Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

Can LLMs Solve ASP Problems? Insights from a Benchmarking Study

Lin Ren'? , Guohui Xiao!?*, Guilin Qi'?, Yishuai Geng!?, Haohan Xue'?

1School of Computer Science and Engineering, Southeast University, Nanjing, China
2Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary
Applications (Southeast University), Ministry of Education, China

{renlin, guohui.xiao, gqi, ysgeng, thexlay} @seu.edu.cn

Abstract

Answer Set Programming (ASP) is a powerful paradigm for
non-monotonic reasoning. Recently, large language models
(LLMs) have demonstrated promising capabilities in logi-
cal reasoning. Despite this potential, current evaluations of
LLM capabilities in ASP are often limited. Existing works
normally employ overly simplified ASP programs, do not
support negation, disjunction, or multiple answer sets. Fur-
thermore, there is a lack of benchmarks that introduce tasks
specifically designed for ASP solving. To bridge this gap,
we introduce ASPBench, a comprehensive ASP benchmark,
including three ASP specific tasks: ASP entailment, answer
set verification, and answer set computation. Our extensive
evaluations on ASPBench reveal that while 14 state-of-the-
art LLMs, including deepseek-rl, o4-mini, and gemini-2.5-
flash-thinking, perform relatively well on the first two sim-
pler tasks, they struggle with answer set computation, which
is the core of ASP solving. These findings offer insights into
the current limitations of LLMs in ASP solving. This high-
lights the need for new approaches that integrate symbolic
reasoning capabilities more effectively. The code and dataset
are available at https://github.com/HomuraT/ASPBench.

1 Introduction

Answer Set Programming (ASP) (Gelfond and Lifschitz
1991; Niemeld 1999; Dantsin et al. 2001) is a declarative
programming paradigm designed for complex knowledge
representation and problem-solving tasks. A key strength of
ASP is its ability to model situations where conclusions must
be revised as new information becomes available (Gins-
berg 1980; Reiter 1988), enabling an adaptive and context-
sensitive inference process. ASP provides a robust computa-
tional framework for various forms of logical reasoning, in-
cluding default reasoning (Reiter 1980), and connects with
abductive inference (Josephson and Josephson 1996), belief
revision (Darwiche and Pearl 1997), stream reasoing (Beck,
Dao-Tran, and Eiter 2018), and query answering (Wan et al.
2020).

Recently, large language models (LLMs) have demon-
strated remarkable capabilities in diverse areas, such as
information retrieval (Zhu et al. 2023), question answer-
ing (Yue et al. 2025), and code generation (Jiang et al. 2024).
Furthermore, their potential in logical reasoning tasks is

*Corresponding author

621

Dataset Arity Repr. Ops. MAS ASE ASV ASC
0-NLI N/A Tex DN N/A X X X
ProofWriter 1 Tex SN N/A v X X
ruletaker N/A Tex SN N/A v X X
LogicNMR 1 Tex SN, DN Single v X X
generics-exemplars N/A Tex N/A N/A X X X
LogicBench 1 Tex SN, DN Single v X X
ASPBench (Ours) Any 8? }']I‘Tx Dslsl\j: goNr;s Multiple v v v

Table 1: Comparison of ASPBench with other datasets for ASP
reasoning. Columns show: Arity (predicate arity); Repr. (Sym-
bolic/Textual representation); Ops. (Supported ASP Operations:
SN - Strong Negation, DN - Default Negation, Disj - Disjunction,
Cons - Constraints); MAS (Multiple Answer Sets support). Com-
pared datasets are detailed in §2.

an active growing area of research (Liu et al. 2025). The
question of whether LLMs possess logical reasoning ability,
and if so, to what extent, has been widely explored (Huang
and Chang 2023; Wang et al. 2024b), particularly in for-
malisms such as Description Logics (e.g., DL-Lite) (Wang
et al. 2024a), Propositional Logic (Chan, Gaizauskas, and
Zhao 2025; Chen et al. 2024a), and First-Order Logic (Chen
et al. 2024a; Wang et al. 2024b). Beyond these mono-
tonic formalisms, ASP offers a powerful framework for non-
monotonic reasoning (NMR). Consequently, recent works
increasingly leverage ASP to evaluate the NMR abilities of
LLMs. Xiu, Xiao, and Liu (2022) created the dataset Log-
icNMR for evaluating default logic rules, which effectively
only covers a simple ASP fragment. Parmar et al. (2024)
introduced LogicBench for evaluating logical reasoning ca-
pabilities of LLMs, notably featuring patterns from non-
monotonic logic (such as default reasoning). These works
focus on evaluating ability of LLMs to perform symbolic
reasoning. In contrast, Rudinger et al. (2020) and Allaway
et al. (2023) explore reasoning with defeasible information
from the implicit background knowledge of LLMs.
However, to the best of our knowledge, there are no
benchmarks systematically evaluating the capabilities of
LLMs for ASP. Previous studies have overlooked several key
factors: (1) They often employ overly simplified ASP pro-
grams, for example, using predominantly unary predicates,
focusing mainly on (stratified) default negation, and typi-

https://github.com/HomuraT/ASPBench

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

cally considering only a single answer set scenario. (2) The
significant impact of predicate semantics (symbolic vs. de-
scriptive names) on LLM reasoning in ASP—a key dif-
ferentiator from traditional solvers—remains largely unex-
plored. (3) Previous benchmarks do not design evaluation
tasks specifically for ASP.

To fill these gaps, we propose a novel benchmark for ASP,
referred to as ASPBench. ASPBench features a novel frame-
work for the automated generation of diverse ASP problems
with varied rule styles and logical operations. The bench-
mark itself incorporates support for multiple answer sets, a
broader range of ASP operators, and introduces three dis-
tinct ASP evaluation tasks: ASP entailment (ASE), answer
set verification (ASV), and answer set computation (ASC).
In addition to synthetic data, ASPBench includes real-world
ASP programs collected from public sources. The differ-
ences between ASPBench and related datasets, in the con-
text of evaluating ASP style reasoning, are shown in Table 1.

Our extensive experiments on ASPBench, evaluating 14
state-of-the-art LLMs, reveal several key insights: (/) The
characteristics of ASP programs significantly influence
LLM performance. LLMs struggle with complex tasks
such as ASC on synthetic ASP programs. This challenge in-
creases when dealing with real-world ASP programs, where
performance significantly drops across all evaluated tasks.
Furthermore, LLM reasoning is highly sensitive to program
features, including their syntactic properties (e.g., whether
they are positive, stratified, or head-cycle-free) and the num-
ber of answer sets. (2) The inherent properties of LLMs
and their inference strategies are vital for their ability
to solve ASP. Larger LLMs generally achieve higher per-
formance while producing shorter outputs. Conversely, for
LLMs with comparable parameters, the length of chain-of-
thought tokens strongly correlates with ASP solving abili-
ties, underscoring the value of increased test-time computa-
tion.

2 Related Work

This work is situated within the context of research on LLMs
for logical reasoning, their application as logic solvers or
code executors, and existing benchmarks for ASP solving.

