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Abstract

We present TRACE-CS, a novel hybrid system that combines
symbolic reasoning with large language models (LLMs)
to address contrastive queries in course scheduling prob-
lems. TRACE-CS leverages logic-based techniques to en-
code scheduling constraints and generate provably correct
explanations, while utilizing an LLM to process natural
language queries and refine logical explanations into user-
friendly responses. This system showcases how combining
symbolic KR methods with LLMs creates explainable AI
agents that balance logical correctness with natural language
accessibility, addressing a fundamental challenge in deployed
scheduling systems.

1 Introduction
Scheduling systems, which allocate finite resources to mul-
tiple agents over time, are ubiquitous in real-world environ-
ments, from personnel shift assignments (Van den Bergh et
al. 2013) to Mars rover activities (Chi, Chien, and Agrawal
2020). Beyond generating valid and optimal schedules, it
is crucial to ensure that both the schedule and the decision-
making process are explainable to human users. Explainable
scheduling, therefore, is essential for understanding schedul-
ing decisions, rectifying issues, and providing explanations
for specific decisions or schedule generation failures. Most
of the work in this space have relied on symbolic, logical
methods that generate valid and sound explanations.

At the other end of the spectrum, the emergence of large
language models (LLMs) has marked a significant milestone
in AI. While LLMs excel at generating coherent and contex-
tually relevant text (Brown et al. 2020), their reliance on sta-
tistical inference leads to challenges in maintaining logical
consistency and accuracy in reasoning and planning tasks
(McCoy et al. 2023; Valmeekam et al. 2023). This limita-
tion is particularly apparent when explanations need to be
both linguistically coherent and logically sound. In contrast,
symbolic, logical methods provide a robust medium for rea-
soning and planning due to their ability to perform valid and
sound inference. This realization offers an opportunity to
combine the strengths of both LLMs and symbolic meth-
ods, creating synergistic systems that ensure decisions are
not only provably correct and robust, but also communicated
in a user-friendly manner.

In this paper, we present TRACE-CS (Trustworthy ReA-
soning for Contrastive Explanations in Course Scheduling
Problems), a synergistic system that combines symbolic rea-
soning with the natural language capabilities of LLMs for
generating explanations in course scheduling problems. Par-
ticularly, TRACE-CS generates natural language explana-
tions for contrastive user queries (e.g., “Why course X in-
stead of course Y?”) by leveraging a state-of-the-art sym-
bolic explainer (Vasileiou, Previti, and Yeoh 2021) together
with an LLM-powered user interface for natural language in-
teractions, thus ensuring that the explanations are provably
trustworthy as well as communicated to users in a natural
format.

In short, this paper focuses on the practical implementa-
tion, deployment, and evaluation of TRACE-CS as a case
study in hybrid KR systems. We demonstrate how symbolic
methods provide correctness guarantees while LLMs en-
hance user experience through natural language processing,
creating a synergistic system with real-world utility. Our
experimental results quantify these benefits, showing per-
fect accuracy in explanations while maintaining natural lan-
guage accessibility—a significant improvement over LLM-
only approaches.

2 Related Work
Explainable scheduling research has predominantly relied
on logical symbolic methods (Cyras et al. 2019; Agrawal,
Yelamanchili, and Chien 2020; Bertolucci et al. 2021;
Pozanco et al. 2022; Powell and Riccardi 2022; Vasileiou
et al. 2022; Vasileiou, Xu, and Yeoh 2023; Zehtabi et al.
2024). While grounded in sound inference procedures, these
approaches often produce explanations that are difficult to
communicate to users due to their logic-based nature. At-
tempts to mitigate this limitation have used templates map-
ping logical explanations to pre-specified natural language
sentences (Pozanco et al. 2022; Vasileiou, Xu, and Yeoh
2023) or visualization interfaces (Čyras, Lee, and Letsios
2021; Kumar et al. 2022; Powell and Riccardi 2022).

Concurrently, LLMs have revolutionized natural language
processing and found applications across diverse domains,
including planning (Kambhampati et al. 2024), code gener-
ation (Roziere et al. 2023), and medical applications (Zhou
et al. 2023). However, the integration of LLMs with sym-
bolic explainable scheduling systems remains largely unex-
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Figure 1: The TRACE-CS workflow.

plored. Our work, TRACE-CS, represents the first attempt
to address this gap by presenting a novel hybrid system that
synergistically combines a symbolic explainable scheduling
module with an LLM module.

