
An Embarrassingly Parallel Model Counter

Zhenghang Xu1,2 , Minghao Yin1,2 , Jean-Marie Lagniez3
1School of Information Science and Technology, Northeast Normal University, Changchun, China
2Key Laboratory of Applied Statistics of MOE, Northeast Normal University, Changchun, China

3Univ. Artois, CNRS, CRIL, F-62300 Lens, France
{xuzh121, ymh}@nenu.edu.cn, lagniez@cril.fr

Abstract

Model counting (also known as #SAT) is a fundamental prob-
lem in knowledge representation and reasoning, with applica-
tions ranging from probabilistic inference to formal verifica-
tion. However, state-of-the-art model counters are limited by
computational resources on a single machine. In this paper,
we propose a novel distributed framework for model count-
ing, exploiting the embarrassingly parallel nature of the prob-
lem. By decomposing the search space into independent sub-
problems and distributing them across different computation
nodes, our approach achieves near-linear scalability on prac-
tical instances. Extensive experiments on standard bench-
marks demonstrate both the effectiveness and efficiency of
our framework.

1 Introduction
Model counting (MC) is the problem of computing the num-
ber of models (i.e., satisfying assignments) of a given propo-
sitional formula (typically in CNF) over its set of variables.
Its direct extension, weighted model counting (WMC),1 is
of tremendous importance in a wide range of AI applica-
tions, including probabilistic inference (Sang, Beame, and
Kautz 2005b; Chavira and Darwiche 2008; Dubray, Schaus,
and Nijssen 2023), planning (Palacios et al. 2005; Domsh-
lak and Hoffmann 2006), neural network verification (Baluta
et al. 2019), and explainable AI (Izza et al. 2023). Model
counting also finds key applications outside AI, notably in
model checking and hardware testing (Heinz and Sachen-
bacher 2009; Feiten et al. 2012; Teuber and Weigl 2021;
Dueñas-Osorio et al. 2017; Girol, Farinier, and Bardin 2021;
Mei, Bonsangue, and Laarman 2024).

The computational power and difficulty of model count-
ing are well-reflected by Toda’s theorem, which shows that
the entire polynomial hierarchy (PH) is contained in P#P;
that is, every problem in the polynomial hierarchy can be
solved in polynomial time, given access to a #P oracle (Toda
1991). The centrality of the #SAT problem has thus mo-
tivated significant research in designing both exact and ap-
proximate model counting algorithms capable of handling

1In WMC, each literal is assigned a real-valued weight. The
weight of an interpretation is the product of the weights of the lit-
erals set to true, and the weight of the formula is the sum of the
weights of its models. WMC generalizes ordinary model counting,
which corresponds to the case where all literal weights are 1.

ever-larger instances, as highlighted in recent model count-
ing competitions (https://mccompetition.org/).

A variety of (sequential, exact) model counters have been
introduced and studied, including search-driven approaches
such as cachet (Sang et al. 2004), SharpSAT (Thurley
2006), SharpSAT-TD (Korhonen and Järvisalo 2021), and
ganak (Sharma et al. 2019), as well as compilation-based
counters like C2D (Darwiche 2004), SDD (Oztok and Dar-
wiche 2015), dSharp (Muise et al. 2012), eadt (Koriche
et al. 2013), and d4 (Lagniez and Marquis 2017a). How-
ever, model counting remains a #P-complete problem, typi-
cally much harder in practice than SAT, meaning that many
real-world instances remain out of reach for current solvers.

To address more instances within reasonable time, a
straightforward technological strategy is to run existing
model counters on increasingly powerful processing units.
Historically, improvements in processor speed were driven
by raising clock frequencies through greater transistor densi-
ties on silicon chips, following Moore’s Law. Moore’s Law,
articulated in the mid-1960s, states that the number of tran-
sistors in a dense integrated circuit doubles approximately
every two years, a trend that held true for several decades.
However, physical limitations, such as the atomic scale, are
expected to eventually halt this progress, with most experts
(including Gordon Moore himself) predicting the end of
Moore’s Law around 2025. Indeed, in recent years the pace
of dimensional scaling (known as Dennard scaling) has no-
ticeably slowed.

To cope with the constraints on single-core performance
and manage power dissipation, processor manufacturers
have shifted towards multi-core chip designs. While this ar-
chitectural change requires software to be adapted for par-
allel execution, multi-threaded parallelism has been suc-
cessfully leveraged in some model counters. For example,
the parallel model counter CountAntom (Burchard, Schu-
bert, and Becker 2015) uses multiple threads to compute
the model count concurrently, sharing both learned conflict
clauses and cached sub-formula results. CountAntom’s
“laissez-faire caching” scheme allows cores to access a
shared cache, ensuring that sub-formula model counts are
accurate, even though clause learning during tree search
generally complicates parallel cache correctness.

However, the same physical integration limits that restrict
clock speed increases also constrain the number of cores that
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can be packed onto a single chip. In practice, commercially
available many-core processors can feature hundreds, but
not thousands, of cores. Therefore, extending parallelism
across multiple (possibly heterogeneous) networked com-
puters, known as distributed parallelism, is the next logi-
cal progression. Unlike shared-memory multi-threaded sys-
tems, distributed environments lack efficient global commu-
nication, requiring message passing between processes.

A landmark in the evolution of distributed model counting
is dCountAntom (Burchard, Schubert, and Becker 2016),
which augments CountAntom with a master node that or-
chestrates the distribution of subproblems to worker nodes
using message passing. However, the hierarchical structure
of dCountAntom restricts flexibility, as worker nodes are
unable to share work directly with each other. This limita-
tion is overcome by dmc (Lagniez, Marquis, and Szczepan-
ski 2018), which employs a work stealing paradigm: tasks
are balanced dynamically among peers, with idle workers
able to request additional work. To control communication
overhead, dmc restricts message number and size, avoiding
explicit transfers of learnt clauses or subproblems.

