
Reasoning in Assumption-Based Argumentation via SAT

Andreas Niskanen1 , Masood Feyzbakhsh Rankooh1 , Tuomo Lehtonen2 , Matti Järvisalo1

1 HIIT, Department of Computer Science, University of Helsinki, Finland
2 HIIT, Department of Computer Science, Aalto University, Finland

{masood.feyzbakhshrankooh,andreas.niskanen,matti.jarvisalo}@helsinki.fi, tuomo.lehtonen@aalto.fi

Abstract
The dominant approaches for solving NP-hard reasoning
problems in computational argumentation are declarative—
namely, Boolean satisfiability (SAT) in the case of abstract
argumentation and answer set programming (ASP) in the case
of structured formalisms such as assumption-based argumen-
tation (ABA). ASP is particularly suited for the commonly-
studied logic programming variant of ABA as acyclic deriva-
tions in ABA can be naturally modelled in ASP. In this work,
we develop and evaluate various alternative approaches to re-
alizing SAT-based reasoning for ABA, motivated by the suc-
cess of SAT solvers in the realm of abstract argumentation. In
contrast to ASP, non-trivial encodings or extensions to SAT
solvers are needed to efficiently handle the acyclicity con-
straint underlying ABA reasoning. We develop and evaluate
both advanced encodings and user-defined propagation mech-
anisms for realizing efficient SAT-based reasoning in ABA.
As a result, we provide a first SAT-based ABA reasoner that
can outperform the current state-of-the-art ASP approach to
ABA.

1 Introduction
The study of computational models of argumenta-
tion (Dunne and Wooldridge 2009; Atkinson et al. 2017;
Bench-Capon and Dunne 2007; Baroni et al. 2018) is a
vibrant area of knowledge representation and reasoning
research, with the key aim of developing computational
methodology for drawing conclusions from internally in-
consistent or incomplete knowledge bases. In contrast to
classical logic, formal argumentation represents defeasible
reasoning, where new information may revoke previously
reached conclusions.

In the realm of computational models of argumentation,
major advances in practical algorithms and their implemen-
tations have been made for reasoning in abstract argumen-
tation, with a particular focus on Dung’s abstract argu-
mentation frameworks (AFs) (Dung 1995) as the de facto
abstract argumentation formalism. The dominating algo-
rithmic approach to reasoning in AFs is based on encod-
ing reasoning problems over AFs under the various argu-
mentation semantics using declarative languages, in par-
ticular Boolean satisfiability (SAT) (Biere 2009) or an-
swer set programming (ASP) (Gelfond and Lifschitz 1988;
Niemelä 1999), and employing a state-of-the-art SAT (or
ASP) solver (Biere et al. 2024; Gebser et al. 2016) on the

encoding (Besnard and Doutre 2004; Dvořák et al. 2014;
Lagniez, Lonca, and Mailly 2015; Niskanen and Järvisalo
2020; Jean-Marie Lagniez and Mailly 2023). This approach
is also warranted from the theoretical perspective, as rea-
soning in argumentation formalisms is NP-hard for a great
majority of central argumentation semantics (Dvořák and
Dunne 2018). The use of NP machinery also allows for
extensions to reasoning in AFs for problems that are ex-
pectedly harder than NP, such as skeptical reasoning under
preferred semantics as one example, via iterative use of the
solvers (Dvořák et al. 2014; Niskanen and Järvisalo 2020;
Thimm, Cerutti, and Vallati 2021). The prevalence and suc-
cess of SAT-based approaches to reasoning in abstract argu-
mentation is highlighted by the results of the recent Inter-
national Competitions of Computational Models of Argu-
mentation (ICCMA) (Thimm and Villata 2017; Gaggl et al.
2020; Bistarelli et al. 2025; Järvisalo, Lehtonen, and Niska-
nen 2025), where SAT-based approaches have consistently
reached top positions.

AFs hide the internal structure of arguments, focusing
on modelling the relationships between arguments through
pair-wise attacks. However, arguments in reality most of-
ten have an intrinsic structure. Computational models for
structured argumentation enable making the internal struc-
ture of arguments explicit, as derivations from more basic
structures. Various different structured formalisms, each
with their own use-cases and complementary motivations,
have been developed (Dung 1995; Bondarenko et al. 1997;
Garcı́a and Simari 2004; Garcı́a and Simari 2014; Besnard
and Hunter 2018; Besnard et al. 2014; Prakken 2010; Bao,
Čyras, and Toni 2017; Brewka, Polberg, and Woltran 2014;
Brewka and Woltran 2010). Among the most studied
structured formalisms is assumption-based argumentation
(ABA) (Bondarenko et al. 1997; Čyras et al. 2018), on which
we focus here. Specifically we consider the commonly-
studied logic programming fragment of ABA (Bondarenko
et al. 1997). In ABA, attacks are defined between sets of
assumptions: if a set of assumptions derives the contrary of
an assumption a, the set of assumptions attacks a and all
assumption sets containing a. Whereas in abstract argumen-
tation sets of arguments are jointly accepted according to
semantics, in ABA the semantics sanction acceptable sets of
assumptions.

Compared to AFs, developing practical algorithms for

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

707

reasoning in ABA is arguably more challenging due to the
intrinsically more involved formalism capable of modelling
the internal structure of arguments and derivations of at-
tacks between arguments. Regardless, there has been sig-
nificant recent interest in developing practical algorithmic
approaches for structured formalisms (Cerutti et al. 2018;
Borg and Odekerken 2022; Calegari et al. 2022; Lehtonen,
Wallner, and Järvisalo 2022; Lehtonen et al. 2024a), and in
particular for ABA (Craven and Toni 2016; Bao, Čyras, and
Toni 2017; Lehtonen, Wallner, and Järvisalo 2017; Lehto-
nen, Wallner, and Järvisalo 2021a; Diller, Gaggl, and Gor-
czyca 2021; Diller, Gaggl, and Gorczyca 2022; Popescu and
Wallner 2023; Lehtonen et al. 2023; Lehtonen et al. 2024b).
In the 2023 instantiation of ICCMA (Järvisalo, Lehtonen,
and Niskanen 2025), a special track focusing on ABA rea-
soning took place, corroborating the progress in practical ap-
proaches to reasoning in ABA. While reasoning in ABA can
be translated to reasoning in AFs (Dung, Mancarella, and
Toni 2007), thereby allowing for taking advantage of state-
of-the-art SAT-based AF reasoners, the translation itself
causes a significant scalability bottleneck due to worst-case
exponential blow-up (Strass, Wyner, and Diller 2019). This
underlines the need for algorithmic approaches reasoning
natively on the level of ABA. Among such approaches, the
current dominant approach is based on encoding reasoning
in ABA using ASP (Lehtonen, Wallner, and Järvisalo 2021a;
Lehtonen, Wallner, and Järvisalo 2021b), avoiding explicit
construction of arguments by reasoning on the level of as-
sumption sets. This approach dominated the ABA track of
ICCMA 2023 (Järvisalo, Lehtonen, and Niskanen 2025).

While SAT solvers, reasoning under classical proposi-
tional semantics on propositional encodings, are the domi-
nant approach to AF reasoning, for structured argumentation
formalisms currently purely SAT-based approaches are es-
sentially non-existing. To directly capture reasoning in ABA
using declarative encodings requires in particular modelling
acyclic derivation of the underlying attack structure from as-
sumptions from the given rule-based knowledge base. This
corresponds to the challenge of modelling acyclicity over
potentially significantly long derivation chains. Answer set
semantics of ASP natively enforce the required acyclicity,
and is therefore especially suited for this task as the deriva-
tion length does not need to be explicitly encoded in ASP,
thereby avoiding, at least on the representational level, a
blow-up caused by having to explicitly represent the length
of derivations in an encoding. However, the dominance of
the SAT-based approach to AF reasoning also motivates fur-
ther study of more intricate SAT-based methodologies for
more efficiently reasoning in ABA.