2.1 Logical Reasoning with LLMs

Recently, LLMs have shown a powerful ability in various
monotonic logical reasoning tasks, such as Multi-Step Rea-
soning (Saha et al. 2023; Fu et al. 2023) and Commonsense
Reasoning (Tian, Zhang, and Peng 2023; Perak, Beliga, and
Mestrovi¢ 2024). However, LLMs also exhibit notable lim-
itations in reasoning tasks. Wang et al. (2024b) showed
that LLM understanding of fundamental reasoning rules lags
significantly behind human capability. Ishay, Yang, and
Lee (2023) demonstrated the potential of LLMs in gener-
ating complex ASP programs through few-shot prompting,
but most errors require manual correction. Srivatsa and
Kochmar (2024) explored the challenges LLMs face in solv-
ing math word problems, while Li et al. (2024) demonstrated
that LLMs perform considerably worse than neural program
induction systems in reasoning tasks. Wang et al. (2024a)

622

illustrated that LLMs struggle with understanding TBox NI
transitivity rules. Parmar et al. (2024) showed that LLMs do
not perform well in logic reasoning, even though they are in
single inference rule scenarios.

2.2 LLMs as Logic Solvers or Code Executors

Recently, code has been recognized as a powerful tool for
LLMs to access and leverage external sources (Yang and
others 2024). Meanwhile, there has been growing interest
in exploring the role of LLMs as logic solvers and code ex-
ecutors. For example, Feng et al. (2023) utilized LLMs as
Prolog logic solvers to address parsing errors in logic pro-
grams. Similarly, Chen et al. (2024b) explored how to guide
LLMs in simulating logic solvers to execute Propositional
Logic or Satisfiability Modulo Theories (SMT) programs,
using natural language, Z3Py (Moura and Bjgrner 2008), or
SMT-LIB (Barrett, Stump, and Tinelli 2010). Additionally,
Wang et al. (2024c) demonstrated that LLMs can serve as
executors when generated Z3 programs fail during execu-
tion, and Lyu et al. (2024) explored the feasibility of using
LLMs as Python code executors. Our work focuses on lever-
aging LLMs as ASP solvers.

2.3 Benchmarks for ASP Solving with LLMs

To evaluate the ASP solving ability of language models,
several benchmarks have been proposed. ¢6-NLI (Rudinger
et al. 2020) was introduced for non-monotonic inference
by assessing belief changes with new information. Logic-
NMR (Xiu, Xiao, and Liu 2022) provides a dataset of tex-
tual ASP samples. generics-exemplars (Allaway et al. 2023)
focused on reasoning about generics and their exceptions.
For broader logical reasoning, ProofWriter (Tafjord, Dalvi,
and Clark 2021) was developed for generating natural lan-
guage proofs, and RuleTakers (Clark, Tafjord, and Richard-
son 2021) were created for emulating reasoning over textual
rules. Leidinger, Rooij, and Shutova (2024) also explored
belief stability in generics. Additionally, LogicBench (Par-
mar et al. 2024) provides benchmarks for logical reason-
ing, encompassing some non-monotonic scenarios (Santos
et al. 2024). Borroto, Kareem, and Ricca (2024) intro-
duced NL2ASP, a two-step architecture that demonstrates
the potential for automated symbolic ASP program gener-
ation from natural language specifications. Our work fo-
cuses on a comprehensive evaluation of ASP solving ability
of LLMs, using more complex synthetic ASP programs and
real-world ASP programs.

3 Preliminary
3.1 Answer Set Programming

In this work, we employ the framework of Answer Set Pro-
gramming (ASP) (Gelfond and Lifschitz 1988; Gelfond and
Lifschitz 1991). An ASP program is a set of rules of the
following form:

wl(X1)| - |wk(xk) (—Oél(Xl), ey Oém(Xm),
N0t Ay 11(Xmt1), -, NOL vy (X5,

where each w;(X;) is an atom and each «;(x;) is a literal of
the form p(x;) (positive literal) or —p(x;) (negative literal),

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

and each x; or x; consists of variables and constants. In ASP,
“not” and “~” are called the default negation (negation-as-
failure) and the classical negation (strong negation), respec-
tively. An ASP program or a rule is ground if there are no
variables. A fact is a ground rule with n = 0. We often write
an ASP problem as a pair (W, D) with W a set of facts, and
D a set of rules.

The semantics of ASP are characterized by the notion of
answer sets, also known as stable models (Gelfond and Lif-
schitz 1988; Wan et al. 2020). The semantics of an ASP
program P = (W, D) is defined via the Gelfond-Lifschitz
transformation. Let S be a candidate set of ground atoms.
The reduct P° of the program P with respect to S is ob-
tained from the set of all ground instances of rules in D U W
by:
(1) Deleting each rule r such that its body contains a de-
fault literal not & and o € S.

(2) Deleting all default literals not o from the bodies of
the remaining rules.

The resulting program P* is a positive (default-negation-
free) disjunctive logic program. A set S is an answer set of
P if and only if S is a minimal model of P°. A model M
of P is minimal if there is no model M’ C M of P°. In
this context, facts from W are treated as rules with empty
bodies.

The ASP paradigm has been implemented in several ASP
solvers, e.g., DLV (Alviano et al. 2017) and Clingo (Gebser
et al. 2012).

3.2 Syntactic Classes

In this work, we are interested in the following syntactic
classes of ASP programs based on their properties:

Positive Program: A program is positive if it contains
only positive atoms (i.e., neither strong negation nor default
negation occurs).

Stratified Program: A program is stratified when its de-
pendency graph has no directed cycle that traverses a neg-
ative edge, i.e. default negation is never involved in recur-
sion (Apt, Blair, and Walker 1988). Positive and strong lit-
erals may still form cycles. For examples, P/ = {-p :-
-g. -—q :— -p.} is stratified, because it has no recur-
sion through default negation; P2 = {p :- not g. g
:— not p.} is unstratified , because the cycle between p
and g goes through default negation.

Head-Cycle-Free (HCF) Program: A program is head-
cycle-free when its dependency graph is acyclic, i.e., it
contains no directed cycle consisting solely of positive or
negated atoms (Ben-Eliyahu and Dechter 1994). The pres-
ence of multiple atoms in a disjunctive head is allowed;
what is prohibited is any positive recursion. For examples,
P3={a | b :-d. c :—a. c :—Db. d.}is
HCEF, because no positive cycle exists; P4={a | b :-
c. c :— a. c :— b.}isnot HCF, because the pos-
itive dependency graph contains the cycle a - c — a (and
similarly for b), i.e. a positive recursion.

3.3 Task Definitions

We define three distinct downstream tasks to evaluate the
reasoning capabilities of models on ASP solving. These

623

tasks cover different aspects of ASP reasoning:

(1) ASP Entailment (ASE): Given an ASP program P
and a ground atom a. The task is to determine the truth state
of a within the answer set .S. The expected output is one of
three possibilities: true (if a € S), false (if-a € 5), or
unknown (if neither a € S nor -a € 5).

(2) Answer Set Verification (ASV): Given an ASP pro-
gram P (guaranteed to have one or more answer sets, poten-
tially generated using disjunction in rule heads) and a candi-
date set of ground atoms C, the task is to determine whether
C'is an actual answer set of P.

(3) Answer Set Computation (ASC): Given an ASP pro-
gram P, the task is to compute and return one of its correct
answer sets.

4 ASPBench

We introduce ASPBench through a systematic three-stage
generation pipeline (Figure 1), which enables precise control
over sample complexity and diversity. (/) ASP Graph Con-
struction (§ 4.1, 4.2): We construct an ASP Graph that rep-
resents the logical dependency structure. This graph-based
representation allows us to control key properties such as
reasoning depth and structural complexity. (2) ASP Rule
Generation (§ 4.3): We transform the ASP Graph into con-
crete, syntactically valid ASP rules.s (3) ASPBench Con-
struction (§ 4.4, 4.5): We construct the symbolic bench-
mark tailored to our three target tasks (i.e., ASP Entailment,
ASP Verification, and ASP Computation) and generate the
corresponding textual samples.

This section mainly introduces the architecture and key
steps. The detailed procedures, hyperparameters, and other
specific contents are provided in Appendix A.