Nevertheless, work stealing strategies are often intrusive,
as they typically require substantial changes to the core
model counting architecture, posing technical challenges
and limiting general applicability. This challenge motivates
the need for simpler, more broadly applicable distributed so-
lutions. In this paper, we present an embarrassingly parallel
approach to model counting, called DisCount (Distributed
Counting), enabling efficient distributed computation while
requiring minimal changes to existing solvers. Our method
decomposes the original formula into a large number of in-
dependent subproblems by selecting a subset of variables,
enumerating all consistent assignments to these variables
(validated using a SAT solver), and then distributing each
subproblem to an available worker (such as a processor
core or cluster node). The decomposition process lever-
ages the variable selection method guided by tree decom-
positions as proposed in (Bannach and Hecher 2024b). This
approach yields high scalability and efficiency, our exper-
iments on recent model counting competition benchmarks
demonstrate that generating around thirty subproblems per
worker achieves notable speedup. Furthermore, we show
that our solution performs competitively with work stealing
approaches like dmc, often solving more instances. Impor-
tantly, our technique allows users to harness parallelism with
virtually no modifications to model counters and without the
need to develop parallel code.

The remainder of the paper is structured as follows. Sec-
tion 2 lays out the formal background. Section 4 presents the
related works. Section 3 details the proposed DisCount
approach. Section 5 reports our experimental findings, and
Section 6 concludes with a summary and perspectives for
future work.

2 Preliminaries
Let L represent the propositional language formed from a fi-
nite set P of propositional variables, using the standard log-
ical connectives (¬, ∨, ∧) and the Boolean constants ⊤ and
⊥. A literal ℓ is either a variable x ∈ P or its negation ¬x.

A term, also called cube, is a conjunction of literals, and a
clause is a disjunction of literals. Terms and clauses may,
when convenient, be regarded as sets of literals. A CNF for-
mula is a conjunction of clauses, also viewed as the set of its
clauses.

Formulas are interpreted in the classical way: an interpre-
tation ω is a mapping from P to {0, 1}. An interpretation ω
is a model of a formula Σ if Σ evaluates to 1 (true) under ω.
Interpretations can equivalently be represented by the set of
literals they satisfy. We use |= to denote logical entailment
and ≡ for logical equivalence. For any formula Σ ∈ L, we
let Var(Σ) denote the set of variables from P occurring in
Σ. Boolean Constraint Propagation (BCP) is a fundamental
procedure used in many preprocessors and solvers. BCP(Σ)
returns {∅} if unit propagation on the clauses of the CNF for-
mula Σ derives the empty clause (that is, a unit refutation),
and otherwise returns the set of literals (from unit clauses)
deduced from Σ by unit propagation.
Example 1. Consider the CNF formula Σ over variables
Var(Σ) = {x1, . . . , x6} with clauses: {¬x2 ∨ x3, x3 ∨
¬x6, x5 ∨ x6, x1 ∨ ¬x2 ∨ x5, x1 ∨ ¬x4}. Given the term
τ = ¬x1, x6, applying BCP to the formula Σ augmented
with the assignments in τ , i.e., to Σ∧ τ , results in BCP(Σ∧
τ) = {¬x4, x3}.

The SAT problem asks whether a given CNF is satisfiable,
that is, whether there exists a model of the formula. Conflict-
Driven Clause Learning (CDCL) SAT solvers are state-of-
the-art algorithms for solving SAT (Marques-Silva, Lynce,
and Malik 2021). CDCL incrementally builds a variable as-
signment and applies BCP. Upon encountering a conflict,
the solver performs conflict analysis to identify the cause
and learns a new clause that prevents the same conflict from
arising again. This learnt clause is added to the formula,
effectively pruning the search space. During conflict analy-
sis, the variables (literals) involved have their activity scores
“bumped,” increasing their likelihood of being chosen in
subsequent branching decisions. This dynamic variable or-
dering focuses the search on the most relevant parts of the
formula. The solver then backtracks non-chronologically, to
a previous decision level, and this process repeats until the
formula is determined to be satisfiable or unsatisfiable.

The notation ∥Σ∥ denotes the number of models (i.e.,
satisfying assignments) of the formula Σ over its variables
Var(Σ). The #SAT problem asks for the total number of
such models for a given Boolean formula, and is the canon-
ical example of a #P-complete problem.
Example 2 (Example 1 cont’ed). The number of models of
Σ, as defined in Example 1, is ∥Σ∥ = 20.

Since model counting is closely related to the SAT prob-
lem, one of the most effective strategies builds upon DPLL-
based SAT solvers (Gomes, Sabharwal, and Selman 2021).
These solvers are extended to not only determine satisfiabil-
ity but also compute the exact number of satisfying assign-
ments. Specifically, model counters based on this approach
explore the search space recursively by branching on vari-
ables and simplifying the formula at each step (mainly using
BCP). However, unlike SAT solvers, which terminate upon
finding a single satisfying assignment, model counters must
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exhaustively enumerate all satisfying assignments, making
the problem substantially more challenging.

A key enhancement in DPLL-based model counting is the
use of connected component decomposition: after simplify-
ing the formula in the current branch, the remaining formula
may split into independent subformulas (connected com-
ponents) that do not share variables. Since these subprob-
lems are independent, their model counts can be computed
separately and multiplied, significantly reducing redundant
work (Sang et al. 2004).

Another crucial optimization is component caching: since
the same subproblem may arise multiple times in different
parts of the search tree, model counters store the counts
of previously solved components in a cache (Sang et al.
2004). When the same component reappears, the solver
can simply retrieve the cached result instead of recomput-
ing it. These two techniques, decomposing the problem
and caching partial results, are essential for scaling model
counting to large, structured instances, and form the basis
of state-of-the-art exact model counters (Sang et al. 2004;
Thurley 2006; Korhonen and Järvisalo 2021; Sharma et al.
2019; Lagniez and Marquis 2017a).

