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Abstract

Description Logics (DLs) excel at representing structured
knowledge in several application domains, but fall very short
when it comes to reasoning about their numeric aspects. We
consider the expressive DL ALCHOZQ with closed predi-
cates and extend it with features ranging over user-specified
finite numeric intervals, feature assertions, and local addi-
tive constraints on feature values. We illustrate the power of
this language for describing problems that involve ontologi-
cal and numeric reasoning and study reasoning problems that
go beyond satisfiability, such as finding models that minimize
some costs. We show that these additional numeric model-
ing and reasoning capabilities can be accommodated by ex-
tending a standard reasoning technique for ALCHOZQ us-
ing linear inequalities, and the extension does not necessarily
increase the worst-case computational cost.

1 Introduction

Description Logics (DLs) have proven to be excellent for-
malisms for describing different domains and reasoning
about them. In DLs, domain knowledge is modeled us-
ing concepts, which represent sets of objects of the same
class, and roles, which represent relations between pairs of
objects. Different DLs provide different constructs to build
complex concept descriptions in terms of simpler concepts
and roles, and a detailed understanding of the tradeoff be-
tween expressiveness and complexity supports a problem-
dependent choice of an adequate language. For example,
in the basic ALC we can use the concept names Employee
and Project, and the role name assignedTo, to describe as
Employee—(3 assignedTo.Project) the employees that are
not assigned to a project. These expressions can be used in
concept inclusions in a knowledge base to assert, for exam-
ple, that all employees who are not in the administrative or
executive category must be assigned to some project.

Employee M —(Admin LI Exec) C 3 assigned To.Project

The DL community has studied some very rich languages
with convenient and succinct constructs for describing so-
phisticated domains. For example, ALCHOZQ extends the
basic DL ALC with inverse roles, number restrictions and
nominals, which we can use to say that all projects except
p1 must have at least three employees assigned.

Project M —={p1} C > 3assignedTo™ .Employee
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The DL we consider in this paper goes further and allows
us to say that certain concepts and roles are closed, which
means that we are given their extension explicitly, and no
further objects can be added. E.g.,if the concept Project
is closed and the projects p1, p2 and ps are listed in the
knowledge base, then we know that these are the project
employees must be assigned to one of the three, and not to
some other unlisted project. ALCHOZQ with closed pred-
icates is among the most flexible knowledge representation
languages and it has been shown decidable, and reasoning
techniques and worst-case upper bounds are available.

However, a significant weakness of DLs—even of very
expressive ones like ALCHOTZQ with closed predicates—is
their very limited support for numeric constraints and quan-
titative reasoning. In many applications, one would like to
be able to refer to integers or real numbers and basic compar-
isons between them. We can describe complex requirements
on the assignment of employees to projects, as we have illus-
trated, but we cannot reason about the number of hours that
employees work for a project, or verify that the sum of the
monthly salary of all employees assigned to a project does
not exceed the corresponding budget. Standard DLs can-
not express this type of quantitative constraints, and adding
them is far from easy. DLs adopt the open-world seman-
tics of classical predicate logic, and their support for exis-
tential quantification enables DLs to describe (often infinite)
sets of unnamed objects. In the presence of these open do-
mains, even simple numeric reasoning easily becomes com-
putationally very costly, or even undecidable.

Overcoming this limitation is a long-standing challenge
that has received significant attention since the early days
of DL research. The most prominent line of work here is
concrete domains (Baader and Hanschke 1991). Addition-
ally to concepts and roles, we use concrete features such as
age, salary, size, etc. to relate objects to values from a do-
main, like the reals or the integers, for example. A fixed
set of predicates over these domains, such as addition and
comparisons, can then be used to incorporate numeric con-
straints into concept descriptions. DLs with concrete do-
mains are very powerful, but this comes at a high compu-
tational cost. Strong restrictions must be imposed on the
concrete domains to preserve decidability (see (Borgwardt,
De Bortoli, and Koopmann 2024; Lutz 2002) and their ref-
erences). Most works require the so-called w-admissibility,
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which in a nutshell guarantees that the infinite systems of
constraints that may arise when reasoning about infinite
models can be effectively decided. We have tight bounds for
standard reasoning tasks like concept satisfiability and in-
stance checking for expressive DLs with w-admissible con-
crete domains (Borgwardt, De Bortoli, and Koopmann 2024;
Lutz 2002)—and even a few isolvated results for non-w-
admissible ones (Labai, Ortiz, and Simkus 2020; Demri and
Quaas 2023)—but those works focus on worst-case bounds
and generic restrictions that preserve decidability many do-
mains, rather than on their practical usability. In contrast, ef-
forts to support powerful and useful domains by restricting
the interaction with the logics, and practicable algorithms
for them, have been extremely limited (Haarslev, Mdller,
and Wessel 2001; Pan and Horrocks 2002).

When DLs are extended with numeric features, many
novel and natural reasoning problems arise. For example,
if a feature corresponds to a cost, it is natural to minimize
it: a company may not only be interested in staying within a
given budget when fulfilling certain requirements, but may
naturally want to minimize their cost. Given the open do-
mains of DLs, the cost associated to a specific feature may
not always be finite, so it is natural to ask whether the KB
can be satisfied while guaranteeing that certain cost remains
bounded, or below a certain value. Popular reasoning prob-
lems such as concept satisfiability, instance checking and
query answering can all be defined in terms of optimal mod-
els. Additionally, we can ask what values certain features
might take when other features are optimized. Despite their
evident potential, to our knowledge, this kind of numeric
reasoning service has not yet been developed for DLs.

In this paper we take a pragmatic approach and enhance
very expressive DLs with simple yet useful numeric reason-
ing capabilities, and propose a toolbox of reasoning services
that seamlessly integrate ontological and numeric reasoning.
We use features to assign numeric values to domain objects,
and the concept descriptions in our knowledge bases may
comprise constraints on the sums of the feature values in the
neighborhood of objects. As usual in DLs, domains may be
arbitrarily large, but we require a finite bound on the range
of possible feature values of each object. In this way, decid-
ability is not compromised, even in very expressive DLs like
ALCHOTZQ and its extension with closed predicates. Rea-
soning in our numeric extension can be seamlessly achieved
with the standard reasoning algorithm for ALCHOZQ with
closed predicates by reduction to a system of linear inequal-
ities. We identify some conditions on the numeric ranges
that guarantee that the worst-case complexity of reasoning
is not higher than for plain ALCHOZQ. A highlight of
our approach is its natural support for many novel reasoning
services, thus revealing a new tool for flexible quantitative
inference in the presence of rich ontological knowledge.

