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Abstract

We present a general framework for declaratively grounded
visual commonsense (reasoning) about embodied interaction
in naturalistic, in-the-wild settings relevant to a range of Al
application domains. The core computational capabilities of
the framework pertaining visual commonsense are driven by
a robust neurosymbolic architecture primarily consisting of:
(1) answer set programming based modelling of foundational
aspects pertaining spatio-temporal dynamics, encompassing
space, time, events, action, motion; (2) modularly integrated
visual computing techniques constituting the neural substrate
linking quantitative perceptual features serving as low-level
counterparts to high-level semantic characterisations of (in-
ter)active visual commonsense.

Practically, we also present a first open-release of the devel-
oped framework with the aim to promote independent exten-
sions and real-world applied KRR. The release comprises: (a)
demonstrated case-studies in domains such as autonomous
driving, psychology and media studies; (b) systematic evalu-
ation mechanisms for community benchmarking; and (c) sup-
porting material such as tutorials and datasets.

1 Motivation

We present a novel framework for visual commonsense
in autonomous systems concerned with (inter)active sense-
making in diverse embodied “in-the-wild” situations of ev-
eryday life and work. By interactive sensemaking, inter-
changeably active sensemaking, we allude to:

» interleaved multimodal perception, interpretation and
decision-making requiring coordination of attention, in-
tegration of sensory inputs, and dynamic exploration of
possible worlds and outcomes, possibly under tight tem-
poral constraints.

As a basic example of active sensemaking, consider the il-
lustration of a sample human activity —“making a cup of
tea”— in Fig. 1. Here, our notion of embodied active vi-
sion is inherent and plays a crucial role, as well as offers a
compelling challenge for real-world applications of AI/KR
and ML/Vision. The sample of Fig. 1 presents data cap-
tured from an egocentric viewpoint with a head-mounted
RGB-D capture device. From a commonsense viewpoint,
this episode may be represented as a sequence of dynamic
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Figure 1: Relational Grounding of Everyday Interaction:
“Making a cup of tea” (egocentric view from a head-mounted
RGB-D capture device)

visuospatial interactions, such as the following:

» opening the tea-box, removing a tea-bag from the box and
putting the tea-bag inside a tea-cup filled with water while
holding the tea-cup.

Corresponding to such interactions are high-level spatial and
temporal relationships between the agent and other involved
objects, e.g., involving conceptual representations of con-
tact and containment that hold across specific time-intervals.

—

In this context, manipulation and control actions (O1(9),
..0,,(6)) cause state transitions in the world, which are mod-
elled in a domain-independent manner as changes in the
spatio-temporal relations amongst involved domain entities.
Our proposed framework enables the seamless maintenance
of such dynamic interactive situations in a robust, domain-

independent, and elaboration tolerant manner.

Explainable Visual Commonsense. In order to realise
a computational model of active, explainable, visual com-
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Figure 2: Neurosymbolic Visual Commonsense: Integrated Vision & Al foundations for making-sense of embodied multimodal interaction.

monsense reasoning with dynamic visuospatial imagery, we
present a systematic, modular, and extensible integration
of methods from knowledge representation and reasoning,
and computer vision. In central focus of this paper are
answer set programming (Brewka, Eiter, and Truszczynski
2011; Gebser et al. 2014) based declarative modelling of
action/event induced spatio-temporal dynamics and deep
learning driven computer vision techniques for the extrac-
tion of low-level perceptual features from quantitative stim-
uli such as video and eye-tracking data (Suchan, Bhatt, and
Varadarajan 2019). Our key emphasis here is on develop-
ing robust mechanisms for generalised (declarative) neu-
rosymbolic visual commonsense (reasoning) about space,
time, events, actions, motion, and spatio-temporal dynam-
ics as relevant to embodied multimodal interaction under
ecologically valid naturalistic settings of everyday life (Fig.
3). From a practical viewpoint, we showcase the manner in
which the developed framework robustly supports general-
purpose computational visual commonsense reasoning pri-
marily (but not exclusively) rooted to (neurosymbolic) non-
monotonic visual abduction. The presented framework is
motivated by and demonstrated in the applied backdrop of
areas as diverse as autonomous driving, design of digital
visuo-auditory media, and behavioural visual perception re-
search in cognitive psychology.

Emerging AI Regulation. We address the foundations
of next-generation computational cognitive vision systems
with an emphasis on achieving explainability and human-
centred design. We interpret human-centred criteria within
the emerging regulatory framework in the European Union
(AI HLEG 2019; EU Commission 2019; EU Commission
2021); our particular focus is on the recommendations con-
cerning ‘technical robustness’, ‘explicability’, and ‘trans-
parency’ of future Al systems. In this context, we particu-
larly argue for the need and relevance of methods in knowl-
edge representation and reasoning within next-generation Al
systems, and demonstrate this with a systematically imple-
mented novel exemplar of “generalised visual commonsense
framework™ bridging Vision and AI/KRR techniques and
making them available for extensions and applications.
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2 Space-Time Mental Models in
(Inter)Active Vision

We present a conceptual summary (Fig. 2) of the devel-
oped framework for visual commonsense, motivating its
overall design and implementation whilst highlighting key
functional capabilities vis-a-vis application needs, robust
declarative foundations, domain-independent (re)usability,
and modular extensibility.