3 TRACE-CS System Architecture Overview
The TRACE-CS system architecture, illustrated in Figure 1,
consists of two primary components: a Symbolic Module
handling constraint encoding and explanation generation,
and an LLM Module managing natural language interaction.
The workflow is as follows: (1) The user submits a con-
trastive query in natural language; (2) The Query Parser ex-
tracts the information from the query and converts it into a
logical representation φ consistent with the knowledge base
KB created by the Encoder; (3) The user verifies if the ex-
tracted query information corresponds to the original query,
and proceeds to the next step if it is; (4) The Explainer gen-
erates a symbolic explanation ϵ for φ with respect to KB;
(5) The Explanation Refiner converts ϵ into natural language
and outputs it to the user.

3.1 Symbolic Module
The Symbolic Module forms the core of TRACE-CS and
consists of two subcomponents, the Encoder, which encodes
the scheduling constraints into a logical knowledge base,
and the Explainer, which generates minimal explanations
for user queries with respect to the knowledge base.

Encoder. The Encoder transforms course scheduling con-
straints into a Boolean satisfiability (SAT) problem.1 The
system models scheduling decisions using Boolean vari-
ables and logical clauses derived from degree requirements
and university policies. Specifically, for each course c and
semester s, the system creates a course variable var(c, s)

1A plethora of scheduling problems has been modeled us-
ing SAT-based approaches (Crawford and Baker 1994; Pinto and
Grossmann 1997; Kundu and Acharyya 2008; Ansótegui et al.
2011; Haspeslagh et al. 2013; Bofill et al. 2015; Demirović, Mus-
liu, and Winter 2019). In such problems, a schedule is found if and
only if the encoded KB has a satisfying model.

that indicates whether course c is scheduled in semester s.
The constraints span several categories, such as degree re-
quirements (e.g., core courses, elective distributions, total
credit requirements), temporal constraints (e,g., prerequi-
sites, semester credit limits), and general scheduling con-
straints (e.g., each selected course is assigned to exactly
one semester). For example, the prerequisite constraint
‘YNP H57 must be completed before XOX R89” is en-
coded as the following logical clause: ¬var(XOX_R89, s)∨∨s−1

t=0 var(YNP_H57, t), where s is a semester that XOX
R89 could be scheduled, and t < s. This ensures that if
XOX R89 is scheduled in semester s, then YNP H57 must
be scheduled in some previous semester t < s.

Explainer. The Explainer generates a minimal explana-
tion for the user contrastive query φ (processed by the
LLM module) using the logic-based explanation genera-
tion algorithm from (Vasileiou, Previti, and Yeoh 2021;
Vasileiou, Xu, and Yeoh 2023). In essence, the algorithm
takes as input the KB and the query φ, where KB |= φ, and
outputs a set of logical clauses ϵ ⊆ KB such that ϵ |= φ,
and ∄ϵ′ ⊂ ϵ such that ϵ′ |= φ.2 In other words, it outputs a
⊆-minimal explanation ϵ.

3.2 LLM Module
The LLM Module serves as the interface between the
user and the Symbolic Module, handling natural language
processing tasks through two subcomponents: the Query
Parser, which interprets contrastive queries and converts
them into logical representations, and the Explanation Re-
finer, which translates logical explanations into user-friendly
natural language responses.

Query Parser. The Query Parser converts natural language
contrastive queries into logical representations φ compati-
ble with the knowledge base KB. The parser uses an LLM

2Practically, the algorithm leverages the fact that if KB |= φ,
then KB∧¬φ |= ⊥, and uses SAT-based solvers optimized to find
minimal unsatisfiable sets (MUSes) and minimal correction sets
(MCSes) (Marques-Silva 2012; Marques-Silva et al. 2013).
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Figure 2: The TRACE-CS interface showing the explanation workflow: (1) course schedule display across 8 semesters; (2) user query input;
(3) query verification step with user confirmation; and (4) generated explanation output.

with in-context learning to extract three key components
from user queries: (1) course names, (2) target semesters,
and (3) conditions (positive or negative). For example, the
query “Why not XOX R89 instead of YNP H57?” is parsed
to extract two courses: XOX R89 with a positive condition
(should be scheduled) and YNP H57 with a negative condi-
tion (should not be scheduled), both targeting the semester
where YNP H57 is currently scheduled.3 The extracted in-
formation is then converted into clauses that can be eval-
uated against the knowledge base. Finally, as recent work
highlights potential limitations of LLMs in formal interpre-
tation tasks (Karia et al. 2024), TRACE-CS includes a user
verification step before proceeding to explanation generation
to ensure that the converted queries are correct.