2 Preliminaries

Description Logics. We refer to (Baader et al. 2017) for pre-
liminaries on Description Logics. Let No, Ng, and N be
countably infinite, mutually disjoint sets of concept names,
role names, and individuals, respectively. An assertion (or,
fact) is an expression of the form r(a,b), —r(a,b), A(b)
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or A(b), where r € N, A € N¢, and a,b € N;. An
ABox A is a finite set of assertions. We next recall the DL
ALCHOZQ. Let NE denote the set of roles defined as fol-

lows: N; = {p,p~ | p € Ng}. With a slight abuse of nota-
tion, we write 7~ to denote p~ if r = p,and pif r = p—, for
p € Ng. Therole r~ is the inverse of r. If o € Ny, then {0}
is called a nominal, and the set Ng of basic concepts is de-
fined as Ny = Nc U {{o} | 0 € Ny} U{T, L}. (Complex)
concepts are defined according to the following syntax:

c:=A|Ccnc|cuc|-C|{o}|FIr.C|V¥r.C|onrC,
where A € No,0 € Ni,r € N, and o € {<,>}. Axioms
take the forms C' C D (concept inclusions) and r C p (role
inclusions), where C, D are concepts and r, p are roles. A
TBox is a finite set of axioms. A knowledge base (KB) is a
tuple £ = (7, %, A), where T is a TBox, ¥ C Ng U Ny is
a set of closed predicates and A is an ABox.

We use No(X), N& (X), Np(X), Nit (X), N (X) to, re-
spectively, denote the concept names, basic concepts, role
names, roles, and individuals that occur in X', where X is
an ABox, a TBox, or a KB. The semantics of TBoxes and
ABoxes as given above is defined in the standard way via
first-order interpretations of the form Z = (AZ,.Z). Given
an interpretation Z, d € A and r € Nj, an element
e € AT is an r-neighbor of d if (d,e) € r. The neigh-
borhood of an element d is the set of all its r-neighbors,
with r € Nji. We say that Z satisfies a KB K = (7,3, A),
in symbols Z E K, if Z satisfies 7 and A and (i) for each
A€, AT = {a| A(a) € A,A € ¥ N N¢}, and (ii) for
eachr € ¥, rf = {(a,b) | r(a,b) € A,r € N Ng}. See
(Lukumbuzya, Ortiz, and Simkus 2024) for more details. Fi-
nally, we make the standard name assumption (SNA).
Enriched Integer Linear Programs. An integer linear in-
equality is an expression of the form a1z + - -+ + apx, <
biy1 + ...bmym, where ai,...,a,,b1,...,b, are non-
negative integer coefficients and x1,...,Zn, Y1, .., Ym are
variables. A system of integer linear inequalities is a tuple
(V, &), where V is a set of variables and & is a set of inte-
ger linear inequalities in the variables from V. An integer
linear program (ILP) 11 is a tuple (V, &, mincizy + -+ +
Cny), where (V,€) is a system of integer linear inequali-
ties, ¢y, . . ., ¢, are integer coefficients and z1,...,z, € V.
The expression min ¢y x1 + - - - 4+ ¢, &, 1S the objective func-
tion of II. Given a numeric domain D and a system of
inequalities S = (V,&), a function S : V. — Dis a
solution to S over D if, for all variables x € V, sub-
stituting S(x) for = satisfies the inequalities of £. For
the ILP II (V,€, mincyzy + -+ + ¢pxy), the value
c1S(x1) + ... ey S(xy) is the objective value of S. We say
that S is an optimal solution of II if there is no other solu-
tion S’ such that the objective value of S’ is smaller than the
objective value of S. The objective value of S is then called
the optimal value of 11.

An enriched system (of integer linear inequalities) is a
tuple (V, &, I), where (V, ) is a system of integer linear in-
equalities and [ is a set of implications of the form ¢; = g2
with ¢; and ¢ linear inequalities whose variables are in V.
Enriched integer linear programs (EILPs) are defined simi-
larly to ILPs but use enriched systems. All other notions are
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defined analogously.

For our purposes, we will be interested in solving en-
riched systems over N* = N U {X(}, where X represents
infinity. We extend the total order < over N to total order
over N* by setting n < N, for every n € N and Ry < N;
arithmetic operations are extended to N* as usual.

Propgsition 1. (Gogacz et al. 2019; Lukumbuzya, Ortiz,
and Simkus 2024) Given a finite enriched system S
(V,E,1) in which all coefficients are in {0,+1,...,+a},
the following hold:

1. If (V,&,1) has a solution over N, then it also has a solu-
tion over N where all values are bounded by (|V | + |€]| +
1) - (([€] + [1]) - @) 2T,

2. If (V,E,1I) has a solution over N*, then it also has a
solution over N* where all finite values are bounded by
(VI+IEN+ 1) - (€] + 1]) - a)> DL,

3. Deciding whether S has a solution over N* (resp. N) is
in NP,

The following result follows from (Lukumbuzya and
Simkus 2021) and (Papadimitriou 1981)

Proposition 2. Consider a finite EILP 11
(V,E,I,minciz1 + -+ + cpy) in which all coefficients
are in {0,£1,...,%+a}. Deciding whether 11 has a finite
optimal value is possible in coNP. If 11 has a finite optimal
value b, then [ < 1" |ei|- [VI2((€] +|2])a)2€1TD+2,

3 Adding Numeric Features

In this section we present our formalism that enriches stan-
dard DLs (with closed predicates) with numeric features.
We begin with a short motivating scenario, which serves as
a running example for this section.

