Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

Counterexample-Guided Abstraction Refinement for Assumption-based
Argumentation

Jean-Marie Lagniez' , Emmanuel Lonca®, Jean-Guy Mailly?

ICRIL, Université d’ Artois & CNRS
2IRIT, Université Toulouse Capitole & CNRS

{lagniez, lonca}@cril fr, jean-guy.mailly @irit.fr

Abstract

Assumption-Based Argumentation (ABA) is a prominent for-
malism for structured argumentation, widely applied in do-
mains such as healthcare, law, and robotics. Despite its in-
herent computational complexity, ABA has seen the devel-
opment of effective techniques that successfully address key
tasks, including evaluating the acceptability of literals and
computing framework extensions. These approaches typi-
cally involve translating the initial ABA framework into an
intermediate formalism, such as an Answer Set Program or an
Abstract Argumentation Framework, which is then encoded
into a Boolean satisfiability (SAT) problem. However, this
translation can lead to large and complex intermediate repre-
sentations, posing challenges for state-of-the-art SAT solvers.
In this work, we propose a Counterexample-Guided Abstrac-
tion Refinement (CEGAR) approach that bypasses the ini-
tial translation step, at the cost of incrementally discover-
ing certain ABA constraints that are not explicitly captured
in the initial SAT encoding. We analyze the performance of
our method and demonstrate that it outperforms state-of-the-
art approaches on specific problem classes, while remaining
competitive with the best existing solvers more broadly.

1 Introduction

Formal Argumentation (Baroni et al. 2018) focuses on rep-
resenting arguments and their interactions, as well as devel-
oping reasoning techniques for assessing their acceptabil-
ity. Several structured argumentation frameworks have been
proposed (Besnard et al. 2014), typically defining arguments
and attacks through logic-based methods. Assumption-
Based Argumentation (ABA) is one such framework (Bon-
darenko et al. 1997; Toni 2014). An Assumption-Based Ar-
gumentation Framework (ABAF) consists of a set of in-
ference rules over literals, a subset of which are desig-
nated as assumptions. Classical extension-based seman-
tics (Dung 1995) identify sets of assumptions that are col-
lectively acceptable, thereby yielding alternative “solutions”
to the problem encoded by the ABAF. ABA subsumes sev-
eral non-monotonic reasoning formalisms (Bondarenko et
al. 1997) and has been successfully applied in diverse do-
mains, including legal reasoning (Dung, Thang, and Hung
2010), healthcare (Fan et al. 2013; Cyras et al. 2021), and
robotics (Fan et al. 2016).

The development of real-world applications based on ar-
gumentation formalisms requires efficient methods for solv-

694

ing hard instances of the underlying reasoning problems.
Many such problems, including those arising in ABA, are
known to be complete for the first or second levels of the
polynomial hierarchy (Dvordk and Dunne 2018; Lehtonen,
Wallner, and Jdrvisalo 2021a). Despite this high theoreti-
cal complexity, the International Competition on Computa-
tional Models of Argumentation ICCMA) (Thimm 2025)
has driven the emergence of highly effective computational
techniques, initially for abstract argumentation frameworks
(i.e., Dung’s frameworks) (Dung 1995), and more recently
(starting from the 6™ edition in 2023) for ABAFs.

In the 2023 edition, several solvers competed in the
ABA track, including ACBAR, ASPFORABA, ASTRA,
CRUSTABRI, and FLEXABLE (Jarvisalo, Lehtonen, and
Niskanen 2025). Across all evaluated problems, ASP-
FORABA (Lehtonen, Wallner, and Jarvisalo 2021a; Lehto-
nen, Wallner, and Jarvisalo 2021b) achieved first place, fol-
lowed by ACBAR (Lehtonen et al. 2023b) in second. As
its name suggests, ASPFORABA is based on Answer Set
Programming (ASP) (Gebser et al. 2012), while ACBAR
transforms the ABA framework into an abstract argumen-
tation framework, subsequently leveraging a state-of-the-art
abstract argumentation solver. This transformation is care-
fully designed to mitigate the risk of exponential blowup.

While ASPFORABA and ACBAR have demonstrated
strong performance, both approaches may be hindered by
preprocessing steps that degrade efficiency on certain patho-
logical instances. For ASPFORABA, the main bottleneck
when running the underlying ASP solver lies in the ground-
ing phase (Kaufmann et al. 2016) of the logic program de-
rived from the ABA framework. Despite recent advances in
grounding techniques (Besin, Hecher, and Woltran 2022),
this step can still generate large propositional instances,
affecting the subsequent SAT-solving phase of the ASP
pipeline. In the case of ACBAR, the transformation from
an ABA framework to an abstract argumentation framework
can result in a formula of quadratic size in the presence of
cycles, again leading to large and potentially inefficient SAT
encodings.

In this paper, we propose a third approach that directly en-
codes an ABA framework into a SAT formula whose size is
linear in the number of atoms and rules. While this initial en-
coding is an under-approximation, i.e. its models represent
a superset of the actual solutions, we address this through a

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

Counterexample-Guided Abstraction Refinement (CEGAR)
process. This algorithm incrementally refines the formula by
eliminating spurious models, continuing until a valid solu-
tion is identified. In doing so, our method avoids the poten-
tially expensive preprocessing phases required by existing
approaches, replacing them with a lightweight, on-the-fly re-
finement strategy that adapts to the structure of the problem
instance during solving.

The paper is organized as follows. Section 2.1 provides a
concise background on Assumption-Based Argumentation.
In Section 2.2, we introduce the necessary formal prelimi-
naries on SAT solving, including an overview of the CEGAR
framework. Our main contribution, a CEGAR algorithm tai-
lored to solve ABAF-related reasoning tasks, is detailed in
Section 3. In Section 4, we evaluate the performance of our
approach against state-of-the-art ABA solvers. Finally, Sec-
tion 5 presents our conclusions and discusses potential di-
rections for future work.

2 Preliminaries

This section introduces the necessary background for our
approach. We first formalize Assumption-Based Argumen-
tation (ABA) and its semantics (Section 2.1), then outline
the fundamentals of Boolean satisfiability (SAT) and the
Counterexample-Guided Abstraction Refinement (CEGAR)
paradigm, which form the computational core of our method
(Sections 2.2 and 2.3). Finally, we review state-of-the-art
ABA reasoning techniques, highlighting their methodolo-
gies and limitations (Section 2.4). These preliminaries pro-
vide the foundation for the CEGAR-based algorithm pre-
sented in the next sections.

2.1 Assumption-based Argumentation

Formal Argumentation (Baroni et al. 2018) studies how ar-
guments and their interactions (especially conflicts through
attacks), can be formally represented and how the accept-
ability of arguments can be systematically evaluated. In
this work, we focus on Assumption-Based Argumentation
(ABA) (Bondarenko et al. 1997; Toni 2014), with particular
attention to its logic programming fragment, which has at-
tracted increasing interest in recent years (Cyras et al. 2017,
Lehtonen, Wallner, and Jarvisalo 2021a; Lehtonen, Wall-
ner, and Jarvisalo 2021b; Jarvisalo, Lehtonen, and Niskanen
2023; Rapberger and Ulbricht 2023; Lehtonen et al. 2024;
Rapberger and Ulbricht 2024).

Definition 1 (Assumption-Based Argumentation Frame-

work). An Assumption-Based Argumentation Framework

(ABAF) is a tuple D = (L, R, A, ™) where:

e L is a set of literals (also referred to as atoms),

* R is a set of inference rules,

* A C L is a (non-empty) set of assumptions,

* —: A — L is a function that maps to each assumption
a € A its contrary @.

Each rule r € R is of the formr = h < by, ..., b,, where
h,b1,...,b, € Landn > 0. The element h is referred to as
the head of the rule, and the sequence b1, . . . , b, constitutes

695

its body. We denote the head and body of a rule r by h(r)
and b(r), respectively.

In this paper, we restrict our attention to flat ABA frame-
works (Cyras, Heinrich, and Toni 2021), that is, ABAFs in
which the head of every rule is not an assumption.'