Explanation Refiner. The Explanation Refiner takes the
symbolic explanation ϵ from the Explainer and translates it
into coherent natural language responses. For each clause in
ϵ, the system retrieves the corresponding English label—a
short sentence describing what the constraint means in natu-
ral language. The refiner then uses an LLM with in-context
learning to process these labels along with contextual infor-
mation about the current schedule and course descriptions,
generating a coherent explanation while maintaining logical
accuracy. For instance, multiple related constraints about
prerequisite violations are grouped and presented as a sin-
gle coherent explanation rather than as separate constraint
statements.

4 Proof-of-Concept
We implemented TRACE-CS as a proof-of-concept for un-
dergraduate computer science course scheduling at our uni-
versity.4 The system handles scheduling decisions across

3The parser includes examples in the prompt to handle various
query formats and performs fuzzy matching for partially specified
course names.

4Code repository: https://github.com/YODA-Lab/TRACE-CS.

eight academic semesters, incorporating real course data and
degree requirements from the university’s official sources.

Domain and Data Collection. The application domain in-
volves scheduling courses for a Bachelor of Science in Com-
puter Science degree, which requires 120 credit hours dis-
tributed across core courses, electives, and general education
requirements. We collected course data by scraping our uni-
versity’s official course catalog and degree requirements, ex-
tracting course codes, credit hours, prerequisites, and course
descriptions. The dataset includes over 200 courses span-
ning core CS courses, CS electives, science electives, and
social science/humanities requirements. All courses are
anonymized for the blind review process. Prerequisites form
complex dependency chains–for instance, WJW R89 (Anal-
ysis of Algorithms) requires XOX R89 (Data Structures),
which in turn requires VPC Z88 (Introduction to Computer
Science).

Implementation. The system is implemented in Python,
with the Symbolic Module using the PySAT library (Ig-
natiev, Morgado, and Marques-Silva 2018) for SAT encod-
ing and solving, and the LLM Module using GPT-4.1 (Ope-
nAI 2023) for natural language processing. The encoder
generates constraints for degree requirements (e.g., “at least
45 CS elective credits”), temporal dependencies (e.g., pre-
requisite chains), and scheduling logistics (e.g., 9-15 credits
per semester). The system produces multiple valid sched-
ules using solution blocking techniques, allowing users to
explore different scheduling options.

User Interface. Figure 2 shows the interface, which dis-
plays the generated schedule as a semester-by-semester
course layout. Users can submit contrastive queries through
a text input field, such as “Why not XOX R89 in semester
6 instead of YNP H57?”. The interface includes a verifi-
cation step where users confirm that the system correctly
parsed their query before proceeding to explanation gener-
ation. This verification step addresses potential limitations
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Complexity Accuracy (%) Avg. Words Avg. Runtime (sec)
Level TRACE-CS GPT-4.1 TRACE-CS GPT-4.1 TRACE-CS GPT-4.1

1 100.0 62.0 64.7 129.8 11.0 3.9
2 100.0 56.0 63.0 152.1 12.2 4.5
4 100.0 52.0 102.7 165.3 15.9 4.2
6 100.0 46.5 122.4 190.5 20.0 4.7

Overall 100.0 54.1 81.8 159.4 14.7 4.3

Table 1: Comparative evaluation results between TRACE-CS and
GPT-4.1 approach across 550 queries of various complexity levels.

in LLM query interpretation and ensures user intent is accu-
rately captured.

Query Types and System Response. The system han-
dles various contrastive query patterns, including single-
course questions (e.g., “Why XOX R89?”), temporal queries
(“Why not XOX R89 in semester 5?”), and comparative
queries (“Why LAP D94 instead of UUE T98 in Semester
6?”). For each query, the system identifies a minimal set of
constraints preventing the alternative and presents explana-
tions such as “WJW R89 cannot be scheduled because its
prerequisite XOX R89 has not been completed" or “The to-
tal credits for CS electives must sum to 45 credits.” The
interface maintains conversation history, allowing users to
ask follow-up questions about the same schedule.