In this work, we develop and evaluate various alterna-
tive approaches to realizing SAT-based reasoning for ABA.
To our best understanding, our work constitutes the first to
present direct SAT encodings and SAT-based solving tech-
niques for ABA. In terms of reasoning tasks, our main fo-
cus is on credulous and skeptical acceptance under various
central argumentation semantics (stable, complete, preferred
and ideal) for those reasoning modes for which the decision
problems are NP-hard. The SAT-based approaches come
in two types in terms of how the acyclicity constraint for

ABA is enforced in conjunction with a SAT encoding of
the semantics (assuming the constraint): we consider both
(i) different ways of fully encoding the acyclicity constraint
with propositional clauses as part of the SAT encoding, and
(ii) two ways of handling the acyclicity constraint via a
user-defined propagator, extending the standard propagation
mechanism within a SAT solver using the recent IPASIR-
UP SAT solver interface (Fazekas et al. 2024). For (i), in
addition to the straightforward encoding, we investigate the
applicability of a recently proposed compact vertex elimi-
nation encoding (Rankooh and Rintanen 2022) based on a
heuristically computed tree decomposition, with the bene-
fit of allowing the SAT solver to directly reason and learn
on the propositional level also wrt. the acyclicity constraint.
For (ii), we investigate both a SAT modulo acyclicity ap-
proach (Gebser, Janhunen, and Rintanen 2014) and an un-
founded set propagation (UFS) mechanism similar to state-
of-the-art ASP solving techniques (Gebser, Kaufmann, and
Schaub 2012) but directly implemented in a modern SAT
solver. Both approaches are also applicable as the abstrac-
tion solver within counterexample-guided abstraction refine-
ment approaches for beyond-NP reasoning tasks such as
skeptical reasoning under preferred semantics and comput-
ing the ideal extension. We provide open-source imple-
mentations of all of the approaches, and rigorously empir-
ically evaluate the relative performance with the dominant
ASP-based ASPFORABA system on different types of ABA
benchmarks. The results show that, for the first time, purely
SAT-based approaches are made competitive with and even
outperform the dominant ASP-based approach to reasoning
in ABA.

2 Preliminaries
We start with necessary preliminaries on ABA and SAT.

2.1 Assumption-Based Argumentation
We recall assumption-based argumentation (ABA) (Bon-
darenko et al. 1997; Toni 2014; Čyras et al. 2018). We
assume a deductive system (L,R), where L is a formal
language, i.e., a set of sentences, and R a set of infer-
ence rules over L. A rule r ∈ R has the form a0 ←
a1, . . . , an with ai ∈ L. We denote the head of rule r by
head(r) = {a0} and the (possibly empty) body of r with
body(r) = {a1, . . . , an}. An ABA framework (ABF) is
composed of a deductive system and information on which
sentences are provisionally assumed and which sentences
are contrary to assumptions (inducing a conflict).
Definition 1. An ABA framework is a tuple F =
(L,R,A,), where (L,R) is a deductive system, A ⊆ L
a non-empty set of assumptions, and a function mapping
assumptions A to sentences L.

We focus on the commonly-studied logic programming
instantiation of ABA (Bondarenko et al. 1997; Čyras et al.
2018), i.e., all sets defining ABFs are finite, the elements
in L are atoms, all rules are finite and explicitly given as
a list of body literals, and no assumptions occur as a head
of a rule. The last condition implies flatness of the ABA
frameworks (Bondarenko et al. 1997).

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

708

There are two equivalent definitions for derivations in
ABA: forward derivations and tree-derivations (Dung, Man-
carella, and Toni 2007). An atom a ∈ L is forward-
derivable from a set X ⊆ A in ABF F = (L,R,A,),
denoted by X ⊢ a, if a ∈ X or there is a sequence of
rules (r1, . . . , rn) such that head(rn) = a and for each
rule ri we have ri ∈ R and each atom in the body of ri
is derived from rules earlier in the sequence or in X , i.e.,
body(ri) ⊆ X ∪

⋃
j<i head(rj). It can clearly be decided

in polynomial time whether a given X ⊆ A derives a given
x ∈ L. On the other hand, an atom a ∈ L is tree-derivable
from a set X ⊆ A and rules R ⊆ R, denoted by X |=R s,
if either X = {s} andR = ∅, or there is a finite tree T with
the root labeled with s, and the set of labels for the leaves is
X (with the possible addition of ⊤) and for each node that
is not a leaf, labelled with s′ ∈ L, there is a rule r ∈ R
with s′ as the head and the children of the node labeled with
exactly the body elements of r. The symbol “⊤” represents
an empty rule body, signifying that the head of this rule is
tree-derivable from the empty set.
Example 1. Consider the following ABF with eight atoms
in L, four of which are assumptions (A), and four rules in
R. In this framework, the assumption a has no derivable
contrary, and thus the contrary of a is left unmentioned.

atoms L = {a, b, c, d, w, x, y, z, p, q}
assumptions A = {a, b, c, d}

contraries b = x, c = y, d = z

rulesR = {(w ← a), (y ← b, w), (x← c),

(z ← a, b), (p← q), (q ← p)}
Examples of derivations in this ABF are {a} ⊢ w, {a, b} ⊢
y, and{a, b, c, d} ⊢ w. Atoms p and q depend on each other
and there is no independent way to derive them. Thus no
assumption set derives either.

The deductive closure for an assumption set X wrt. rules
R is given by ThR(X) = {a ∈ L | X ⊢R a}. We move on
to the definitions of attacks between assumption sets and the
various semantics of ABA.
Definition 2. Let F = (L,R,A,) be an ABA framework,
and A,B ⊆ A be two sets of assumptions. Assumption set
A attacks assumption set B in F if A′ ⊢ b for some A′ ⊆ A,
R ⊆ R, and b ∈ B.

In other words, set A attacks B if one can derive the con-
trary of an assumption in B via the given deductive system.
Semantics in ABA define acceptable sets of assumptions,
and are based on the concepts of conflict-freeness and de-
fense.
Definition 3. Let F = (L,R,A,) be an ABA framework.
An assumption set A ⊆ A is conflict-free in F if A does not
attack itself. Set A defends assumption set B ⊆ A in F if
for all C ⊆ A that attack B it holds that A attacks C.

We are now ready to recall the various semantics consid-
ered in this work.
Definition 4. Let F = (L,R,A,) be an ABA framework.
Further, let A ⊆ A be a conflict-free set of assumptions in
F . In F , set A is

• admissible if A defends itself;
• complete if A is admissible and contains every assump-

tion set defended by A;
• preferred if A is admissible and there is no admissible set

of assumptions B with A ⊂ B;
• stable if each {x} ⊆ A \A is attacked by A; and
• ideal if A is the ⊆-maximal admissible assumption set

within the intersection of all preferred assumption sets.

A σ-assumption set is an assumption set under a seman-
tics σ ∈ {adm , com , stb, prf , ideal}, i.e., admissible, com-
plete, stable, preferred, and ideal assumption set, respec-
tively.

Example 2. Continuing Example 1, consider the assump-
tion set {a, b}, which derives w, y, and z in addition to a
and b. The atoms y and z are contrary to assumptions c
and d respectively. Thus {a, b} attacks every assumption set
containing either c or d. The set {a, b} is attacked by any
assumption set containing the assumption c, since {c}) de-
rives x and b = x and no other set. As {a, b} attacks every
set containing c, {a, b} is admissible. Moreover, {a, b} is
complete since any assumption set A ⊆ A not contained in
{a, b} (namely {c} and {d}) is not defended by {a, b}. Any
proper superset A of {a, b}: then either c ∈ A or d ∈ A,
which violates conflict-freeness. Thus, no proper superset is
admissible and {a, b} is preferred. Finally, {a, b} is stable
since it attacks all other assumptions. Further, the frame-
work has three complete assumption sets: {a}, {a, b}, and
{a, c, d}. The latter two complete assumption sets are also
preferred and stable assumption sets. As {a} is the intersec-
tion of the preferred assumptions sets and is also admissible,
it is the ideal assumption set.

A central decision problem in reasoning with ABA is to
find out whether a given atom is acceptable under a seman-
tics. Two prominent reasoning modes are credulous and
skeptical acceptance of atoms in an ABA framework.

Definition 5. Let F = (L,R,A,) be an ABA framework
and σ be a semantics. A given atom s ∈ L is

• credulously accepted in F under semantics σ if there is a
σ-assumption set A such that s ∈ ThR(A); and

• skeptically accepted in F under semantics σ if s ∈
ThR(A) for all σ-assumption sets A.