Example 1. Consider a scenario in which someone wants to
set up a new company. According to the financial plan, they
have a yearly expense budget to comply with. For simplic-
ity, we assume that they need to hire three different types of
employees: at least one executive officer, one administrative
employee, and one regular employee; other TBox axioms
and ABox assertions could describe the projects planned
for the first year and the corresponding personnel require-
ments. Each employee category comes with a predefined
range for the salary, which can be negotiated and adapted
to the level of expertise and is a monthly expense for the
company. The employees will be given office space and the
necessary equipment, thus the company has to take care of
monthly rent and one-time equipment costs.

{comp} C Thire.Exec M Fhire.Adm 11 Shire.RegEmpl

Empl C JhasOff.Office M JhasEq.Laptop M JhasEq.Desk

Exec U Adm U RegEmpl T Empl
Laptop LI Desk C Equipment

We omit the axioms stating the disjointness between employ-
ees, equipment, offices, etc. Further knowledge about the
company and its requirements may be expressed in the TBox
and ABox, and a DL reasoner may be used to find possible
solutions to the requirements. But we do not have a direct
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way of modeling individual salaries, costs of equipment and
office space, maximum occupancies of offices, and no means
of ensuring that the company’s budget is respected.

We want to enrich DLs so that, in scenarios like the above,
we can describe and reason about numeric aspects like costs.
For example, we want to be able to assign possible salaries
to employees within the described ranges, and control how
some feature values for the objects compare to aggregated
feature values of its neighbors. For example, we would like
the sum of yearly salaries of the employees of the company
comp not to exceed the pre-determined yearly budget.
Syntax. We define our DL extension to standard DLs, which
is expressive enough to model our example and, as we dis-
cuss below, it remains decidable. We introduce features,
which assign numeric values to domain elements, and a new
form of concept expressions that restricts the values of the
sums of features in the neighborhood of an object.

Definition 1. Let £ be a DL (possibly with closed predi-
cates), and let Nr be a countably infinite set of features,
disjoint from N¢o, Nr and Nj. A feature annotation « is
a partial function from Nér X Np to finite discrete subsets
of the non-negative rationals Q* U {0}. We call the set
D = «(B, f) the domain of feature f for B.

A neighborhood restriction fakes the form

wo +wr Y filr1.Cil 4 wn Y falrnColowf,

where o € {<,<,> >}, rq,...,1y, are roles, Cy,...,Cy
are concepts, f, f1,..., fn are features, and w, w1, ..., w,
are non-negative rational numbers. Concepts in LNY are
defined as for L, but allowing also neighborhood restric-
tions. An annotated KB in LNY is defined as a 4-tuple
K = (T,%,a,A), where (T,%,A) is an LNF KB with
closed predicates and o is a feature annotation function. In
the following, we refer to an annotated KB simply as KB.

The idea behind our formalism is as follows. The fea-
ture annotation function o determines the set D of values
that objects participating in a basic concept A can take as
the value of feature f. In our case, we restrict our atten-
tion to sets D that consist of finitely many, non-negative
rational values. We may specify D by a minimum and
a maximum value together with a fixed ‘step size’, e.g.,
D =10,1,40.25] = {0,0.25,0.5,0.75,1}. In our exam-
ple, a(Exec, salary) = [3.5,5.5,+0.1] indicates that exec-
utive employees can have their salary-value anywhere be-
tween 3.5k and 5.5k, with increases of 100€. Note that «
is a partial function, meaning that a(A, f) may not be de-
fined. For instance, we may not want to prescribe values for
a(Office, salary), since offices have no salary. We will see
below that features will be interpreted as partial functions,
and domain objects whose f is not prescribed will have an
undefined f value. The intuitive meaning of « is that, if
a(A, f) is defined, then, in every model of the KB, an ob-
ject in A must pick exactly one value from «(A, f) as its
f-value. An expression X f[r.C] intuitively stands for sum
of the f-values of all r-neighbors satisfying the concept C.

Example 2. In our example scenario, we can use the ex-
tended syntax to assign salaries, costs, and budget con-
straints for the company. We let K = (T,%, «, A), where
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T, %, and A are as described in the KB of Example 1, and
additionally we have a feature annotation o with

a(Exec, salary) = [3.5,5.5, +0.1],

a(Adm, salary) = [2.2,3.1,40.1],
a(RegEmpl, salary) = [3.1,4.5,4+0.1],
a(Office, capacity) = [0, 6, +1],
a(Office, rent) = [0.3,0.6,40.05],
a(Laptop, cost) = [0.5,2, +0.05],
a(Desk, cost) = {0.2},

a({comp}, budget) = [0, 500, +20]

and a(A, f) is undefined otherwise. With this annotation,
we associate each type of employee with a feature salary, for
each office we state (with two features) the capacity and the
rent cost. Finally, with the last annotation, we determine the
global budget of the company. We now ensure that our com-
pany’s budgets and maximum occupancy restrictions are re-
spected. For this, we require that 12 times the sum of the
monthly salaries of all its employees, plus 12 times the sum
of monthly rent for all the offices the company rents plus the
sum of all one-time equipment expenses is not higher than
the global budget of the company. We can formalize such a
requirement with the concept C defined as follows:

12 Z salarylhire.Empl] 4+ 12 - Z rent [hasOff.Office]+
Z cost[hasEq.Equipment] < budget

To ensure that the company comp satisfies C, we add to T
the inclusion {comp} T C. To ensure that the maximum
occupancy of offices is respected, we consider a new fea-
ture pers that ‘counts’ the number of employees sitting in
one office. We then obtain K' = (T,%,«,.A) by letting
a(Empl, pers) = {1} and adding to T the inclusion

Office C Zpers[hasOfF_.Emponee] < capacity.