Despite these optimizations, the choice of which variable
to branch on next remains critical to practical performance.
The structure of the formula, as captured by its primal graph,
can provide valuable insights for designing effective heuris-
tics. In particular, leveraging tree decompositions of the
primal graph enables the solver to exploit the problem’s
structure, potentially reducing the effective search space and
leading to more efficient model counting.

A graph G = (V,E) consists of a set of vertices V =
V (G) and a set of edges E = E(G). A tree is a connected
graph T such that |E(T )| = |V (T )| − 1. The primal graph
of a CNF formula Σ is the undirected graph whose vertices
correspond to the variables of Σ, with an edge between any
two variables that appear together in some clause of Σ. Each
connected component of the primal graph (i.e., a maximal
set of vertices that are pairwise connected by paths) deter-
mines a subset of clauses of Σ, which we refer to as a con-
nected component of the formula Σ.

Given an undirected graph G = (V,E), a tree decomposi-
tion (Robertson and Seymour 1986; Bodlaender 2005) of G
is a pair (T, {Bt}t∈V (T )), where T is a tree and each node
t ∈ V (T ) is associated with a subset (called a bag) Bt ⊆ V ,
such that:

1. For every vertex v ∈ V , there is at least one node t ∈
V (T ) with v ∈ Bt.

2. For every edge {u, v} ∈ E, there is at least one node
t ∈ V (T ) with {u, v} ⊆ Bt.

3. For every v ∈ V , the set {t ∈ V (T ) | v ∈ Bt} induces a
connected subtree of T .
The width of a tree decomposition T is defined as w(T ) =

maxt∈V (T ) |Bt| − 1. The treewidth of a graph G is the min-
imum width among all possible tree decompositions of G.
Without loss of generality, we may assume that one node of
T is designated as the root of the decomposition, chosen ar-
bitrarily. For any node t ∈ V (T ), we denote by dT (t) the
distance from the root to t, that is, the depth of t in T .

x1 x2 x3

x4 x5 x6

(a) Primal graph

x2, x3, x5

x1, x2, x5 x3, x5, x6

x1, x4

(b) Tree decomposition

Figure 1: The primal graph of the CNF formula given in Example 1
(left), and one of tree decompositions of the primal graph (right).

Example 3 (Example 1 cont’ed). Figure 1a illustrates the
primal graph of the CNF formula presented in Example 1,
while Figure 1b shows one possible tree decomposition of
this primal graph.

The notion of tree decomposition plays a central role in
model counting, as it enables dynamic programming algo-
rithms whose complexity is exponential in the tree-width
k of the decomposition, rather than in the total number of
variables. Specifically, for a tree decomposition of width
k, model counting can be performed in time O(2k · n),
where n is the input size. This makes the problem fixed-
parameter tractable with respect to tree-width. Thus, for
formulas whose associated graphs have small tree-width,
model counting can be carried out efficiently, in contrast to
the general #P-completeness of the task.

However, in many practical cases, the tree-width of the
problem instance is too large for tree-decomposition-based
algorithms alone to be effective. As a result, state-of-the-
art model counters leverage tree decomposition information
in a more nuanced way, for example, by adapting variable
selection heuristics based on a variable’s position in the tree
decomposition.

In particular, (Korhonen and Järvisalo 2021) demonstrate
experimentally that incorporating hybrid scores, which com-
bine structural information from tree decompositions with
traditional activity and frequency measures, can improve
performance (even though this approach may not always
realize the theoretical complexity bounds). They propose
the following modification of the VSADS variable selection
heuristic to include tree decomposition guidance:

score(x) = act(x) + freq(x)− C min
{t|x∈T [t]}

dT (t)

where act(x) is the activity of variable x, freq(x) is its fre-
quency, T [t] is the bag at node t in the tree decomposition,
dT (t) is a normalized distance metric (with values between 0
and 1), and C is a positive constant chosen per instance. By
default, they use C = 100× exp( n

w )

n , where n is the number
of variables and w is the width of the tree decomposition.

This hybrid approach allows modern model counters to
harness the advantages of structural decomposition even in
cases where the tree-width is not small, by strategically pri-
oritizing variables based on their structural relevance.

3 DisCount Distributed Counting
Our exact model counter, DisCount is a distributed al-
gorithm that computes the number of models ∥Σ∥ for a
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given input CNF formula Σ. It leverages a fixed, poten-
tially large number of processing units, which may be dis-
tributed across a computer network. Unlike traditional par-
allel model counters that rely on multithreading or shared
memory, DisCount assumes no shared memory between
processing units, ensuring true distribution and scalability.
DisCount is founded on the embarrassingly parallel

paradigm (Wilkinson and Allen 2005), which entails de-
composing a problem into independent parallel tasks that
can be executed concurrently. Within the SAT community,
this paradigm is epitomized by the cube-and-conquer frame-
work (Heule et al. 2011). Cube-and-conquer was specifi-
cally designed to address challenging SAT instances by par-
titioning the search space into so-called cubes (i.e., partial
assignments) using a lookahead solver, and then indepen-
dently solving each cube using an incremental CDCL solver.
The central insight underlying cube-and-conquer is that
CDCL solvers are particularly effective at quickly resolving
these smaller, well-structured subproblems (“cubes”).

This approach confers multiple practical benefits for dis-
tributed computation: (i) it requires minimal communica-
tion, synchronization, or mutual exclusion between work-
ers, resulting in high efficiency; (ii) it allows for a straight-
forward implementation since both the master and worker
processes rely on standard, unmodified solvers; and (iii)
it achieves inherent scalability by distributing independent
subproblems across the available computational resources.