In flat ABA there is a unique ideal assumption set, im-
plying coincidence of credulous and skeptical reasoning for
both of these semantics. Credulous reasoning under ad-
missible, complete, and preferred semantics coincide (Bon-
darenko et al. 1997; Čyras et al. 2018).

Example 3. Continuing Example 2, every atom except p
and q is credulously accepted under admissible semantics
(and therefore also under complete and preferred seman-
tics). No atom is skeptically accepted under admissible se-
mantics (only atoms derivable from the empty set are skep-
tically accepted under admissible semantics). The atoms a
and w are skeptically accepted under complete, preferred,
and stable semantics.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

709

The complexity of reasoning in ABA is well known (Di-
mopoulos, Nebel, and Toni 2002; Dunne 2009; Lehtonen,
Wallner, and Järvisalo 2021a; Cyras, Heinrich, and Toni
2021). Credulous acceptance is NP-complete under admis-
sible, complete, preferred and stable semantics. Skeptical
acceptence is in P under admissible and complete seman-
tics, ΠP

2-complete under preferred semantics, and coNP-
complete under stable semantics. Both acceptance problems
are in ΘP

2 under ideal semantics.

2.2 Boolean Satisfiability (SAT)

For a Boolean variable x there are two literals, x and ¬x. A
clause C is a disjunction (∨) of literals. A conjunctive nor-
mal form (CNF) formula F is a conjunction (∧) of clauses.
For convenience we view clauses as sets of literals and for-
mulas as sets of clauses. We denote by V (F) and L(F) the
set of variables and literals of F , respectively. A truth as-
signment τ : V (F)→ {0, 1} maps each variable to 0 (false)
or 1 (true), and is extended to literals via τ(¬x) = 1− τ(x),
to clauses via τ(C) = max{τ(l) | l ∈ C}, and to formu-
las via τ(F) = min{τ(C) | C ∈ F}. We interchangeably
represent truth assignments τ as sets of non-contradictory
literals: {l ∈ L(F) | τ(l) = 1}. The Boolean satisfiabil-
ity problem (SAT) (Biere 2009) asks for an input formula F
whether there is an assignment τ with τ(F) = 1. In the pos-
itive case F is satisfiable, and otherwise F is unsatisfiable.

In this work, we make use of IPASIR-UP (Fazekas et al.
2024), a generic interface for implementing user propaga-
tors in SAT solvers. Briefly, IPASIR-UP allows to define
custom propagators via the following functionality. Under
the current CNF formula F , a set O ⊆ V (F) of variables
is marked as observed. The solver notifies the user prop-
agator about all assignments (decisions, unit propagations,
and learned unit clauses) to these variables. In addition, the
solver informs the propagator whenever the decision level
is increased, and whenever the solver backtracks to a lower
decision level. During unit propagation, the user propagator
can inform the solver about any additional propagations. If
such a propagation is relevant for conflict analysis, the solver
also asks for the corresponding reason clause. Finally, af-
ter unit propagation the solver also checks whether the user
propagator can provide external clauses to the solver.

3 SAT Encodings for ABA
Let F = (L,R,A,) be an ABA framework and σ ∈
{adm ,com ,stb}. Our goal is to encode a σ-assumption
set of F . To this end, we declare Boolean variables xa,
ya, and za for each a ∈ A. For a satisfying truth assign-
ment τ to the encoding described next, the set Aτ = {a ∈
A | τ(xa) = 1} corresponds to a σ-assumption set under
σ ∈ {adm ,com ,stb}. Likewise, for a ∈ A, τ(ya) = 1 iff
Aτ attacks {a}, and τ(za) = 1 iff

Bτ = Aτ ∪ {a ∈ A | τ(ya) = 0}

attacks {a}, that is, {a} is not defended by Aτ since it is
attacked by an undefeated argument. Given these intended

interpretations, we define

φcf(F) =
∧
a∈A

(xa → ¬ya) ,

φadm(F) = φcf(F) ∧
∧
a∈A

(xa → ¬za) ,

φcom(F) = φadm(F) ∧
∧
a∈A

(¬za → xa) ,

φstb(F) = φcf(F) ∧
∧
a∈A

(¬xa → ya) .

To enforce the intended meaning of the xa, ya and za
variables, we need to in particular capture the derivation
of atoms from sets of assumptions. This necessitates an
acyclicity constraint to prohibit atoms cyclically supporting
each other. Consider a natural way of attempting to encode
in SAT that an atom x is derivable from S: x is derivable
from S iff there is an “activated” rule for x, i.e., a rule r
such that each b ∈ body(r) either is an assumption in S or is
derived with another activated rule. To see the necessity for
further constraints, consider the rules (x← y) and (y ← x)
where x, y ∈ L \ A. A satisfying assignment is allowed to
activate both rules and derive both x and y due to cyclicity
even though there are no assumptions supporting this.

3.1 Level-based Encoding of Acyclic Derivations
A natural way to rule out cyclic derivations in a SAT en-
coding is a “level-based” encoding, explicitly encoding se-
quences of rule applications from a set of assumptions by
enforcing that an atom x can be derived on level i only if
all body elements of a rule for x are derived on level i − 1.
To encode all derived atoms, we assume an upper bound U
on the maximum length of a derivation. For (flat) ABA, we
may set U = |L|− |A|. For each non-assumption s ∈ L\A
and each i = 1, . . . , U , we declare variables dis and eis, with
the intended meaning that τ(dis) = 1 iff s is derived from
Aτ at the ith iteration, and τ(eis) = 1 iff s is derived from
Bτ at the ith iteration. Now, let

φlvl
att (F) =

∧
a∈A

(
ya ↔ ψlvl

att(a)
)

where ψlvl
att(a) is xa if the contrary a is an assumption, and∨U

i=1 d
i
a otherwise. This encodes that {a} is attacked by Aτ

iff its contrary a is derivable. Similarly,

φlvl
ndef(F) =

∧
a∈A

(
za ↔ ψlvl

ndef (a)
)
,

where ψlvl
ndef (a) is ¬ya if the contrary a is an assumption

and
∨U

i=1 e
i
a otherwise, states that {a} is not defended by

Aτ iff its contrary a is derivable from Bτ .
For each s ∈ L \ A and i = 1, . . . , U , we define φA(s, i)

as

dis ↔
∨
r∈R

head(r)=s

(∧
a∈body(r)

a∈A

xa ∧
∧

a∈body(r)
a∈L\A

di−1
a

)
,

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

710

where we set d0s = 0 for all s ∈ L\A. This formula encodes
that s is derived from Aτ at iteration i iff there is a rule
r ∈ R with s as its head such that, for all a ∈ body(r), xa
is set to true for an assumption, and di−1

a is set to true for a
non-assumption. Similarly, the formula φB(s, i) defined as

eis ↔
∨
r∈R

head(r)=s

(∧
a∈body(r)

a∈A

¬ya ∧
∧

a∈body(r)
a∈L\A

ei−1
a

)

states the same for derivations from Bτ .
Proposition 1. For σ ∈ {adm, com, stb}, each assign-
ment τ satisfying Φlvl

σ (F) = φσ(F)∧φlvl
att (F)∧φlvl

ndef(F)∧∧
s∈L

∧U
i=1 φA(s, i) ∧

∧
s∈L

∧U
i=1 φB(s, i) corresponds to

a σ-extensionAτ . Vice versa, each σ-extensionA extends to
a satisfying assignment τ of Φlvl

σ (F) by setting τ(xa) = 1
iff a ∈ A.

Definitions of φndef(F) and φB(s, i) in Φlvl
σ (F) are not

needed for stable semantics as every assumption outside Aτ

is attacked.