Example 1. We adapt an example from (Toni 2014). Let
D =(L,R,A,7) be a(flat) ABA framework defined by:
° ‘C = {a’7 b7 Ca Ca, Cb? CC)p}7
e R={cs < b,(ch < a,p),cc < bycc ¢,p <},
e A={a,b,c},
* the contrariness function is defined as: @ = c,, b= ¢,
and ¢ = c..
The semantics of ABAFs are grounded in a notion of
derivation. A literal a € L is said to be derivable from a set

of assumptions X C A using the rules R, denoted X 5 a,
if either:

e ac X,or

* there exists a sequence of rules rq,...,7, € R such that
h(r,) = a, and for every r; in the sequence, each z €
b(r;) is either in X or is the head of some earlier rule r;
with j <.

Given X C A, the set of literals derivable from X is called

the closure of X.

Example 2 (Example 1 cont’d). Continuing Example 1, the
literal p is derivable from X, = 0 via the rule (p <). Sim-
ilarly, ¢y is derivable from Xo = {a} using the sequence of
rules (p <) and (cp + a,p).

Extension-based semantics for ABAFs define sets of as-

sumptions that satisfy specific properties, grounded in the
notions of attack and defense. Given Ay, As C A:

e Ay attacks As if there exists a € A, such that A, Fr a;

o Aj defends A, if, for every set A3 C A that attacks A,
it holds that A; attacks As.

With a slight abuse of terminology, we say thata set A C A
attacks an assumption a € A if it attacks the singleton {a}.

Definition 2 (Extension-based Semantics). Given D

(L, R, A,~) an ABAF and X C A a set of assumptions,

* X is conflict-free (X € cf(D)) if it does not attack any
a € X;

e X is admissible (X € ad(D)) if X € cf(D) and defends
all its elements;

* X is complete (X € co(D)) if X € ad(D) and contains
all the assumptions it defends;

* X ispreferred (X € pr(D)) if it is C-maximal in co(D);

* X is stable (X € stb(D)) if X € cf(D) and attacks
everya € A\ X.

Example 3 (Example 1 cont’d). Continuing the running ex-
ample, the extensions of D under the considered semantics
are as follows: cf(D) = ad(D) = co(D) = {0, {a},{b}};
pr(D) = {{a}, {b}}; and stb(D) = {{b}}.

IThis restriction aligns with the focus of the current and upcom-
ing editions of the ICCMA competition.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

Classical reasoning tasks are credulous acceptance (veri-
fying if a literal belongs to one o extension, denoted by DC-
0), skeptical acceptance (verifying if a literal belongs to all
o extensions, DS-o), or computing some extension (SE-0).

As in abstract argumentation (Caminada 2006a),
extension-based semantics for ABA frameworks can al-
ternatively be characterized using three-valued labellings,
where each assumption is labelled as accepted (IN), rejected
(0UT), or undecided (UNDEC) (Schulz and Toni 2017).

Definition 3 (Labelling-based Semantics). Let us consider
an ABAF D = (L,R,A,~). An assumption labelling is
a function Lab : A — {IN,OUT, UNDEC}. For X €
{IN, OUT, UNDEC}, we denote by X (Lab) = {a € A |
Lab(a) = X'} the set of assumptions labelled X .

A labelling Lab is:

* admissible if for every a € A:
— if Lab(a) = IN, then every set A C A that attacks a
contains at least one b with Lab(b) = OUT;
— if Lab(a) = OUT, then there exists a set A C A that
attacks a and such that all b € A have Lab(b) = IN;
- if Lab(a) = UNDEC, then for every set A C A that
attacks a, there exists some b € A with Lab(b) # IN.
 complete if it is admissible and for every a € A:

— if Lab(a) = UNDEC, then there exists a set A C A that
attacks a and such that all b € A have Lab(b) # OUT.

A complete labelling Lab is:

— preferred if IN(Lab) is C-maximal among all complete
labellings;

— stable if UNDEC(Lab) = ().

Example 4 (Example 1 cont’d). Continuing the running ex-
ample, the complete labellings of D are:

* Lab; = {(a, UNDEC), (b, UNDEC), (¢, UNDEC)},
* Laby = {(a, IN), (b, 0UT), (¢, UNDEC)},
* Labs = {(a,0UT), (b, IN), (¢, UNDEC)}.

Among these, Labs and Labs are preferred, and Labs is the
only stable labelling.

Each o-labelling (for ¢ € {ad,co,pr,stb}) corre-
sponds to a o-extension via IN(Lab), and vice versa.

2.2 Preliminaries on Propositional Logic and SAT

Let us recall the basics of propositional logic. Let V be a fi-
nite set of Boolean variables, referred to as atoms. A propo-
sitional formula is defined recursively: any atom z € V is a
formula, and if ¢ and 1) are formulas, then so are the follow-
ing: —¢ (negation), ¢ A1) (conjunction), ¢ \V ¢ (disjunction),
¢ = v (implication), and ¢ < 1 (equivalence). Formulas
are interpreted in the classical way: an inferpretation w as-
signs a truth value w(z) € {0, 1} to each variable x € V),
where 0 denotes false and 1 denotes frue. An interpretation
w is called a model of a formula ¢ if w(¢p) = 1. We use |=
to denote logical entailment and = for logical equivalence.
SAT solvers, tools that determine whether a propositional
formula admits at least one model, typically require input in
Conjunctive Normal Form (CNF). A CNF formula is a con-
junction of clauses, each of which is a disjunction of literals;

696

a literal is either an atom or its negation. Any propositional
formula can be converted into a query-equivalent CNF (i.e.,
one with the same models), using transformations that are
linear in time and space with respect to the size of the orig-
inal formula. A formula « is query-equivalent to a formula
B if Var(8) C Var(«) and for every formula v such that
Var(y) C Var(8), we have « |y ifandonly if S | 7.
For further details on Boolean satisfiability and CNF trans-
formations, we refer the reader to (Biere et al. 2021).

Example 5. Let us consider the propositional formula ®
such that:

b= (.%'1 & (1‘2 V ﬁxg)) A\ ((ﬁl‘l AN 1'4) V (LL'Q A\ ﬁ$4))

This formula can be transformed into the query-equivalent
CNF formula ¥ such that:

L’El\/l'z\/'xg —x9 V Ty .’Eg\/l'l

o | Vo VT ynVrnVorg
Y2 V To Y2 V T4 Y2 \Y) \Y Tq
Y1 VY2

As we can see, every model w of ¥ also satisfies ®, im-
plying that ¥ is query-equivalent to ® with respect to the
variables {x1,x2,x3,24}. For instance, the model w
{—y1, Y2, x1, T2, x3, x4 } from X corresponds to the model
{z1, 2, x5, x4} in © when restricted to these variables.

2.3 Counterexample-Guided Abstraction
Refinement

Counterexample-Guided Abstraction Refinement (CEGAR)
is an incremental technique for deciding the satisfiability
of formulas in classical propositional logic. Originally in-
troduced for model checking (Clarke, Gupta, and Strich-
man 2004), CEGAR addresses questions of the form “Does
S | P hold?” or equivalently, “Is S A =P unsatisfiable?”,
where S describes a system and P a property to be verified.
In such highly structured settings, it is often unnecessary to
reason over the entire formula to reach a decision.

The core idea of CEGAR is to replace the original formula
¢ = S A =P with a simplified abstraction ¢’ that is easier
to solve in practice. Two types of abstractions are typically
considered:

* An over-approximation (ﬁ of ¢, such that (ﬁ E ¢, ie., all

models of g{) are also models of ¢, hence QAS has at most as
many models as ¢;

* An under-approximation ¢ of ¢, such that ¢ |= ¢, i.e., all
models of ¢ are models of ¢, so ¢ has at least as many
models as ¢.

In practice, the formula ¢ is typically expressed in CNF.
In this paper, we adopt a CEGAR approach based on under-
approximation, an abstraction of the original problem whose
solution space is a superset of that of the target formula.
Candidate solutions derived from the abstraction are then
verified against the original formula: if a candidate satis-
fies the original problem, it is accepted; otherwise, it consti-
tutes a counterexample that guides refinement, eliminating
it from future consideration. SAT solvers are typically used

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

) HO—{ e
‘mt
sat,\

yes

[1/1 + refine(v) }—

no

Figure 1: The CEGAR framework with under-abstraction

to search for candidate solutions and to validate them. An
illustration of this framework is provided in Figure 1.