Within DisCount the computation of ∥Σ∥ for a given
CNF formula Σ is coordinated across n+1 processing units,
where n ≥ 2: a single master node m and n worker nodes
W = w1, . . . , wn. Each worker wi can dynamically assume
multiple roles throughout the computation, including those
of SAT solver, model counter, and tree decomposition en-
gine. The specific responsibilities and mode transitions of
each worker will be described in detail in the following sec-
tions. In general, each worker waits to be assigned a role,
performs the corresponding tasks, and then either transitions
to a new role or terminates its execution.

Algorithm 1 computes the number of models of a CNF
formula Σ in parallel using a cube-and-conquer approach. It
takes as input the CNF formula Σ, the number of cubes to be
generated (nbCubes), and the set of workersW . The output
is count, the total number of models of Σ.

First, the formula is preprocessed to simplify subsequent
computations (line 1), and the simplified formula is broad-
cast to all workers using the function broadcast, which
takes as parameters the formula Σ and the set of work-
ers W (line 2). Next, the formula is partitioned into
nbCubes × |W| disjoint cubes, enabling independent sub-
problems that can be processed in parallel (line 3) through
a call to generateCubes. The details of this function
are provided in Section 3.1. Each worker keeps a status
flag (idle) indicating its availability for new tasks (line 4).
All workers are then initialized in counter mode by calling
setWorkerCounterMode onW (line 5).

The main loop assigns available cubes to idle workers,
marking them as busy when a cube is dispatched (lines 7–
10). Specifically, whenever an available worker w ∈ W is
found, a cube τ ∈ C is selected (line 8) and sent to w us-

Algorithm 1: DisCount
Data:
- Σ: a CNF formula;
- nbCubes: number of worker cubes (integer);
- W: the set of workers.
Result: count: an integer representing ∥Σ∥.
// Step 1. Preprocessing.

1 Σ← preprocessing(Σ);
2 broadcast(Σ,W);

// Step 2. Cube Generation.
3 C ← generateCubes(Σ, nbCubes× |W|,W);

// Step 3. Parallel Counting.
4 idle[w] = 1 for each w ∈ W;
5 setWorkerCounterMode(W);

6 while ∃ τ ∈ C do
7 if ∃w ∈ W s.t. idle[w] = 1 then
8 C ← C \ {τ};
9 sendCubeToSolve(τ);

10 idle[w] = 0;
11 while ∃w ∈ W s.t. free(w) and idle[w] = 0 do
12 idle[w] = 1;

// Step 4. Result Collection.
13 count← 0;
14 for w ∈ W do count← count+ getSumCount(w);

// Step 5. Terminate all workers.
15 for w ∈ W do stop(w);

16 return count;

ing the function sendCubeToSolve, which will be detailed
in Section 3.2. After the task is assigned, the worker’s sta-
tus flag is updated to indicate it is no longer idle (line 10).
When a worker completes its current task, this is detected
by the function free (lines 10–11), which returns true if the
worker has finished its task. The worker then becomes idle
again and can be immediately assigned another cube, if any
remain.

This process repeats until all cubes have been processed
(lines 6–12). Finally, the master process collects the partial
model counts from each worker using getSumCount, which
takes a worker as parameter and returns the total number of
models computed by w for its assigned cubes (lines 13–14).
These counts are aggregated, and all workers are terminated
by calling stop for each worker (line 15). The final result,
the total number of models of Σ, is returned at line 16.

3.1 Cube Generation
The generateCubes procedure, detailed in Algorithm 2,
divides the search space of a CNF formula Σ into multiple
smaller subproblems called cubes. Given a target number
of cubes (nbCubes) and a set of workers W , the algorithm
strives to generate up to nbCubes cubes that are suitable for
parallel solving.
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At the outset (lines 1–6), the initialization phase prepares
all necessary data structures. Specifically, the set of finalized
cubesQ is initialized with the empty assignment, represent-
ing the entire search space (line 1), while the set of pending
tasks T is initialized as empty (line 2). For every worker
w ∈ W , the algorithm marks the worker as idle (line 3) and
clears any previous task assignments (line 4). Additionally,
it initializes the branching heuristic based on Σ and the set of
workers (line 5); this routine will be detailed later. Finally,
the SAT solvers assigned to each worker are configured for
search mode, preparing them to process cubes as they be-
come available (line 6).

Following initialization, the algorithm enters its main
loop, repeatedly generating and distributing cubes until the
prescribed number is reached or further splitting is infeasi-
ble. If the original formula is unsatisfiable, the algorithm
returns the empty set. The core of the method iteratively
maintains four entities: the set Q of finalized cubes, the set
T of cubes pending distribution to workers, the array of idle
workers, and a mapping that associates each worker with the
cube they are currently processing. This main loop can be
conceptually divided into three phases:

1. Generating New Candidate Cubes (lines 8–15): Dur-
ing each iteration, the algorithm selects a cube τ from Q
(line 9) and chooses a branching variable using the con-
figured heuristic (line 10). It then splits τ into two child
cubes by assigning the variable both true and false (lines
11–14). Each new subcube undergoes BCP. Only satisfiable
subcubes (modulo BCP) are kept and added to the task set
T (lines 12 and 14).

2. Assigning Tasks to Workers (lines 15–19): When
there are idle workers and pending tasks, a cube τ from T is
selected and assigned to an available worker (lines 16–18).
The mapping map records that worker w is handling task τ
(line 17), and w is marked as busy (line 18). The cube is
then sent to the worker via the subroutine sendCube, which
will be detailed later.

3. Processing Completed Tasks (lines 20–23): As work-
ers complete their assigned cubes, the algorithm checks
whether the cube is satisfiable (the function done return
true). If so, the cube is added to Q (lines 21–22), and
the corresponding worker is marked idle again (line 23).