3.2 Graph-based Acyclicity
Another way to enforce acyclicity of derivations is to en-
force that the graph corresponding to activated rules is
acyclic. This allows for encoding the existence of acyclic
tree derivations. Derivations can be captured by checking
the existence of an acyclic subgraph of the graph corre-
sponding to the rules of an ABF.
Proposition 2. Given an ABF F = (L,R,A,) and set of
assumptions S ⊆ A. Let G = (V,E) be a graph with V =
L\A and E = {(s, t) | r ∈ R, s = head(r), t ∈ body(r)}.
An atom x ∈ L is derivable from a set of assumptions S ⊆ A
iff there is subgraph Gx

S = (V ′, E′) of G such that (i) x ∈
V ′, (ii) Gx

S is acyclic, and (iii) ∀s ∈ L: s ∈ V ′ iff either
s ∈ S or there is a rule r ∈ R with head(r) = s and
∀t ∈ body(r) : t ∈ V ′ and (s, t) ∈ E′.

We describe an encoding of acyclic derivations based on
Proposition 2, thereby avoiding explicitly expressing an in-
dexed sequence of rule applications. This encoding requires
an additional way of enforcing the acyclicity of a graph. We
later discuss options for this: explicitly encoding acyclicity
in SAT (with vertex elimination), and using specialized user
propagators for SAT.

Similarly as in the level-based encoding, we use the xa,
ya, and za variables for each assumption a ∈ A, as well
as the φσ(F) formulas encoding the semantics. We declare
variables da and ea for each non-assumption a ∈ L\A, and
define

φatt(F) =
∧
a∈A

(ya ↔ ψatt(a)) ,

where ψatt(a) = xa if a is an assumption, and ψatt(a) = da
otherwise, as well as

φndef(F) =
∧
a∈A

(za ↔ ψndef (a)) ,

where ψndef (a) = ¬ya if a is an assumption, and
ψndef (a) = ea otherwise. These formulas state that {a}

is attacked by Aτ and Bτ , respectively. In addition, we de-
clare variables rds,t and res,t for each s, t ∈ L \ A for which
there exists a rule r ∈ Rwith head(r) = s and t ∈ body(r).
These variables will be used to enforce that derivations must
be acyclic. Now, for s ∈ L\A the formula φacyc

A (s) defined
as(∨

r∈R
head(r)=s

(∧
a∈body(r)

a∈A

xa ∧
∧

a∈body(r)
a∈L\A

da

)
→ ds

)
∧

(
ds →

∨
r∈R

head(r)=s

(∧
a∈body(r)

a∈A

xa ∧
∧

a∈body(r)
a∈L\A

(da ∧ rda,s)

))

states that, if there exists a rule with s as its head so that
its body is satisfied, then s is derived from Aτ . Further,
if s is derived, we require in addition all variables rda,s for
a ∈ body(r) ∩ (L \ A) to be true. We state the same for
derivations from Bτ via φacyc

B (s) defined as(∨
r∈R

head(r)=s

(∧
a∈body(r)

a∈A

xa ∧
∧

a∈body(r)
a∈L\A

ea

)
→ es

)
∧

(
es →

∨
r∈R

head(r)=s

(∧
a∈body(r)

a∈A

xa ∧
∧

a∈body(r)
a∈L\A

(ea ∧ rea,s)

))
.

For a satisfying assignment τ , we consider two directed
graphs Gd

τ = (L \ A, Ed
τ) and Ge

τ = (L \ A, Ee
τ), where

Ed
τ = {(s, t) | s, t ∈ L \ A, τ(rds,t) = 1},

Ee
τ = {(s, t) | s, t ∈ L \ A, τ(res,t) = 1}.

If we ensure that these graphs are acyclic, satisfying truth
assignments correspond to σ-extensions and vice versa. To
limit redundancy, we further add

φG =
∧

s,t∈L\A
∃r∈R : head(r)=s,t∈body(r)

(rds,t → res,t)

which ensures thatGd
τ is a subgraph ofGe

τ , intuitively mean-
ing that the derivations from Aτ are reused for Bτ (note
that Aτ ⊆ Bτ). For σ = stb, we set Gσ

τ = Gd
τ , and for

σ ∈ {adm, com}, we set Gσ
τ = Ge

τ .
Proposition 3. For any σ ∈ {adm, com, stb}, each assign-
ment τ satisfying Φacyc

σ (F) = φσ(F)∧φatt(F)∧φndef(F)∧∧
s∈L\A φ

acyc
A (s) ∧

∧
s∈L\A φ

acyc
B (s), for which the graph

Gσ
τ is acyclic, corresponds to a σ-extension Aτ . Likewise,

a σ-extension A extends to a satisfying assignment τ of
Φacyc

σ (F) for which Gσ
τ is acyclic by setting τ(xa) = 1 iff

a ∈ A.
Note that the formulas φndef(F) and φacyc

B (s) are not re-
quired for stable semantics.

Graph Acyclicity by Vertex Elimination. A compact ap-
proach to encoding acyclicity of the graphs Gd

τ and Ge
τ is

based on an encoding simulating vertex elimination. The

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

711

concept of vertex elimination, originally introduced in the
context of sparse Gaussian elimination by Rose, Tarjan, and
Lueker (1976), was adapted to propositional acyclicity en-
codings by Rankooh and Rintanen (2022).

Let Φ denote any SAT with acyclicity encoding in the
form of Φacyc

σ (F), σ ∈ {stb, adm, com} explained above.
Formula Φ can be regarded as a formula with an underlying
directed graph G = (L \ A, E), where E is the set of edges
from s to t iff there exists a rule r ∈ R with head(r) = s
and t ∈ body(r). The graph Gσ

τ is a subgraph of G, for
which the edge (s, t) is present if τ(rds,t) = 1 for σ = stb,
and τ(res,t) = 1 for σ ∈ {adm, com}. We say that τ is
acyclic if Gσ

τ is acyclic. We want to find Φ′ such that τ is a
satisfying assignment for Φ∧Φ′ iff τ is an acyclic satisfying
assignment of Φ. Concretely, for each v ∈ L \A, define the
fill-in

F (v) =
{
⟨x, y⟩ | ⟨x, v⟩ ∈ E, ⟨v, y⟩ ∈ E, x ̸= y

}
,

and eliminate v to produce G(v) by

G(v) =
(
(L \ A) \ {v}, E(v) ∪ F (v)

)
,

E(v) = {⟨x, y⟩ ∈ E | x ̸= v ̸= y}.

Let α : {1, . . . , n} → L be an elimination order. Starting
from G0 = G, we iterate for i = 1, . . . , n− 1 and eliminate
the vertex α(i) from Gi−1. This yields the graph sequence
G = G0, G1, . . . , Gn−1 with cumulative fill-in

Fα(G) =

n−1⋃
i=1

Fi−1

(
α(i)

)
,

and the vertex-elimination graph G∗
α =

(
L, E ∪ Fα(G)

)
.

An important property of G∗
α is that, regardless of ordering

α, a cycle in G induces a 2-cycle in G∗
α.

Based on this property, we construct Φ′ so that it simu-
lates vertex elimination for any satisfying assignment of Φ.
We define atoms es,t to represent the edges of G∗

α, e∗s,t. To
reduce symmetry, we consider es,t in our encoding only if
α(s) ≤ α(t). To do this, we use symbol e∗s,t to denote es,t if
α(s) ≤ α(t), and ¬es,t if α(s) > α(t). For σ = stb, we add
the constraint rds,t → e∗s,t to enforce the edges of G to be
also edges of G∗; for σ ∈ {adm, com} we similarly add the
constraint res,t → e∗s,t. Further, for each i = 1, . . . , n−1 and
⟨s, t⟩ ∈ Fi−1(α(i)), we include e∗s,α(i) ∧ e∗α(i),t → e∗s,t
to simulate vertex elimination.

With Φ denoting Φacyc
σ (F) for σ ∈ {stb, adm, com}, and

Φ′ as constructed above, the soundness and completeness of
vertex elimination based encoding of acyclicity (Rankooh
and Rintanen 2022) guarantee that a satisfying assignment
to Φ ∧ Φ′ corresponds to a σ-extension, and vice versa.

4 SAT with User Propagators for ABA
We turn to an alternative approach to directly enforcing
acyclicity in the SAT encoding: via implementing spe-
cialized user propagators (Gebser, Janhunen, and Rintanen
2014) in a SAT solver. Namely we propose to use a graph-
based acyclicity propagator or an unfounded set based prop-
agator making use of the recent IPASIR-UP interface.