To ensure soundness, completeness, and termination, the
CEGAR procedure must satisfy the following conditions:

1. The subroutine solve is sound, complete, and terminates;

2. If the current under-approximation ¢ is unsatisfiable, then
the original formula ¢ is also unsatisfiable;

3. The routine check(\, ¢) returns t rue if and only if the
candidate assignment \ is a model of ¢;

4. There exists n € N such that after n refinements,
refine™(¢) is equisatisfiable with ¢.

In the SAT community, CEGAR is a well-established ap-
proach for decision problems. In the CP/OR community, a
closely related concept is Logic-based Benders Decomposi-
tion (LBBD) (Hooker 1994), often regarded as the optimiza-
tion analogue of CEGAR. LBBD has been successfully ap-
plied in numerous domains, frequently outperforming state-
of-the-art MIP solvers by orders of magnitude (Chu and
Xia 2005; Hooker 2005; Tran and Beck 2012), just as CE-
GAR methods often surpass direct encodings. CEGAR can
also be viewed as a variant of Lazy-SMT (de Moura, RueB,
and Sorea 2002; Ji and Ma 2012; Sebastiani 2007; Brum-
mayer and Biere 2009), where problem-specific knowledge
extracted from the abstraction guides the refinement, rather
than relying on a theory solver.

CEGAR-style techniques have also proven effective for
a wide range of computationally hard problems, including
reasoning with Quantified Boolean Formulas (QBFs) (Jan-
ota et al. 2016), constraint programming (Stuckey 2010),
explainable AI (XAI) (Audemard et al. 2024), biology (Riva
et al. 2023), team formation (Schwind et al. 2023), com-
puting preferred extensions in abstract argumentation (and
other semantics requiring reasoning at the second level of
the polynomial hierarchy or higher) (Dvordk et al. 2014),
and handling argumentation dynamics (Wallner, Niskanen,
and Jarvisalo 2017).

697

2.4 State-of-the-art ABA Solvers

A natural approach to solving decision problems in ABA
is to translate the given ABA framework into an Abstract
Argumentation Framework (AF) (Dung 1995), and then ap-
ply one of the existing state-of-the-art abstract argumenta-
tion solvers, such as those based on SAT solving (Lagniez,
Lonca, and Mailly 2015; Niskanen and Jarvisalo 2020).
However, as highlighted by Strass et al. (Strass, Wyner,
and Diller 2019), this translation may yield an exponen-
tially large number of abstract arguments with respect to the
number of atoms in the underlying logical language of the
ABAF. This exponential blow-up renders such a direct or
“naive” transformation impractical in most cases.

To mitigate this issue, ACBAR (Lehtonen et al. 2023a) in-
troduces an alternative translation strategy. It first converts
the input ABAF into a so-called atomic ABAF, a restricted
class of frameworks admitting a polynomial-size translation
into an abstract AF. A critical step in this process involves
eliminating cyclic dependencies, i.e., derivations in which
the same atom occurs more than once. This is achieved
through a rule and atom cloning procedure that ensures
acyclicity while preserving semantic equivalence with the
original framework. Once acyclicity is enforced, the result-
ing ABAF is translated into an atomic ABAF, which is then
mapped to an abstract AF, and reasoning can be achieved
using the solver p-toksia (Niskanen and Jarvisalo 2020).

An alternative line of work is represented by ASP-
FORABA (Lehtonen, Wallner, and Jarvisalo 2021a; Lehto-
nen, Wallner, and Jdrvisalo 2021b), which employs An-
swer Set Programming (ASP) for reasoning within ABA.
In this approach, key components of ABAFs (such as rules,
assumptions, contraries, derivations, and attacks) are en-
coded as ASP predicates. Reasoning tasks are then per-
formed using the ASP solver CLINGO (Gebser et al. 2011;
Gebser et al. 2016). For computational problems located at
the second level of the polynomial hierarchy, ASPFORABA
leverages iterative ASP solving techniques that effectively
implement a CEGAR-style algorithm.

3 SAT-based Algorithms for ABA

In this section, we present our SAT-based approach for rea-
soning within ABA. Our method builds upon the compu-
tational foundations discussed earlier, particularly SAT and
CEGAR, and leverages them to efficiently handle reasoning
tasks under various ABA semantics. We consider two sce-
narios: the acyclic case, where the underlying ABA frame-
work contains no cyclic derivations, and the general case,
where cycles may occur. The acyclic setting allows for more
direct and lightweight encodings, often enabling efficient
reasoning using standard SAT techniques. In contrast, the
general case presents additional challenges due to potential
recursion in derivations, requiring more sophisticated han-
dling through iterative refinement and abstraction. We detail
our algorithms for each case in the subsections that follow.

3.1 The Acyclic Case

We begin by considering the case where the ABAF D =
(L,R,A,7) is acyclic. Additionally, we assume without

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

loss of generality that every rule in R is derivable, i.e., there
exists a derivation for each rule under the given framework
(non-derivable rules can be identified and removed in poly-
nomial time). Consequently, every atom that appears as
the head of a rule is also derivable. In this setting, we de-
velop CNF encodings to capture three key ABA semantics:
conflict-free, complete, and stable. Our encodings are based
on a generalization of the labelling approach from (Schulz
and Toni 2017), extending the original labelling scheme be-
yond assumptions to also encompass regular atoms and in-
ference rules. For conflict-free and complete semantics, our
encodings only track the elements (assumptions, atoms, and
rules) that are labelled as IN.

Definition 4. An assumption is labelled IN if and only if it
is assigned the value t rue. A regular atom is labelled TN
if and only if there exists a rule whose head is that atom and
which is itself labelled IN. A rule is labelled IN if and only
if all atoms in its body are labelled IN.

We introduce a set of Boolean variables V =V, U Vz U
V4 such that there is a bijective correspondence between the
elements of £ (resp. R, A) and the variables in V (resp.
Vr, V4). Variables in V4 are named directly after the cor-
responding assumptions. Such a variable is set to true if
and only if its associated assumption is selected (i.e., IN).
Variables in V; (denoted in_atom, for x € L) and Vi
(denoted in_rule, for r € R) indicate whether the corre-
sponding atom or rule is labelled IN. According to the ABA
derivation semantics:

* in_atom, is set to true for z € A precisely when the
assumption z is selected;

* for non-assumption atoms x, in_atom, is set to true if
at least one IN rule derives x;

* in_rule, is setto t rue if and only if all atoms in the body
of rule r are IN.

These conditions are captured by the following CNF en-
coding formulas:

o, = A in_atom, < x
zeA
N in.atom, <\ inorule,
zeL\A reER
h(r)=z
or = A inrule, < N\ in_atomy
reR zeb(r)

We note that the explicit definition of ¢n_atom, variables
for assumptions is redundant, since they are equivalent to
the assumption variables themselves, but we retain them to
simplify the overall encoding structure and ensure uniform
treatment of literals.

Given an ABAF, the derivability of rules and regular
atoms is determined by the set of selected assumptions. In
our encoding, this dependency is made explicit: the values
of the variables corresponding to regular atoms (in_atom)
and rules (in_rule) are fully determined once the truth
values of the assumption variables are fixed. This prop-
erty can be interpreted through the lens of logical defin-
ability: specifically, (explicit or implicit) definability in

698

the sense of Beth’s theorem (Beth 1953). When the val-
ues of assumption-related variables are set in the formula
® = O, A Dg, the values of the remaining variables are
propagated deterministically by the constraints.

Lemma 1. Let D = (L, R, A,”) be an acyclic ABAF, and
let ® = &y N\ D be the corresponding encoding over the
variable set V.= V; U Vr U V4. Then all variables in
Ve U Vg are definable in terms of the variables in V 4.

Proof. Sketch of proof. Thanks to acyclicity, we can sort the
atoms in such a way heads of rules are ranked higher than
the atoms of the body. We construct ® incrementally accord-
ing to this order. (Base case): we consider no rules, thus no
in_rule variables. in_atom, variables are set in term of a
single assumption (if = € A) or constant (z € £\ A). (In-
ductive step): we introduce rules 7; = h < b;1,...,b;n,
s.t. h has not be considered yet and b variables have been
proved defined in terms of assumptions in a previous step.
The new in_rule variables are set as equivalent to a con-
junction of b variables, thus defined in terms of assumptions.
The in_atom variable corresponding to h is no longer con-
stant, but set as a disjunction of the new in_rule variable,
thus defined in terms of assumptions. [

The definability of all variables in V. and V& in terms of
V4 is central to establishing the soundness and complete-
ness of our encoding. We now show a stronger result: there
is a bijection between the models of ® and the subsets of
A. Specifically, ® has as many models as there are Boolean
assignments over V4, and by Lemma 1, each assignment
uniquely determines a full model.