4.1 Definition of ASP Graph

Similar to the Rete algorithm (Forgy 1989), we use a graph
structure to represent a logical program. An ASP Graph
is a directed graph that serves as a structured and detailed
representation of an ASP program.

The graph utilizes two types of nodes: Rule Nodes (Ng)
represent the individual rules within the ASP program. Each
rule node corresponds to a specific rule. Predicate Nodes
(Np) represent the unique predicates used in the program.
Each predicate node corresponds to a distinct predicate.

Moreover, four types of edges define the logical opera-
tions between nodes: (/) Default (P): The predicate is not
subject to any negation operators. (2) Strong Negation
(SN): The predicate is subject to strong negation. (3) De-
fault Negation (DN): The predicate is subject to default
negation. (4) Combined Negation (SN&DN): The pred-
icate is subject to both default and strong negation. The
term “ASP Graph” in this work refers to this Rule-Predicate-
Operation Graph.

4.2 ASP Graph Construction

The initial step in the framework is ASP Graph Construc-
tion, which aims to generate an ASP Graph according to hy-
perparameters (e.g., number of rules, predicates, arity, etc.).
This process, illustrated in the top-left panel of Figure I,

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning

KR in the Wild
e . N (:
1. ASP Graph Construction 2. ASP Rule Generation
ipal:;‘:;‘s i O Rule <> Predicate SN —» DN S&DN fr___________________________\ Variable E‘ASP Rule Safety Error
| Hi
{[#Rule_]! i | _4:@ % I Assignment [hot Pa(vi,v2):- -P1(ve)
1| #Pred. |i I I M " [not -P2(v1),
1 | Atom
== : : : \'\<_>__ __ > _/I Generation JE GntaxEror) T2(V2 Vo)
\ | | I
| |)
I I | Q, syntax Check O Safety Check R Error Repair>
| |
" | .
Rule l Rule-Predicate | . Rule-Predicate- ASP _
Graph | Graph | Operation Graph [[ASP Rule | !
P | P I P P Rules lu -P4(V1,V2):- -P1(V@), P2(V1), P3(V2, V@). |
& J \
4 - o R
,,,,,,,,,,,,,, 2 Constant Evaluation Tasks Manual Collection | Textualization Example \
! H G Modification I ! |
! 0_’ H & Classification Tasks (51 ! |
! ; ASP *Predicate C ASP Entailment) Bk | :
! ASP Facts ! Program @ Modification —— J |
| : 2 I (3 Styles) (___Answer Set Verification)] ! [TF holds Pi(Ve) is :
E i LngC Solver SymbOIIc samples E fﬁwrppe(ve) is true i
1> ! * ® o:act ot . Generatlon Task @ | R |
E ASP Rules i Answer Set ugmentation (__Answer Set Computation) = lextualization
:L ,,,,,,,,,,,, ; .figgfnenlation : Output i
(5 Types) Textual Samples ! ASPBench |
L 3. ASPBench Construction)

Figure 1: The generation framework for ASPBench

unfolds in three stages, progressively adding detail to the
graph:

Rule Graph: This initial graph consists of a predefined
number of rule nodes (Ng). Directed edges are then ran-
domly generated between these nodes, up to a specified to-
tal number of edges. This random generation is guided by
several constraints: (a) the resulting graph must be a di-
rected acyclic graph with a single terminal node (no out-
going edges), and (b) every rule node must have at least one
connecting edge. An edge N, — N 7, in this graph rep-
resents a dependency, where the head predicate of rule N},
appears in the body of rule N3,.

Rule-Predicate Graph: This stage refines the Rule
Graph by introducing predicate nodes (/Np) and associated
edges. First, specific predicates are introduced:

* For each edge N, — N, Ij% in the Rule Graph, a predicate
NE is inserted, forming N%, — NE — N3,

* For each source rule node N3°“"“° (no incoming Np —
N edges), an input predicate Np* is added with an edge
N]z)n N N}s%ou’rce_

* For the terminal rule node N&™™ (no outgoing N —
Npg edges), an output predicate N2“! is added with an
edge Ni™™ — Ngut.

Subsequently, the graph is extended by creating a specified
number of new predicate nodes and edges.
Rule-Predicate-Operation Graph: The final stage re-
fines the Rule-Predicate Graph by randomly assigning types
to edges based on the probability distribution. The types

624

of edges are P, SN, DN, or SN&DN. To ensure the deriv-
ability of the entire graph structure and facilitate quantita-
tive analysis (e.g., controlling reasoning chain length), we
set the incoming and outgoing edges to a unified type for
each predicate node during generation.

Furthermore, to ensure structural diversity and avoid re-
dundancy in the dataset, we keep only one sample from
those with similar graph structures.

4.3 ASP Rule Generation

Following the construction of the Rule-Predicate-Operation
Graph, the ASP Rule Generation step translates the graph
into concrete ASP rules. As depicted in the top-right panel
of Figure 1, this process involves several stages for each rule
node in the graph:

(1) Input Collection: For a given rule node in the graph,
all adjacent predicate nodes and the corresponding edge in-
formation (both type and direction) are gathered. This infor-
mation determines which predicates constitute the head and
body of the rule and the logical operations involved.

(2) Initial Rule Formulation: Based on the collected in-
formation, two sub-steps occur:

Variable Assignment: This step assigns appropriate vari-
ables to the atoms, determining the arity (n-ary) of each
predicate. The initial arity (n-ary) for each predicate is ran-
domly assigned within a predefined range. Once assigned,
the arity of a predicate is maintained consistently whenever
it appears in the program. If a predicate has been assigned
variables previously, its arity is maintained. Additionally, to
ensure the rationality of the generated rules, we ensure that
the variables of one predicate satisfy the following two con-

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

ditions: (a) At least one of the variables must occur in the
other predicates (either the body or the head). (b) All head
predicate variables must be present in the body.

Atom Generation: This step converts predicate nodes into
ASP atoms along with the assigned variables, using P-style
identifiers (e.g., “P1 (V0) 7).

These atoms are then assembled into an ASP rule based
on the edge directions and types. If a rule node in the
graph has multiple outgoing edges representing potential
head predicates, the generation process can be adjusted ac-
cording to the requirements of the task. By default, when
generating programs intended for the ASE task, which re-
quires a unique answer set, disjunctions are avoided and
multiple rules with the same body are produced (e.g., “a :—
b.”, “c := b.”). Conversely, for ASV and ASC tasks in-
volving multiple answer sets, rules with disjunctions (e.g.,
“a | ¢ := b.”) will be generated. Figure 1 shows an
example of an ASP rule.

(3) Error Checking and Repair: The initial ASP rules
may contain errors. Therefore, we carry out the following
checks and repairs:

Syntax Check: Ensuring that the rule adheres to the syntax
regulations of ASP (e.g., “not” cannot appear in the rule
head).

Safety Check: Verifying that the rule is safe, meaning ev-
ery variable appearing in the head or in a default negated lit-
eral also appears in a body literal that is not default negated
(i.e., a positive or strongly negated literal).

Error Repair: The ASP rules are checked for syntax and
safety errors using DLV2. If any errors are detected, an
automated repair process will be carried out. This process
attempts to make the rule valid by making minimal modi-
fications, by applying a “negation flip” to predicate atoms.
This operation simultaneously toggles both the strong nega-
tion status and the default negation status of an atom. For
instance, applying this flip to “not p” changes it to “-p”
; similarly, applying it to “not -p” changes it to “p”. The
repair process iteratively modifies predicate negations, at-
tempting progressively more changes until the rule passes
the check. If a valid rule cannot be obtained after a set num-
ber of attempts, the sample generation for this specific rule
will be discarded.