Semantics. To define the semantics of our language exten-
sion, we first need to extend the usual notion of an interpre-
tation Z = (A7, -7) to interpret the features. To this end, the
interpretation function - assigns to every feature f € Ny a
partial function fZ from A7 to non-negative rational values.
The semantics of neighborhood restrictions wg +
w1 Zfl[rkcl} + o+ wy Z fn[rncn] o wf is now
straightforward: at an element e, we compare the feature
value of f multiplied by the weight w with the weighted
sum of the feature values of the relevant neighbors of e. In
particular, if d is an r;-neighbor of e that participates in C;,
then the value fZ(e) participates in this sum. Formally:

(’LUO + wy Z f [7‘1.01} + -+ wy Z f’n[rn'c’n] © wf)I
S w0 cwsH o)

(0,0"Yert,o’eCE,
fE(0) det.,1<i<n

={oe AT : (wo+

Satisfaction of axioms in Z involving the new concept con-
structor is defined as usual.
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Definition 2. Given a KB K = (T,%,«, A), an interpre-
tation T is K-suitable, if for each e € AL, each feature
f € Np, and each basic concept A € NZ;(K) with e € AT
and oA, f) defined, we have that fX(e) € a(A, f). We
say that T satisfies I, and call T a model of IC, if (i) T is
K-suitable and (ii) T satisfies (T, %, A).

Example 3. Assume a company with one executive, Ann,
two regular employees, Alice and Bob, and one admin, Karl,
who occupy a total of 3 offices, one per role; each employee
has their own desk and laptop. The company can be repre-
sented as a model T of the KB K described in Example I,
and this model T can be extended to a model of the K' from
Example 2, which has feature annotations and additional
axioms, by setting the interpretation of features as follows:

budget™ ({comp}) = 220
cost® (desk;) = 0.2

cost® (lap;) = 1
rent® (off;) = 0.5

capacityz(ojj‘}) =3 perst(p) =1
salary® (Ann) = 4 salary™ (Alice) = 3.4
salary® (Bob) = 3.1 salary™ (Karl) = 2.7

with p € {Ann, Alice, Bob, Karl}, 1 < i < 4 (total num-
ber of employees) and 1 < i < 3 (total number of offices).
One can see that the budget of the company is satisfied, i.e.
comp® € C%, and that the office’s capacity is not exceeded.
For each f € Np(K') and e € AL, fI(e) € a(A, f), we
have that T is K'-suitable. Hence T is a model of K'.

Simulating Q. We note briefly that concepts of the form
> nr.C and < nr.C, as allowed in the syntax of concept
expressions, can be simulated using neighborhood restric-
tions and fresh features. Given onr.C' with o € {>, <},
let f,.c and f—, be fresh features, and let (C, fonr.c) =
{1}, (T, f=p) = {n}. Then the concept >, ;. c[r.Clof=,
consists of all domain elements that have on r-neighbors
that are C'.

3.1 Decidability and Complexity

‘We now look at the very expressive ALCHOZQ with closed
predicates and show that it can be enriched with numeric
features and constraints at no additional cost.

For our complexity results, we define the size of a knowl-
edge base KC as the number of bits required to encode /C,
under the assumption that the numerical values occurring in
IC are coded in unary. That is, we assume p + g + 1 bits are
used to encode the rational value %.

Theorem 1. Deciding satisfiability of ALCHOZQNY KBs
with closed predicates is NEXPTIME-complete.

The rest of this section serves as a proof sketch for The-
orem 1. We first recall the procedure from (Lukumbuzya,
Ortiz, and Simkus 2024), which reduces the satisfiability
problem for ALCHOZQ KBs with closed predicates to the
feasibility problem for integer programs. The main idea be-
hind the reduction is as follows. Let K be some KB. The
domain elements in potential models of /C are described us-
ing structures called star-types or tiles in the literature. More
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precisely, a tile 7 describing a domain element d in some po-
tential model of IC is defined by (i) its unary type consisting
of all the concepts names and nominals that d participates in
and (ii) the relevant neighborhood of d. Each relevant neigh-
bor e of d is further described by a role type that specifies
the type of connection this neighbor has to d and its unary
type. We call d an instance of 7. Each tile satisfies a set
of conditions that ensures local consistency of its instances
with the axioms and assertions in K. Furthermore, an en-
riched system of integer linear inequalities can be extracted
from K that describes how the number of instances of dif-
ferent tiles relate to each other in models of K. It is then
shown that deciding whether K has a model can be reduced
to deciding whether this system has a solution over the set
N* of natural numbers extended with the value that repre-
sents infinity. Since the obtained system of inequalities is
exponentially-sized in the size of K, the NEXPTIME upper
bound follows.

We explain how this procedure can be modified to accom-
modate our numeric features and constraints. Assume an
arbitrary enumeration f1, ..., fn.x)We introduce the no-
tion of the feature type F' = (vy,...,vnp(x)) € (QT U
{0, nil})INe ()l where the i-th position in F stores the
value of the feature f; of the domain element with the fea-
ture type F, for all i,1 < i < |Np(K)|. Moreover, we use
nil for the case when the feature value is not defined.

We next modify the notion of the tile as follows. A do-
main element d is now described through its (i) unary type,
(ii) its feature type, and (iii) its relevant neighborhood, where
each neighbor e is described through d’s connections to e,
and the unary and feature type of e. We then need to add
further conditions to the tile to ensure compatibility of d’s
feature vector with the feature annotation of the KB, as well
as to ensure that all axioms that involve feature values are
respected. We summarize this below.

Normal form. It will be convenient to assume in what fol-
lows that KBs are in a certain restricted form.

Definition 3. A KB K = (T,%, a, A) is in normal form if
the following are satisfied.

e Each axiom in T is one of the following forms:
(NI) Bimn---MBg_1 T BpU---UBy,
(N2) witho € {<,<,>,>},
BCwy+wy Yy, filr1.Bi]+ ... +wn Y. fulrn.Brlow f,

(N3) By CVr.Bs, or

(N4) r C s.
Here {B7Bl7"'7Bm} - Ng: {S,T,Tl,..., Tn} C N+,
{U),'LU(),...,wn} QQJFU{O}r {fvflv“wfﬂ} QNF

* K is closed under role inclusions, i.e., it satisfies:
- pCpeT, forallp € Nr(K),
-{pCrrCs}CT impliespC s €T, and
-pCreT,thenr Cp €.
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We may call axioms of the form (N2) neighborhood con-
straints; moreover, it is an at-most neighborhood constraint
if o € {<, <}, and an at-least one otherwise.

