv to
the Adam strategy σA : (A · B)∗ → A defined by let-
ting σA(h) = σv(h

′) for every history h in the domain of
σA (note that every Adam strategy in Av is of the form
σA for some v-strategy σv). The bijection between histo-
ries extends to a bijection between plays π = A0 · B0 · · ·
and π′ = X0 · Y0 · · · , and π is consistent with σv iff
π′ is consistent with σA. Moreover, the trace correspond-
ing to π is equal to the trace corresponding to π′, because
Ai ∪Bi = Xi ∪ Yi for every i. Thus, we have the following
fundamental property: a trace τ is consistent with σv iff it is
consistent with σA.

Consequently, regardless if v is the environment or an
agent, in the next lemma we blur the distinction between
v-strategies and player(v) strategies, and consider them to
be the same objects.

The following lemma shows that one can reduce the prob-
lem, of deciding whether an actor v can enforce L(A) in the
multi-tier setting, to the simple problem of deciding whether
player(v) can win the 2-player game on Av . Intuitively,
this is because the ability of v to enforce L(A) is not af-
fected by whether all the other actors can cooperate with
each other or not — which is why we can lump them all to-
gether into a single opponent to player(v), nor by how much
the other actors know of v’s past moves or strategy — which
is why it does not matter if we let this opponent see moves
of player(v) a step earlier then when the corresponding v
moves become visible to other actors in the multi-tier setting
(due to concurrency). All that matters is that we make sure,
at every point in time, that the same information is available
to v as to player(v), which is guaranteed by the definitions
of Av , and player(v).

Lemma 7. Given a multi-tier synthesis setting, an actor v,
and a DELA A with L(A) ⊆ P(AP)ω , there is a v-strategy
enforcing L(A) iff player(v) has a winning strategy in the
game on the arena Av .

Proof. Follows directly from Dfn 2 and Rem 3.

We now show that the v-core preserves ω-regularity.

Theorem 8. Given an actor v, and an ω-regular trace prop-
erty P , the v-core of P is ω-regular. Moreover, a DELA
A whose language is P can be converted into a DELA A′

whose language is Corev(P) with no blowup.

Proof. Let A = (D, (Γ, λ,B)) be a DELA for P , with
D = (P(AP), Q, ι, δ). The DELA for Corev(P) is obtained,
intuitively, by redirecting transitions from a designated sub-
set of states W ⊆ Q to a new rejecting sink state sink. The
set W is the set of states that the automaton reaches after
reading prefixes of traces that correspond to histories from
which v cannot enforce P . We begin by introducing the
tools needed to formally define the set W .

Recall that AP = X ∪ Y, and that a history h = X0 ·
Y0 · · ·Xn · Yn in the multi-tier setting induces the finite
trace trace(h) = (X0 ∪ Y0) · · · (Xn ∪ Yn) ∈ P(AP)∗. Let
state(h) denote the last state on the run of A on trace(h).
We claim that: (†) if h, h′ are two histories such that
state(h) = state(h′) then v can enforce P from h iff it can
enforce P from h′. To prove this claim, let σ be a v-strategy
enforcing P from h, and let σ′ be the v-strategy defined by
letting σ′(h′ · w) = σ(h · w) for every h′ · w in the domain
of σ′ (σ′ can be defined arbitrarily on histories that do not
extend h′). Pick any play h′ · π consistent with σ′ from h
and observe that h · π is consistent with σ from h, and thus
the trace trace(h) · β induced by it satisfies P . Conclude
that, since L(A) = P , the run ρ of A on trace(h) · β is
accepting. Consider now the trace trace(h′) · β induced by
h′ · π, and observe that the run ρ′ of A on it is must also
be accepting. Indeed, whether a run of a DELA is accept-
ing or not does not depend on any finite prefix of the run,
and by our assumption that state(h) = state(h′) we know
that after reading h′ the automaton is in the same state as af-
ter reading h, and thus ρ′ proceeds in exactly the same way
while reading β as does ρ. This concludes the proof of (†).

For q ∈ Q say that v can enforce P from q if v can enforce
P from h for some h with state(h) = q. Let W ⊆ Q be the
set of states from which v cannot enforce P .