Lemma 2. Let D = (L, R, .A,”) be an acyclic ABAF, and
let ® ®,. N Pr be the corresponding encoding over
V =V, UVg UV4. Then ® has exactly 2Val models,
each corresponding uniquely to a subset of A.

Proof. Sketch of proof. By Lemma 1, all variables in
Ve U Vi are functionally determined by the variables in
Va. Forgetting (i.e. existentially quantified out) these
variables leads to tautology where the set of variables is
V4. As established in (Lagniez, Lonca, and Marquis 2016;
Lagniez, Lonca, and Marquis 2020) we can conclude that
there are 2/Y4! models, one for each truth assignment to the
assumption variables. O

The next step is to establish that each model of ® corre-
sponds to exactly one deductive closure of D under the given
set of assumptions. This correspondence is captured through
the in_atom variables, which encode the derivable literals.

Lemma 3. Let D = (L, R, A,”) be an acyclic ABAF, and
let ® = &, N Pr be defined over the variable set V. =
Ve U Vi UVy. Then the models of ® are in one-to-one
correspondence with the deductive closures of D obtained
from subsets of A.

Proof. Sketch of proof. By Lemma 2, it remains to show
that the in_atom variables in this model represent exactly
the deductive closure. Assume, for contradiction, that a
model of ® does not correspond to the correct closure. Then
there is z € L s.t.: (i) in_atom, is set to true, but x is

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

not derivable from the A and R; or (ii) in_atom, is set
to false, but x is derivable. However, by construction,
each in_rule, variable is true iff all in_atom variables
corresponding to the atoms in the body of r are t rue, and
each in_atom,, variable for z ¢ A is true iff at least one
in_rule, variable for a rule with head x is t rue. O

Building on the previous lemmas, we have established
that @, A & encodes all possible subsets of assumptions
and computes their corresponding deductive closures via the
variables in V. To capture conflict-freeness (the weakest
among the semantics considered) we must further restrict
the models of @ to those whose closures do not include both
an assumption and its contrary. This constraint can be effi-
ciently expressed using the assumption variables in V4 and
the derived atom variables in V:

b5 = /\ -z V —in_atomz
€V

This formula ensures that for any assumption x selected
(true in V), its contrary T is not derivable (i.e., in_atomz
is false). We now show that the resulting formula encodes
conflict-freeness soundly and completely.

Proposition 1. Let D = (L, R, A, ™) be an acyclic ABAF.
The models of ®cr = P N Pr N D4 are in one-to-one
correspondence with the conflict-free extensions of D.

Proof. Sketch of proof. By Lemma 3, the formula &, A
®r captures all possible deductive closures. The additional
constraint - removes precisely those models in which a
selected assumption z coexists with its contrary. This aligns
with the conflict-freeness, preserving the bijection. 0

Example 6 (Example 1 cont’d). The SAT encoding of
the ABA Framework of Example 1 for the cf semantics
is given at Table 1. The three models of the formula
correspond to the cf extensions of the framework (in_a,
stands for in_atom, and in_r, stands for in_rule):
—a A —b A —c A —in_ag N —in_ay N\ —in_a,
—MN-Qe, N\ 2IN_Gey N TN, N IN_ap
—in_ry A Din_ro A Tin_rs A in_rq N\ in_rs
aA=bA—-cAin_ag N\ —in_ap N\ —in_a,
NG, N IN_Qey N IN_Qc, N TNy

—in_ry Ain_ro A —in_rg A —in_rq \in_rs
—a AbA—cA—in_ag Nin_ap A\ —in_a.
MN_Qc, N\ TN, NIN_Qe, NIN_Qyp

n-ry A —tn_rg Ain_rg A -in_rqg A in_rs

&
Q
<)
=

|

)

Wet, {a}

Wef,{b}

>> 0 >> 1 >>

Extending the encoding from conflict-free to stable se-
mantics requires strengthening the condition on assump-
tions. Specifically, for each assumption a, either a or its con-
trary @ must appear in the closure. In terms of the in_atom
variables (i.e., the in_atom variables representing derived
atoms), this condition can be directly encoded as:

P57 = /\ in_atomg V in_atomg
a€A

This formula ensures that every assumption is either in-
cluded in the extension or attacked by it.

699

Proposition 2. Let D = (£, R, A,”) be an acyclic ABAF.
The models of s = ®corp A ®;,_s7 are in one-to-one
correspondence with the stable extensions of D.

Proof. Sketch of proof. From Proposition 1, we know that
the models of ¢ correspond exactly to the conflict-free
extensions of D. The additional constraint ®;,, g7 removes
precisely those models in which there exists an assumption
a for which in_atom, and in_atomg are both absent. This
aligns with the definition of the stable semantics, preserving
the bijection. O

Example 7 (Example 1 cont’d). The SAT encoding of the
ABA Framework of Example 1 for the stb semantics is given
at Table 1. The only model of this formula is wee (yy from
Example 6.

To capture the complete semantics, we must formalize the
notion of defense, which requires reasoning not only about
what is derived, but also about what can not be derived. This
motivates introducing negative counterparts to the in_atom
and in_rule variables used so far.

Definition 5. An element of the framework is considered
OUT under the following conditions:

e An assumption x € A is OUT if and only if its negation is
IN.

* Aregular atom x € L\ A is OUT if and only if all rules
with head x are OUT.

e Arule r € R is OUT if and only if at least one atom in its
body is OUT.

We associate with each regular atom xz a variable
out_atom, and with each rule r a variable out_rule,., where
these are true precisely when z or r is OUT, respectively. The
corresponding constraints are defined as follows:

o = A out_atom,, < in_atomsz
z€A
A A out_atomg, <\ out_rule,
zeL\A reER
h(r)=z
on = A outrule, & \/ out_atom,
re€R zeb(r)

These formulas encode the bottom-up propagation of OUT
status based on the structure of the rules and the truth val-
ues of contraries. Notably, @7 and ® are structurally dual
to &, and ®x, but they propagate falsity (exclusion) rather
than truth (inclusion). With these definitions in place, we
are now prepared to formally encode the defense condition
required for the complete semantics: an assumption x is de-
fended by a set of assumptions Y if every set of assump-
tions that attacks x is itself attacked by Y. In terms of
the encoding, this requires ensuring that any derivation of
7 is blocked, that is in_atomz = false, whenever x is
included in the extension.

If the contrary of an assumption z is a regular atom then
there exists a set of assumptions that can derive 7 (as hypoth-
esized at the beginning of the section). Therefore, in order
to defend x, an extension must derive the contrary of z. This
means that if = is present in an extension, then out_atomz

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

Encoding Constraints
O, = (in-atomg < a) A (in_atomy, < b) A (in_atom. < ¢) A (in_atom,., < in_rule;y)
of stb. co A (in_atom,, < in_rules) A (in_atom., < in_rules V in_rules) A (in_atom, < in_rules)
(e Or = (inorule; & in_atomy) A (in_rules < in_atomy A in_atom,,) A (in-rules < in_atomy,)
A (inruley < in_atom.) A (in_rules < T)
b4 = (-aV—in_atom,,) A (=bV —in_atom,,) A (—cV —in_atom,,)
stb Qs = (in-atomg Vin_atom.,) A (in-atomy V in_atome,) A (in_atom. V in_atom,,)
o = (out_atom, & in_atom.,) A (out_atomy, < in_atom.,) A (out_atom. < in_atom.,)
A (out_atom., < out_ruley) A (out_atom., < out_rules) A (out_atom., < out_rules
co A out_rules) A (out_atom, < L)
O = (outrule; < out_atomy) A (out_ruley < out_atomy, V out_atom,,)
A (out_rules < out_atomy) A (out_ruley < out_atom.) A (out_rules < T)
Qinco = (a< outatom,) N (b< out_atome,) A (¢ < out_atom,,)
Table 1: SAT Encodings for the ABA Framework of Example 1. Each row gives a set of constraints (second column) and the related

semantics (first column). For example, the encoding for the stb semantics requires the constraints of the first and the second rows.

must be set to true. If the contrary Z is an assumption,
then we must consider the nature of its own contrary Z. If T
is itself an assumption, this assumption is sufficient but also
necessary to defend z: it must be present in every extension
to which z belongs. If T is a regular atom, it must be IN to
defend z.