This structured approach enables efficient partitioning of
the search space and balanced workload distribution among
workers. The use of the sendCube function facilitates par-
allel SAT solving on the generated cubes, thereby acceler-
ating the cube generation process. The function sendCube
assigns a selected cube to a specific worker w for satisfia-
bility checking. Since all workers have local access to the
underlying CNF formula Σ (see Algorithm 1, line 2), it is
unnecessary to explicitly transmit Σ with each cube assign-
ment. Upon receiving a new cube, worker w enters solving
mode, causing done(w) to return false. The worker then
invokes a SAT solver on the assigned cube. Once the solver
finishes, the worker stores the satisfiability result, which can
be retrieved using the getResult function, and updates its
status so that done(w) subsequently returns true.

To conclude this section on cube generation, we discuss
the branching heuristic, a critical component for determin-

Algorithm 2: generateCubes
Data:
- Σ: a CNF formula;
- nbCubes: number of cubes to generate (integer);
- W: the set of workers.
Result: Q: the set of generated cubes, or ∅ if Σ ≡ ⊥.
// Initialization

1 Q ← {∅};
2 T ← ∅;
3 idle[w] = 1 for each w ∈ W;
4 map[w] = ∅ for each w ∈ W;
5 initBranchingHeuristic(Σ,W);
6 setWorkerSATMode(W);

// Main cube generation loop
7 while 0 < |Q| < nbCubes or ∃w s.t. idle[w] = 0 do

// Generate new tasks
8 if Q ̸= ∅ and |Q|+ |T | < nbCubes then

// Select a cube to extend.
9 choose τ ∈ Q and remove it from Q;

10 v ← selectVariable(Σ, τ);

// Split the cubes.
11 if BCP (Σ ∧ τ ∧ v) ̸= {∅} then
12 T ← T ∪ {BCP (Σ ∧ τ ∧ v)};
13 if BCP (Σ ∧ τ ∧ ¬v) ̸= {∅} then
14 T ← T ∪ {BCP (Σ ∧ τ ∧ ¬v)};

// Assign a new task
15 if ∃w ∈ W s.t. idle[w] = 1 and T ̸= ∅ then
16 choose τ ∈ T and remove it from T ;
17 map[w]← τ ;
18 idle[w]← 0;
19 sendCube(w, τ);

// Process a completed task
20 if ∃w ∈ W s.t. done(w) then
21 if getResult(w) is SAT then
22 Q ← Q∪ {map[w]};
23 idle[w]← 1;

24 return Q;

ing the quality of generated cubes and the overall efficiency
of DisCount. Selecting an effective branching heuristic
is challenging, as little information is available during parti-
tioning regarding how efficiently a model counter will solve
the resulting subproblems. The heuristic must thus estimate
subproblem difficulty, a task that is inherently nontrivial.
Our approach takes two factors into account: which cube
to extend and which variable to branch on. For cube selec-
tion, we prioritize extending the smallest cube, based on the
intuition that cubes with more literals fixed are likely to be
easier for the solver.

Regarding variable selection, we evaluated several clas-
sical SAT branching heuristics (such as MOM (Dubois
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et al. 1993), JWTS (Jeroslow and Wang 1990), and
VSIDS (Moskewicz et al. 2001)) as well as heuristics de-
veloped specifically for model counting (like DLCS and
VSADS (Sang, Beame, and Kautz 2005a)). Since VSIDS
and VSADS rely on conflict-driven variable scoring, we in-
voke a CDCL SAT solver during the initialization phase
(line 5) to collect conflict data that guides subsequent
branching decisions.

The best-performing heuristic for model counting often
combines classical branching strategies with structural in-
formation extracted from a tree decomposition of the for-
mula’s primal graph. To this end, we also implemented the
heuristic from (Korhonen and Järvisalo 2021), presented in
the previous section. We compute the tree decomposition
in a distributed fashion by allocating this task across multi-
ple workers, each running the FlowCutter (Hamann and
Strasser 2018) anytime algorithm with a different random
seed. As a result, when the allocated budget expires, we
choose the best decomposition obtained (i.e., the one with
minimal treewidth) among all workers.

After selecting the tree decomposition, we identify its
centroid node to serve as the root. This is achieved by it-
eratively removing leaf nodes until one or two central nodes
remain, ensuring a balanced starting point for variable selec-
tion. A vector of variable scores is then computed based on
the decomposition and integrated with classical heuristics to
guide branching decisions.

3.2 Model Counting Workers
Once the cubes have been generated and distributed, each
worker process is tasked with counting the number of mod-
els for its assigned cube. In our framework, we do not im-
pose any restrictions on the specific model counter that can
be used; indeed, our system is designed with an abstraction
layer for the counter, enabling the straightforward integra-
tion of new or third-party model counters. The only require-
ment is compliance with a common interface for communi-
cation with the master process.

However, for practical efficiency, counters are invoked in
assumptions mode, similar to the approach used in incre-
mental SAT solving (Nadel and Ryvchin 2012). In this set-
ting, assumptions are literals that are asserted for the dura-
tion of a single solver invocation. This allows the under-
lying SAT to retain learnt clauses and internal state across
different calls, since the base formula remains unchanged
and only the set of assumed literals differs. As a result, both
clause learning and variable activity data can be preserved,
improving performance on related subproblems, as is com-
mon practice in incremental SAT solving.

This principle extends naturally to model counting: re-
cent works such as (Lagniez and Marquis 2019) demonstrate
that maintaining a persistent cache across multiple counting
queries can be highly beneficial. In this way, learnt clauses,
caches, and variable weights are retained by the counter,
mirroring the advantages of incremental SAT solving and al-
lowing efficient reuse of information across different cubes.