2.1 What’s in a Space-Time Mental Model?

Consider a situation where a human is driving a car, nav-
igating complex urban traffic together with other vehicles
and vulnerable road users (e.g., pedestrians, cyclists). The
human driver’s ability to maintain space-time situational
awareness of the situation, for instance in an approxi-
mately 4-6 sec interval comprising of the immediate past
and future constitutes the human driver’s space-time mental
model. Conceptually akin to this characterisation, we de-
note the computation of a space-time mental model (Bhatt
and Suchan 2021) as:

+ the ability to semantically interpret and explain the
space-time sensory perception of the environment, con-
ceptually making sense of the configuration and dynam-
ics of mutually interacting people, objects, artefacts, and
events and actions in space and time both in an active
realtime as well as offline setting.

This characterisation of a space-time mental model may be
interpreted in a multitude of ways. In the specific context
of computational modelling, factors determining our design
and implementation choices are influenced by the following
aspects: (1) Level of ontological expressivity required vis-
a-vis domain-independent commonsense characterisations
of aspects related to space, time, motion, granularity of hu-
man interaction representation etc; (2) Scalable algorithmic
implementation needs and overall tolerable complexity (e.g.,
realtime vs. offline processing needs); (3) Nature of quanti-
tative input data sources (e.g., video, sound, LIDAR, eye-
tracking and other physiological markers); and (4) Applica-
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Figure 3: Embodied multimodal interaction in diverse contexts: (a) A pedestrian establishes joint attention with a driver, and a cyclist’s
gesture indicates intentions to turn following traffic rules; (b) Facial expressions accompany speech during news media discussions or public
talks; (c) Eye contact and deictic gestures promoting joint attention under social (robotic) collaborative tasks; (d) Industrial collaborative

tasks with a robotic arm.

tion needs primarily pertaining to types of high-level com-
monsense reasoning capabilities required.

A detailed characterisation of all design decisions is not es-
sential to the purpose of this paper. Here, we instead fo-
cus on a conceptual summary (Fig. 2) of the developed
framework vis-a-vis key representational and computational
requirements that have been formalised, implemented, and
evaluated from the viewpoint of open-source dissemination.

2.2 Ontological and Computational Setup

We highlight two key aspects: (I) Ontological modelling of
interaction, and (II) Key constituents of a foundational for-
mal and computational characterisation of visual common-
sense as relevant to a range of visual stimuli / application
domains involving diverse forms of multimodal interaction:

I. Modelling Interaction: Embodied multimodal interac-
tions, relevant to diverse applications (e.g., Fig. 3), are
characterised based on the relational spatio-temporal struc-
ture underlying the respective interaction and the effects
on the beliefs about the world (Table 1). Practical actions
(e.g. involving pushing/pulling an object, (re)direction of
a path) describe the interactions between a person and the
environment during an everyday task. Communicative in-
teractions are classified based on the mode of deliverance
of the message, as explicit or implicit interactions. Ex-
plicit interactions involve a range of modalities such as fa-
cial expressions or gestures, e.g. a cyclist’s extension of
one hand on the side, is a gesture that conveys his inten-
tion to turn in the upcoming intersection. Implicit inter-
actions involve a set of modalities as communication tools
that require lower effort, such as gaze, body posture or
head movements. Visuospatial properties of a scene, such
as the visibility of objects/agents, their locations and fac-
ing directions, describe the state of the world. A combina-
tion of facts and events observed over a longer time inter-
val may lead to hypotheses (Sec 3.1) about ongoing inter-
actions, agent’s intentions, or the anticipation of near fu-
ture events. Scene elements are the distinct elements of
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the physical world obtained from high-level sensing, e.g.
a car, pedestrian. Scene elements are categorised based
on their type, structure and properties, and are geometri-
cally represented as low-level entities (e.g. bounding boxes)
that are involved in spatio-temporal relationships, and that
constitute the underlying quantitative features emanating of
low-level signal processing. Commonsense spatio-temporal
relations and patterns (e.g., left, overlapping, during, ap-
proaching) offer a human-centered and cognitively adequate
formalism for semantic grounding and automated reason-
ing for everyday (embodied) multimodal interactions (Bhatt,
Schultz, and Freksa 2013; Mani and Pustejovsky 2012;
Cohn et al. 1997).

I1. Domain-Independent Visual Commonsense: Reason-
ing about space-time mental models is most fundamen-
tally supported by foundational or a meta-characterisation
of the basic epistemological phenomena identifiable in di-
verse scenarios involving modelling of spatio-temporal dy-
namics (Bhatt and Loke 2008; Hazarika 2005). In the pro-
posed framework, this corresponds to the following:

* maintaining consistent beliefs respecting (domain-
neutral) commonsense criteria, e.g., related to composition-
ality & indirect effects, space-time continuity, positional
changes resulting from motion.

* ability to make default assumptions, e.g., pertaining
to persistence objects and/or visual and spatial object at-
tributes, e.g., pertaining position, velocity, direction of
movement.

* interpolation of missing information, e.g., what could
be hypothesised about missing information (e.g., moments
of visual occlusion); how can this hypothesis support plan-
ning an immediate next step?