4.1 Graph-based Acyclicity Propagator
The solver is initialized with the formula Φacyc

σ (F) (recall
Section 3.2). For σ = stb, all rds,t variables are set as ob-
served, and for σ ∈ {adm, com}, the res,t variables are set as
observed. The acyclicity propagator then keeps track of the
corresponding graph, where all edges (s, t) are labeled either
possible, enabled, or disabled. When an observed variable
is set to true (resp. false), the corresponding edge is enabled
(resp. disabled). We also record its decision level. Upon
backtracking, all enabled and disabled edges with decision
level higher than the new level are set back to possible.

For propagating, we check every edge (s, t) which has
been enabled since the last time the propagator was called.
First, we perform DFS starting from the node t following
every enabled edge in the graph. If the node s is reached, we
have found a cycle C, and inform the solver about the ex-
ternal clause

∨
(u,v)∈C ¬rdu,v (resp.

∨
(u,v)∈C ¬reu,v). Oth-

erwise, we perform DFS starting from node s, following en-
abled edges in reverse. Letting N1 denote the set of nodes
which can be reached from t by the first DFS, N2 denote the
set of nodes which can be reversely reached from s by the
second DFS, and P be the set of edges labeled possible, we
propagate ¬ru,v for every (u, v) ∈ P ∩ (N1 × N2). The
corresponding reason clause is

∨
(u′,v′)∈C′ ¬rdu′,v′ (resp.∨

(u′,v′)∈C′ ¬reu′,v′) where C ′ is the “almost-cycle” formed
by edges used to reach u from t and v from s.

4.2 Unfounded Set based Propagator
Motivated by the success of ASP for ABA, we investigate
using unfounded set propagation, a core technique used in
state-of-the-art ASP solvers to determine non-circular sup-
ports for atoms (Gebser, Kaufmann, and Schaub 2012), for
SAT-based ABA reasoning. Our implementation of un-
founded set propagation follows the source pointer based
approach of CLASP, which we implement using IPASIR-UP.
The solver is initialized with a simpler encoding which, intu-
itively, encodes both sides of the equivalence for derivations
in a similar manner. Namely, for s ∈ L \ A,

φufs
A (s) = ds ↔

∨
r∈R

head(r)=s

 ∧
a∈body(r)

a∈A

xa ∧
∧

a∈body(r)
a∈a∈L\A

da


states that s is derived from Aτ if and only if there is a cor-
responding rule which is activated. Similarly for derivations
from Bτ , we define

φufs
B (s) = es ↔

∨
r∈R

head(r)=s

 ∧
a∈body(r)

a∈A

ya ∧
∧

a∈body(r)
a∈a∈L\A

ea

 .

We define Φufs
σ (F) = φσ(F) ∧ φatt(F) ∧ φndef(F) ∧∧

s∈L\A φ
ufs
A (s)∧

∧
s∈L\A φ

ufs
B (s), where φσ(F) encodes

the base semantics (recall Section 3), φatt(F) and φndef (F)
encodes the interpretation of the ya and za variables (recall

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

712

Section 3.2). For σ = stb, again, the subformulas φndef (F)

and φufs
B (F) are not required.

It suffices to ensure that the corresponding derivations do
not contain unfounded atoms. For this, all ds as well as
es variables for s ∈ L \ A are set as observed. We keep
track of assignments to these variables whenever the solver
notifies about an assignment or backtracks to a previous de-
cision level. For each s ∈ L \ A, we keep track of two
source pointers, sourced(s) and sourcee(s). When propa-
gating, as long as τ(ds) ̸= 0 (resp. τ(es) ̸= 0), we attempt
to set sourced(s) (resp. sourcee(s)) to a rule r ∈ R which
can provide non-circular support for deriving s. The set of
atoms U for which a source pointer cannot be established is
unfounded. In this case, we propagate ¬ds (resp. ¬es), with
the reason clause stating that there is no rule which can pro-
vide external support for U . For more details on unfounded
set propagation, we refer the reader to (Gebser, Kaufmann,
and Schaub 2012).

5 Empirical Evaluation
We present an empirical evaluation of the runtime of our
SAT-based approaches for reasoning in ABA. We focus on
the following central problems in the evaluation: credu-
lous reasoning under complete semantics (DC-CO), credu-
lous and skeptical reasoning under stable semantics (DC-ST
and DS-ST), skeptical reasoning under preferred (DS-PR)
and computing the ideal extension (SE-ID). The experiments
were run on 2.50-GHz Intel Xeon Gold 6248 CPUs with a
per-instance 15-min time and 16-GB memory limit.

5.1 Implementation
Our implementation of the SAT-based approaches uses the
CaDiCaL SAT solver (Biere et al. 2024) v2.1.3. The acyclic-
ity and unfounded set propagators were implemented via the
IPASIR-UP interface of CaDiCaL (Fazekas et al. 2024). We
will refer to the implementations as SAT-LEVEL (SAT en-
coding with level-based acyclicity encoding), SAT-VE (SAT
encoding with vertex elimination for acyclicity) SAT-ACYC
(SAT with graph-based acyclicity propagator), and SAT-
UFS (SAT with unfounded set propagator). The implemen-
tations, benchmark generators and data are available in open
source via https://bitbucket.org/coreo-group/100ba.

For SE-ID and DS-PR, we adapt the iterative SAT-
based algorithms implemented in the abstract argumenta-
tion solver µ-TOKSIA (Niskanen and Järvisalo 2020) to
ABA reasoning. The algorithms for DS-PR and SE-ID in
µ-TOKSIA initialize a SAT solver with complete seman-
tics as a base abstraction and perform incremental calls to
the solver. For DS-PR µ-TOKSIA implements a SAT-based
counterexample-guided abstraction refinement (CEGAR)
approach to iteratively find candidate complete extensions
not containing the query argument, and checks for coun-
terexample supersets of the candidate extension (Dvořák
et al. 2014). For SE-ID, µ-TOKSIA implements an itera-
tive SAT approach which first finds all arguments attacked
by a complete extension, and then finds the unique subset-
maximal complete extension in the complement (Niskanen
and Järvisalo 2020). As both algorithms are based on com-

plete semantics and the ABA semantics are analogous with
abstract argumentation semantics, the algorithmic concept
extend to ABA by using our CaDiCaL-based approach for
complete semantics in ABA as the abstraction solver.

We compare our SAT-based approaches to ASP-
FORABA (Lehtonen, Wallner, and Järvisalo 2021a) which
was the best-performing system in the ABA track of
the most recent argumentation solver competition ICCMA
2023 (Järvisalo, Lehtonen, and Niskanen 2025). ASP-
FORABA employs ASP encodings for ABA reasoning tasks,
using the state-of-the-art ASP solver CLINGO (Gebser et al.
2011; Gebser et al. 2016) v5.6.2 for obtaining a solution, ei-
ther in one shot (for problems in NP), using CLINGO in its
cautious reasoning mode for computing the ideal extension,
or iteratively in the style of CEGAR (Lehtonen, Wallner, and
Järvisalo 2021b) for skeptical acceptance under preferred.

5.2 Benchmarks
We consider two benchmark sets in the evaluation: IC-
CMA 2023 (Järvisalo, Lehtonen, and Niskanen 2025) ABA
Track benchmark set (ICCMA23 for short) and benchmarks
generated by a new CLUSTERED generator which we pro-
pose based on ideas from the existing abstract argumentation
benchmark generator StableGenerator (Cerutti et al. 2014;
Thimm and Villata 2017).

The ICCMA23 set consists of 400 ABFs. We use the
index-1 sentence as the query. There are 80 instances with
25, 100, 500, 2000 and 5000 atoms in them, respectively. In
half of the instances 10% of the atoms are assumptions and
in the other half 30%. For each number of sentences, there
are 10 ABFs for each combination (5, 5), (5, 10), (10, 5)
and (10, 10) of (maximum number of rules per atom, the
maximum body size of rules). Importantly, we observed
that there are limitations to basing a comprehensive runtime
evaluation on the ICCMA23 set: a significant portion of the
instances (216 for DC-ST, 289 for DS-ST and 154 for DC-
CO and by extension DS-PR) are unsatisfiable without even
considering the acyclicity constraints outlined in Section 3.
It suffices to simply call a SAT solver on the base SAT en-
coding without enforcing acyclicity at all to solve these in-
stances. Thus, as the acyclicity constraint is a very signifi-
cant part of the problems, we filtered out all such ICCMA23
instances from the evaluation (apart from SE-ID as the ideal
extension always exists and thus there are no unsatisfiable
instances).