We can now explain the additional local consistency con-
dition that we place on our ‘good’ tiles in order to ensure
that they describe objects that satisfy the neighborhood con-
straints. Consider a neighborhood constraint 3 of the form
BCwy+w Yy, filr1.Bi]+ - +wn Y. falrn-Bnlowf
with o € {<, <, >, >} and let Z be some interpretation. We
say that a domain element e € AZ is relevant for 3 if there
is some i, 1 < i < n, with w; # 0 such that e € B;I,
(d,e) € rF and f(e) is defined and non-zero.

A natural, but naive way to add a condition that ensures
that an instance of some tile 7 respects the counting S is to
simply ensure that (i) all tiles with the concept A in their
unary type store information about all relevant neighbors
for (8 and (ii) that the weighted sum of the stored neighbors’
features relates correctly to the value of the feature f in the
tile’s feature type. This approach works for at-most axioms,
as the fact that we consider only non-negative feature values
and weights ensures that only polynomially many domain
elements are actually relevant for these axioms.

However, in the case of at-least axioms, we have an ad-
ditional challenge, since the same bound does not apply in
general. In order to ensure that we can restrict ourselves to a
bounded number of neighbors that the tiles have to store we
need to make one last assumption on the shape of KBs.

Definition 4. We call K = (T,%, a, A) a bounded neigh-
borhood KB if for every at-least neighborhood constraint in
T of the form

ACwo+wr Y filr1.Bil+--+wn Y fulrn.Bulowf

where o € {>, >}, there is in T an at-most neighborhood
constraint of the form

A C wj+w) Z filr.Bi)+- 4w, Z fhlrn.Bn] <wf!
such that «(A, f'),a(B1, f1),...,0(Bn, fl) are defined

and do not contain 0.

These assumptions do not restrict the expressiveness of
our formalism: we show in the appendix how each KB K can
be transformed in polynomial time into a bounded neighbor-
hood KB K’ in normal form. The normalization is standard.
For the bounded neighborhoods, however, we must show
that also for at least constraints we can infer a bound on
number of elements we need to consider, and bound the cor-
responding neighborhood with a sufficiently large number.

Proposition 3. Given K = (T,%,a,.A), we can obtain

from K in polynomial time a bounded neighborhood KB

K'=(T",%,d,.A) in normal form such that:

* every model T' of K' is also a model of K;

* every model I of K can be extended into a model of K' by
suitably interpreting the fresh predicates in K'; and

s for all models T of K' and d € A%, the number of neigh-
bors of d that are relevant for any given neighborhood
constraint of K' is at most polynomial in the size of K.
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The bounded neighborhoods help us adapt the reduction
from the literature, allowing us to shown that KB satisfia-
bility in our formalism reduces to solving an exponentially
sized enriched system of integer linear inequalities.

Proposition 4. Let K be a KB. We can obtain from K an
enriched system Sk = (Vic,Ex,Zx) of integer linear in-
equalities that has the following properties:

1. 'V is the set of tiles for IC,
2. |V],|€]| and |I| are exponential in the size of K,

3. the numerical value of the coefficients in Sk is at most
polynomial in the size of IC,

4. for every model T of K there exists a solution St of Sk
over N* such that for each tile T, the number of instances
of 7 in T is equal to Sz(7), and

5. for every solution S of Sk over N* there is a model Tg
such that for each tile T, the number of instances of T in
Zs is equal to S(T).

Recall that we can decide in NP whether an enriched sys-
tem of integer linear inequalities has a solution over N*.
Therefore, as a consequence of Proposition 4, we have the
the result in Theorem 1 follows.

4 Reasoning with Optimal Models

Our formalism naturally supports other non-standard rea-
soning problems. We can easily imagine examples in which
we would like to consider only those models in which the
total value of certain features is optimal. We consider a brief
motivating example for the basic scenario.

Example 4. Consider the KB K’ defined in Example 2 and
the model T defined in Example 3. Let K" be the KB ob-
tained updating K' with the inclusion(s)

JhasOffice” .E C VhasOffice™ .F

where E € {Adm, RegEmp, Exec}. The company described
by T associates each office to each type of employee, mean-
ing that Alice and Bob share the same office, while Karl and
Ann have two separate offices. Observe that each office off ;
has capacity 3. Assume now that the company described by
T expands by hiring more regular employees, administra-
tors, etc. Even if the budget is respected, our company wants
to be cost-efficient and minimize the amount it pays for rent.
Intuitively speaking, the model T should be efficiently up-
dated by assigning existing offices to the newly hired people.
To this end, we want to be able to specify that the feature
rent associated with the cost of renting an office should be
minimal when selecting models of K".

In case we want to optimize several features, there are
multiple ways to define optimal models. Here we only con-
sider the case where we want to optimize the total cost of
a model. A natural example of this would be that the com-
pany prefers to keep their total expenses low, but does not
care about minimizing the rent or the salaries separately.

We now proceed to formally define the notion of optimal
models of KBs w.r.t. some given objective defined by means
of a cost function.
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Definition 5. Given a KB K, a cost function for K is an
expression F of the form
wo + »_w; - fil Bl ()
i=1
where wg, w; € QV are weights, f; € Nr(K), and B; €
N&L(IC), for all 1 < i < n. Given a cost-function F and an

interpretation Z, the value of Z w.r.t. F, denoted vp(Z), is
defined as

ve(@) =wo+Y, Y

i=1 ge BT s.. fF(d) def.

Before formally defining optimal models w.r.t a cost func-
tion F', it is worth mentioning that, since our logic is ex-
pressive enough to enforce infinite models (folklore result,
(Baader et al. 2017)), we may have interpretations whose
value w.r.t. F' is infinite. One question naturally arises: What
are the intended optimal models of the KB that only has
models with infinite values for a given cost function? Here,
we have two options:

* All models are considered optimal models.

* There exists no optimal model. In this case, an error could
be reported to the user as the problem specification is
likely wrong.

We opt here for the second choice to keep our definitions
in line with traditional integer programming.