The automaton A′ = (D′, (Γ ∪ {⊥}, λ′, B′)), with D′ =
(P(AP), Q ∩ {sink}, ι, δ′), is defined as follows. The tran-
sition function δ′ is defined by setting δ′(q, σ) = sink for
every q ∈ W ∪ {sink} and every σ, and setting δ′(q, σ) =
δ(q, σ) otherwise (i.e., it is identical to δ except that it redi-
rects all edges from states in W into a sink state); the la-
belling function λ′ is defined by setting λ′(q) = λ(q) for
every q ∈ Q, and λ′(sink) = ⊥; finally, the Boolean func-
tion B′ is B ∧¬⊥ (which makes every run that gets stuck in
the sink state rejecting).

We now show that the language of A′ is Corev(P). We
do this by showing that a play π induces a trace τ accepted
by A′ iff it satisfies the conditions (i) and (ii) in Theorem 6
(Characterization of the v-core). For the first direction, as-
sume that τ is accepted by A′. It follows that the run ρ of
A′ on τ never reaches a state in W . Since A′ behaves iden-
tically to A as long as states in W ∪ {sink} are not visited,
then ρ is also an accepting run of A on τ , and thus: (a)
since L(A) = P , condition (i) holds; (b) since ρ only visits
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states from which v can enforce P , then by (†) also condi-
tion (ii) holds. For the other direction, assume that the two
conditions in Theorem 6 hold. By condition (ii) and (†), it
follows that the run ρ of A on τ never reaches a state in W ,
and thus ρ is also a run of A′ on τ . Furthermore, by the
first condition, ρ is an accepting run of A, and thus also (by
construction) of A′.

The following theorem supplies the time-complexity of
transforming an automaton A into one for Corev(L(A)).

Theorem 9. Given a DELA A = (D, (Γ, λ,B)) and an
actor v, a DELA A′ for Corev(L(A)) can be built in time
polynomial in the size of D, exponential in the number |Γ|
of labels, and polynomial in the size of B.

Proof. The proof of Theorem 8 defines a DELA A′ for
Corev(L(A)). The cost of doing this is dominated by the
cost of computing the set W ⊆ Q which we analyze below.

For every q ∈ Q, let Aq be the DELA formed from A by
making q the initial state. We claim that the following are
equivalent for a state q ∈ Q: (1) actor v can enforce L(A)
from some history h with state(h) = q (i.e., q ∈ Q \W );
(2) player(v) can win the game on the arena (Aq)v obtained
from Aq by Definition 2. We now prove this claim.

Suppose, by (1), that a v-strategy σ enforces L(A) from
h with state(h) = q. Define a v-strategy σ′ as follows:
σ′(h′) = σ(h · h′) for all h′. It is sufficient to show that σ′

enforces L(Aq), from which it follows by Lemma 7 that σ′

wins the game on the arena (Aq)v , which gives (2). Thus,
let π be a play consistent with σ′. We must show that π
is in L(Aq). By the definition of σ′ we have that h · π is
consistent with σ from h. Thus, by our supposition that σ
enforces L(A) from h, we have that h · π ∈ L(A), i.e., the
run ρ in the DELA A on the input h · π is accepting. Since
by (1) we know that state(h) = q then the run ρ′ of Aq on π
is a suffix of ρ. Since the EL acceptance condition is prefix
independent4 then ρ′ is also accepting, i.e., π ∈ L(Aq).

For the other direction, assume by (2) that σ is a
player(v)-strategy that wins the game on the arena (Aq)v .
By Lemma 7 (recall the note before it saying that we can
identify player(v)-strategies with v-strategies), σ is a v-
strategy that enforces L(Aq). Let h be any history such that
state(h) = q. Define a v-strategy σ′ as follows: for a his-
tory of the form h · h′ define σ′(h · h′) = σ(h′), and oth-
erwise define σ′ arbitrarily. We will prove that σ′ enforces
L(A) from h, which gives (1). To that end, let π = h · π′

be a play that is consistent with σ′ from h. Observe that π′

is consistent with σ and thus, since we assumed that σ en-
forces L(Aq), then π′ ∈ L(Aq), i.e., the run ρ′ of Aq on π′

is accepting. By the prefix-independence of the EL condi-
tion, and since state(h) = q, conclude that the run ρ of A
on π is also accepting, i.e., π ∈ L(A).

This proves the claim. So, q ∈ W iff player(v) cannot
win the game on the arena (Aq)v . Thus, we can compute

4An acceptance condition is prefix independent if for every se-
quence of states, if some suffix of it (not necessarily proper) satis-
fies the condition then every suffix of it does. This is obviously the
case for an EL condition since acceptance only depends on the set
of states that occur infinitely often on a run.