D co a < out_atomg
acA|agA
A A asa

a€A | GEA N aEA
A A

a€EA | GEA N agA

Proposition 3. Let D = (L, R, A,7) by an acyclic ABAF.
The models of ®co = ®cr A ®in_co are in one-to-one
correspondence with the complete extensions of D.

a < in_atomz

Proof. As in the proof of Proposition 2, but using ®;,_co
instead of ®;, s7. ®;,_co enforces the defense condition
by requiring each atom’s presence to be equivalent to it be-
ing defended. O

Example 8 (Example 1 cont’d). The SAT encoding of
the ABA Framework of Example 1 for the co semantics
is given at Table 1. The models of this formula are the
following (out_a, stands for out_atom,, out_r, stands
for out_rule,; refer to Example 6 for the wce x terms):
Weo, 0 Wer,p N Dout_aq N\ ~out_ap A —out_a.
—out_ac, N\ —out_ac, N\ —out_ac, N\ —out_a,
—out_r1 N\ —out_ro A\ —out_rs A\ —out_ry
—out_rs
Wef {a} N TOUL_Gq N OUt_ap A\ Dout_a.
out_ac, N —out_ac, N\ —out_a., N\ —out_ay,
out_r1 N\ —out_ro A\ out_rs N\ —out_ry
—out_rs
Wet, (b} N out_ag A —out_ap A out_a
—out_ae, N out_ac, N —out_a., N -out_ay
—out_r1 N out_ro N\ —out_rg A\ out_ry
—out_rs

Weo,{a}

Weo,{b}

>>> 0 >>>10 >>> |

700

Preferred extensions are defined as the C-maximal com-
plete extensions, as in standard abstract argumentation
frameworks (Dung 1995). Thus, identifying preferred ex-
tensions reduces to computing complete extensions and se-
lecting those that are maximal with respect to inclusion.

In this section, we have provided SAT-based encodings
for the most commonly studied ABA semantics, as identi-
fied by the ICCMA competition (Jirvisalo, Lehtonen, and
Niskanen 2025), under the assumption that the ABA frame-
works are acyclic. These encodings can be applied anal-
ogously to existing SAT encodings in abstract argumen-
tation (Lagniez, Lonca, and Mailly 2015; Niskanen and
Jarvisalo 2020). To compute extensions, it suffices to enu-
merate models of the corresponding propositional formula.
For preferred semantics, one must search for maximal mod-
els among the complete extensions. Moreover, these encod-
ings facilitate reasoning tasks such as credulous and skepti-
cal acceptance. Specifically, to determine whether a literal =
is credulously (respectively, skeptically) accepted, we check
whether the variable in_atom, is true in some (respec-
tively, each) model. This task reduces to a single SAT call
in the case of stable semantics: we verify satisfiability of
the formula ® g A in_atom,, (for credulous acceptance), or
®sr N —in_atom, (for skeptical acceptance). Having ad-
dressed the acyclic case, we now turn our attention to the
general case, where ABA frameworks may include cycles.

3.2 The General Case
Consider the ABAF D = (L,R,A,7) with L = {p7 q},
—{riiqgep raipqh A=0 and = = 0.
This framework admits a single conflict-free extension: the
empty set (). However, the conflict-free encoding from the
previous section yields two models:
—in_atom, N\ ~in_atomg A —in_rule,, N\ ~in_rule,,
and
in_atomy N in_atomg A in_rule,, Ain_rule,,

The issue in cyclic frameworks is that atoms can be unjusti-
fiably derived through circular dependencies among rules.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

One way to address this is by transforming the ABAF
into an acyclic, query-equivalent form using techniques like
those in ACBAR (Lehtonen et al. 2023a). However, these
transformations may lead to quadratic blow-up in size, ad-
versely affecting performance. Instead, we propose an al-
ternative approach. We observe that any spurious model of
the encoding corresponds to an over-approximation: it in-
cludes atoms that are not justifiably derivable. These models
improperly assign true to at least one in_atom variable.
We illustrate this in the context of conflict-free semantics,
though the same principle applies to other semantics as well.

Lemma 4. Let D = (L, R, A, ™) be any (possibly cyclic)
ABAF. Then, for every conflict-free extension of D, there ex-
ists a corresponding model of ®c .

Proof. Sketch of proof. Assume for contradiction that
a conflict-free extension has no corresponding model in
® . This would imply that the interpretation violates some
clause in @ . Such violation would mean either an atom is
derived without an applicable rule, or a rule is applied while
one of its premises is not derived, which is impossible. [

This lemma confirms that the models of ®cr cover
all valid extensions, making SAT-based CEGAR based on
under-approximation a viable strategy. To apply this ap-
proach, we begin by implementing the check function,
which determines whether a given model corresponds to a
valid extension. Fortunately, this step is straightforward: ex-
tract the assumptions set to true in the model, propagate
them in the ABAF, and verify that the derived atoms match
those tn_atom variables assigned t rue in the model.

Next, we define the refine function, which, given an in-
valid model, returns clauses to exclude it from future con-
sideration. Although negating invalid models is sufficient to
prevent the SAT solver from returning them again, we take
advantage of the nature of the problem to add a more re-
strictive set of clauses. This results in a potential decrease
in the total number of SAT calls. The key insight here is
that invalid models must include atoms marked as derived
(in-atom variables set to t rue) that are not actually deriv-
able from the assumptions.

Lemma 5. Let D = (L,R,A,~) be a general ABAF. If
a model of ®cr does not correspond to a conflict-free ex-
tension, then it includes at least one in_atom variable set
to true whose atom is not derivable from the model’s as-
sumed literals.

Proof. As shown in Lemma 3, any atom in the closure in-
duced by the model’s assumptions must be present in the
model. If the model does not correspond to an extension,
then at least one in_atom or in_rule variable (which im-
plies an in_atom variable) must be incorrectly set to t rue,
indicating the presence of a non-derivable atom. 0

In other words, we can eliminate an invalid model by en-
forcing that any in_atom variable incorrectly set to true
must instead be £alse under the current set of assumptions:
that is, it must remain false unless one of the missing as-
sumptions is included. This observation leads directly to the
formulation of Algorithm 1.

701

Algorithm 1: Compute an extension
Input : An ABAFD = (L, R, .A,7), a semantics
o € {cf, co,stb}
Output: A o-extension of D or & if none

1 & «+ encode (D, 0);
2 loop

3 w ¢ computeModel (®); // solve

4 if w = () then return &; // UNSAT
// check

5 assumptions ¢ modelAssumptions (w);

inAbaf ¢ closure (D, assumptions);
inModel < modelAtoms (w);

if inModel \ inAbaf = () then
| return inAbaf

// refine
foreach x in inModel \ inAbaf do

L ¢« PU {ﬂx \ \/ZGA\assumptions g}’

10
11

Algorithm 1 starts by computing the initial formula ¢
from the input ABAF and selected semantics, then enters
the main CEGAR loop. At line 3, the SAT solver is invoked
to determine whether ® has a model. If no model is found,
Lemma 4 guarantees that no extension exists, and the algo-
rithm terminates accordingly (line 4). This step corresponds
to the solve phase of the CEGAR framework in Figure 1.
If a model is found, the algorithm enters the check phase
by extracting the assumptions set to true (line 5). It then
computes the deductive closure of this assumption set in the
ABAF (line 6), and compares it with the set of atoms as-
signed true in the model (line 7). If these two sets match
the closure forms a valid extension, which is returned (lines
8-9). Thus, lines 5 to 9 implement the check routine of the
CEGAR framework.

If the model does not correspond to a valid extension,
the algorithm enters the refine phase (lines 10—11), which
adds constraints to eliminate the spurious model. The loop
then restarts with the refined formula. Each refinement step
eliminates at least one previously unseen incorrect model.
Since the number of possible interpretations is finite, the
loop must terminate after a finite number of iterations. Even-
tually, the formula will represent the problem precisely, with
all spurious models eliminated. Since our algorithm follows
the CEGAR framework and relies on a SAT solver that is
sound, complete, and terminating, our approach is also guar-
anteed to be sound, complete, and to terminate.