This step produces a set of syntactically correct and safe
ASP rules, derived from the graph representation and ready
for the ASPBench Construction phase.

4.4 ASPBench Construction

The final step, ASPBench Construction, synthesizes the
symbolic and textual ASP samples, as illustrated in the bot-
tom panel of Figure 1. This process involves four stages:

(1) ASP Program Formulation: Initial ASP facts are
generated from input predicate nodes (those lacking incom-
ing edges). The truth value (“p.” or “~p.”) of a fact is
determined by the unified type of its predicate node: types P
and SN directly yield “p.” and “-p.” respectively. If the
type includes default negation (DN or SN&DN), a “negation
flip” operation is applied to determine the final truth value.

(2) Diversification and Augmentation: To enhance
dataset diversity, several modifications are applied:

625

Fact and Rule Augmentation: To further enhance the di-
versity and complexity, we introduce 5 distinct types of ad-
ditional rules to the ASP program. These rules are gener-
ated based on the target predicates (predicate nodes without
outgoing edges) P;, other predicates (predicate nodes with
outgoing edges) P,, or newly introduced predicates P,,. The
structures of the additional rules are as follows: (a) The rule
head contains predicates from P;. (b) The rule body con-
tains predicates from P;. (c) Both the head and body consist
solely of predicates from P,. (d) Part of the predicates from
P, are in the head and/or body, others are from P,. (e) Both
the head and body consist solely of predicates from P,,. Fur-
thermore, if P, is introduced, additional facts regarding it
will be added when generating rules.

Constant Modification: Constants in facts will be re-
placed with randomly generated names to vary the ground-
ing (e.g., “P1 (V1)” — “P1 ("Tweety")"”).

Predicate Styling: Predicate descriptions are modified us-
ing three distinct styles: (a) simple P-style identifiers (P1,
P2,...); (b) related concepts drawn from ConceptNet triples.
For example, replacing predicates “a (V0O)” and “b (V0)”
in “a(v0) :— -b(Vv0).” with “flying” and “bird”
based on the ConceptNet relation “bird, CapableOf,
flying”, even if the resulting rule lacks real-world logical
validity, such as “flying (V0) :- -bird(Vv0).”; or
(c) random concepts are selected from the ConceptNet and
used as predicate descriptions.

(3) Symbolic Sample Generation: The modified ASP
program will be executed using DLV2 and then saved if an-
swer sets are produced successfully. These answer sets will
be parsed and, together with the program itself, will form
the symbolic ASP sample.

(4) Textualization: The symbolic ASP sample (facts,
rules, and potentially a query) is converted into a natural
language description using template-based conversion rules,
which is then proofread by an LLM! to fix grammatical and
punctuation errors’>. To mostly keep the logical structure
during textualization, we use a simple but precise style. For
instance, positive facts like “p (X) .” are described as “p(X)
is true”, while negative facts like “~p (X) .” are rendered as
“p(X) is explicitly false”. Rules such as “h :- bl, not
b2 .” are converted into conditional statements like “If b1 is
true and there is no evidence that b2 is true, then h is true”.
Details about the textualization and the prompt are provided
in the supplementary material (Appendix B, C).

This step produces a pair of corresponding symbolic and
textual ASP samples, which constitute the samples of the
ASPBench dataset.

4.5 Task Design

ASPBench is designed to evaluate LLMs on three core ASP
reasoning tasks: ASP entailment, answer set verification,
and answer set computation. This section provides details
of the settings and generation process used by ASPBench to
create samples for each task.

"We use gpt-4o-mini during textualization.
2We conducted a human check to ensure the quality of textual
samples.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

ASP Entailment For each ASE sample, we ensure that the
ASP program P does not contain any disjunctions and has
only one unique answer set S. The query atom « is positive
and is generated from the terminal predicate node P,. The
label is the truth value of a with respect to S.

Answer Set Verification For each ASV sample, the pro-
gram P is allowed to include disjunctions and is guaranteed
to have at least one answer set. The label for the candidate
set C'is randomly assigned as either t rue or false. When
the label is true, C' is randomly selected from one of the
answer sets of P. When the label is false, C' is generated
by taking a correct answer set of P and applying exactly one
of the following modifications:

* Flip Negation: A fact is randomly selected from a correct
answer set, and its negation status is flipped (e.g., “p.”
becomes “—p.”, or “—p.” becomes “p.”).

* Delete Fact: A single fact is randomly removed from a
correct answer set.

* Add Modified Fact (Constants): A fact is randomly se-
lected from a correct answer set, its constants are altered,
and this newly formed fact is added to the set.

* Add Modified Fact (Predicate): A fact is randomly se-
lected from a correct answer set, its predicate name is
changed, and this newly formed fact is added to the set.

Answer Set Computation For each ASC sample, the pro-
gram P is allowed to include disjunctions and is guaranteed
to have at least one answer set. Moreover, all the answer
sets of P are saved. The output of the model for the ASC
task is then evaluated for correctness by checking whether it
matches one of these answer sets.

In summary, the ASE task in ASPBench is tailored for
scenarios with unique answer sets by constraining rule gen-
eration. Conversely, the ASV and ASC tasks embrace the
possibility of multiple answer sets, often involving head dis-
junction, thereby providing a comprehensive evaluation of
reasoning over more complex ASP features.

5 Experiment
5.1 Dataset Statistics

ASPBench benchmark includes three datasets for evaluat-
ing the ASP solving capabilities of LLMs: ASP Entail-
ment (ASE), Answer Set Verification (ASV), and Answer
Set Computation (ASC). Each dataset consists of 1,000 sam-
ples, pairing symbolic ASP programs with textual descrip-
tions. Table 2 details their statistics. Note that constraints are
often ineffective in synthetic programs, so ASPBench only
incorporates them in manually collected ASP programs.

Moreover, in addition to synthetic ASP programs, we col-
lected 47 symbolically represented classic ASP programs
from various categories, as shown in Table 3. To en-
hance diversity and prevent LLMs from providing correct
answers by memorising programs, we extend each program
by: (1) scaling up problem instances; (2) converting prob-
lems to P-style format.

626

Statistic ASE ASV ASC
Program Size

Avg. Rules 10.72 15.71 15.47
Avg. Facts 9.77 14.36 14.23
Pred. Arity 0-3 0-3 0-3
Max. Chain 1-7 - -
Syntactic Classes

Positive 10.1% 9.2% 10.3%
Stratified 34.5% 34.8% 35.7%
Head-Cycle-Free 42.9% 44.3% 44.9%
Answer Sets

Avg. Count 1.00 3.33 3.44
Avg. Facts/Set - 22.70 21.94
Label Dist.

True 41.3% 50.7% -
False 32.1% 49.3% -
Unknown 26.6% - -
Pred. Style

P-style 32.7% 32.7% 32.5%
Related 33.8% 32.5% 32.4%
Random 33.5% 34.8% 35.1%

Table 2: Statistics of the ASPBench dataset across different tasks
(ASE, ASV, ASC).

5.2 Evaluation Setup

Models To evaluate the reasoning capability of LLMs
using the ASPBench dataset, we conducted experiments
on 14 LLMs. These models are categorized as follows:
(1) General LLMs: gqwen2.5-7b, qgwen2.5-14b (Yang et al.
2025b), glm-4-flash (Team GLM 2024), gpt4o-mini (Ope-
nAl 2024a), gpt-4o (OpenAl 2024b), claude-3-haiku (An-
thropic 2024), deepseek-v3 (Liu et al. 2024), and gemini-2.5-
flash-nothinking (Doshi 2025). (2) Reasoning-Optimized
LIMs: qwen3-8b, qwen3-14b (Yang et al. 2025a), 03-
mini (OpenAl 2025b), o4-mini (OpenAl 2025a), deepseek-
rl (Guo et al. 2025), and gemini-2.5-flash-thinking (Doshi
2025). For each task, we use the same prompt across all
LLMs. The detailed prompts used in experiments are shown
in Appendix C.