Definition 6. Ler K = (T,%, o, A) be a KB and F a cost
Sfunction for K. Given an interpretation I, we say that T is
an optimal model of K w.r.t. F if:

c ITEK,
e vp(Z) # N, and
o there exists no J such that J = K and vp(J) < vp(I).

If T is an optimal model of K w.rt. F, we call vp(Z) the
optimal value of KC w.r.t. F.

Example 5. Going back to our KB K" from Example 4, we
can now add the cost function F' =" rent[T|. The optimal
models of K" are those that ensure that the total cost that
our company has to pay for rent is as low as possible.

We now define some natural reasoning tasks in optimal
models of a KB IC w.r.t a cost function F'. One natural ques-
tion we can ask for a given KB K and a cost function F' for
KC is whether K has a optimal model w.r.t. F'. Notice that /C
does not have an optimal model if the value of the models
w.r.t F' is finite but might grow unboundedly or if XC only
admits models whose value w.r.t. F' is infinite.

OPTKBSAT
Input: AKBK = (T,%,a, A) and a cost func-
tion F for K.

Does K have a optimal model w.r.t. F'?

Question:

Other standard DL reasoning tasks such as concept satisfi-
ability and instance checking can be formulated for optimal
models of a KB K w.r.t. a cost function F’ as follows.
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OPTCONCEPTSAT

Input: AKBK = (T,%,«,.A), a cost function
F for K, and a concept B € N¢(K).

Question: Is there an optimal model Z of IC w.r.t. F/
s.t. BT £ ()2

OPTINSTANCECHECK

Input: AKBK = (T,%,a,.A), a cost function
F for K, and an assertion B(a), where
B € N¢(K), and a € N;(K).

Question: Does Z E B(a) for every optimal model
of I w.r.t. F'?

The above reasoning tasks are straightforward adaptations
of standard reasoning tasks to KBs equipped with cost func-
tions. However, we can go beyond this and provide richer
reasoning services, e.g. we can ask questions regarding the
cost of some features in optimal models of K. Recall the
scenario of Example 2: we may want to know if it is always
the case that in the models of our company’s KB in which
the cost of rent is minimal, the total capacity of the rented
office space is greater than some number k. On the other
hand, we could also consider a brave form of reasoning, and
ask whether there is at least one model of our KB that min-
imizes the cost of rent and where the total capacity of office
space is greater than some k.

We formalize such requests by means of cost queries. A
cost query ¢ is an expression of the form F' ow, where F'is a
cost function defined as in (1), w is a non-negative rational,
and o € {<,<,=,>, >}. We say that a cost query ¢ is true
in an interpretation Z, in symbols Z F ¢, if vy (Z) ow is true.

OPTCAUTIOUSCOSTQA

Input: AKBK = (T,%,a,.A), a cost function
F for K, and a cost query ¢ over the sig-
nature of /C.

Question: Does 7 F ¢ in all optimal models Z of K
w.rt. F?

OPTBRAVECOSTQA

Input: AKBK = (T,%,a,.A), a cost function
F for K, and a cost query q over the sig-
nature of /C.

Question: Is there an optimal model Z of IC w.r.t. F’
such that 7 F ¢?

4.1 Complexity of Optimal Model Reasoning

We now present tight complexity results for the reasoning
problems introduced above. To this end, we observe that
given a KB /C and a cost function F' for /C, we can define an
exponentially sized enriched ILP whose optimal solutions
correspond to optimal models of /C w.r.t. F.

Proposition 5. Given a KB K and a cost function F for K,
let S = (V, &, I) be the enriched system for K as described
in Proposition 4. We can obtain from F' and K (i) an EILP
Ix, r = (V,&,I,min f) and (ii) an integer c that is at most
exponential in the size of IC such that the following hold:
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* for every optimal solution S of Il p, there is an optimal
model Ts of K w.r.t. F such that for each tile T the number
of instances of T in T is equal to Sz(T);

e for every optimal model T of IC w.r.t. F there is an optimal
solution of Il g such that for each tile T the number of
instances of T in T is equal to St(T);

* the optimal value of Il r is equal to c times the optimal
value of K w.rt. F.

The correctness of the proposition above mostly relies on
the results from Proposition 4. We know that we can define
an enriched system Si. for X whose solutions correspond to
models of /C s.t. the variables of S represent tiles for K.
As each tile carries the information about the feature values
of their instances, we can easily reformulate the cost func-
tion F' into an objective function min f for Sx. However,
one issue that arises is that the weights of F' and the feature
values of tiles which are generally rational numbers now ap-
pear as coefficients in f. To ensure that we consider only
integer coefficients, we multiply the coefficients by ¢ which
represents the least common multiple of their denominators.

We are now ready to address concept satisfiability in opti-
mal models of KBs equipped with cost functions. We show
that this problem can be solved in single exponential time,
provided that access to an NP oracle is available.

Theorem 2. The problem OPTCONCEPTSAT belongs to the
class EXPTIMENP,

Proof. Take an instance of this problem consisting of a
KB K, a cost function F' for K, and a basic concept B.
We first compute the optimal value of K w.r.t. F, if one
exists. For this, it suffices to compute the optimal value
of IIx r and divide it by ¢, where IIx p = (V,&,1) is
the EILP and c be the integer described in Proposition 5.
From Proposition 2 we know that if there is a finite op-
timal value of Ilx r, then there is one bounded by m
S e V(€] +|1])a)2UEIHID+3 where a is the max-
imal coefficient in IIxc p. It follows from the properties of
the underlying enriched system S (see Proposition 4) and
the way that f was defined that m is at most double exponen-
tial in the size of KC. Hence, to compute the optimal value of
IC w.r.t. F we need to find in the interval 0. . .m the integer
J such that (a) K has a model J and vp(J) = < and (b) K

has no model J and vg(J) < Z. For this, we can perform
a binary search in 0 ... m using an NP oracle. After finding
j, we make an NP oracle call to check if K has a model J
with vp(J) = £ and BY # (). This is possible by checking
whether there is a solution to the enriched system for K with
two additional inequalities encoding that (i) the value of so-
lutions w.r.t. F'is j and (ii) the satisfaction of B. Finding the
correct j takes at most [log(m)] oracle calls, which results
in a procedure that runs in single exponential time, assuming
an access to an NP oracle. In each call, we supply the ora-
cle with an (exponentially large) integer inequality system
to decide the existence of a model J of KC with vp(J) < 2,
where j is an integer (a possibly exponentially long string in
binary) that corresponds to the active middle element in the
binary search. O
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We can show that the above complexity bound is tight.