* object identity maintenance at a semantic level, e.g., in
the presence of occlusions, missing and noisy quantitative
data, low-level errors in visual (mis)detection and tracking.

Supported by foundation or meta-level axiomatisation of the
fundamental epistemological aspects, the key focus of the
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Embodied Multimodal Interaction Mechanisms

Practical Action Object / Environment Interactions - Auditory
cues - Motion Paths

Eye Contact - Facial Expressions - Gestures -
Speech - Nodding

Explicit Interaction

enters(P,Q), crossing(P,Q), passing-behind(P,Q), hides_behind(P,Q), ap-
proaching(P,Q), opening(P,Q), removing(P,Q), holding(P,Q), touching(P,Q),

j:aint,attention(RO),
hand_sign(P, Sign), auditory_cue(Source, Cue),

monitoring_attention(P,Q), gesture(P, Gesture),

.s.peed,up(P),

Implicit Interaction Body Posture / Positioning - Head Movement - pose(P,Pose), turn_head(P, Direction), main-
Gaze - Intonation - Behavioural changes tain_steady_speed(P), slow_down(P), detect(P,Q), track(P,Q),
Facts / Beliefs (Fluents)
Scene Properties visibility: hidden(P), partially_hidden(P), occluded_by(P, Q), , ...; attention: looking_at(P, Q), atten-
tive(P), ...; location: on(P, Q), in(P, Q), next_to(P, Q), ...
Scene Elements
Types object dynamic (range of domain-independent and dependent categories and instances)
static
Structure & Properties  human: body-parts (hands, face, ...), body pose, facing direction, gaze direction,
objects: orientation, parts,
Spatio-Temporal Characterisations
Domains Mereotopology, Incidence, Orientation, Distance, Size, Motion, ...
Relations topology / position: inside, outside, overlapping, connected, left, right, in front, behind, on top, touching;  direction:
facing towards, facing away, same direction, opposite direction; moving: towards, away, parallel; ...
Entities bounding boxes, polygons, line-segments, points, oriented-points, motion trajectories, time-points, time intervals,

Table 1: Ontological Structure of Modelling Embodied Multimodal Interactions. Only a select indicative sample is included to illustrate

key high-level categories.

developed framework is on a hybrid architecture for system-
atically computing robust visual explanation(s) encompass-
ing hypothesis formation, belief revision, and default rea-
soning with visual data (for real-time as well as for offline
processing). In other words, the framework supports visu-
ospatial abduction with space, events, actions, and motion
practically implemented within answer set programming.
Sections 3—4 will further elaborate on the formalisation and
practical (applied) relevance of formalising foundational vi-
sual commonsense as a a domain-independent theory that is
usable in diverse scenarios involving embodied interaction.

3 Neurosymbolic Visual Commonsense:
A General Framework

We present a formal and computational characterisation of
a theory of spatio-temporal dynamics in the backdrop of
our notion of space-time mental models in Sec 2. Further-
more, we also summarise the technical implementation of
the framework in view of its intended applications, and fur-
ther technical extensions. Our developmental goal in this
paper is to integrate recent advances in knowledge-centric
computational cognitive vision research aimed at develop-
ing formal models for the processing and semantic inter-
pretation of dynamic visuo-spatial imagery with cognitively
rooted structured characterisations of commonsense knowl-
edge pertaining to space and motion (Suchan, Bhatt, and
Varadarajan 2021; Suchan, Bhatt, and Varadarajan 2019).

3.1 Spatio-Temporal Dynamics

Visual commonsense reasoning about embodied interaction
requires a high-level representation of objects, and their
spatio-temporal dynamics, e.g., respective motions & mu-
tual interactions in space-time amongst other aspects. For
the purposes of this paper, key foundational ontological
primitives in this respect are (Table 2):
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e ¥, corresponds to primitives for representing space,
time, motion and scene-level relational spatiotemporal
structure

* Y4yn corresponds to the domain-independent common-
sense theory for representing and reasoning about change.

Let ¥ =gef Yot <O, E, T, MT, R>U Xgyn <P, 0> de-
note the background theory of space, action, events, motion,
and change as follows (Table 2):

* Domain Objects (O). The high-level, domain-
dependent visual elements in the scene, e.g., road-side
stakeholders such as people, cars, cyclists, constitute
domain objects. Domain objects are denoted by O =
{01, ...,0,}; elements in O are geometrically interpreted as
spatial entities.

« Spatial Entities (£). Spatial entities correspond to ab-
stractions of domain objects by way of points, line-segments
or (axis-aligned) rectangles based on their spatial properties
(and a particular reasoning task at hand). Spatial entities are
denoted by € = {1, ...,en}.

e Time (7). The temporal dimension is represented by
time points, denoted as 7 = {t1, ..., t, }.

e Motion Tracks (M7). Motion-tracks represent the
spacetime motion trajectories (e.g., bottom of Fig. 2; (Haz-
arika 2005; Bennett et al. 2000; Schultz et al. 2018)) of ab-
stract spatial entities (£) corresponding to domain object
(O) of interest. MT,, = (¢¢,,...,€¢,) represents the mo-
tion track of a single object o;, where ¢, and ¢, denote the
start and end time of the track and €;, to &, denotes the
spatial entity (£) —e.g., the axis-aligned bounding box—
corresponding to the object o; at time points ¢4 to t..