Metrics We evaluate performance using task-specific met-
rics: for ASP entailment and answer set verification, we
use the macro-F1 score, which treats all classes equally to
mitigate biases from imbalanced label distributions; for an-
swer set computation, we employ Exact Match (EM), defin-
ing a sample as correct if any predicted answer set exactly
matches any of the ground truth answer sets.

Implementation details Inspired by Zheng et al. (2023)
and Tam et al. (2024), we do not forcefully restrict the out-
put format of LLMs during reasoning to minimize potential
interference with their actual reasoning capabilities. Instead,
we employ gpt-4o-mini to convert the raw outputs into struc-
tured JSON format for automated evaluation. For the An-
swer Set Computation task, we conduct an alignment pro-
cess before evaluation. This process maps predicted facts
to ground truth answer sets, handling model outputs that
may not strictly follow standard answer set representations.
Moreover, we use the latest version of DLV, DLV23, to vali-
date the correctness of the symbolic samples in ASPBench.
Details about the prompts for each task are provided in the
supplementary material (Appendix C).

*https://dlv.demacs.unical.it/

https://dlv.demacs.unical.it/

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning

KR in the Wild

Category Number Characteristics and Representative Examples

. . . Classic logic puzzles requiring deductive reasoning and constraint satisfaction.
Basic Logic Reasoning (BLR) 8 Examples: Zebra puzzle, Who killed Agatha, Safe cracking puzzle, etc.
Combinatorial Search 15 Tasks involving state-space exploration, pattern matching, and combinatorial optimization.
& Optimization (CSO) Examples: N-Queens, Sudoku, Magic square, Minesweeper, etc.
Constraint Satisfaction 8 Resource allocation and temporal scheduling problems under constraints.
& Scheduling (CSS) Examples: Map coloring, Job scheduling, Traffic light coordination, etc.
Mathematical & Set 16 Problems involving numerical computations and set-based reasoning of varying complexity.

Problems (MSP)

Examples: Set covering, Euler Problem, Subset sum, Prime numbers, etc.

Table 3: Overview of manually collected ASP problems grouped by problem-solving paradigm and reasoning characteristics.

ASP Entailment (F1)

Answer Set Verification (F1)

Answer Set Computation (EM)

Model \

| Sym Tex | P-style RanW RelW | Sym Tex | P-style RanW RelW | RealP | Sym Tex | P-style RanW RelW | RealP
General LLMs:
gpt-4o-mini 0.347 0386 | 0373 0.372 0348 | 0410 0473 | 0456 0434 0432 | 0.623 | 0.021 0.028 | 0.025 0.027 0.022 | 0.007
glm-4-flash 0322 0.340 | 0318 0.360 0312 | 0.505 0509 | 0.499 0.512 0.505 | 0.461 | 0.009 0.019 | 0.011 0.021 0.009 | 0.021
gpt-4o 0.563 0.651 | 0.577 0.631 0.606 | 0.519 0549 | 0.550 0.515 0.533 | 0.518 | 0.083 0.083 | 0.069 0.104 0.074 | 0.028
claude-3.5-haiku 0.380 0468 | 0.384 0431 0453 | 0499 0.536 | 0.494 0.518 0.537 | 0.449 | 0.090 0.145 | 0.102 0.145 0.102 | 0.014
qwen2.5-7b 0.328 0.283 | 0.268 0.337 0.309 | 0.534 0.518 | 0.496 0.549 0.522 | 0.540 | 0.014 0.016 | 0.015 0.026 0.005 | 0.014
wen2.5-14b 0471 0526 0434 0522 0.535 | 0552 0548 0.542 0.515 0.592 | 0.389 | 0.063 0.082 | 0.080 0.081 0.057 | 0.014
eepseek-v3 0.674 0.708 0.621 0.733 0.716 | 0.547 0.566 0.549 0.561 0.553 | 0.547 | 0.256 0.158 | 0.222 0.218 0.181 | 0.064
gemini-2.5-flash-nothinking | 0.890 0.832 0.849 0.861 0.871 | 0.783 0.786 0.792 0.791 0.768 | 0.621 | 0.065 0.109 | 0.071 0.091 0.099 | 0.074
Reasoning-Optimized LLMs:
qwen3-8b 0.682 0911 | 0762 0.811 0.813 | 0.659 0.666 | 0.669 0.629 0.690 | 0.596 | 0.167 0.308 | 0.240 0.244 0.228 | 0.057
qwen3-14b 0.850 0.958 0.886 0.904 0.920 | 0.692 0.714 0.707 0.698 0.702 | 0.666 | 0.290 0.517 | 0.406 0.413 0.397 | 0.092
deepseek-rl 0976 0977 0978 0.967 0984 | 0.873 0.809 0.838 0.836 0.849 | 0.674 | 0.817 0.297 | 0.551 0.581 0.537 | 0.149
gemini-2.5-flash-thinking 0.967 0.87 0909 0923 0.922 | 0.794 0.775 0.775 0.778 0.796 | 0.521 | 0.244 0.234 | 0206 0.258 0.257 | 0.171
03-mini 0.982 0984 | 0.986 0.980 0.984 | 0.859 0.818 | 0.840 0.831 0.843 | 0.759 | 0.600 0.531 | 0.531 0.590 0.574 | 0.264
04-mini 0.972 0.965 | 0.964 0.968 0.973 | 0.800 0.823 | 0.809 0.812 0.812 | 0.702 | 0.645 0.604 | 0.591 0.656 0.624 | 0.239
Avg. | 0.672 0.704 | 0.665 0.700 0.696 | 0.645 0.649 | 0.644 0.641 0.652 | 0.576 | 0.240 0.224 | 0.223 0.247 0.226 | 0.086

Table 4: Overall performance of different LLMs on various reasoning tasks using the ASPBench datasets and real-world ASP benchmarks.
The table details F1 scores and EM across different input styles. Abbreviations: Sym (Symbolic representation), Tex (Textual representation),
P-style (Program-style representation), RanW (Random concepts from ConceptNet), RelW (Related concepts from ConceptNet triples),

RealP (Real-world ASP Programs).

5.3 Main Results

We report the main findings through the following four ques-
tions:

(1) How LLMs perform on ASP solving in general? Our
analysis of Table 4 demonstrates that current LLMs have
significant limitations when it comes to solving ASP. Their
performance is generally poor and depends heavily on task
structure and input modality.

From the results, we can observe that a steep perfor-
mance cliff exists with task complexity. While LLMs
achieve moderate F1 scores in ASE (68.8% for the Sym/Tex
average) and ASV (64.7% for the Sym/Tex average), fur-
ther analysis reveals significant differences in performance.
Specifically, ASV is a binary classification task and there-
fore has a higher random baseline (e.g., 0.5 F1 score)
than the three-class ASE. Furthermore, the peak perfor-
mance achieved in ASE (e.g., 98.2% by 03-mini on Sym
input) significantly outperforms that of ASV (e.g., 87.2%
by deepseek-rl on Sym input). These factors suggest that
the performance gap between LLMs on these tasks is larger
than the average scores suggest, and ASV is therefore a
more challenging task. Moreover, their performance drops
sharply in the more complex and practically vital ASC task.
The average EM score for ASC is 23.2% in the synthetic
dataset and drops further to 8.6% in real-world ASP pro-
grams. This highlights the significant challenges involved in
generating complete and precise multi-step logical reason-
ing.