We construct a complementary benchmark set
CLUSTERED, using a scheme that ensures that the
ABFs admit multiple stable assumption sets. We partition
the assumptions of the ABF being constructed and let
the assumptions of each partition attack the majority of
assumptions outside of it. Our aim is to have many stable
(and thus complete and preferred) assumption sets while
having acyclicity in the rules. The generator selects the
number of partitions P and the numbers of assumptions
PA and non-assumption atoms PL in each partition, the
maximum number of rules per atom mra, the maximum
rule size mrs, and a contrary probability C. For each i
in 1, . . . , P , let Ai be a set of PA fresh assumptions for
partition i, let each assumption in Ai have a fresh contrary

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

713

https://bitbucket.org/coreo-group/100ba

#solved (mean runtime)

(mra,mrs)

Problem Solver (10, 10) (10, 5) (5, 10) (5, 5)

DC-CO

ASPFORABA 65 (3.8) 31 (0.9) 76 (0.1) 54 (11.4)
SAT-LEVEL 62 (19.2) 24 (51.9) 76 (2.3) 48 (8.8)
SAT-VE 72 (13.5) 31 (85.9) 76 (0.0) 59 (29.9)
SAT-ACYC 66 (5.2) 31 (21.3) 76 (0.0) 53 (21.2)
SAT-UFS 65 (0.8) 31 (0.5) 76 (0.0) 56 (5.6)

DC-ST

ASPFORABA 46 (0.1) 19 (0.5) 59 (0.1) 43 (23.8)
SAT-LEVEL 46 (7.2) 15 (10.3) 59 (1.2) 37 (6.8)
SAT-VE 55 (14.8) 19 (50.8) 59 (0.0) 46 (34.8)
SAT-ACYC 46 (0.0) 19 (31.7) 59 (0.0) 41 (10.1)
SAT-UFS 47 (9.6) 19 (0.1) 59 (0.0) 43 (17.1)

DS-ST

ASPFORABA 13 (1.0) 49 (0.6) 16 (0.1) 17 (3.5)
SAT-LEVEL 11 (3.1) 36 (121.1) 16 (1.1) 13 (0.7)
SAT-VE 19 (35.3) 49 (87.6) 16 (0.0) 23 (57.7)
SAT-ACYC 13 (1.9) 39 (36.8) 16 (0.0) 16 (8.3)
SAT-UFS 13 (1.1) 49 (0.1) 16 (0.0) 17 (2.4)

DS-PR

ASPFORABA 65 (8.3) 31 (1.4) 76 (0.1) 53 (11.3)
SAT-LEVEL 62 (19.9) 22 (30.3) 76 (2.4) 47 (10.9)
SAT-VE 62 (0.5) 25 (19.8) 76 (0.0) 48 (6.3)
SAT-ACYC 65 (9.2) 31 (30.0) 76 (0.0) 52 (33.7)
SAT-UFS 65 (4.3) 31 (1.9) 76 (0.0) 54 (13.3)

SE-ID

ASPFORABA 89 (11.9) 99 (4.3) 100 (0.1) 84 (16.5)
SAT-LEVEL 80 (30.4) 66 (112.7) 100 (2.2) 75 (17.4)
SAT-VE 80 (0.5) 62 (28.1) 100 (0.0) 79 (37.0)
SAT-ACYC 89 (14.5) 87 (38.2) 100 (0.0) 85 (35.1)
SAT-UFS 89 (4.4) 100 (1.5) 100 (0.0) 88 (21.6)

Table 1: Number of solved instances and mean runtime over solved
on the ICCMA23 benchmark set.

atom, and let Li be a set of PL fresh non-assumption atoms.
For each x ∈ Li, generate r ∈ [1,mra] rules for x of
size s ∈ [1,mrs] (r and s selected uniformly at random)
such that the rule body consists of s atoms from Li ∪ Ai.
Finally, for each assumption a ∈ A \ Ai, generate a rule
(a← x) for a randomly selected x ∈ Li with probability C.
As a result, the CLUSTERED ABFs cannot have a strongly
connected component (SCC) in the underlying rule graph
larger than PL, but many of the atoms within each cluster
will belong to the same SCC. There are no attacks within
the partitions. With C close to 1, the assumptions in each
partition attack most assumptions outside the partition. This
intuitively results in many stable extensions: in particular,
for C = 1, each partition by itself is a stable extension
(if all atoms are derivable). We found that with mra = 3
and mrs = 2 and PA not much smaller than PL virtually
all atoms within each partition are derivable, and the size
of SCCs typically equal roughly half or more PL. To
limit the number of varying parameters when generating
the CLUSTERED benchmark set, we fixed mra = 3 and
mrs = 2 and generated two separate sets of benchmarks,
one with small number of large partitions and one with large
number of small partitions. Namely, we let each P , PA and
PL take a value from [25, 30, 35] in one set and P ∈ [5, 7],
and PA and PL take a value from [100, 150, 200] in the

0 200 400 600 800
Running time (seconds)

0

250

500

750

1000

N
um

be
r o

f s
ol

ve
d

in
st

an
ce

s

DC-ST

0 200 400 600 800
Running time (seconds)

0

250

500

750

1000

N
um

be
r o

f s
ol

ve
d

in
st

an
ce

s

DS-ST

0 200 400 600 800
Running time (seconds)

0

200

400

600

800

1000

N
um

be
r o

f s
ol

ve
d

in
st

an
ce

s

DC-CO

0 200 400 600 800
Running time (seconds)

0

200

400

600

800

1000

N
um

be
r o

f s
ol

ve
d

in
st

an
ce

s

DS-PR

0 200 400 600 800
Running time (seconds)

0

50

100

150

200

N
um

be
r o

f s
ol

ve
d

in
st

an
ce

s

SE-ID

Figure 1: SAT-VE, ASPFORABA and SAT-UFS on DC-CO, DC-
ST, and DS-ST on the CLUSTERED instances.

other. We generated five ABFs for each combination of P ,
PL, and PA and C = 0.8 and C = 0.9, for a total of 450
ABFs. For acceptance problems, for each ABF we perform
three separate queries: one assumption, one contrary atom,
and one atom that is neither an assumption nor a contrary,
for a total of 1350 instances. The reason for three separate
queries is that these different atom types might behave
differently due to the structure of the ABFs: contrary atoms
are derivable from multiple clusters while other atoms only
from a single cluster.

5.3 Results
An overview of solver performance on the ICCMA23
benchmarks is shown in Table 1. We report the number
of solved instances and mean runtime over solved instances
for each parameter pair (mra,mrs) (i.e. max rules per
atom and max rule body size). Instances for the combina-
tion (5, 10) turn out to be trivial for all solvers. We observe
that SAT-VE and SAT-UFS perform particularly well, both
outperforming the state-of-the-art solver ASPFORABA on
many problems. SAT-UFS outperforms the others especially
on SE-ID and SAT-VE performs well on the one-shot prob-
lems DC-CO, DC-ST and DS-ST. Among the other SAT-
based approaches, SAT-LEVEL is the least performant over-
all, as can be expected.