* Spatio-Temporal Relationships (R). The spatial con-
figuration of the scene and changes thereof are characterised
based on the spatio-temporal relationships (R; Table 1) be-
tween abstract representations (£) of the domain objects
(0). For the running and demo examples of this paper,
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SPACETIME AND MOTION REPRESENTATION
Space-Temporal Primitives (X+)
Domain Objects O = {o1,...,0n} e.g., cars, people, cyclists
Spatial Entities E={e1,...,en} points, line-segments, rectangles
Time T = {t1,....;tn} time-points, time-intervals
Motion MTOi = (Etgyeonr Ete) motion tracks / space-time histories
Spatio-Temporal Relationships R e.g., topology, orientation, distance
Spatio-Temporal Dynamics (34, )
Fluents P = {p1,...,In} e.g., visibility, hidden_by, clipped
Events © = {01,...,0,} e.g., hides_behind, missing_detections

Problem Specification

Visual Observations

VO, = {obsi,...,0bsy}

e.g., € corresponding to object detections

Predictions Pt = {Ptrkys-- Ptrkn } e.g., € for predicted track
Matching Likelihood MLy = {mltrky obsy, s Mltrk, obspy, | e.g., loU between tracks and detections
Hypothesis

Assignments FHassIn abduced assignments
Events Hevents = {0y, ...,0,} abduced event sequence
Explanations EXP +— < HS MT > scene dynamics; abduced events

and corresponding motion tracks

Table 2: Commonsense — Space — Motion: Ontological and Representational Setup

positional relations on axis-aligned rectangles based on the
Rectangle Algebra (RA) (Balbiani, Condotta, and del Cerro
1999) suffice; RA uses the relations of Interval Algebra (IA)
(Allen 1983) Ria = {before, after, during, contains, starts,
started_by, finishes, finished_by, overlaps, overlapped_by, meets,
met_by, equal} to relate two objects by the interval relations
projected along each modelled dimension separately (e.g.,
horizontal and vertical dimensions).

* Dynamics / Fluents and Events. The set of fluents
& = {¢1,...,0,} and events O {01, ...,0,} respec-
tively characterise the dynamic properties of the objects in
the scene and high-level abducibles (e.g., passing_behind,
approaching, touching; Sec 2.2, Table 1). For reason-
ing about dynamics (with <®, ©>), we use the epis-
temic generalisation of the event calculus (Kowalski and
Sergot 1989) as per the formalisation in (Ma et al. 2014;
Miller, Morgenstern, and Patkos 2013); in particular, for ex-
amples of this paper, the Functional Event Calculus (FEC)
fragment of Ma et al. (2014) suffices. Main axioms rele-
vant for this paper pertain to occurs-at(6, t) denoting that an
event occurred at time ¢ and holds-at(¢, v, t) denoting that v
holds for a fluent ¢ at time ¢. It it worth noting that in so far
as the approach to reason about changes is concerned, our
modular framework is by no means limited to the specific
approach being utilised. In principle, any method capable of
modelling dynamic spatial systems (Bhatt and Loke 2008)
encompassing space, actions, and change (Bhatt 2012;
Bhatt et al. 2011) is usable; basic considerations guiding
choice of an action theory pertain to expressivity, modular
elaboration tolerance, and support for basic epistemologi-
cal aspects such as frame and ramification (Shanahan 1997).
For instance, other epistemic settings for abductive infer-
ence with ASP too may be utilised (Eppe and Bhatt 2015a;
Eppe and Bhatt 2015b).

* Problem Specification < VO, P;,, ML; >. The ab-
duction for each time point is given by the visual observa-
tions (VO,) consisting of spatial entities &, i.e., bounding
boxes for the detected objects, spatial entities £ of object de-
tections; the predicted locations (P,) for each track at time
point ¢ given as spatial entities £; and the matching like-
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lihood (ML), i.e., based on the Intersection over Union
(IoU) between detected objects and tracks, providing an es-
timate of how likely a detection belongs to a track.

* Hypothesis Abduction Abduced hypothesis consist
of assignments (H%*5%9™) of detections to tracks and high-
level events (H¢V¢"*) explaining object motion, e.g., occlu-
sion of an object, caused by the object passing behind an
other object. The online abduction results in abduced visuo-
spatial dynamics (£ XP) consisting of motion tracks (MT)
(generated using the abduced assignments in 7%%%9™) and
the events (HV¢"**) explaining the motion tracks. Follow-
ing perception as logical abduction most directly in the sense
of Shanahan (2005), we define the task of abducing visual

explanations as finding an association (Hy***?™) of observed
scene elements (VO;) to the motion tracks of objects (MT)
given by the predictions P;, together with a high-level ex-
planation (H¢V¢™*), such that [H;**9" A HEVe™9] is con-
sistent with the background knowledge and the previously
abduced event sequence H¢V"*  and entails the perceived

scene given by < VO, Py, MLy >:

YA Hevents A [/H?ssign A vaents]
E VO, APy A ML

where H{**'9" consists of the assignment of detections to
object tracks', and H¢"** consists of the high-level events
O explaining the assignments.