W by solving, for each state q ∈ Q, the game on the arena
(Aq)v . Using that the size of Aq is the same as the size of
A, the time complexity follows by Theorem 3.

5 Solving the Synthesis Problem
In this section we present our solution to the LTL synthesis
under multi-agent environment assumptions problem (Prob-
lem 1).

Our solution is in three steps. In Step (A) we define a
trace property O such that an agent 0 strategy enforces ϕ0
under the assumption Θ0 iff it enforces O. This trace prop-
erty will be given by an expression using Boolean opera-
tions and core operations Corew (for w ̸= 0) over the trace
properties corresponding to the formulas ϕ0, · · · , ϕN , ϕenv.
In Step (B), by traversing the parse-tree for the expression
defining O, we build a DELA A whose language is O. Fi-
nally, in Step (C), we define a 2-player game on A such that
winning strategies for Adam in this game correspond to 0-
strategies enforcing O; by solving this game for Adam we
solve the synthesis problem.

Step (A). Let O be the expression

(∧w ̸=0Ψw) ⇒ ϕ0 (1)

where Ψenv is Coreenv(ϕenv) and Ψw is
Corew(Coreenv(ϕenv) ⇒ ϕw) for w > 0.

Lemma 10. An agent 0 strategy enforces ϕ0 under assump-
tion Θ0 iff it enforces O.

Proof. By Corollary 5, an agent 0 strategy enforces ϕ0 under
assumption Θ0 iff it enforces (∧w ̸=0Cns(projw(Θ0))) ⇒
ϕ0. It remains to show that (*): Cns(projenv(Θ0)) =
Coreenv(ϕenv), and for w > 0 that (**): Cns(projw(Θ0)) =
Corew(Coreenv(ϕenv) ⇒ ϕw). Recall from the definition of
Θ0 from Section 3.1 that projenv(Θ0) = Enfenv(ϕenv) and
thus, by the definition of core (Definition 1), equation (*)
holds. For equation (**), recall that projw(Θ0) is the set
of w-strategies that enforce ϕw assuming Θw. Hence, by
Theorem 4, we get (†): projw(Θ0) = Enfw(Cns(Θw) ⇒
ϕw). Recall that Θw is a rectangular assumption where
projenv(Θw) = projenv(Θ0), and proja(Θw) is the set of
all a-strategies, for every agent a. Thus, Cns(Θw) =
Cns(projenv(Θ0)) since for each agent a, every trace is con-
sistent with some a-strategy. By equation (*), conclude that
Cns(Θw) = Coreenv(ϕenv). Equation (**) now follows by
applying Definition 1 to (†).

Step (B). For every v ∈ V , let Aϕv
= (Dv, (Γv, λv, Bv))

be a DELA for ϕv (by Theorem 2). Note that the automata
have the same alphabet, i.e., P(AP). We suppose, without
loss of generality, that the labels sets Γv are pairwise disjoint
(simply rename if needed). In order to build an automaton
for the trace property O, we traverse, bottom-up, the parse-
tree of the expression defining O.5 When the traversal visits
a node it constructs a DELA for the trace property of the

5One may optimize, e.g., the automaton for ϕenv appears in
many leaves, and one need only take it once. Since such optimiza-
tions do not change the complexity analysis, we will not explicitly
do this here.
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expression rooted at this node using the DELAs previously
constructed for its child nodes, as follows: for a leaf of the
parse-tree labeled ϕv , the corresponding DELA is simply
Aϕv

; for an internal node labeled by a Boolean operation the
corresponding DELA is obtained using Lemma 1; and for an
internal node labeled by a core operation, the corresponding
DELA is obtained using Theorem 8. This process eventually
results in a DELA A = (D, (Γ, λ,B)) for the root of the
parse-tree. Hence, by construction, we get the following:
Lemma 11. The language of the automaton A is the set of
traces that satisfy O.

Step (C). Apply Definition 2 to A and v = 0, to get the
arena A0. By Lemma 7, we can solve our synthesis problem
by solving the game on A0 for Adam.
Theorem 12. The LTL synthesis under multi-agent environ-
ment assumptions problem is 2EXPTIME-complete.

