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Abstract
Statistical statements are an expressive tool for representing
statistical information of a domain of interest. Recently, these
statements were given a meaning in the context of Probabilis-
tic Answer Set Programming (PASP), allowing one to encode
properties like “x% of elements of a domain have the feature
y”. Although the computational complexity of different tasks
in PASP is well known, the complexity of restricted programs
composed only of statistical statements and probabilistic facts
has not been studied. As a first contribution, we address
this problem, confirming that even in seemingly restricted
cases the complexity is high. Indeed, even with this restric-
tion we do not lose expressiveness, reaching higher levels of
the polynomial hierarchy. To mitigate these high complexi-
ties, we focus on the structure of the programs. Thereby, we
design novel structure-guided reductions, demonstrating how
one can efficiently answer queries along treewidth decompo-
sitions. We obtain precise upper bounds and we show that
under reasonable assumptions in complexity theory we can-
not significantly improve, as we give matching lower bounds.

1 Introduction
Probabilistic Answer Set Programming under the credal se-
mantics (PASP) (Cozman and Mauá 2020) is one of the
possible languages to express uncertainty with a logic-
based language. PASP extends Answer Set Programming
(ASP) (Brewka, Eiter, and Truszczyński 2011) with proba-
bilistic facts (De Raedt, Kimmig, and Toivonen 2007), i.e.,
facts associated with a probability.

Recently, statistical statements, initially proposed by
Halpern in 1990 (Halpern 1990) to express statistical in-
formation of a domain, have been given an encoding in
PASP (Azzolini, Bellodi, and Riguzzi 2022; Azzolini and
Riguzzi 2023) with the PASTA language. This encoding
converts each statement into a disjunctive rule and two con-
straints that contain counting aggregates. Here, we focus
on programs composed of probabilistic facts and statisti-
cal statements only, and call them “PASTA programs”. Al-
though the computational complexity of general PASP is
well studied (Mauá and Cozman 2020; Cozman and Mauá
2020), it is unknown whether the fragment of PASTA pro-
grams belongs to different complexity classes. That is, we
want to check whether such programs are powerful enough
to model any PASP. This is indeed not trivial, as PASTA
seems rather restricted: We can only model statements of

the form “x% of domain elements have feature y”. Here,
we want to answer the following questions: How do these
restricted forms of probabilistic logic programming behave
complexity-wise? Can we do better than with seemingly
more expressive formalisms in probabilistic reasoning?

Contributions. In this paper, we close this gap and study the
complexity of cautious inference and most probable expla-
nation (MPE) in PASTA programs, providing a more fine-
grained and refined view and identifying the core sources
of complexity. We derive complexity bounds for the whole
class of PASTA programs as well as for some of its sub-
fragments (namely, without disjunction and without nega-
tion). Surprisingly, we find that solving such tasks still re-
mains hard. After this, given the high complexity of these
probabilistic tasks, in the second part of the paper, we ana-
lyze whether structural properties like treewidth can help in
solving reasoning tasks efficiently. We devise an algorithm
to answer queries along a tree decomposition and present
the first parameterized complexity results for PASP. It turns
out that our reductions and algorithms are in line with what
we can hope for. Indeed, while the runtime is exponen-
tial in the treewidth, we also give precise matching run-
time lower bounds under reasonable assumptions in com-
putational complexity. So, we do not expect significant im-
provements. For an overview of our results, see Table 1.

Structure. The paper is structured as follows: Section 2
introduces background concepts and the PASTA language.
Section 3 discusses the complexity of inference and MPE
in PASTA programs. Section 4 shows how we can leverage
structural properties of the programs for inference. Section 5
illustrates related work and Section 6 concludes the papers
with some directions for future works.

2 Background
Here we briefly summarize the background concepts.

Tree Decompositions. Given a graph G = (V,E), where V
and E are the sets of vertices and edges, respectively, a tree
decomposition (TD) of G is a pair T = (T, χ) where T is a
rooted tree and χ is a mapping assigning each node t ∈ T a
set χ(t) ⊆ V . χ(t) is called bag. A tree decomposition has
the following properties: i) V =

⋃
t∈T χ(t); ii) for all pairs

of nodes (v, w) ∈ E, there exists a χ(t) s.t. (v, w) ⊆ χ(t);
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Fragment Inference MPE TW Lower Bound

PASTA PPΣP
2 (Thm. 1) ΣP

3 (Corr. 2) 22
2o(k)

(Thm. 5)
PASTA̸¬ PPNP (Thm. 2) ΣP

2 (Corr. 3) 22
o(k)

(Corr. 5)
PASTA̸¬̸; PP (Corr. 1) NP (Corr. 4) 2o(k) (Corr. 5)