For different types of LLMs, Reasoning-Optimized

627

LLMs achieve significant improvements. Compared to
deepseek-v3 which achieves an EM of 20.7% in ASC,
deepseek-rl achieves an EM of 55.7%, a substantial im-
provement. Similar improvements are observed in real-
world ASP programs, where gwen3-14b shows a notable
9.2% EM compared to just 1.4% for gwen2.5-14b. However,
even these improved models still present a gap for reliable
practical application. This highlights that, despite benefi-
cial optimization strategies, the capability of current LLMs
to robustly solve these critical and complex reasoning tasks
requires further significant improvement.

(2) How symbolic and textual representations influence
the performance of LLMs in ASP solving? As shown
in Table 4 (Avg. row), our results indicate that the relative
performance of LLMs on symbolic versus textual represen-
tations is highly task-dependent.

LLMs generally perform better with textual input than
symbolic input for classification tasks such as ASE (Tex:
70.4% vs Sym: 67.2% F1) and ASV (Tex: 64.9% vs Sym:
64.5% F1). This suggests that their reasoning is better
aligned with the linguistic patterns of these contexts. Con-
versely, for the ASC task, symbolic inputs show a slightly
higher average EM (Sym: 24.0% vs Tex: 22.4%). This
difference may partly arise from the challenge of aligning
the natural language descriptions of textual outputs with
structured ground truths, which is an issue that is less
prevalent for symbolic formats.

(3) How do the naming styles of predicates influence the
ASP solving ability of LLMs? The choice of predicate

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning

KR in the Wild
LLM Performance by ASP Category Fact State Querying Answer Set Decision
06 FmASV. W ASC 015 Label Prediction Label Prediction
F(321) F(216) Correct
(507) Correct
0.4 2 - 0.10 ki (443)
= S =
- [=} - [} m
w (=} g = T(312) A('::sri 70%
0.2 3 0.05 T(413) AMFP Error
[S] (124) [73% (857)
o I DF
(103) 1 61%
u@72)
FN
BLR cso css MSP U(266)I (151) [74%

Categories of ASP Programs

Figure 2: LLM performance on four real-world ASP problem cat-
egories.

representation style markedly influences LLM reasoning.

Across all tasks, average results in Table 4 indicate that
LLMs reason more effectively with lexicalized predi-
cates (RanW, RelW) than with simple P-style identifiers.
Specifically, P-style representations are consistently outper-
formed by at least one of the lexicalized predicate styles in
each task category. For instance, in ASP entailment, the F1
score of P-style (66.5%) is surpassed by RanW (70.0%) and
RelW (69.6%). This implies that predicates with some se-
mantic grounding, whether they are randomly selected con-
cepts from ConceptNet (as in RanW) or related concepts
from ConceptNet triples (as in RelW), provide more acces-
sible anchors for reasoning compared to simple identifiers
(e.g., “P17, “P2” for P-style). This highlights a sensitivity
to how predicates are represented, beyond just the choice
between symbolic and textual inputs.

(4) How do LLMs perform in solving real-world ASP
problems, compared to synthetic samples? Real-world
ASP programs have similar or even fewer rules to synthetic
samples, but they have more complex logical structures,
such as constraints and iterative rules.

Compared with synthetic samples, the performance of
LLMs on real-world ASP programs reveals a notable per-
formance gap, with F1 scores dropping from 64.7% to
57.6% in ASV and EM scores plummeting from 23.2% to
8.6% in ASC (see the “RealP” columns in Table 4). For dif-
ferent categories, as shown in Figure 2, the two worst per-
forming categories are Basic Logic Reasoning (BLR) and
Combinatorial Search & Optimization (CSO), with the low-
est F1 and EM scores, respectively. This denotes that current
LLMs are almost unable to solve complex ASP problems.

Overall, these findings suggest that, despite their potential
for solving basic ASP problems, current LL.Ms lack the ro-
bust logical reasoning capabilities required for complex
practical applications.

5.4 Fine-grained Analysis

To investigate the limitations of LLMs in ASP solving, we
perform fine-grained analysis on ASPBench. Case studies
for each task are shown in the supplementary material (Ap-
pendix F).

ASP Entailment For ASP entailment (Figure 3 (a)), we
observe that direct flips between the t rue and false states
are rare; most errors arise from cases whose label is t rue

628

(a) (b)

Figure 3: Sankey diagrams of average results on ASE and ASV.
Truth-value abbreviations: T (true), F (false), U (unknown). Pertur-
bation categories: AMFC (Add Modified Fact — Constants), AMFP
(Add Modified Fact — Predicate), DF (Delete Fact), and FN (Flip
Negation).

or false but are predicted as unknown. Moreover, the
proportion of unknown climbs from 26.6% in the ground
truth to 47.2% in predictions. These observations reveal
the following insights: (/) Risk-averse bias. LLMs would
rather output unknown than risk making a polarity mistake,
prioritising a lower risk of blatant contradiction over recall.
(2) Stricter ternary evaluation. With a third truth value, er-
rors hidden in binary metrics become visible. The increase
in unknown predictions highlights the added difficulty of
three-valued semantics.

Answer Set Verification For answer set verification (Fig-
ure 3 (b) and Figure 4 (a)), we observe the following in-
sights:

Completeness blind spot: Ground-truth answer sets
(Correct) and subsets formed by deleting a single fact (DF)
have similar rates of being misjudged (41% vs. 39%), no-
tably higher than for other situations. This indicates LLMs
struggle to judge overall consistency, though they perform
relatively well on local consistency.

Low sensitivity of solution space complexity: The per-
formance of the LLM when evaluating candidate answer sets
is not significantly affected by the complexity of the pro-
gram, as measured by the total number of answer sets. For
instance, accuracy only slightly decreases from 66% for pro-
grams with a single answer set to 61% for those with six.
This general insensitivity indicates that the size of the so-
lution space has a limited impact on this evaluation task.
However, the observed minor decline suggests that very high
program complexity could still pose an indirect challenge to
these localized consistency checks.

Answer Set Computation For answer set computation
(Figure 4 (b)), we observe that the performance of LLMs
is sensitive to the number of answer sets in the program.
Compared to ASV, LLMs are more sensitive to the number
of answer sets in ASC. The following insights are observed:

Collapse in Model Computation: ASC requires the con-
struction of a complete and coherent answer set based on
the ASP program. This is a far more complex process than
ASYV, which, related to model checking, primarily involves
verifying whether a given candidate is a valid answer set.
This difference in complexity is clearly reflected in the per-
formance of LLMs, with their ability to perform ASC tasks

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning

KR in the Wild
Answer Set Decision Answer Set Computation ASE & ASV Answer Set Computation
0.8 - #Sample’ F1 600 0.3 - #Sample " EM 600 0.8 © 0.6 In Class
~ -
= N Q 8 Not In Class
064 © B S « g © o
- § 58 S8 o .
o o
ut;) 0.4+ = 3 g q
> w - o -« o o
< 0.2 s = s =
0.2 ’ S S
#Answer Set #Answer Set
() 0.0 ; ; ; 0.0 ; ; ;
Positive Stratified HCF Positive Stratified HCF

Figure 4: Effect of the number of answer sets on performance of
LLMs.