4 Experimental Evaluation

We implemented our approach in Rust, releasing the solver
publicly on GitHub?. For the CEGAR procedure, we se-
lected the CaDiCal. SAT solver (Biere et al. 2020) as the
underlying oracle. Maximal extension search for SE-pr and
DS-pr problems was handled using a standard CEGAR al-

*https://github.com/crillab/scalop/releases/tag/kr25

https://github.com/crillab/scalop/releases/tag/kr25

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

gorithm (Dvordk et al. 2014). To optimize performance, we
consistently used the same SAT solver instance incremen-
tally across different problem variants. Leveraging literal
assumptions allows temporary constraints to be added with-
out discarding learned clauses, which significantly acceler-
ates successive SAT solver calls common in CEGAR-based
approaches. In accordance with the assumption stated at the
start of Section 3, we preemptively identify and remove any
atoms that cannot be derived from the ABA assumptions
prior to computing extensions. This pruning step simplifies
the problem and can improve overall solver efficiency.

We evaluated our approach against state-of-the-art solvers
by replicating the experiments from the latest ICCMA com-
petition (Jérvisalo, Lehtonen, and Niskanen 2025). We se-
lected ASPFORABA and ACBAR as benchmarks since they
were the only solvers that participated in all ABA tracks
of the competition. Notably, ASPFORABA and ACBAR
ranked first and second across all tracks, respectively. Our
evaluation covered the same six tracks (DC-co, DC-stb,
DS-pr, DS-stb, SE-pr, and SE-stb), using the identical
set of 400 instances, the same acceptance query arguments,
and identical resource limits (1200 seconds of CPU time
and 32GB of memory) as in the competition. Execution
and resource enforcement were managed using the runsolver
tool (Roussel 2011). Each solver ran on an Intel(R) Xeon(R)
E5-2643 v4 CPU at 3.30 GHz, with Rocky Linux 9.5 (Linux
kernel 5.14) as the operating system. The development en-
vironment included Rust 1.86, GCC 11.5, and Python 3.11.

For our experiments, we used the instance set from the
ICCMA 2023 competition. However, as shown in Figure 2,
most instances were either solved almost instantly by ASP-
FORABA (the competition winner) or were too challeng-
ing, resulting in a limited number of instances suitable for
a meaningful comparison between ASPFORABA and our
approach. These instances were generated by a script pa-
rameterized by the number of atoms, with maximum val-
ues of 2000 and 5000. Upon closer analysis, we found that
instances with 2000 atoms were generally easy to solve,
while ASPFORABA tended to time out on instances with
5000 atoms. To better evaluate performance on medium-
difficulty problems, we generated additional instances with
3000 and 4000 atoms using the competition organizers’
script, producing 160 new instances (resulting in 960 ex-
periments across all tracks). We refer to the combined set
of original and new instances as ICCMA23+. All three
solvers were then tested on these newly generated medium-
difficulty benchmarks.

The results in Table 2 report the number of instances
solved by each approach. Across all benchmark sets, ASP-
FORABA consistently outperforms ACBAR, mirroring the
competition results. On the original ICCMAZ23 test suite, the
CEGAR approach shows comparable overall performance
to ASPFORABA. For half of the tracks (DC-co, DC-stb,
and SE-stb), ASPFORABA leads, while CEGAR performs
better on the remaining tracks. Notably, for each track,
the best solver is close to the Virtual Best Solver and each
solver exhibits strengths on different benchmark tracks, sug-
gesting that both methods have complementary strengths
with no significant performance gaps. Looking at the IC-

702

CMAZ23+ results (Table 2 and Figure 2), our approach ben-
efits from the addition of medium-difficulty instances. It
surpasses ASPFORABA on DC-co and SE-stb tracks, al-
though ASPFORABA retains a slight edge on DC-stb. Im-
portantly, on tracks related to preferred semantics, our ap-
proach clearly outperforms ASPFORABA. We attribute this
to the fully incremental use of the SAT solver in comput-
ing (SE-pr) and enumerating (DS-pr) preferred extensions.
Both CEGAR loops share the same solver, which leverages
learned clauses and literal assumptions. As a result, knowl-
edge gained during maximal model search enhances exten-
sion computation, and vice versa, leading to improved over-
all efficiency.

1,200
1,000
< 800
m
<
g 600
i
<9
%
< 400
s
200 @ s [CCMA23
o [CCMA23+ only
0 | I
0 300 600 900 1,200
CEGAR
Figure 2: Scatter plot comparing the CPU times of ASP-

FORABA and CEGAR. For each instance, the x-coordinate (resp.
y-coordinate) of the plot shows the CPU time required by CEGAR
(resp. ASPFORABA). Plots on the top or right lines are instances
for which at least one solver reached the timeout. "ICCMA23+
only” refers to [ICCMA23+ \ ICCMA23.

The effectiveness of our approach may depend on how
many calls to the SAT oracle are required to obtain a correct
extension or prove that none exist. To investigate this, we
examined the number of calls necessary to obtain a correct
extension (or conclude that none exist) across the 5,238 suc-
cessful computations using our method. The results show
that the number of SAT calls required is surprisingly low:
no instance needed more than 10 calls. Specifically, the dis-
tribution is heavily skewed towards very few calls, with most
instances requiring just 1 (4,828, half of them returning UN-
SAT) or 2 calls (335), and only a handful needing between 3
and 10 calls. This demonstrates that our approach efficiently
converges in practice. The efficiency of our approach is
partly due to the fact that nearly half of the successful solver
calls yield UNSAT, effectively pruning the search. Theo-
retically, the number of calls could be as large as |£|/2, for
example in scenarios involving a single empty extension and
|£]/2 pairs of atoms that self-derive. However, the prepro-
cessing step introduced in Section 3, which removes atoms
that cannot be derived from the assumptions, often suffices

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

Solver Instances DC-co DC-stb DS-pr DS-stb SE-pr SE-stb

ACBAR ICCMA23 233 (1026.1) 237 (1001.5) 229 (1058.8) 238(996.3) 230(1047.2) 238 (997.7)
ASPFORABA ICCMA23 381 (119.7) 383 (104.4) 375(159.6) 381 (117.4) 377 (145.6) 381 (118.3)
CEGAR ICCMA23 379 (130.3) 381 (115.0) 380 (126.8) 382 (114.7) 381 (122.5) 380 (123.5)
VBS ICCMA23 381 (117.0) 383 (102.8) 381(120.1) 383 (108.4) 383 (111,7) 382 (111,9)
ACBAR ICCMA23+ 233 (1418.6) 237 (1401.0) 229 (1442.0) 238 (1397.4) 230 (1433.7) 238(1398.3)
ASPFORABA ICCMA23+ 514 (211.3) 526(162.4) 499 (274.4) 519 (188.5) 504 (255.1) 517 (195.7)
CEGAR ICCMA23+ 515(204.1) 523 (169.2) 517 (206.0) 522 (173.5) 520 (193.6) 522 (175.2)
VBS ICCMA23+ 519(187.2) 526 (157.6) 519(197.0) 524 (166.4) 524 (179.4) 524 (167.0)

Table 2: Number of instances (and average PAR2 scores) from the ICCMA23 and ICCMA2 3+ benchmark sets solved before the timeout.
For each instance, the PAR2 score is equal to the solver’s CPU time in case of success or twice the timeout otherwise.

to break such cycles. This preprocessing likely contributes
significantly to the low number of SAT calls in practice.

Finally, we compared our refine implementation with
the naive one where the negation of the incorrect model is
added to the CNF formula. From a theoretical standpoint,
our counter-example construction can eliminate exponen-
tially more spurious models than simply negating the current
model. In practice, the results are somewhat more mixed:
One benchmark instance was solved by our strategy but not
by the naive one. Average PAR?2 scores were slightly worse
(by less than one point) when using the naive strategy, ex-
cept under the preferred semantics, where the difference was
more pronounced, six points for DS-pr and eight points for
SE-pr. This discrepancy can be partially attributed to the
fact that one fewer instance was solved. Regarding SAT or-
acle usage, most extension searches require very few calls:
91.85% of cases need only one call, and 99.25% require at
most five. However, there are outlier cases with a higher
number of calls (up to 33).