Table 1: Overview of obtained results in this paper. Results in-
clude completeness of PASTA and exponential time hypothesis-
based runtime lower bounds for treewidth (excluding polynomial
factors). Corresponding matching runtime upper bounds (for tight
programs) are given through Reduction 1+Algorithm 1 for non-
disjunctive programs without negation, as well as Reduction 2 for
non-disjunctive programs. Disjunctions can be eliminated by expo-
nentially increasing treewidth, e.g., see (Hecher and Kiesel 2024).

iii) for each triple of nodes r, s, t ∈ T where s lies on the
path from r to t, χ(r) ∩ χ(t) ⊆ χ(s). The width of a tree
decomposition is width(T ) = maxt∈T |χ(t)| − 1. There
may be multiple tree decompositions for a graph G. The
treewidth of a graph G is the minimum width(Ti) over all
its tree decompositions Ti. Computing the exact treewidth is
hard (Bodlaender 1988a; Bodlaender and Koster 2008), so
it is often approximated using heuristics. Let chld(t) denote
the set of child nodes of a node t and t∗ be the parent of a
node t. Without loss of generality (Bodlaender and Koster
2008), we assume that tree decompositions (T, χ) are nice,
i.e., they are composed of four types of nodes only:
• node t with type(t)=leaf, where chld(t)=∅ and χ(t)=∅,
• node t with type(t)=intr introduces a single vertex, i.e.,
χ(t)=χ(t1)∪{a} and {t1}=chld(t) for some vertex a,

• node t with type(t)=rem removes a single vertex, i.e.,
χ(t)=χ(t1)\{a} and {t1}=chld(t) for some vertex a,
and

• node t with type(t)=join joins two child nodes, i.e.,
χ(t) = χ(t1) = χ(t2) where {t1, t2} = chld(t).

Dynamic Programming. Usually, tree decompositions are
paired with dynamic programming (DP) algorithms (Bod-
laender 1988b). Each node t in the tree decomposition is as-
sociated with a table τt containing intermediate results ob-
tained via a table algorithm applied on all children t′ of t
(and thus considering all tables τt′ ). At a high level, a DP
algorithm works in the following four steps: given an in-
stance of a problem, 1) it builds a graph representation G;
2) it computes a (possibly sub-optimal) TD T = (T, χ) of
G; 3) T is traversed bottom up and at each node t a table al-
gorithm is executed on the subproblem identified by t, χ(t),
the current local instance of the problem, and child tables
τt′ ; lastly, 4) at the root r, the table τr contains the solution
of the considered problem.

Computational Complexity. We briefly recall the poly-
nomial time hierarchy (PH) (Stockmeyer 1976; Papadim-
itriou 1994): ∆P

0 = ΠP
0 = ΣP

0 = P and ∆P
k+1 = PΣP

k ,

ΣP
k+1 = NPΣP

k , ΠP
k+1 = coNPΣP

k for k > 0 where DO de-
notes the class of decision problems D equipped with an or-
acle for complete problems in O. The PP class (Gill 1977)
is the class of decision problems solved by an NP machine
such that if the machine’s answer is positive, at least half

of the total computation paths accept, while, otherwise, less
than half of the total computation paths accept.

Answer Set Programming. Answer Set Programming
(ASP) is a well-studied formalism, particularly efficient in
modeling combinatorial problems (Gelfond and Lifschitz
1988; Brewka, Eiter, and Truszczyński 2011; Erdem, Gel-
fond, and Leone 2016). A disjunctive rule r is of the form

h1; . . . ;hm :− b1, . . . , bm

where each h1 is an atom and each b1 is a literal. The :−
operator divides the head (disjunction of the his) denoted as
H(r) from the body (conjunction of bis). With B+(r) and
B−(r) we denote the set of positive and (default) negated
literals appearing in the body of a rule r, respectively. If the
head is empty and the body is not, the rule is also called con-
straint. If there is only one atom in the head and the body is
empty, the rule is called fact. We also consider aggregates
in the body of rules of the form #count{V : T} = C where
V is the set of variables appearing in the conjunction of lit-
erals T and C is a variable that will contain the result of the
aggregate. In general, aggregates may have more complex
structures (Faber, Pfeifer, and Leone 2011), but here we limit
the treatment to the structures used in this paper. An answer
set (ASP) program is a finite set of disjunctive rules.

The dependency graph DP of a ground program P is a
graph whose vertices V are the predicates appearing in the
grounding of P . Two vertices p0 and p1 are connected by
a positive (resp. negative) edge if there is a rule r such
that p0 ∈ B+(r) (resp. not b ∈ B−(r)) and p1 ∈ H(r).
A program P is tight if DP is acyclic, is stratified if DP
has no loops involving negative edges, and is head-cycle-
free (Linke, Tompits, and Woltran 2004) if its dependency
graph does not contain a directed cycle going through two
head-sharing atoms. The primal graph PP of a program P
has the same vertices as DP and has an undirected edge be-
tween p0 and p1 if there is a rule with both appearing in it.