Completion Tokens vs. Performance

214—.
c . L
g . 4 gemini-2.5-flash-thinking
S 2" awen3-8%7 & qwens-14b
c deepseek-r1
o 212 03-mini
= o4-mini
2 qwen2.5-14p + gemini-2.5-flash-nothinking
£ 2"+ qwen2.5-7b 4y sy ¥ deepseek-v3
8 €3 gim-4-flash
o 2104 = @ gpt-40
2 opt-domini @ . 21 de-3.5-haik

2° T T T T 1

0.0 0.2 0.4 0.6 0.8 1.0
Avg Metric

Figure 5: Average completion tokens vs. mean performance of
LLMs. Mean performance combines metrics from ASP entail-
ment (F1), answer set verification (F1), and answer set computa-
tion (EM).

decreasing sharply when ASP programs define three or more
answer sets (e.g., EM from 26% for two answer sets to 21%
for three).

5.5 Test-time and Model Scaling

Test-time scaling (Muennighoff et al. 2025) and model scal-
ing (Kaplan et al. 2020) are two approaches to improve the
performance of LLMs. To analyze the effect of these two
approaches in our tasks, we report the average completion
tokens and mean performance of LLMs, as shown in Fig-
ure 5.

The results visualize the link between average com-
pletion tokens (a proxy for thinking depth) and overall
score: (I) Longer reasoning chains tend to result in
higher performance. Reasoning-oriented variants such
as deepseek-rl, gemini-2.5-flash-thinking, and gwen3-14b
write longer chains than equally-sized base models and,
in return, achieve noticeably higher performance—evidence
that letting a model “think longer” at test time pays off.
(2) Larger models are more token-efficient. Increasing
parameters within the same family (e.g., gwen3-14b vs.
gwen3-8b, gpt-4o vs. gpt-4o-mini) lifts performance while
keeping chain length almost unchanged, showing that larger
capacity delivers more signal per token.

Overall, this suggests that when GPU memory is limited,
extending the reasoning chain is a cost-effective boost; with
sufficient resources, scaling model parameters yield more
reliable and shorter answers.

629

Syntactic Class Syntactic Class

Figure 6: The fine-grained statistic of performance of LLMs on
ASPBench with different syntactic classes.

5.6 Performance on Different Syntactic Classes

The syntactic structure of logic programs profoundly in-
fluences LLM reasoning performance (Figure 6). When
programs adhere to specific syntactic constraints—Positive,
Stratified, or HCF—LLMs demonstrate a striking improve-
ment. This is most evident in ASC, where, for exam-
ple, compared to non-Positive programs, Positive programs
achieve a surge in EM scores from 19.4% to 56.1%—nearly
a threefold increase. In simpler tasks like ASE and ASV,
F1 scores are also boosted by over 10% when the positive
constraint is met.

Furthermore, when cycles that violate Stratification or
HCEF constraints are present in programs, LLM performance
also dramatically degrades. Particularly in ASC, under such
conditions, EM scores fall by over 20% compared to pro-
grams that adhere to the respective Stratified or HCF con-
straints. Even for ASE and ASV, the presence of such
unconstrained cycles causes scores to plateau around 0.60.
This is significantly below the performance observed for
programs that are Positive, or adhere to Stratification or HCF
constraints.

This sharp divide highlights a fundamental deficit. While
LLMs perform well with simple positive programs, their
performance drops sharply when Stratification or HCF con-
straints are violated. In such cases, their average scores fall
below those for general non-positive programs. This ex-
poses a critical lack of robust iterative and fixed-point
reasoning in LLMs.

6 Conclusion

In this work, we introduce ASPBench, a benchmark de-
signed to evaluate ASP solving ability of LLMs. ASPBench
includes diverse descriptions, predicates, and a rich set of
logical operations. We define three key tasks: ASP entail-
ment, answer set verification, and answer set computation,
to rigorously assess LLM performance. Our experiments re-
veal significant limitations in the current ability of LLMs to
handle ASP solving tasks. Here are a few potential future
research directions that could mitigate the aforementioned
limitations: (/) Develop hybrid architectures that integrate
symbolic logic representation with neural networks to lever-
age the strengths of both approaches; (2) Propose new inno-
vative methods specifically tailored to enhance ASP solving
capability in LLMs.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

Acknowledgments

This work is partially supported by National Nature Sci-
ence Foundation of China under No. 62476058, and the
Fundamental Research Funds for the Central Universities
(2242025K30024). We thank the Big Data Computing Cen-
ter of Southeast University for providing the facility support
for the numerical calculations in this paper.

References

Allaway, E.; Hwang, J. D.; Bhagavatula, C.; et al. 2023.
Penguins don’t fly: Reasoning about generics through in-
stantiations and exceptions. In Proc. of EACL’2023, 2610—
2627.

Alviano, M.; Calimeri, F.; Dodaro, C.; et al. 2017. The ASP
system DLV2. In Proc. of LPNMR’2017, 215-221.
Anthropic. 2024. Claude 3 Haiku: our fastest model yet.
Anthropic blog.

Apt, K. R.; Blair, H. A.; and Walker, A. 1988. Towards a
theory of declarative knowledge. In Foundations of deduc-
tive databases and logic programming. Elsevier. 89-148.
Barrett, C.; Stump, A.; and Tinelli, C. 2010. The smt-
lib standard: Version 2.0. In Proceedings of the 8th inter-
national workshop on satisfiability modulo theories (Edin-
burgh, UK), volume 13, 14.

Beck, H.; Dao-Tran, M.; and Eiter, T. 2018. LARS: A logic-
based framework for analytic reasoning over streams. Artif.
Intell. 261:16-70.

Ben-Eliyahu, R., and Dechter, R. 1994. Propositional se-
mantics for disjunctive logic programs. Annals of Mathe-
matics and Artificial intelligence 12:53-87.

Borroto, M.; Kareem, I.; and Ricca, F. 2024. Towards auto-
matic composition of ASP programs from natural language
specifications. arXiv preprint arXiv:2403.04541.

Chan, J.; Gaizauskas, R. J.; and Zhao, Z. 2025. RULE-
BREAKERS: Challenging LLMs at the crossroads be-
tween formal logic and human-like reasoning. In Proc. of
ICML’2025.

Chen, M.; Li, G.; Wu, L. L; et al. 2024a. Can language
models pretend solvers? logic code simulation with LLMs.
In Proc. of SETTA’2024, 102-121.

Chen, M.; Li, G.; Wu, L. L; et al. 2024b. Can language
models pretend solvers? logic code simulation with LLMs.
arXiv preprint arXiv:2403.16097.

Clark, P; Tafjord, O.; and Richardson, K. 2021. Trans-
formers as soft reasoners over language. In Proc. of the 1J-
CAI'2021, 3882-3890.

Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Comput. Surv. 33(3):374-425.

Darwiche, A., and Pearl, J. 1997. On the logic of iterated
belief revision. Artif. Intell. 89(1-2):1-29.

Doshi, T. 2025. Start building with Gemini 2.5 Flash. Online
announcement.

Feng, J.; Xu, R.; Hao, J.; et al. 2023. Language models can
be logical solvers. arXiv preprint arXiv:2311.06158.

630

Forgy, C. L. 1989. Rete: A fast algorithm for the many
pattern/many object pattern match problem. In Readings in
artificial intelligence and databases. Elsevier. 547-559.

Fu, Y.; Peng, H.; Ou, L.; et al. 2023. Specializing smaller
language models towards multi-step reasoning. In Proc. of
ICML’2023, 10421-10430.

Gebser, M.; Kaminski, R.; Kaufmann, B.; et al. 2012. An-
swer Set Solving in Practice. Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning. Morgan and Clay-
pool Publishers.

Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Proc. of ICLP/SLP’1988,
1070-1080.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. NGC 9:365-385.
Ginsberg, M. L. 1980. Readings in nonmonotonic reason-
ing.