Proposition 6. OPTCONCEPTSAT is EXPTIMENT -hard.

Proof. We consider non-deterministic exponential time met-
ric Turing machines. Each such a machine M takes as input
a word € {0,1}* and at the end of its computation out-
puts a word M (x) € {0, 1}*, which is seen as an integer en-
coded in binary. The machine M runs in exponential time,
i.e., computing M (z) takes at most 2P(#]) steps, where p
is a fixed polynomial. We let min™ (z) denote the small-
est value of M (x) over all runs of M on z. This model is
an adaptation of the one in (Krentel 1988), where the author
introduced non-deterministic polynomial time metric Turing
machines. Next, consider the following problem:

NEXPMINEVEN

Input: A description of a metric TM M whose
run time is bounded by an exponential,
and a word z € {0,1}*.

Question:  Is min™ (x) an even number?

By adapting the proof of Theorem 3.1 in (Krentel 1988),
it can be seen that NEXPMINEVEN is EXPTIMEN' -hard.
Once this result is established (see Appendix), the lower
bound for OPTCONCEPTSAT can be seen via a polynomial
time reduction from NEXPMINEVEN. We only provide a
high level description this reduction, because it uses stan-
dard ingredients. Asssume an instance (M, z) of NEXP-
MINEVEN. We know that M terminates on x within some
n = 2°(=D) steps, where p is a polynomial. Moreover, in
every run on x, the machine M produces an integer value of
with no more than n bits. Here are the main components of
a KB K that captures the possible computation of M on z:

e We have inclusions that enforce a 2" x 2" grid. The
inclusions to create such a grid are standard (Tobies 2000).
Furthermore, using special concepts, we can ensure that
each position (z,y) in the grid is encoded at a unique do-
main element (in binary). We use roles s and ¢ to navigate
this grid, where s stands for space and ¢ stands for time.

e The inclusion to simulate the run of a non-deterministic
Turing machine are also standard, e.g. (Krotzsch, Rudolph,
and Hitzler 2013). Every model of the KB will capture one
non-determinstic computation of M on z, which will be rep-
resented in the above mentioned grid.

e We can make sure that the output number that M pro-
duces on z is captured at the grid’s border that corresponds
to the instantaneous description of M at time 2". In par-
ticular, in a model Z this border contains domain objects
(01,09) € s, (02,03) € sT,..., (09n_1,09n) € sT related
by the role s. The output number is coded in binary using
concept names Zero and One. We can assume w.l.o.g. that
01 and o9n store the least significant and the most significant
bits of the output number, respectively.

e We need a way to “convert” the number written on
the grid’s border into a representation that can be used for
minimization. For this, we generate at each o;, satisfying
the concept One, a tree with exactly 21 Jeaves, this is also
standard in our logic (Baader et al. 2017). Each leaf can be
labeled with a special concept Leaf. We can now count the
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leaves of each tree by introducing a feature count and defin-
ing an annotation function a(Leaf, count) = {1}. We can
then consider the cost function F' := > count|Leaf]. Our
goal is to select models Z where the value v (Z) is minimal.

e The final step to devise the goal concept Goal, which
should be non-empty in a model Z iff 0; € Zero”. This
is again easy to do in our logic, as we can ‘detect’ o; by
using the concepts corresponding to the binary encoding of
the coordinates of 0; and check if Zero is satisfied. O

Based on this result, we can now state tight complexity
bounds for the rest of our reasoning tasks

Theorem 3. The following complexity results are correct:

* OPTKBSAT is NEXPTIME-complete;

¢ OPTINSTANCECHECK, OPTCAUTIOUSCOSTQA and
OPTBRAVECOSTQA are EXPTIMENY -complete.

Proof. Given a KB K and a cost function F, to check
whether /C has an optimal model w.r.t to F, it suffices to
check whether there exists at least one model Z of K s.t.
vp(Z) is finite. This can be done by checking whether the
enriched system that encodes the satisfiability for K has a so-
lution in which all variables that correspond to the tiles that
contribute to vg(Z) take on finite values. The last check is
known to reduce to regular feasibility problem of ILP and is
possible in NP. Due to Proposition 4, the NExpTime upper
bound follows. The matching lower bound comes from the
NEXPTIME-hardness of KB satisfiability in ALCHOZQ.
The upper bound for OPTINSTANCECHECK follows from
the reduction to OPTCONCEPTSAT, while we can show
the same upper bound for OPTCAUTIOUSCQA, OPT-
BRAVECQA by straightforward modifications of the algo-
rithm in Theorem 2, where the last NP oracle call checks
for the (un)satisfaction of the given cost query instead of the
concept. The matching lower bounds are obtained by reduc-
tion from OPTCONCEPTSAT. O

Optimal models and maximization. So far, we considered
as optimal models of a KB I w.r.t. a given cost function F'
those models whose value w.r.t. F' is minimal. We can anal-
ogously define optimal models as those that maximize the
value of F'. The above EXPTIMENP-completeness results
carry over to the maximization setting. However, this does
not apply to OPTKBSAT, where the previous NEXPTIME-
completeness was based on finding a model of a KB with
some arbitrary finite cost (which in turn was sufficient to
guarantee the existence of a model with a minimal cost).
In the case of maximization, solving OPTKBSAT involves
two tests: (a) checking that the input KB is consistent, and
(b) checking that there is a rational number b such that, in
all models of the KB, the cost function yields a value that
is bounded by b. The first task is trivially in NEXPTIME,
while the second task is in co-NEXPTIME. The latter fol-
lows from Propositions 5 and 2, since deciding (b) amounts
to checking whether an exponentially sized system has a
finite optimal value. Checking (b) is also co-NEXPTIME-
hard, which can be shown by a reduction from the predi-
cate boundedness problem in ALCHOZQ with closed pred-
icates (Lukumbuzya and Simkus 2021).
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5 Related Work and Discussion