The relatively small performance differences further mo-
tivate experiments on the CLUSTERED benchmark set which
turns out to reveal more significant and complementary dif-
ferences. Figure 1 shows for each problem the number of in-
stances solved (y-axis) under different per-instance time lim-
its (x-axis), i.e, the higher the line for a solver, the better the
solver performs. SAT-LEVEL memouts on most instances,

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

714

10
1

10
0

10
1

10
2

10
3

CPU time (s) for SAT-ve

10
1

10
0

10
1

10
2

10
3

C
PU

 ti
m

e
(s

) f
or

 A
SP

fo
rA

BA

NO
YES

DC-ST

10
1

10
0

10
1

10
2

10
3

CPU time (s) for SAT-ve

10
1

10
0

10
1

10
2

10
3

C
PU

 ti
m

e
(s

) f
or

 A
SP

fo
rA

BA

NO
YES

DS-ST

10
1

10
0

10
1

10
2

10
3

CPU time (s) for SAT-ve

10
1

10
0

10
1

10
2

10
3

C
PU

 ti
m

e
(s

) f
or

 A
SP

fo
rA

BA

NO
YES

DC-CO

10
1

10
0

10
1

10
2

10
3

CPU time (s) for SAT-ve

10
1

10
0

10
1

10
2

10
3

C
PU

 ti
m

e
(s

) f
or

 A
SP

fo
rA

BA

NO
YES

DS-PR

10
1

10
0

10
1

10
2

10
3

CPU time (s) for SAT-ve

10
1

10
0

10
1

10
2

10
3

C
PU

 ti
m

e
(s

) f
or

 A
SP

fo
rA

BA

#clusters
5
7
25
30
35

SE-ID

Figure 2: Per-instance runtime comparison of ASPFORABA and SAT-VE on the CLUSTERED benchmark set for DC-ST, DS-ST, DC-CO,
DS-PR, and SE-ID.

underlining the need for more sophisticated SAT techniques.
On this benchmark set, SAT-VE solves the most instances on
each problem. SAT-VE also performs best in terms of run-
times on all problems except DS-PR, where ASPFORABA
solves more instances within any given runtime less than
roughly 800 seconds, after which SAT-VE manages to solve
a few more instances than ASPFORABA. Aside from SAT-
LEVEL, SAT-ACYC is the least performant approach overall.
On the beyond-NP problem SE-ID, SAT-VE excels by solv-
ing ≈ 50 % more instances than ASPFORABA.

For a closer look at the relative performance of SAT-VE
and ASPFORABA, the two best-performing approaches on
CLUSTERED, Figure 2 shows a per-instance runtime com-
parison for each of the problems DC-ST, DS-ST, DC-CO,
and DS-PR, distinguishing between NO and YES bench-
mark instances. On DC-ST (Figure 2, top left), SAT-VE
consistently outperforms ASPFORABA on NO-instances,
which may be due to CaDiCaL being more effective in
proving unsatisfiability. On YES-instances the relative per-
formance of the solvers varies more, with SAT-VE still
narrowly solving more instances than ASPFORABA: 663
vs 655. Dually, on DS-ST (top center) where the YES-
instances require proving unsatisfiability, we observe very
similar relative performance. DC-CO (top right) and DS-PR
(bottom left) follow the same pattern. Finally, bottom right
of Figure 2 provides a more fine-grained view of SAT-VE
vs ASPFORABA on SE-ID wrt. the number of clusters in
the individual CLUSTERED benchmarks. On instances with
small number (5 or 7) of larger clusters, the approaches ex-
hibit similar runtimes. However, on instances with a larger
number (25, 30 or 35) of clusters SAT-VE clearly outper-
forms ASPFORABA. Notably, ASPFORABA was able to
solve only one instance with 30 clusters and no instances

with 35 clusters.
Regarding the size of the encodings (see more details in

the supplement), for the ICCMA23 instance which exhibits
the average number of clauses for SAT-VE, the number of
variables and clauses, resp., for the encodings are 167k and
32M for SAT-VE, and 8M and 33M for SAT-LEVEL. Anal-
ogously, for CLUSTERED these numbers are 7k and 45K for
SAT-VE, and 8M and 75M for SAT-LEVEL. This highlights
the structure-based compactness of SAT-VE. The ratio of
number of clauses in SAT-VE and number of clauses in the
”base” encoding without acyclicity constraints over solved
instances is: for ICCMA23 min 1.12, max 2833.5, and aver-
age 224.9; and for CLUSTERED min 1.03, max 1.74, average
1.14. The UFS propagator took a maximum of 4 % of total
runtime (average < 1 %) on the CLUSTERED set, while on
ICCMA23 UFS propagation took a maximum of 81 % of
total runtime (average < 4 %).

6 Conclusions
We addressed the challenge of developing SAT-based ap-
proaches to reasoning in the structured argumentation for-
malism of ABA. Extending a base encoding for central ABA
semantics, we studied the applicability of both recent ad-
vances in SAT encodings and two types of domain-specific
propagators for enforcing acyclic derivations towards scal-
ing up SAT-based reasoning in ABA. The resulting SAT-
based ABA reasoners support a range of central argumen-
tation semantics and both NP-complete and beyond-NP rea-
soning tasks. Overall, the SAT-based approach, especially
enforcing acyclicity by vertex elimination or UFS propaga-
tion, turned out to scale even beyond the current state-of-the-
art approach to reasoning in ABA, based on ASP solving.
We also provided a new ABA benchmark generator.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

715

Acknowledgements
The work is financially support by Research Council of Fin-
land under grants 347588 (AN) and 356046 (MFR, MJ),
and Helsinki Institute for Information Technology HIIT (TL,
MFR). The authors wish to thank the Finnish Comput-
ing Competence Infrastructure (FCCI) for supporting this
project with computational and data storage resources.

References
Atkinson, K.; Baroni, P.; Giacomin, M.; Hunter, A.;
Prakken, H.; Reed, C.; Simari, G. R.; Thimm, M.; and Vil-
lata, S. 2017. Towards artificial argumentation. AI Magazine
38(3):25–36.
Bao, Z.; Čyras, K.; and Toni, F. 2017. ABAplus: At-
tack reversal in abstract and structured argumentation with
preferences. In PRIMA, volume 10621 of LNCS, 420–437.
Springer.
Baroni, P.; Gabbay, D.; Giacomin, M.; and van der Torre,
L., eds. 2018. Handbook of Formal Argumentation. College
Publications.
Bench-Capon, T. J. M., and Dunne, P. E. 2007. Argumenta-
tion in artificial intelligence. Artif. Intell. 171(10-15):619–
641.
Besnard, P., and Doutre, S. 2004. Checking the acceptability
of a set of arguments. In NMR, 59–64.
Besnard, P., and Hunter, A. 2018. A review of argumenta-
tion based on deductive arguments. In Handbook of Formal
Argumentation. College Publications. 437–484.
Besnard, P.; Garcı́a, A. J.; Hunter, A.; Modgil, S.; Prakken,
H.; Simari, G. R.; and Toni, F. 2014. Introduction to struc-
tured argumentation. Argument Comput. 5(1):1–4.
Biere, A.; Faller, T.; Fazekas, K.; Fleury, M.; Froleyks, N.;
and Pollitt, F. 2024. CaDiCaL 2.0. In CAV, volume 14681
of LNCS, 133–152. Springer.
Biere, A. 2009. Bounded model checking. In Handbook of
Satisfiability, volume 185 of FAIA. IOS Press. 457–481.
Bistarelli, S.; Kotthoff, L.; Lagniez, J.; Lonca, E.; Mailly, J.;
Rossit, J.; Santini, F.; and Taticchi, C. 2025. The third and
fourth international competitions on computational models
of argumentation: Design, results and analysis. Argument
Comput. 16(2):236–299.
Bondarenko, A.; Dung, P. M.; Kowalski, R. A.; and Toni,
F. 1997. An abstract, argumentation-theoretic approach to
default reasoning. Artif. Intell. 93:63–101.
Borg, A., and Odekerken, D. 2022. PyArg for solving
and explaining argumentation in python: Demonstration. In
COMMA, volume 353 of FAIA, 349–350. IOS Press.
Brewka, G., and Woltran, S. 2010. Abstract dialectical
frameworks. In KR, 102–111. AAAI Press.
Brewka, G.; Polberg, S.; and Woltran, S. 2014. Generaliza-
tions of dung frameworks and their role in formal argumen-
tation. IEEE Intell. Syst. 29(1):30–38.
Calegari, R.; Omicini, A.; Pisano, G.; and Sartor, G. 2022.
Arg2P: an argumentation framework for explainable intelli-
gent systems. J. Log. Comput. 32(2):369–401.

Cerutti, F.; Oren, N.; Strass, H.; Thimm, M.; and Vallati, M.
2014. A benchmark framework for a computational argu-
mentation competition. In COMMA, volume 266 of FAIA,
459–460. IOS Press.
Cerutti, F.; Gaggl, S. A.; Thimm, M.; and Wallner, J. P.
2018. Foundations of implementations for formal argumen-
tation. In Handbook of Formal Argumentation. College Pub-
lications. 688–767.
Craven, R., and Toni, F. 2016. Argument graphs and
assumption-based argumentation. Artif. Intell. 233:1–59.