5 Conclusion and Perspectives

We have presented a novel approach for solving classi-
cal reasoning tasks in Assumption-Based Argumentation
(ABA). Unlike state-of-the-art methods that translate ABA
into other formalisms before applying SAT solving, our
approach directly leverages SAT solvers within a CEGAR
framework. This design effectively addresses challenges re-
lated to circularities in literal derivations inherent to ABA,
avoiding incorrect results. Empirically, our method requires
only a small number of calls to the SAT solver and demon-
strates superior performance compared to other approaches
on standard ABA benchmarks. Notably, it performs es-
pecially well on the more challenging preferred semantics,
which are known for their computational complexity.
Looking forward, several avenues merit exploration. One
promising direction is to investigate whether, in certain
cases, subsequent SAT calls can be further optimized or
even eliminated by simply retaining and managing the ex-
cess atoms identified during the refinement steps. Moreover,
it would be valuable to adapt our approach to other diffi-
cult ABA semantics characterized by maximality notions,
such as the semi-stable (Caminada 2006b), stage (Verheij
1996) or ideal (Dung, Mancarella, and Toni 2007) seman-

703

tics. Additionally, understanding why some instances pose
challenges for our solver while being efficiently solved by
competitors like ASPFORABA could yield insights to sub-
stantially improve our solver’s efficiency. Finally, extending
our method beyond flat ABA frameworks to handle the more
general and expressive non-flat ABA frameworks represents
an exciting and important future challenge.

Acknowledgements
The third author is funded by the French National Re-
search Agency under grants AGGREEY (ANR-22-CE23-
0005) and AIDAL (ANR-22-CPJ1-0061-01).

References
Audemard, G.; Lagniez, J.; Marquis, P.; and Szczepanski,
N. 2024. On the computation of example-based abduc-
tive explanations for random forests. In Proceedings of the
Thirty-Third International Joint Conference on Artificial In-
telligence, IJCAI 2024, Jeju, South Korea, August 3-9, 2024,
3679-3687. ijcai.org.

Baroni, P.; Gabbay, D.; Giacomin, M.; and van der Torre, L.,
eds. 2018. Handbook of Formal Argumentation, volume 1.
College Publications.

Besin, V.; Hecher, M.; and Woltran, S. 2022. Body-
decoupled grounding via solving: A novel approach on the
ASP bottleneck. In Raedt, L. D., ed., Proceedings of the
Thirty-First International Joint Conference on Artificial In-
telligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022,
2546-2552. ijcai.org.

Besnard, P.; Garcia, A. J.; Hunter, A.; Modgil, S.; Prakken,
H.; Simari, G. R.; and Toni, F. 2014. Introduction to struc-
tured argumentation. Argument Comput. 5(1):1-4.

Beth, E. 1953. On padoa’s method in the theory of defi-

nition. Indagationes Mathematicae (Proceedings) 56:330—
339.

Biere, A.; Fazekas, K.; Fleury, M.; and Heisinger, M. 2020.
CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling
entering the SAT Competition 2020. In Balyo, T.; Froleyks,
N.; Heule, M.; Iser, M.; Jarvisalo, M.; and Suda, M., eds.,
Proc. of SAT Competition 2020 — Solver and Benchmark
Descriptions, volume B-2020-1 of Department of Computer
Science Report Series B, 51-53. University of Helsinki.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2021. Handbook of Satisfiability - Second Edition, volume

336 of Frontiers in Artificial Intelligence and Applications.
IOS Press.

Bondarenko, A.; Dung, P. M.; Kowalski, R. A.; and Toni,
F. 1997. An abstract, argumentation-theoretic approach to
default reasoning. Artif. Intell. 93:63-101.

Brummayer, R., and Biere, A. 2009. Lemmas on demand for
the extensional theory of arrays. J. Satisf. Boolean Model.
Comput. 6(1-3):165-201.

Caminada, M. 2006a. On the issue of reinstatement in argu-
mentation. In Fisher, M.; van der Hoek, W.; Konev, B.; and
Lisitsa, A., eds., Logics in Artificial Intelligence, 10th Eu-
ropean Conference, JELIA 2006, Liverpool, UK, September
13-15, 2006, Proceedings, volume 4160 of Lecture Notes in
Computer Science, 111-123. Springer.

Caminada, M. 2006b. Semi-stable semantics. In Dunne,
P. E., and Bench-Capon, T. J. M., eds., Computational Mod-
els of Argument: Proceedings of COMMA 2006, September
11-12, 2006, Liverpool, UK, volume 144 of Frontiers in Ar-
tificial Intelligence and Applications, 121-130. 10S Press.

Chu, Y., and Xia, Q. 2005. A hybrid algorithm for a class
of resource constrained scheduling problems. In Bartdk, R.,
and Milano, M., eds., Integration of Al and OR Techniques
in Constraint Programming for Combinatorial Optimization
Problems, Second International Conference, CPAIOR 2005,
Prague, Czech Republic, May 30 - June 1, 2005, Proceed-
ings, volume 3524 of Lecture Notes in Computer Science,
110-124. Springer.

Clarke, E. M.; Gupta, A.; and Strichman, O. 2004. Sat-based
counterexample-guided abstraction refinement. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 23(7):1113-1123.

Cyras, K.; Fan, X.; Schulz, C.; and Toni, F. 2017.
Assumption-based argumentation: Disputes, explanations,
preferences. FLAP 4(8).

Cyras, K.; Oliveira, T.; Karamlou, A.; and Toni, F.
2021. Assumption-based argumentation with preferences
and goals for patient-centric reasoning with interacting clin-
ical guidelines. Argument Comput. 12(2):149-189.

Cyras, K.; Heinrich, Q.; and Toni, F. 2021. Computa-
tional complexity of flat and generic assumption-based ar-
gumentation, with and without probabilities. Artif. Intell.
293:103449.

de Moura, L. M.; RueB, H.; and Sorea, M. 2002. Lazy the-
orem proving for bounded model checking over infinite do-
mains. In Voronkov, A., ed., Automated Deduction - CADE-
18, 18th International Conference on Automated Deduction,
Copenhagen, Denmark, July 27-30, 2002, Proceedings, vol-
ume 2392 of Lecture Notes in Computer Science, 438—455.
Springer.

Dung, P. M.; Mancarella, P.; and Toni, F. 2007. Computing
ideal sceptical argumentation. Artif. Intell. 171(10-15):642—
674.

Dung, P. M.; Thang, P. M.; and Hung, N. D. 2010. Modular
argumentation for modelling legal doctrines of performance
relief. Argument Comput. 1(1):47-69.

704

Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artif. Intell. 77(2):321-358.

Dvordk, W., and Dunne, P. E. 2018. Computational prob-
lems in formal argumentation and their complexity. In Ba-
roni, P.; Gabbay, D.; Giacomin, M.; and van der Torre, L.,
eds., Handbook of Formal Argumentation. College Publica-
tions. 631-688.

Dvorak, W.; Jarvisalo, M.; Wallner, J. P.; and Woltran, S.
2014. Complexity-sensitive decision procedures for abstract
argumentation. Artif. Intell. 206:53-78.

Fan, X.; Craven, R.; Singer, R.; Toni, F.; and Williams,
M. 2013. Assumption-based argumentation for decision-
making with preferences: A medical case study. In Leite,
J.; Son, T. C.; Torroni, P.; van der Torre, L.; and Woltran,
S., eds., Computational Logic in Multi-Agent Systems -
14th International Workshop, CLIMA X1V, Corunna, Spain,
September 16-18, 2013. Proceedings, volume 8143 of Lec-
ture Notes in Computer Science, 374-390. Springer.

Fan, X.; Liu, S.; Zhang, H.; Leung, C.; and Miao, C.
2016. Explained activity recognition with computational
assumption-based argumentation. In Kaminka, G. A.; Fox,
M.; Bouquet, P.; Hiillermeier, E.; Dignum, V.; Dignum, F,;
and van Harmelen, F., eds., ECAI 2016 - 22nd European
Conference on Artificial Intelligence, 29 August-2 Septem-
ber 2016, The Hague, The Netherlands - Including Pres-
tigious Applications of Artificial Intelligence (PAIS 2016),
volume 285 of Frontiers in Artificial Intelligence and Appli-
cations, 1590-1591. I0S Press.

Gebser, M.; Kaufmann, B.; Kaminski, R.; Ostrowski, M.;
Schaub, T.; and Schneider, M. 2011. Potassco: The potsdam
answer set solving collection. AI Commun. 24(2):107-124.

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers.

Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Wanko, P. 2016. Theory solving made easy
with clingo 5. In Carro, M.; King, A.; Saeedloei, N.; and
Vos, M. D., eds., Technical Communications of the 32nd In-
ternational Conference on Logic Programming, ICLP 2016
TCs, October 16-21, 2016, New York City, USA, volume 52
of OASIcs, 2:1-2:15. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik.