ASP encoding of the formal framework is included in the
supplementary. Select fragments from example applications
are included in Sec 4.

3.2 Technical Design and Implementation

The visual commonsense framework is available as a mod-
ularly engineered platform that seamlessly integrates with
standard APIs: Python bindings, ROS, and vanilla docker

'In this setup, assignment of detections to object tracks is one
amongst a range of possible assignments. In principle, this assign-
ment could include any arbitrary visuospatial feature. For brevity,
the present narration uses object-track assignment as one example.
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Figure 4: Technical Architecture of Visual Commonsense Framework. Central emphasis is on modularity, extensibility, and seamless

integration as part of large-scale hybrid, embodied Al systems.

for light-weight use and/or development (Sec 4). A brief
summary of the architecture of the framework follows:

* Scene Model. This module maintains (one or many)
representations of the scene in terms of time series data char-
acterising the scene state over time, including dynamic and
static scene attributes and scene elements, which are char-
acterised by their geometric extend, and can also have dy-
namic and static scene attributes. Furthermore, the mental
model maintains sequences of events and corresponding flu-
ents holding at specific time points. For interacting with this
space-time scene model, it provides functions for initialising
a new scene, adding / updating scene elements, and for pre-
dicting future positions of scene elements based on constant
velocity using Kalman filters (Kalman 1960). To integrate
with the ASP driven abstractions, the module generates ASP
specifications describing the scene.

* ASP Encoding This module provides the ASP char-
acterisations for doing inference over the space-time scene
model. In particular, it implements the Space and Mo-
tion primitives, including external predicates for defining
the spatial context for (geometric) spatial reasoning in ASP,
and provides event based reasoning using Event Calculus
(Kowalski and Sergot 1989). These elements are then used
in the examples to characterise the domain. Together with
the scene specification obtained from the scene model mod-
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ule (Fig. 4) these formalisations are used in the Solving step
to find Answer Sets using the Clingo Python API 2. The re-
sulting Answer Set is then getting parsed to extract events
and fluents, which can then be used to update the scene
model according to these events.

¢ Neural Embeddings. Scene elements are obtained
using state-of-the-art visual processing for obtaining geo-
metrical abstractions of objects in the scene (e.g., bound-
ing boxes, line-segments, etc).> Furthermore, the scene el-
ements may also be represented in terms of neural feature
representations that facilitate feature level analysis of scene
elements, e.g. for estimating visual similarity based on the
cosine similarity of the neural features as provided by (He
et al. 2020). Such neural processing is made available in
the ASP specification using neural predicates as proposed
by NeurASP (Yang, Ishay, and Lee 2020).

2Clingo Python API. potassco.org/clingo/python-api/current

31t suffices to mention that low-level visual computing founda-
tions are driven by deep learning based computer vision techniques,
e.g., for visual feature detection, tracking supporting extraction and
analyses of scene elements such as people, body-structure and ob-
jects in the scene, and object and scene motion (He et al. 2016;
Ren et al. 2017; Deng et al. 2020; Baltrusaitis et al. 2018;
Bergmann, Meinhardt, and Leal-Taixé 2019; Bewley et al. 2016;
Jocher and Qiu 2024). Additional information may be obtained in
the supplementary material.
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We posit that this level and manner of generalised visual
commonsense functionality relevant to diverse practical con-
texts is a first of its kind system that is now available for di-
rect integration within Al applications, as well as for further
technical extensions from the viewpoint of its core common-
sense reasoning capabilities (Sec 6).

4 Applied Examples:
Visual Commonsense in the Wild

We illustrate the gist of neurosymbolic visual commonsense
through diverse but synergistic examples: Examples 1 and 2
covering complementary tracking and event abduction tasks,
and Example 3 presents explainable visuospatial symmetry
derivation task. Please note that the complete examples are
rather elaborate; hence, here we present small relevant snip-
pets aimed at communicating the key aspects.

EX 1. Naive Tracking: This example shows basic object
tracking, using the presented framework. The application
consists of two parts: the python part maintaining the geo-
metric model of the scene, and the ASP program character-
ising the logic of the problem.

1.1. Python Setup. To setup the scene model within python,
the scene is initialised as follows:

global scene
scene = dvsg.Scene (

Next, update positions of scene objects:

pos2D = dvsg.spatial_entities.Point2D(pos.x, pos.y)
if not id in scene.objects:
static_attributes = {"type":
scene.objects[id] =
dvsg.Object (timestamp, id, pos2D, static_attributes)
dynamic_attributes = { "width": width, "height": height }
scene.objects[id] .update_pos (timestamp, pos2D)
scene.objects[id] .update_attributes (timestamp,

type }

dynamic_attributes)

Predicting object positions:

if id in scene.objects:
scene.objects[id] .predict_pos (curr_time)

1.2. Abducing Assignments for Moving Object Tracking.
Within ASP, object tracking corresponds to the problem
of assigning observed objects to tracks within the mental
model; this is characterised using choice rules to generate
possible assignments, together with ‘starting’ and ‘ending’
tracks respectively:

l{occurs_at (assign(Trk, Det), T):
position(obj(detection(Det)), Det_Pos, curr_time(T);
occurs_at (end(Trk), T): curr_time(T) } 1

:— position(obj(track(Trk)), Trk_Pos).