Čyras, K.; Fan, X.; Schulz, C.; and Toni, F. 2018.
Assumption-based argumentation: Disputes, explanations,
preferences. In Handbook of Formal Argumentation. Col-
lege Publications. 365–408.
Cyras, K.; Heinrich, Q.; and Toni, F. 2021. Computational
complexity of flat and generic assumption-based argumen-
tation, with and without probabilities. Artificial Intelligence
293:103449.
Diller, M.; Gaggl, S. A.; and Gorczyca, P. 2021. Flex-
ible dispute derivations with forward and backward argu-
ments for assumption-based argumentation. In CLAR, vol-
ume 13040 of LNCS, 147–168. Springer.
Diller, M.; Gaggl, S. A.; and Gorczyca, P. 2022. Strate-
gies in flexible dispute derivations for assumption-based ar-
gumentation. In SAFA, volume 3236 of CEUR Workshop
Proceedings, 59–72. CEUR-WS.org.
Dimopoulos, Y.; Nebel, B.; and Toni, F. 2002. On the
computational complexity of assumption-based argumenta-
tion for default reasoning. Artif. Intell. 141(1/2):57–78.
Dung, P. M.; Mancarella, P.; and Toni, F. 2007. Computing
ideal sceptical argumentation. Artif. Intell. 171(10-15):642–
674.
Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artif. Intell. 77(2):321–358.
Dunne, P. E., and Wooldridge, M. 2009. Complexity of
abstract argumentation. In Argumentation in Artificial Intel-
ligence. Springer. 85–104.
Dunne, P. E. 2009. The computational complexity of ideal
semantics. Artif. Intell. 173(18):1559–1591.
Dvořák, W., and Dunne, P. E. 2018. Computational prob-
lems in formal argumentation and their complexity. In
Handbook of Formal Argumentation. College Publications.
631–687.
Dvořák, W.; Järvisalo, M.; Wallner, J. P.; and Woltran, S.
2014. Complexity-sensitive decision procedures for abstract
argumentation. Artif. Intell. 206:53–78.
Fazekas, K.; Niemetz, A.; Preiner, M.; Kirchweger, M.;
Szeider, S.; and Biere, A. 2024. Satisfiability modulo user
propagators. J. Artif. Intell. Res. 81:989–1017.
Gaggl, S. A.; Linsbichler, T.; Maratea, M.; and Woltran, S.
2020. Design and results of the second international com-
petition on computational models of argumentation. Artif.
Intell. 279.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

716

Garcı́a, A. J., and Simari, G. R. 2004. Defeasible logic
programming: An argumentative approach. Theory Pract.
Log. Program. 4(1-2):95–138.
Garcı́a, A. J., and Simari, G. R. 2014. Defeasible logic
programming: DeLP-servers, contextual queries, and expla-
nations for answers. Argument Comput. 5(1):63–88.
Gebser, M.; Kaufmann, B.; Kaminski, R.; Ostrowski, M.;
Schaub, T.; and Schneider, M. T. 2011. Potassco: The Pots-
dam answer set solving collection. AI Commun. 24(2):107–
124.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Wanko, P. 2016. Theory solving made easy
with clingo 5. In ICLP 2016 TCs, volume 52 of OASIcs, 2:1–
2:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
Gebser, M.; Janhunen, T.; and Rintanen, J. 2014. SAT mod-
ulo graphs: Acyclicity. In JELIA, volume 8761 of LNCS,
137–151. Springer.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2012. Conflict-
driven answer set solving: From theory to practice. Artif.
Intell. 187:52–89.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In ICLP/SLP, 1070–1080.
MIT Press.
Jean-Marie Lagniez, E. L., and Mailly, J.-G. 2023.
Crustabri, the evolution of CoQuiAAS. In Solver and
Benchmark Descriptions of ICCMA 2023: 5th International
Competition on Computational Models of Argumentation,
Department of Computer Science Series of Publications B,
20–21. University of Helsinki.
Järvisalo, M.; Lehtonen, T.; and Niskanen, A. 2025. IC-
CMA 2023: 5th international competition on computational
models of argumentation. Artif. Intell. 342:104311.
Lagniez, J.; Lonca, E.; and Mailly, J. 2015. Coquiaas: A
constraint-based quick abstract argumentation solver. In IC-
TAI, 928–935. IEEE Computer Society.
Lehtonen, T.; Rapberger, A.; Ulbricht, M.; and Wallner, J. P.
2023. Argumentation frameworks induced by assumption-
based argumentation: Relating size and complexity. In KR,
440–450.
Lehtonen, T.; Odekerken, D.; Wallner, J. P.; and Järvisalo,
M. 2024a. Complexity results and algorithms for preferen-
tial argumentative reasoning in ASPIC+. In KR.
Lehtonen, T.; Rapberger, A.; Toni, F.; Ulbricht, M.; and
Wallner, J. P. 2024b. Instantiations and computational as-
pects of non-flat assumption-based argumentation. In IJCAI,
3457–3465. ijcai.org.
Lehtonen, T.; Wallner, J. P.; and Järvisalo, M. 2017. From
structured to abstract argumentation: Assumption-based ac-
ceptance via AF reasoning. In ECSQARU, volume 10369 of
LNCS, 57–68. Springer.
Lehtonen, T.; Wallner, J. P.; and Järvisalo, M. 2021a.
Declarative algorithms and complexity results for
assumption-based argumentation. J. Artif. Intell. Res.
71:265–318.
Lehtonen, T.; Wallner, J. P.; and Järvisalo, M. 2021b.
Harnessing incremental answer set solving for reasoning in

assumption-based argumentation. Theory Pract. Log. Pro-
gram. 21(6):717–734.
Lehtonen, T.; Wallner, J. P.; and Järvisalo, M. 2022. Com-
puting stable conclusions under the weakest-link principle
in the ASPIC+ argumentation formalism. In KR, 215–225.
Niemelä, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm. Ann. Math.
Artif. Intell. 25(3-4):241–273.
Niskanen, A., and Järvisalo, M. 2020. µ-toksia: An efficient
abstract argumentation reasoner. In KR, 800–804.
Popescu, A., and Wallner, J. P. 2023. Rea-
soning in assumption-based argumentation using tree-
decompositions. In JELIA, volume 14281 of LNCS, 192–
208. Springer.
Prakken, H. 2010. An abstract framework for argumentation
with structured arguments. Argument Comput. 1(2):93–124.
Rankooh, M. F., and Rintanen, J. 2022. Propositional en-
codings of acyclicity and reachability by using vertex elimi-
nation. In AAAI, 5861–5868. AAAI Press.
Rose, D. J.; Tarjan, R. E.; and Lueker, G. S. 1976. Al-
gorithmic aspects of vertex elimination on graphs. SIAM J.
Comput. 5(2):266–283.
Strass, H.; Wyner, A.; and Diller, M. 2019. EMIL: Extract-
ing meaning from inconsistent language: Towards argumen-
tation using a controlled natural language interface. Int. J.
Approx. Reason. 112:55–84.
Thimm, M., and Villata, S. 2017. The first international
competition on computational models of argumentation: Re-
sults and analysis. Artificial Intelligence 252:267–294.
Thimm, M.; Cerutti, F.; and Vallati, M. 2021. Skeptical rea-
soning with preferred semantics in abstract argumentation
without computing preferred extensions. In IJCAI, 2069–
2075. ijcai.org.
Toni, F. 2014. A tutorial on assumption-based argumenta-
tion. Argument Comput. 5(1):89–117.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

717

	Introduction
	Preliminaries
	Assumption-Based Argumentation
	Boolean Satisfiability (SAT)

	SAT Encodings for ABA
	Level-based Encoding of Acyclic Derivations
	Graph-based Acyclicity

	SAT with User Propagators for ABA
	Graph-based Acyclicity Propagator
	Unfounded Set based Propagator

	Empirical Evaluation
	Implementation
	Benchmarks
	Results

	Conclusions