Another important design decision is that model count re-
sults are not communicated to the master after every count-
ing invocation. Instead, each worker maintains an accumu-

lated sum of its model counts locally. The current result can
be retrieved only when necessary, by invoking the function
getSumCount with the worker identifier as a parameter (see
Algorithm 1, line 14). This approach minimizes commu-
nication overhead between the master and the workers and
also helps prevent a loss in numerical precision that could
result from frequent serialization and deserialization of in-
termediate results.

4 Related Works
The cube-and-conquer paradigm (Heule et al. 2011) is a piv-
otal approach for tackling challenging SAT instances. In
the constraint programming (CP) community, a closely re-
lated principle is known as Embarrassingly Parallel Search
(EPS) (Malapert, Régin, and Rezgui 2016), which extends
the concept to CP problems. More broadly, partitioning
complex problems into independent subproblems suitable
for parallel or distributed solving is a powerful idea that goes
well beyond SAT and CP. Since its introduction, cube-and-
conquer has inspired numerous variants and adaptations for
a variety of domains, with research focusing on improved
partitioning heuristics, effective load balancing, and the flex-
ible integration of diverse solver types (Hamadi and Sais
2018).

For model counting, this principle is exemplified by the
parallel counter dCountAntom (Burchard, Schubert, and
Becker 2016), an extension of CountAntom that intro-
duces message passing between a single master counter and
multiple slave counters. The master delegates subproblems
(nodes in the search tree) to the slaves, provided they are
at a decision level exceeding a configurable threshold δ.
However, only the master is permitted to redistribute work:
slave solvers cannot share their workload among them-
selves, even if they encounter particularly hard subproblems.
If a slave wi is unable to solve a node within a fixed time
limit τ , it returns the job to the master; the master may then
further partition and redistribute the problem, but only after
skipping a predefined number of decision levels, governed
by another parameter, σ.

In our view, although dCountAntom follows a cube-
and-conquer philosophy similar to ours, its distribution strat-
egy introduces several limitations. Most notably, when a
slave relinquishes an unfinished job, the computational ef-
fort expended on that task is lost, since counters do not ex-
ploit solving under assumptions. Additionally, when the
master is assigned a particularly challenging subproblem,
slave processes often remain idle, resulting in poor resource
utilization and workload imbalance; especially if individual
slave cores are insufficient to resolve difficult cases within
the allowed time, forcing the master to do most of the work.
dCountAntom also aggressively shares learned conflict

clauses: when a clause is learned by the master or received
from a slave, it is broadcast to all slaves. Furthermore,
entire sub-formulae are transmitted from the master to the
slaves, leading to significant communication overhead, par-
ticularly for large subproblems. In contrast, our approach
mitigates such overhead by generating a sufficient number
of cubes at the outset and refraining from sharing informa-
tion between workers. Finally, the overall performance of
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dCountAntom appears sensitive to the choice of the key
parameters σ and τ , which must be carefully tuned to bal-
ance granularity and timeouts for effective parallelism.

Recent research has enhanced these techniques by in-
corporating structural information into the partitioning
phase (Fichte et al. 2023; Bannach and Hecher 2024a;
Dreier, Ordyniak, and Szeider 2024). More precisely, Ban-
nach and Hecher (2024b) proposed leveraging tree decom-
positions to guide cube generation for MaxSAT solving.
By exploiting variable dependencies revealed by the tree
decomposition, their method produces more balanced and
tractable cubes for sequential processing, resulting in no-
table improvements in MaxSAT solver performance. Al-
though their approach is sequential, it demonstrates the sig-
nificant benefits of utilizing problem structure during parti-
tioning. To the best of our knowledge, this strategy has not
been applied in the context of model counting.
dmc offers another significant alternative to the cube-

and-conquer paradigm (Lagniez, Marquis, and Szczepan-
ski 2018). In dmc, each worker executes an instance of
d4 (Lagniez and Marquis 2017a), and workload distribution
is managed by a dynamic job-sharing mechanism inspired
by work-stealing. Unlike dCountAntom, dmc eschews the
direct exchange of formula fragments and learnt clauses be-
tween workers, thereby reducing communication overhead
and enhancing scalability.

A key characteristic of dmc is that it requires specific
modifications to the underlying model counter to facilitate
communication protocols, arithmetic job representations,
and synchronized task delegation. This is in contrast to our
approach, which is intentionally non-intrusive: we treat the
underlying model counter as a black box, without altering
its internal algorithms or data structures. This design greatly
simplifies integration and ensures broad compatibility with
different model counting tools. Moreover, dmc aggregates
model counts using double-precision floating-point arith-
metic. While this may suffice for many applications, it can
lead to precision loss when formulas have extremely large
model counts. By contrast, our approach employs arbitrary-
precision arithmetic, guaranteeing exact results even in cases
involving very large or combinatorially complex counts.

We did not consider model counters that leverage GPU ac-
celeration, such as the approach proposed in (Fichte, Hecher,
and Roland 2021). While integrating GPU-based model
counting into our framework could offer interesting perfor-
mance benefits and is worth exploring in future work, it falls
outside the scope of this paper.

5 Experiments
Our approach is implemented in C++. The software used
in the experiments, along with the corresponding logs, is
available at https://zenodo.org/records/16536062. For the
SAT solving component, we employ the CaDiCaL CDCL
SAT solver (Biere et al. 2024), using a single incremental
solver instance throughout to optimize performance. For
tree decomposition, we utilize FlowCutter (Hamann and
Strasser 2018), relying on the implementation submitted to
the PACE 2017 tree decomposition challenge and available

on GitHub2. A time budget of 10 seconds is allocated for
each tree decomposition computation.

Our preprocessing step uses B+E (Lagniez, Lonca, and
Marquis 2016; Lagniez, Lonca, and Marquis 2020), with
the source code available via the Compile! Project website3.
For the experiments, we use the equiv option, which is
based on a preprocessing combination of vivification, back-
bone extraction, and occurrence elimination (Lagniez and
Marquis 2014; Lagniez and Marquis 2017b). The ratio-
nale for preferring this approach over more aggressive tech-
niques based on definability is practical: computing the
set of defined variables and eliminating them can be time-
consuming; and, because this preprocessing is not paral-
lelized, it may lead to a significant waste of computational
resources by keeping workers idle for extended periods. A
time budget of 5 seconds is allocated for the preprocessing
step.