Proof. For the cost of step (B), we first calculate the size
of the DELA constructed for each node in the parse-tree
of O. Let z be the size of the largest input LTL formula.
By Thm. 2, for each leaf, the associated DELA has at most
2EXP in z many states, and an acceptance condition whose
size (both in terms of the number of labels and in terms of
the size of the Boolean formula) which is 1EXP in z. By
Thm. 8, an internal node representing a core operation has
a DELA whose size is essentially the same as that of it’s
child node. By Lemma 1, an internal node representing a
Boolean operation has a DELA whose number of states is
a product of the number of states of its child DELAs, and
whose number of labels (resp. Boolean formula) is linear in
the sum of the number of labels (resp. in the sizes of the
Boolean formulas) of its child DELAs. Hence, overall, we
get that the number of states of any constructed DELA (and
thus in particular that of the DELA A constructed for O at
the root node) is at most the number of states of the biggest
leaf DELA raised to the power KH , where K is the maxi-
mal arity of any Boolean operation in O, and H is the depth
of the parse tree. Since K is linear in N , and H is constant
in our setting6, each constructed DELA has at most 2EXP
many states, 1EXP many labels, and a Boolean formula of
size at most 1EXP in the size of the input.

It is easy to see that for leaf nodes, as well as for Boolean
operations nodes, the time spent in step (B) constructing the
corresponding DELA is linearly related to the size of this
DELA. By Theorem 9, and the upper-bound for the sizes of
the DELAs given above, we can deduce that the time needed
to construct a DELA for a core operation node is at most
2EXP in the size of the input. Hence, since the size of the
parse tree of O is polynomial in the input size, the total time
spent in step (B) is 2EXP in the input size.

The cost of producing O in step (A) of the algorithm is
clearly polynomial in the size of the input formulas (and the
definition of the synthesis problem). Combining this cost
with that of step (B) above, and using Theorem 3 to de-
rive the time for step (C), one gets the required 2EXPTIME

6Note that the overall complexity does not change if H is not
constant but considered to be part of the input (or even if it is some
polynomial function of the input).

upper-bound. For the lower bound, note that taking N = 0
is the LTL synthesis under assumption problem, known to
be 2EXPTIME-hard (Aminof et al. 2019).

6 Discussion
We considered LTL synthesis where the environment is
modeled as a collection of peer agents acting in a shared
world. The setting assumes an asymmetry between the pro-
tagonist and its peers: the protagonist ascribes specifications
to its peers, but believes that the peers do not make any as-
sumptions about the behaviours of any of the agents, and
only share his assumption about the world. To address this
problem, we proposed a multi-layered approach. In the first
layer, we identified the set of traces compatible with the
peers’ strategies that realize their specifications in the shared
world. In the second layer, we synthesized a strategy for the
protagonist that satisfies its own specification, given the en-
vironment defined by the first-layer specification.

This multi-layered approach can, in fact, be extended
to handle more layers, as long as acyclicity is maintained
among them. For example, in a three-layer setting, the first
layer may capture the set of traces compatible with provi-
sional protagonist strategies that realize its specification, as-
suming the peers are unconstrained. The second layer then
considers the set of traces compatible with the peers’ strate-
gies that realize their specifications in an environment de-
fined by the first layer, i.e., assuming the protagonist aims
to fulfill its specification, but without assuming the protago-
nist knows the peers’ specifications. Finally, the third layer
synthesizes a refined strategy for the protagonist in the en-
vironment defined by the second layer. The techniques pre-
sented in Section 4 and Section 5 can be applied to this ex-
tended setting with minimal modification. Further extending
our approach to even more complex (still acyclic) scenar-
ios appears also possible. For example, one could consider
the depth of specification nesting individually for each peer
agent. This is an interesting direction for future work.

Although our focus has been on LTL specifications,
our results seamlessly extend to the recently introduced
LTLf+/PPLTL+, which are based on lifting finite-trace
properties to infinite traces (De Giacomo and Vardi 2013;
Aminof et al. 2025). The reason for this is that those pa-
pers show how to compile formulas into DELAs, which is
the only fact we use in this paper about LTL. In fact, they
also apply to LTLf/PPLTL specifications over finite traces,
since these can be easily lifted to equivalent LTLf+/PPLTL+
formulas. The simplicity of these logics on finite traces may
lead to simplified automata constructions, which we leave as
another promising direction for future work.
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