Hooker, J. N. 1994. Logic-based methods for optimization.
In Borning, A., ed., Principles and Practice of Constraint
Programming, Second International Workshop, PPCP’94,
Rosario, Orcas Island, Washington, USA, May 2-4, 1994,
Proceedings, volume 874 of Lecture Notes in Computer Sci-
ence, 336-349. Springer.

Hooker, J. N. 2005. A hybrid method for the planning and
scheduling. Constraints An Int. J. 10(4):385-401.

Janota, M.; Klieber, W.; Marques-Silva, J.; and Clarke,
E. M. 2016. Solving QBF with counterexample guided re-
finement. Artif. Intell. 234:1-25.

Jarvisalo, M.; Lehtonen, T.; and Niskanen, A. 2023. Design

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

of ICCMA 2023, 5th international competition on compu-
tational models of argumentation: A preliminary report (in-
vited paper). In Cocarascu, O.; Doutre, S.; Mailly, J.; and
Rago, A., eds., Proceedings of the First International Work-
shop on Argumentation and Applications co-located with
20th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2023), Rhodes, Greece,
September 2-8, 2023, volume 3472 of CEUR Workshop Pro-
ceedings, 4-10. CEUR-WS.org.

Ji, X., and Ma, F. 2012. An efficient lazy SMT solver for
nonlinear numerical constraints. In Reddy, S., and Drira,
K., eds., 21st IEEE International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
WETICE 2012, Toulouse, France, June 25-27, 2012, 324—
329. IEEE Computer Society.

Jarvisalo, M.; Lehtonen, T.; and Niskanen, A. 2025. Iccma
2023: 5th international competition on computational mod-
els of argumentation. Artificial Intelligence 342:104311.

Kaufmann, B.; Leone, N.; Perri, S.; and Schaub, T. 2016.
Grounding and solving in answer set programming. Al Mag.
37(3):25-32.

Lagniez, J.-M.; Lonca, E.; and Mailly, J.-G. 2015. Co-
QuiAAS: A constraint-based quick abstract argumentation
solver. In 27th IEEE International Conference on Tools with
Artificial Intelligence, ICTAI 2015, Vietri sul Mare, Italy,
November 9-11, 2015, 928-935. IEEE Computer Society.

Lagniez, J.; Lonca, E.; and Marquis, P. 2016. Improving
model counting by leveraging definability. In Kambhampati,
S., ed., Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IICAI 2016, New York,
NY, USA, 9-15 July 2016, 751-757. IJCAI/AAAI Press.

Lagniez, J.; Lonca, E.; and Marquis, P. 2020. Definability
for model counting. Artif. Intell. 281:103229.

Lehtonen, T.; Rapberger, A.; Ulbricht, M.; and Wallner, J. P.
2023a. Argumentation frameworks induced by assumption-
based argumentation: Relating size and complexity. In In-
ternational Conference on Principles of Knowledge Repre-
sentation and Reasoning, 440-450. International Joint Con-
ferences on Artificial Intelligence.

Lehtonen, T.; Rapberger, A.; Ulbricht, M.; and Wallner, J. P.
2023b. Argumentation frameworks induced by assumption-
based argumentation: Relating size and complexity. In
Marquis, P; Son, T. C.; and Kern-Isberner, G., eds., Pro-
ceedings of the 20th International Conference on Princi-
ples of Knowledge Representation and Reasoning, KR 2023,
Rhodes, Greece, September 2-8, 2023, 440-450.

Lehtonen, T.; Rapberger, A.; Toni, F.; Ulbricht, M.; and
Wallner, J. P. 2024. On computing admissibility in ABA.
In Reed, C.; Thimm, M.; and Rienstra, T., eds., Computa-
tional Models of Argument - Proceedings of COMMA 2024,
Hagen, Germany, September 18-20, 2024, volume 388 of
Frontiers in Artificial Intelligence and Applications, 121-
132. IOS Press.

Lehtonen, T.; Wallner, J. P.; and Jarvisalo, M. 2021la.
Declarative algorithms and complexity results for

assumption-based argumentation. J. Artif. Intell. Res.
71:265-318.

705

Lehtonen, T.; Wallner, J. P.; and Jarvisalo, M. 2021b.
Harnessing incremental answer set solving for reasoning in
assumption-based argumentation. Theory Pract. Log. Pro-
gram. 21(6):717-734.

Niskanen, A., and Jérvisalo, M. 2020. p-toksia: An efficient
abstract argumentation reasoner. In Calvanese, D.; Erdem,
E.; and Thielscher, M., eds., Proceedings of the 17th Inter-
national Conference on Principles of Knowledge Represen-
tation and Reasoning, KR 2020, Rhodes, Greece, September
12-18, 2020, 800-804.

Rapberger, A., and Ulbricht, M. 2023. On dynamics in
structured argumentation formalisms. J. Artif. Intell. Res.
77:563-643.

Rapberger, A., and Ulbricht, M. 2024. Repairing
assumption-based argumentation frameworks. In Marquis,
P.; Ortiz, M.; and Pagnucco, M., eds., Proceedings of the
21st International Conference on Principles of Knowledge

Representation and Reasoning, KR 2024, Hanoi, Vietnam.
November 2-8, 2024.

Riva, S.; Lagniez, J.; Lépez, G. M.; and Paulevé, L. 2023.
Tackling universal properties of minimal trap spaces of
boolean networks. In Pang, J., and Niehren, J., eds., Com-
putational Methods in Systems Biology - 21st International
Conference, CMSB 2023, Luxembourg City, Luxembourg,
September 13-15, 2023, Proceedings, volume 14137 of Lec-
ture Notes in Computer Science, 157-174. Springer.

Roussel, O. 2011. Controlling a solver execution with the
runsolver tool. J. Satisf. Boolean Model. Comput. 7(4):139—
144.

Schulz, C., and Toni, F. 2017. Labellings for assumption-
based and abstract argumentation. International Journal of
Approximate Reasoning 84:110-149.

Schwind, N.; Demirovic, E.; Inoue, K.; and Lagniez, J.
2023. Algorithms for partially robust team formation. Au-
ton. Agents Multi Agent Syst. 37(2):22.

Sebastiani, R. 2007. Lazy satisability modulo theories. J.
Satisf. Boolean Model. Comput. 3(3-4):141-224.

Strass, H.; Wyner, A.; and Diller, M. 2019. EMIL: Extract-
ing meaning from inconsistent language: Towards argumen-
tation using a controlled natural language interface. Int. J.
Approx. Reason. 112:55-84.

Stuckey, P. J. 2010. Lazy clause generation: Combining
the power of SAT and CP (and mip?) solving. In Lodi,
A.; Milano, M.; and Toth, P, eds., Integration of Al and
OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems, 7th International Conference,
CPAIOR 2010, Bologna, Italy, June 14-18, 2010. Proceed-
ings, volume 6140 of Lecture Notes in Computer Science,
5-9. Springer.

Thimm, M. 2025. The international competition on
computational models of argumentation website. https:
/largumentationcompetition.org [Accessed: 28/05/2025].

Toni, F. 2014. A tutorial on assumption-based argumenta-
tion. Argument Comput. 5(1):89-117.

Tran, T. T., and Beck, J. C. 2012. Logic-based benders
decomposition for alternative resource scheduling with se-

https://argumentationcompetition.org
https://argumentationcompetition.org

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR and Constraints

quence dependent setups. In Raedt, L. D.; Bessiere, C.;
Dubois, D.; Doherty, P.; Frasconi, P.; Heintz, F.; and Lu-
cas, P.J.F,, eds., ECAI 2012 - 20th European Conference on
Artificial Intelligence. Including Prestigious Applications of
Artificial Intelligence (PAIS-2012) System Demonstrations
Track, Montpellier, France, August 27-31 , 2012, volume
242 of Frontiers in Artificial Intelligence and Applications,
774-779. 10S Press.

Verheij, B. 1996. Two approaches to dialectical argumenta-
tion: admissible sets and argumentation stages. In Proc. of
BNAIC’96.

Wallner, J. P.; Niskanen, A.; and Jarvisalo, M. 2017. Com-
plexity results and algorithms for extension enforcement in
abstract argumentation. J. Artif. Intell. Res. 60:1-40.

706

	Introduction
	Preliminaries
	Assumption-based Argumentation
	Preliminaries on Propositional Logic and SAT
	Counterexample-Guided Abstraction Refinement
	State-of-the-art ABA Solvers

	SAT-based Algorithms for ABA
	The Acyclic Case
	The General Case

	Experimental Evaluation
	Conclusion and Perspectives