Concrete domains. Our way of adding numeric features
to DLs resembles concrete domains, which have been ex-
tensively studied since the early days of DLs, e.g., (Baader
and Hanschke 1991; Lutz and Milicic 2007; Borgwardt, De
Bortoli, and Koopmann 2024). Reasoning with concrete do-
mains quickly becomes undecidable, especially in the pres-
ence of general TBoxes (Lutz 2002), unless the concrete do-
main is severely restricted, for example by limiting the ar-
ity of the predicates and imposing some form of compact-
ness, as in w-admissibility (Baader and De Bortoli 2024).
Integer numbers and addition over them—the basics of nu-
meric reasoning—are no-gos in the concrete domain liter-
ature; addition almost always causes undecidability (Lutz
2002), while admissibility conditions typically fail for the
integers (Baader and Rydval 2022). We can support both
because other restrictions are imposed. Our feature anno-
tations are discrete, finite and positive, and the induced nu-
merical equations are finite and can be effectively solved.
Moreover, our numeric restrictions are on direct neighbors
only, similar to a few older works on path-free concrete do-
mains (Pan and Horrocks 2002; Haarslev, Moller, and Wes-
sel 2001). This is fundamental to our upper bounds, allow-
ing us to search only for models where there are only ex-
ponentially many objects that differ in terms of both their
relational and numeric types.

DLs with cardinality restrictions. We have shown that our
numerical features can simulate the traditional local num-
ber restrictions (Q), which count the neighbors of a node.
The related cardinality restrictions, which globally count
the objects participating in concepts, have also been around
for at least two decades (Tobies 2000). ALCHOZQ with
closed predicates is already expressive enough to simulate
global cardinality restrictions and even some properties that
are not first-order definable, like testing if the cardinality of
a concept is even (Lukumbuzya, Ortiz, and Simkus 2024;
Lukumbuzya 2024). There has been significant interest in
the last few years in extending both types of cardinality re-
strictions. We now have powerful extensions of expressive
description logics with extended cardinality constraints that
may even use the quantifier-free fragment of Boolean Al-
gebra with Presburger Arithmetic (QFBAPA), and a rela-
tively complete understanding of their complexity and ex-
pressive power (Baader, Bednarczyk, and Rudolph 2020;
Baader and De Bortoli 2020; Bednarczyk and Fiuk 2022).
These formalisms are orthogonal to our extension; reconcil-
ing the differences seems challenging, but worth pursuing.
Additionally to the rich cardinality constraints, our logic has
a form of concrete domains. The combination of these two
types of numeric reasoning, despite being very natural, has
not received much attention. We are aware of only one very
recent exception (Baader et al. 2025).

Reasoning about preferred models. To our knowledge,
the reasoning tasks over optimal models introduced in Sec-
tion 4 had not been studied in the context of DLs. Some
of the underlying intuitions are reminiscent of circumscrip-
tion (Bonatti, Lutz, and Wolter 2009; Di Stefano, Ortiz, and
Simkus 2023), which is also a form of preferred models se-
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mantics. In our approach, models are discarded in favor of
other models whose cost value is lower, while in circum-
scription, one discards models where the extension of some
predicates is not minimal. Our formalism allows for a form
of predicate minimization: we can introduce a feature f4
for each concept name A that is meant to be minimized, set
a(A, fa) = {1} and choose models that minimize the cost
of fa. We cannot, however, simulate complex circumscrip-
tion patterns and enforce global minimization over a fixed
domain, and our formalism is, in general, computationally
simpler than circumscription.

6 Conclusion and Future Work

In this paper, we proposed an extension of classical DLs with
numeric features and with constraints on the aggregated fea-
ture values in an object’s neighborhood, expressed via a new
concept constructor, called neighborhood restrictions. We
illustrated how our formalism provides a natural and easy-
to-use tool for modeling and reasoning in complex domains.
Imposing natural restrictions on feature values and weights,
standard reasoning tasks in ALCHZOQ with closed pred-
icates and neighborhood restrictions are not computation-
ally harder than in classical ALCHZOQ. We also stud-
ied non-standard reasoning problems inspired by Constraint
Programming (CP). By means of cost-functions, we defined
the notion of optimal models for a KB. We showed that
checking the existence of optimal models does not increase
in complexity compared to standard reasoning tasks. Fur-
thermore, we introduced cost-queries, which retrieve feature
values and compare them to a given weight. We character-
ized the complexity of brave and cautious entailment of cost-
queries and standard reasoning tasks in optimal models.

The integration of CP techniques in KR formalisms re-
ceived remarkable attention in recent years, e.g. in An-
swer Set Programming (ASP) with its powerful solver cling-
con (Gebser, Ostrowski, and Schaub 2009; Ostrowski and
Schaub 2012), where support for CP constructs was intro-
duced. A crucial difficulty in combining CP techniques in
DLs is given by the absence of restrictions on the domain
sizes, which can possibly be infinite. Intuitively, the numeric
constraints we introduced can be seen as a succinct specifi-
cation of an infinite collection of instances of integer linear
programming (ILP) problems. An important contribution of
this work is that we can effectively reason over these suc-
cinct systems of constraints by resorting to ILP techniques.

An implementation of our reasoning services is left for
future work. Another non-trivial direction is to relax the re-
strictions on features and numeric constraints, e.g., by al-
lowing negative values for features and weights.

We also see our approach as a promising hosting formal-
ism for inconsistency-tolerant reasoning, using features to
replace inconsistencies with an ‘error’ cost and selecting
models where the error costs are minimal. We aim to ex-
plore whether this yields a meaningful semantics, and how
it compares with recent cost-based semantics for inconsis-
tent KBs (Bienvenu, Bourgaux, and Jean 2024). The lat-
ter application may require extending our formalism with
multi-objective functions, expressing priorities and relaxing
the notion of optimal models.
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