1{occurs_at (assign(Trk, Det), T):
Trk_Pos), curr_time(T);
occurs_at (new_track (Det), T):

:— position(obj(detection (Det)),

position(obj(track(Trk)),

curr_time (T)} 1
Det_Pos) .

The most promising assignment is then obtained by using
the built-in optimisation of CLINGO (Gebser et al. 2014).

#minimize {Int_Dist@l: occurs_at (assign(Trk, Det), T),
position(obj(track(Trk)), position2D(X1l, Y1)),
position (obj(detection(Det)), position2D (X2, Y2)),
Dist = @distance2d_(X1,Y1,X2,Y2), Int_Dist = @to_int_(Dist)}.
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Figure 5: Naive Tracking Results: Example scene from the Path-
Track dataset.

1.3. Tracking Result. The solving step results in a model
containing the assignments, starting, and ending tracks; the
outcomes get stored in the event sequence of the mental
model component. As next step, we search within the events
of the current time point and update the scene model accord-
ing to the abduced events, i.e, we (a) update tracks with the
new detections assigned to them; (b) initialise new tracks
with the respective detections; and (¢) delete ending tracks:

.arguments[0] .name == "assign":
trk_id_str = "trk(" + str(event.arguments[0].arguments[0]) + ")"
det_id_str =
"det (" + str(event.arguments[0].arguments[1]) + ")"

update_object (frame_nr, trk_id_str,
detections[det_id_str].static_attributes["type"],
detections[det_id_str].position2D, ...)
# new
if event.arguments[0].name == "new_track":
trk_id_str = "trk(" + str(trk_id) + ")"
new_trk_det_id =
"det (" + str(event.arguments[0].arguments[0])
update_object (frame_nr, trk_id_str,
detections[new_trk_det_id].static_attributes["type"],

tracks

pomym

detections[new_trk_det_id].position2D, ...)
track_id += 1
# end tracks
if event.arguments([0].name == "end":

trk_id_str = "trk (" + str(event.arguments[0].arguments[0])
dvsg.Scene.objects.pop (trk_id_str

oy

For the example scene from the PathTrack dataset (Manen
et al. 2017), this simple tracking results in a sequence of
motion tracks associated with the individuals in the scene,
as depicted in Fig. 5.

EX 2. Visual Abduction: Example 1 focussed on naive
tracking; building on this, this example proceeds with high-
level event abduction as interpreted in our framework (Sec
3.1). Towards this, we introduce events into the ASP specifi-
cation with the aim to explain perceived visual observations
(VO; Table 2), and utilise additional abductive steps aimed
at hypothesising event occurrences explaining the adopted
assignments in the (naive) tracking step. In particular, be-
low we showcase abduced events explaining disappearance
and reappearance of objects by inferring that one or more
objects have been hidden by some other object(s). We first
define the respective fluents and events:

fluent (hidden(Trk)) :- trk(Trk, _).
fluent (hidden_by (Trkl, Trk2)) :- trk(Trk2, _), trk(Trkl, _).
event (hides_behind(Trkl, Trk2)) :- trk(Trkl, _), trk(Trk2, _).

initiates (hides_behind(Trkl, Trk2), hidden(Trkl),
trk(Trkl, _), trk(Trk2, _), time(T).

initiates (hides_behind(Trkl, Trk2), hidden_by (Trkl,
trk(Trkl, _), trk(Trk2, _), time(T).

T) -

Trk2), T) :—

event (unhides_from_behind(Trkl, Trk2)) :-—
trk (Trkl, _), trk(Trk2, _).
terminates (unhides_from_behind (Trkl, Trk2),
trk (Trkl, _), trk(Trk2, _), time(T).
terminates (unhides_from_behind (Trkl, Trk2),
hidden_by (Trkl, Trk2), T) :-
trk(Trkl, _), trk(Trk2, _), time(T).

hidden(Trkl), T) :-
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Figure 6: Visual Abduction Results:
MOT dataset.

Example scene from the

Next, we introduce choice rules to generate appropriate ex-
planations:
1{occurs_at (hides_behind (Trk, Trk2), curr_time):

trk(Trk2,_), position(overlapping, Trk, Trk2),
not holds_at (hidden(Trk), curr_time);

}1 :- halt(Trk).

l{occurs_at (unhides_from_behind (Trk, Trk2), curr_time):
trk(Trk2,_), not holds_at (hidden(Trk2), curr_time),
holds_at (hidden_by (Trk, Trk2), curr_time),
position(overlapping, Det, Trk2),

@trk_estimate (Trk, Trk_est), @in_range (Det, Trk_est);

}1 :- resume(Trk, Det).