Regarding the model counters, we consider both
d4 (Lagniez and Marquis 2017a)4 and SharpSAT-TD (Ko-
rhonen and Järvisalo 2021)5. We have upgraded both for
incremental operation with assumptions.

We evaluated our approach against the state-of-the-art dis-
tributed model counters dCountAntom (Burchard, Schu-
bert, and Becker 2016) and dmc (Lagniez, Marquis, and
Szczepanski 2018). The benchmarks were taken from the
most recent model counting competition6. All experiments
were conducted on a cluster comprising thirty-two Intel®
Xeon® E5-2643 v4 CPUs running at 3.30 GHz, with Rocky
Linux 9.5 (Linux kernel 5.14) as the operating system. The
cluster nodes are interconnected via an Ethernet controller
with a bandwidth of 1 GiB/s. The software environment in-
cluded GCC 11.5 and Open MPI 5.1.0a1. A wall-clock time
limit of 900 seconds and a memory limit of 32 GiB were
imposed on each run.

Figure 2 presents a cactus plot illustrating, for each wall-
clock time limit (on the x-axis), the number of instances
solved (on the y-axis) by each model counter included in our
experiments: dCountAntom, dmc, and DisCount (using
d4 as the underlying model counter). To assess the scalabil-
ity of DisCount, we evaluated its performance using 2, 4,
8, 16, 32, 64, and 128 cores. Regardless of the number of
cores allocated, DisCount was configured to generate 30
cubes per worker. For comparison, both dCountAntom
and dmc were executed with 128 cores.

The results show that increasing the number of cores sig-
nificantly reduces the time required by DisCount to solve
instances, leading to a higher number of instances solved
within the time limit. Specifically, DisCount solves 67 in-
stances using 2 cores, 83 with 4 cores, 93 with 8 cores, 94
with 16 cores, 103 with 32 cores, 109 with 64 cores, and
111 with 128 cores. Notably, the sequential version solves
81 instances, showing that the benefits of the embarrassingly
parallel search emerge only when run in parallel.

2https://github.com/kit-algo/flow-cutter-pace17.git
3http://www.cril.univ-artois.fr/kc/bpe2.html
4https://github.com/crillab/d4v2
5https://github.com/Laakeri/sharpsat-td
6https://zenodo.org/records/14249068
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Figure 2: Performance comparison of the model counters
dCountAntom, dmc, and various versions of DisCount for dif-
ferent numbers of cores. The plot reports the number of instances
solved as a function of time. For each solver, the total number of
instances solved is indicated in parentheses in the legend.

In contrast, dCountAntom running on 128 cores solves
only 42 instances, substantially fewer than DisCount.
Moreover, DisCount is able to solve all the instances
solved by dCountAntom. As noted in (Lagniez, Marquis,
and Szczepanski 2018), the disappointing performance of
dCountAntom correlates with the choice of parameters δ
and τ , whose default values may not be well suited to our
benchmark set. We also tried alternative parameter values
but saw no performance gains.
dmc solved 103 instances, which is consistent with previ-

ous observations (Lagniez, Marquis, and Szczepanski 2018)
that dmc outperforms dCountAntom. Compared to dmc,
DisCount was able to solve eight additional instances.
This result is particularly notable because integrating d4
with DisCount required minimal implementation effort,
in contrast to the significant reengineering needed to adapt
dmc for use with other state-of-the-art model counters.
DisCount solves all but two of the instances solved by

dmc. Upon further inspection, we found that the tree de-
compositions used by DisCount for these two benchmarks
were highly unbalanced. In both cases, the first bag of the
decomposition was very small, meaning that after only a few
variable assignments, the remaining formula decomposed
into connected components, an opportunity our current im-
plementation does not exploit. As a result, all workers ended
up solving essentially the same hard subproblem, leading to
significant inefficiency for these particular benchmarks.

Figure 3 presents a scatter plot comparing the solving
times of dmc and DisCount for each benchmark instance.
Each data point corresponds to a single instance, with the x-
axis indicating the time (in seconds) required by DisCount
and the y-axis representing the time required by dmc. The
experimental results show that for instances solved in un-
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Figure 3: Scatter plot comparing the solving times of dmc (y-
axis) and DisCount (x-axis) for each benchmark instance. Each
point corresponds to a single instance; the x-coordinate shows the
time (in seconds) required by DisCount, while the y-coordinate
indicates the time taken by dmc.

der 50 seconds, dmc is noticeably more efficient. How-
ever, as the running time increases, DisCount becomes
increasingly competitive, eventually outperforming dmc on
instances that require more than 700 seconds to solve.

The initial inefficiency of DisCount can be primarily
attributed to the overhead associated with cube generation,
which requires the construction of 128 × 30 = 3840 cubes.
Specifically, for 25 instances, the time spent in cube gener-
ation exceeded 20 seconds. Even though this phase is par-
allelized, it may fail to complete efficiently on particularly
challenging benchmarks, especially when a large proportion
of generated cubes are unsatisfiable, leading to a signifi-
cant number of SAT solver invocations during this phase.
These observations suggest that there is room for improve-
ment by reducing the number of cubes allocated to each
worker which could decrease cube generation time and im-
prove overall performance on some instances.

Regarding the performance of DisCount, the version
utilizing SharpSAT-TD and running on 128 cores was able
to solve 104 instances. On the other hand, the version em-
ploying d4 as the underlying counter managed to solve 7
instances that the SharpSAT-TD-based version could not.
Conversely, the SharpSAT-TD-based version solved 3 in-
stances that were not solved by the d4-based version. These
experiments highlight the significance of the chosen counter
with respect to the specific instance under consideration.