4.1 Computational Evaluation
We conducted a comparative evaluation of TRACE-CS
against a pure LLM-only approach using GPT-4.1.5 The
evaluation used 550 contrastive queries across several dif-
ferent course schedules, and was run on a machine with an
M1 Max processor and 32GB of RAM.

Experimental Setup. We generated queries of varying
complexity levels, where complexity indicates the num-
ber of courses mentioned in the query (e.g., “Why not
YNP H57?” has complexity 1, while “Why VPC Z88 in
semester 1 and JWF J68 in semester 2?” has complexity
2). For the LLM-only baseline, we provided GPT-4.1 with
the course schedule, course descriptions, and all scheduling
constraints, asking it to generate explanations directly with-
out the logical reasoning component. We also provided it
with a few example queries and their correct corresponding
explanations.

Evaluation Metrics. We measured three key aspects:
(1) explanation correctness with respect to the scheduling
constraints, evaluated manually by the authors, (2) verbosity
measured by word count in generated explanations, and (3)
response time for explanation generation.

Results. Table 1 shows the results. TRACE-CS achieved
100% correctness across all complexity levels, while GPT-
4.1 achieved only 54.1% correctness overall, with perfor-
mance ranging from 62.0% for queries of complexity 1 to
46.5% for queries of complexity 6. The low accuracy indi-
cates a limitation of pure LLM approaches for logical rea-
soning tasks. In terms of verbosity, GPT-4.1 generated sig-
nificantly longer explanations, averaging 159.4 words com-
pared to TRACE-CS’s 81.8 words. This verbosity increased

5We chose GPT-4.1 because it was one of the best performing
and most affordable model at the time of writing this paper.

substantially with query complexity, reaching 190.5 words
for complexity 6 queries compared to TRACE-CS’s 122.4
words. It is worth noting that GPT-4.1 exhibited a tendency
to generate non-minimal explanations that included most or
all applicable constraints rather than identifying the specific
minimal set causing the conflict, despite being prompted to
only generate the most relevant and minimal reasons. While
these comprehensive explanations may be technically cor-
rect in some cases, they might overwhelm users as they in-
clude unnecessary information.

For response time, as expected, GPT-4.1 was faster, aver-
aging 4.3 seconds compared to TRACE-CS’s 14.7 seconds.
However, TRACE-CS’s additional computational cost (due
to calling SAT solvers) leads to perfect accuracy of the ex-
planation. Overall, the results reveal a critical trade-off be-
tween speed and reliability in explanation generation. GPT-
4.1’s poor performance possibly stems from its statistical in-
ference approach, which struggles with the precise logical
reasoning required for constraint satisfaction problems. In
contrast, TRACE-CS leverages symbolic reasoning to guar-
antee logical correctness while using the LLM component
solely for natural language processing tasks where it excels.

5 Conclusions

We presented TRACE-CS, a hybrid system that com-
bines logical reasoning with LLMs for explainable course
scheduling. Our evaluation demonstrates that TRACE-CS
achieves perfect logical correctness while generating con-
cise, minimal explanations–substantially outperforming the
pure LLM approach that achieved only 54.1% accuracy. As
LLM capabilities continue to evolve, the modular design of
TRACE-CS might provide a framework for incorporating
improved reasoning models while maintaining the guaran-
tee of logical correctness through symbolic verification.

It is important to note that our evaluation focused on a
single LLM (i.e., GPT-4.1). Recent advances in reasoning
capabilities of LLMs suggest that newer or more specialized
models might achieve better performance on logical reason-
ing tasks. Models specifically trained on formal reasoning
or those with enhanced chain-of-thought capabilities could
potentially narrow the gap with symbolic approaches. Eval-
uating the system with newer models and/or domain-specific
reasoning models would provide insights into the evolving
landscape of neural reasoning capabilities. Additionally, our
evaluation used a straightforward prompting strategy; more
sophisticated prompting techniques, such as structured rea-
soning prompts or multi-step verification processes, might
improve LLM performance as well.

Finally, while demonstrated on course scheduling, the
hybrid architecture of TRACE-CS can extend naturally to
other constraint-based domains, such as planning and re-
source allocation. Moreover, conducting user studies to as-
sess explanation quality from an end-user perspective would
provide valuable insights into the practical utility of min-
imal versus comprehensive explanations in real-world de-
ployment scenarios.
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