For the example scene in Fig. 6, the above characterisations
are suitable to abduce that the person on the right hides be-
hind another person and reappears afterwards.

occurs_at (hides_behind(trk_ 7, trk_2),14)
occurs_at (unhides_from_behind (trk_7, trk_2),27

EX 3. Visuospatial Symmetry: This example diverges from
Examples 1-2 to illustrate the flexibility of the framework
in analysing visual stimuli based on any arbitrary set of re-
quirements / constraints, exemplified for the case of visual
symmetry. The example is relevant to domains in media
studies and visual perception studies in psychology where
the emphasis is on the study of the structure and function
of visual stimuli. For the case of finding symmetrical struc-
tures in images, one may follow a similar approach as be-
fore, without considering the temporal dimension:*

3.1. Python Setup.  Towards this, we initialise the scene
as before and subsequently populate the scene with the de-
tected scene elements based on object detection, in this case,
driven by YOLOvV11 (Jocher and Qiu 2024):

model = YOLO("yolollx.pt")
results = model.predict (im)

for result in results:
xywh = result.boxes.xywh
conf = result.boxes.conf
names = [result.names[cls.item()
cls in result.boxes.cls.int ()]
for id in range (0, num_dets) :
pos2D = dvsg.spatial_entities.Point2D (int (xywh[id
static_attributes = { "class": names[id], ... }
dynamic_attributes = { "width": int (xywh[id][2]), ... }
scene.objects[id] =
dvsg.Object (0, id, pos2D, static_attributes)
scene.objects[id] .update_attributes (0, dynamic_attributes)

for

100D, -

3.2. Semantically Characterising Symmetry. In the ASP en-
codings, we characterise the notion of (reflectional) symme-
try by taking the divergence from the perfect symmetrical
position. Towards this, we define two possibilities of sym-
metrical placement: (a) there is a symmetrical pair of objects
having equal size, being equidistant from the centre axis, and

*Indeed, symmetry may be interpreted also temporally, but
space is limited to present such a characterisation here.
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having the same appearance; and (b) there is a single object
on the centre axis. Please note that this is merely a minimal
example interpretation for the purposes of below:

divergence (sym_pair (ID1, ID2, Class), size(Div_W, Div_H),
pos (Div_Horizontal, Div_Vertical), Class) :-
divergence_width (ID1, ID2, Div_W),
divergence_height (ID1, ID2, Div_H),
divergence_sym_pos (ID1, ID2, pos(Div_Horizontal,
divergence_appearance (ID1, ID2, Appear_Div).

Div_Vertical)),

divergence (single_box (ID), Div) :- divergence_sym_pos (ID, Div).

Next, we obtain the divergence from the above basic config-
uration based on deviation in the visual appearance given
by the neural features, and the geometrical divergences in
position and size:

divergence_sym_pos (ID, Val) :- v_line(symmetry_axis, X_sym_axis),
position(ID, position2D(X_box, _)), Val = |X_sym_axis-X_box]|.

divergence_sym_pos (ID1, ID2, pos(Div_Horizontal, Div_Vertical)) :-
v_line (symmetry_axis, X_sym_axis), position (obj(ID1)
position2D (X_boxl, Y _boxl)), position(obj(ID2),

position2D (X_box2, Y _box2)), image_size(W_img, H_img)

Div_Vertical = |Y_box2 - Y_boxl|, Distl = X_sym_axis - X_boxl,

Dist2 = X_box2 - X_sym_axis, Div_Horizontal = |Dist2 - Distl].
divergence_width (ID1, ID2, Val) :-—

width (ID1, W1), width(ID2, W2), Val = |W1-W2]|.
divergence_height (ID1, ID2, Val) :-

height (ID1, H1), width(ID2, H2), Val = |HI1-H2]|.
divergence_appearance (ID1, ID2, Div) :-

position(IDl, _), position(ID2, _),

@neural (similarity, ID1, ID2, Sim), Div = 100-Sim.

Finding symmetrical structures is then done by abducing
pairs of symmetrical elements, and single elements:

1{ sym_pair(ID, ID2, Class): pred(ID2), class(Class), ID != ID2;
sym_pair (ID1, ID, Class): pred(IDl), class(Class), ID != ID1;
single_box (ID); } 1 :- pred(ID).

:— sym_pair(ID1, ID2, _), sym_pair(ID2, ID1, _).

:— sym_pair(ID1, _, _), single_box(ID1).

:— sym_pair(_, ID2, _), single_box (ID2).

:— sym_pair(ID1, ID2, _), sym_pair(ID1l, ID3, _), ID2 != ID3.

Finally, picking matching symmetrical objects is based on
optimisation over weighted divergence in symmetry features
to minimize the divergence from the symmetrical placement:

#minimize {(Div)@1 :
sym_pair(ID1, ID2, Class),
divergence (sym_pair (ID1, ID2, Class), size(Div_W, Div_H),
pos (Div_Vertical, Div_Horizontal), Class_Div, App_Div),
Div = wl+Div_W + w2+Div_H + w3xDiv_Vertical +
wd*Div_Horizontal+w5+Class_Div}.

#minimize {(Div)@l : single_box (ID)

divergence (single_box (ID), Div_Pos), Div = w6+Div_Pos}.

3.3. Symmetry Results. For the example image in Fig. 7
from the MS COCO dataset (Lin et al. 2014), where we have
9 scene elements detected’, we generate the following scene
description:

position2D (1 239)). class(obj(0), elephant).

position (obj(0), 57,

conf (obj(0), 95). width(obj(0), 200). height (obj(0), 260).
position(obj(l), position2D (359, 223)). class(obj(l), elephant).
conf (obj (1), 94). width(obj (1), 267). height (obj (1), 281).
position(obj(8), position2D (622, 205)). class(obj(8), elephant).
conf (obj(8), 59). width(obj(8), 34). height (obj(8), 41).