Figure 4 presents the distribution of speedup achieved by
DisCount as the number of cores increases, with each
boxplot corresponding to a different core count. The y-
axis represents speedup relative to the sequential baseline
(DisCount running on two cores), and the x-axis indicates
the number of cores used. For any instance Σ solved in
tn seconds by DisCount running on n cores, the reported
speedup is defined as min(t1,3600)

tn
, where t1 is the solution
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Figure 4: Scatter plot comparing the solving times of dmc (y-
axis) and DisCount (x-axis) for each benchmark instance. Each
point corresponds to a single instance; the x-coordinate shows the
time (in seconds) required by DisCount, while the y-coordinate
indicates the time taken by dmc.

time using two cores. If Σ is not solved within 900 sec-
onds on a single worker, t1 is undefined. Therefore, the ob-
served speedups are conservative lower bounds on the actual
speedups that could be achieved if running DisCount with
one worker to completion were feasible.

As the number of cores increases from 4 to 128, the me-
dian speedup generally rises, demonstrating good scalabil-
ity of our approach. Additionally, the spread of speedup
values becomes wider, with an increasing number of out-
liers corresponding to exceptional speedups on particular in-
stances; especially pronounced beyond 32 cores. The in-
terquartile range remains broad across all configurations, in-
dicating substantial variability in parallel speedup depend-
ing on the instance. Overall, the results show that increasing
core count is beneficial both for median and peak speedup,
although the gains vary significantly across instances. This
highlights both the effectiveness of our parallel cube-and-
conquer strategy as well as the importance of instance char-
acteristics, since factors such as load imbalance or inher-
ent sequential bottlenecks in cube generation or solving can
limit parallel efficiency in certain cases.

To assess the impact of using tree decomposition during
cube generation, we evaluated a variant of DisCount that
omits this heuristic, referred to as DisCount-noDecomp.
Figure 5 presents a scatter plot comparing the running times
of DisCount-noDecomp and the baseline DisCount
employing tree decomposition. As illustrated in the fig-
ure, incorporating the tree decomposition heuristic for
cube generation significantly improves the performance of
DisCount. While DisCount-noDecomp was able to
solve only 83 instances, the full version of DisCount with
tree decomposition solved 111 instances, highlighting the
effectiveness of the heuristic.

To conclude our experimental evaluation, we analyzed
the effect of varying the parameter nbCubes, which con-
trols the number of cubes generated by the workers. Due to
resource constraints, these experiments were conducted us-
ing DisCount on 80 cores. We considered the following

100 101 102 103

DisCount with tree decomposition

101

102

103

D
is

Co
un

t w
ith

ou
t t

re
e 

de
co

m
po

si
tio

n

instance

Figure 5: Scatter plot comparing the solving times of DisCount
(with tree decomposition-based cube generation, x-axis) and
DisCount-noDecomp (without tree decomposition, y-axis) for
each benchmark instance. Each point represents a single instance;
the x- and y-coordinates correspond to the solving times (in sec-
onds) for DisCount and DisCount-noDecomp, respectively.

values for nbCubes: 5, 10, 30, 100, and 500. The corre-
sponding numbers of instances solved were 106, 106, 107,
104, and 96, respectively. As can be observed, increasing
the number of generated cubes leads to a decrease in over-
all effectiveness. This result is consistent with our previous
observations regarding the computational cost of the cube
generation phase.

6 Conclusion and Perspectives
In this paper, we have introduced a general and modu-
lar framework for distributed and parallel model counting,
grounded in the cube-and-conquer paradigm. Our method
achieves efficient search-space partitioning through paral-
lel cube generation, and facilitates the seamless integration
of arbitrary model counters via an abstraction layer, elim-
inating the need to modify underlying counting engines.
By employing advanced structural heuristics, such as tree
decomposition-based branching strategies, our approach at-
tains both balanced partitioning and enhanced model count-
ing performance. In contrast to previous distributed methods
like dCountAntom and dmc, our framework minimizes
communication overhead, supports arbitrary-precision arith-
metic to avoid numerical precision loss, and remains non-
intrusive with respect to existing model counters. Experi-
mental results on challenging benchmark instances from the
2024 model counting competition demonstrate the scalabil-
ity and flexibility of our framework.

Directions for future work include dynamic load balanc-
ing, detection of connected components during the cube
generation procedure, integration with approximate count-
ing techniques, and the development of advanced prepro-
cessing strategies adapted for distributed environments. We
believe that the flexibility and efficiency of our approach
make it a promising foundation for continued research and
practical applications in distributed model counting.
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of Computer Science, Liptovský Ján, Slovakia, January 22-
28, 2005, Proceedings, volume 3381 of Lecture Notes in
Computer Science, 1–16. Springer.
Burchard, J.; Schubert, T.; and Becker, B. 2015. Laissez-
faire caching for parallel #sat solving. In Heule, M., and
Weaver, S. A., eds., Theory and Applications of Satisfia-
bility Testing - SAT 2015 - 18th International Conference,
Austin, TX, USA, September 24-27, 2015, Proceedings, vol-
ume 9340 of Lecture Notes in Computer Science, 46–61.
Springer.
Burchard, J.; Schubert, T.; and Becker, B. 2016. Distributed
parallel #sat solving. In 2016 IEEE International Confer-
ence on Cluster Computing, CLUSTER 2016, Taipei, Tai-
wan, September 12-16, 2016, 326–335. IEEE Computer So-
ciety.
Chavira, M., and Darwiche, A. 2008. On probabilistic in-
ference by weighted model counting. Artif. Intell. 172(6-
7):772–799.
Darwiche, A. 2004. New advances in compiling CNF
into decomposable negation normal form. In de Mántaras,
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