Guo, D.; Yang, D.; Zhang, H.; et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in LLMs via reinforcement
learning. arXiv preprint arXiv:2501.12948.

Huang, J., and Chang, K. C.-C. 2023. Towards reasoning
in large language models: A survey. In Proc. of Findings of
ACL’2023, 1049-1065.

Ishay, A.; Yang, Z.; and Lee, J. 2023. Leveraging large
language models to generate answer set programs. arXiv
preprint arXiv:2307.07699.

Jiang, J.; Wang, F.; Shen, J.; et al. 2024. A survey on
large language models for code generation. arXiv preprint
arXiv:2406.00515.

Josephson, J. R., and Josephson, S. G. 1996. Abductive in-
ference: Computation, philosophy, technology. Cambridge
University Press.

Kaplan, J.; McCandlish, S.; Henighan, T.; et al. 2020.
Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361.

Leidinger, A.; Rooij, R. V.; and Shutova, E. 2024. Are
LLMs classical or nonmonotonic reasoners? lessons from
generics. In Proc. of ACL’2024, 558-573.
Li, Z.; Cao, Y.; Xu, X.; Jiang, J.; et al.
for relational reasoning: How far are we?
LLM4CODE®@ICSE’2024, 119-126.

Liu, A.; Feng, B.; Xue, B.; et al. 2024. Deepseek-v3 tech-
nical report. arXiv preprint arXiv:2412.19437.

Liu, H.; Fu, Z.; Ding, M.; et al. 2025. Logical reason-
ing in large language models: A survey. arXiv preprint
arXiv:2502.09100.

Lyu, C.; Yan, L.; Xing, R.; et al. 2024. Large language mod-
els as code executors: An exploratory study. arXiv preprint
arXiv:2410.06667.

Moura, L. D., and Bjgrner, N. 2008. Z3: An efficient
SMT solver. In International conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, 337—
340. Springer.

Muennighoff, N.; Yang, Z.; Shi, W.; et al. 2025. s1: Simple
test-time scaling. arXiv preprint arXiv:2501.19393.

2024. LLMs
In Proc. of

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

Niemeld, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm. Annals of
mathematics and Artificial Intelligence 25:241-273.

OpenAl. 2024a. GPT-40 mini: advancing cost-efficient in-
telligence. OpenAl blog.

OpenAl. 2024b. Hello GPT-40. OpenAl blog.
OpenAl. 2025a. Openai 03 and o4-mini system card.
OpenAl. 2025b. Openai 03-mini technical report.

Parmar, M.; Patel, N.; Varshney, N.; et al. 2024. Log-
icBench: Towards systematic evaluation of logical reason-
ing ability of large language models. In Proc. of ACL’2024,
13679-13707.

Perak, B.; Beliga, S.; and MeStrovi¢, A. 2024. Into LLM
using RAG incorporating dialect understanding and prompt
engineering techniques for causal commonsense reasoning.
In Eleventh Workshop on NLP for Similar Languages, Vari-
eties, Proc. of the and Dialects (VarDial’2024), 220-229.

Reiter, R. 1980. A logic for default reasoning. Artif. Intell.
13(1-2):81-132.

Reiter, R. 1988. Nonmonotonic reasoning. In Exploring
artificial intelligence. Elsevier. 439-481.

Rudinger, R.; Shwartz, V.; Hwang, J. D.; et al. 2020. Think-
ing like a skeptic: Defeasible inference in natural language.
In Proc. of Findings of ACL’2020, 4661-4675.

Saha, S.; Yu, X. V.; Bansal, M.; et al. 2023. MURMUR:
Modular multi-step reasoning for semi-structured data-to-
text generation. In Proc. of Findings of ACL’2023, 11069—
11090.

Santos, H.; Shen, K.; Mulvehill, A. M.; et al. 2024. A the-
oretically grounded question answering data set for evaluat-
ing machine common sense. Data Intelligence 6(1):1-28.

Srivatsa, K. A., and Kochmar, E. 2024. What makes math
word problems challenging for LLMs? In Proc. of Findings
of NAACL’2024, 1138-1148.

Tafjord, O.; Dalvi, B.; and Clark, P. 2021. ProofWriter:
Generating implications, proofs, and abductive statements
over natural language. In Proc. Findings of ACL’2021, vol-
ume ACL/IJCNLP 2021 of Findings of ACL, 3621-3634.
Association for Computational Linguistics.

Tam, Z. R.; Wu, C.-K.; Tsai, Y.-L.; et al. 2024. Let me
speak freely? a study on the impact of format restrictions
on performance of large language models. arXiv preprint
arXiv:2408.02442.

Team GLM. 2024. ChatGLM: A family of large language
models from GLM-130B to GLM-4 all tools.

Tian, Y.; Zhang, F.; and Peng, N. 2023. Harnessing black-
box control to boost commonsense in LM’s generation. In
Proc. of EMNLP 2023, 5417-5432.

Wan, H.; Xiao, G.; Wang, C.; et al. 2020. Query answering
with guarded existential rules under stable model semantics.
In Proc. of AAAI’2020, 1001-1008.

Wang, K.; Qi, G.; Li, J.; et al. 2024a. Can large language
models understand DL-Lite ontologies? an empirical study.
In Proc. of Findings of EMNLP’2024, 2503-2519.

631

Wang, S.; Wei, Z.; Choi, Y.; et al. 2024b. Can LLMs reason
with rules? logic scaffolding for stress-testing and improv-
ing LLMs. In Proc. of ACL’2024, 7523-7543.

Wang, W.; Liu, K.; Chen, A. R; et al. 2024c. Python sym-
bolic execution with LLM-powered code generation. arXiv
preprint arXiv:2409.09271.

Xiu, Y.; Xiao, Z.; and Liu, Y. 2022. LogicNMR: Probing
the non-monotonic reasoning ability of pre-trained language
models. In Proc. of Findings of EMNLP’2022, 3616-3626.
Yang, K., et al. 2024. If LLM is the wizard, then code
is the wand: A survey on how code empowers large lan-
guage models to serve as intelligent agents. arXiv preprint
arXiv:2401.00812.

Yang, A.; Li, A.; Yang, B.; et al. 2025a. Qwen3 technical
report. arXiv preprint arXiv:2505.09388.

Yang, A.; Yu, B.; Li, C.; Liu, D.; et al. 2025b. Qwen2.5-1M
technical report. arXiv preprint arXiv:2501.15383.

Yue, M.; Zhang, Y.; Liu, J.; et al. 2025. A survey of
large language model agents for question answering. arXiv
preprint arXiv:2503.19213.

Zheng, L. M.; Chiang, W.-L.; Sheng, Y.; et al. 2023. Judging
IIm-as-a-judge with mt-bench and chatbot arena. Proc. of
NeurIPS’2023 46595-46623.

Zhu, Y.; Yuan, H.; Wang, S.; et al. 2023. Large language
models for information retrieval: A survey. arXiv preprint
arXiv:2308.07107.

	Introduction
	Related Work
	Logical Reasoning with LLMs
	LLMs as Logic Solvers or Code Executors
	Benchmarks for ASP Solving with LLMs

	Preliminary
	Answer Set Programming
	Syntactic Classes
	Task Definitions

	ASPBench
	Definition of ASP Graph
	ASP Graph Construction
	ASP Rule Generation
	ASPBench Construction
	Task Design

	Experiment
	Dataset Statistics
	Evaluation Setup
	Main Results
	Fine-grained Analysis
	Test-time and Model Scaling
	Performance on Different Syntactic Classes

	Conclusion