3For simplicity of the example, here we are only including ob-
ject level detections obtained via YOLO (Jocher and Qiu 2024).
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Figure 7: Symmetry Results: Example result based on a test im-
age from the MS COCO dataset, depicting symmetry pairs detected
from the object configuration.

This scene description then results in the following model
providing symmetrical elements of the scene, as visualised
in Fig. 7.

sym_pair (obj(2),0bj(0),elephant)

sym_pair (obj(3),0bj(7),elephant)
single_box (1)

sym_pair (obj(5),0bj(4),elephant)
sym_pair (obj(6),0bj(8),elephant)

This gives the identified symmetry pairs and single boxes.
Furthermore, the model provides the divergence of symme-
try features from the identified symmetrical structure.

5 [Evaluation: Results & Discussion

The presented framework facilitates an easy integration of
ASP based reasoning about motion dynamics in visuospa-
tial scenes within common tasks in autonomous vision sys-
tems. In the following we are presenting evaluation results
for the task of object tracking and in subjective symmetry
perception and discuss their specifics.

Multi-Object Tracking. Visual abduction based multi-
object tracking (Suchan, Bhatt, and Varadarajan 2021;
Suchan, Bhatt, and Varadarajan 2019) has been evaluated on
the community established MOT dataset (Milan et al. 2016).
Naive Tracking as implemented in EX 1. follows the com-
mon tracking by detection approach using a simple distance
metric without additional methods for enhancing tracking
performance, the approach therefore achieves a basic track-
ing performance comparable to similar approaches, such as
SORT (Bewley et al. 2016). In particular, a IOU based ver-
sion of the approach presented in EX 1. reaches a Multi-
Object Tracking Accuracy (MOTA) of 41.4% on MOT17,
however, due to the simplicity of the method, it reaches an
average processing speed of over 200 fps on standard hard-
ware (including ASP solving). With the addition of abduc-
tive reasoning for occlusion events as presented in EX 2.,
the tracking performance increases by approx. 5% points, to
46.2%. This increase in tracking performance comes with
a drop in processing speed due to the elaborate reasoning.
However, the approach is still capable of reaching above re-
altime performance on challenging real-world scenes of the
MOT dataset.

Most recently, the abductive tracking approach of EX 2.
has been further extended with a preferential ranking setup
(Monsen, Suchan, and Bhatt 2025). With this approach, in-
cluding neural appearance features and weight learning fur-
ther increases the MOTA score to 62.0% on the validation
split of the MOT17 dataset.
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Method MOTA (%) MOTP (%)
Naive Tracking 41.4 88.0
Visual Abduction 46.2 87.9

Table 3: Multi-Object tracking Results. Multi-object tracking
Accuracy (MOTA) and Precision (MOTP).

Features CA (%) Class Prob. Err.
Visual 41.33 0.0572886659
Visual+Objects  54.00 0.0375853705

Table 4: Subjective Symmetry Perception Results. Classification
accuracy (CA) and mean error.

Visuospatial Symmetry. Semantic characterisations of ob-
ject level symmetry as presented in EX 3. have be applied
within a multi-level model of visual symmetry in the con-
text of a human behavioural study focusing on subjective
perception of symmetrical structures in real-world images
(Suchan et al. 2018). Here, we examined the characterisa-
tion of visuospatial symmetry and show that using such se-
mantically founded symmetry characterisations can improve
the models’ ability to predict the subjective judgment of hu-
man participants of symmetrical structures in images (Table
4). In particular, classification of images into four symme-
try classes (not_.symmetric, somewhat_symmetric, symmet-
ric, and highly_symmetric) increases from 41.33% to 54% by
including semantic characterisation of symmetry.

6 Conclusion and Outlook

‘We have developed a generalised, systematically formalised,
declaratively modelled framework for visual commonsense
combining diverse techniques in Al and Vision. The devel-
oped framework is novel in several ways, primarily centred
on its ability to offer domain-independent neurosymbolic
reasoning capabilities encompassing space, events, actions,
motion within an established non-monotonic setting, and in
conjunction with complex quantitative visual data. A sec-
ondary motivation behind this work has been to also show-
case the value of integrating robust, declarative methods in
KRR within large-scale Al systems requiring diverse per-
ceptual and decision-making components.

The developed framework may be either seamlessly used
within application domains, or it may be utilised as a re-
search and development platform for research in KR and Vi-
sion/ML with the aim to extend the offered visual common-
sense reasoning capabilities, e.g., by incorporating causal
inference, epistemic reasoning, conceptual reasoning com-
bining semantic knowledge and inference, (neurosymbolic)
integration of reasoning and learning, integration of formal
argumentation frameworks etc. From an applied viewpoint,
presently ongoing work focusses of integration within real-
world infrastructure for autonomous driving, e.g., (Suchan
and Osterloh 2023).

Dissemination.  All relevant materials pertaining to the
developed framework (e.g., code, data, documentation) as
well as future extensions may be consulted via:

Cognitive Vision., codesign-lab.org/cognitive-vision


https://codesign-lab.org/cognitive-vision
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