With BP we denote the set of Herbrand base of an ASP Π,
i.e., the set of all ground atoms in Π. For a program Π we can
obtain its grounding by replacing variables with constants
in all possible ways. The grounding of aggregates requires
considering local and global variables. Here we focus on
aggregates with local variables only, i.e., variables appearing
only in the aggregate they are defined. The grounding of an
aggregate with local variables only requires replacing local
variables with ground terms in all possible ways.

A literal l is true in an interpretation I ⊆ BP if l ∈ I . I
is a model if it satisfies all groundings of Π. Given an inter-
pretation I we can obtain the reduct (Gelfond and Lifschitz
1991) of Π w.r.t. I by removing from Π every rule with
body false in I . An interpretation I is called answer set of a
program Π if it is a minimal model (under set inclusion) of
the reduct of Π w.r.t. I . We denote with AS(Π) the set of
answer sets of a program Π.
Example 1. Consider the following answer set program Π.

a.
b.
p ; q :- a.
r :- b.
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It has two answer sets: AS(Π) = {{a, b, p, r}, {a, b, q, r}}.

Probabilistic Answer Set Programming. A probabilistic
answer set program (PASP) (Cozman and Mauá 2020) is
an answer set program extended with ground probabilistic
facts (De Raedt, Kimmig, and Toivonen 2007) that allow
representing uncertain information. A probabilistic fact is of
the form pi :: ai where pi ∈ [0, 1] is the probability associ-
ated with the ground atom ai. We denote with pf (P) the set
of probabilistic facts that appear in a PASP P . We interpret
such programs under the credal semantics (CS) (Cozman
and Mauá 2020): each possible subset of probabilistic facts
identifies a world, i.e., an ASP (deterministic) composed by
the rules in P and the facts in the considered subset. Each
PASP has 2n worlds, where n is the number of probabilistic
facts. The probabilistic facts are considered independent so
the probability of a world w is computed as

P (w) =
∏
ai∈w

pi
∏
ai ̸∈w

(1− pi).

The probabilities of all the worlds sum to 1. A conjunction
of ground literals q, often called query, is associated to a
lower (P(q)) and an upper (P(q)) probability. In formulas,

P(q) =
∑

wi|∀m∈AS(wi), m|=q

P (wi)

and
P(q) =

∑
wi|∃m∈AS(wi), m|=q

P (wi).

Without loss of generality, we can consider a single atom as
query (by adding a new rule in the program with q in the
body and a fresh atom q′ in the head, which will be consid-
ered as the new query). The upper probability of a query
q and the lower probability of the negation of q are related:
P(q) = 1 − P(not q). If some worlds have no answer sets,
this relation does not hold, so we have a loss of probability
mass. To avoid this, the CS requires that every world has at
least one answer set. We call inference the task of computing
the probability (bounds) for a query. Given a ground atom
e (also in this case, we can consider a single atom w.l.o.g.),
the most probable explanation (MPE) task requires finding
the subset of probabilistic facts identifying the world with
the highest probability and in which e is present in every
answer set (MPE(e)) or in some answer sets (MPE(e)).

Example 2. Consider the following PASP.

0.7::a.
0.8::b.
p ; q :- a.
q :- b.

There are 22 worlds: w0 where both a and b are ab-
sent, w1 where a is present and b is absent, w2 where a
is absent and b is present, and w3 where both a and b
are present. P (w0) = (1 − 0.7) · (1 − 0.8) = 0.06,
P (w1) = 0.7 · (1− 0.8) = 0.14, P (w2) = (1− 0.7) · 0.8 =
0.24, and P (w3) = 0.7 · 0.8 = 0.56. AS(w0) = {},
AS(w1) = {{a, p}, {a, q}}, AS(w2) = {{b, q}}, and

AS(w3) = {{a, b, q}}. If we are interested in computing the
probability of q, we obtain: P(q) = P (w2) + P (w3) = 0.8
and P(q) = P (w1) + P (w2) + P (w3) = 0.94. For the
same query, MPE(q) = {a, b}, which also coincides with
MPE(q) (but this does not hold in general).

PASTA Statements. PASTA statements were recently in-
troduced in (Azzolini, Bellodi, and Riguzzi 2022; Azzolini
and Riguzzi 2023) and assigned a meaning by translating
them into answer set rules. These give a practical encoding
to what Halpern calls “Type” 1 statements, which describe
statistical information about a domain of interest. Their syn-
tax is

(C | A)[πl, πu]

where C is an (non-ground) atom, A is a conjunction of
(non-ground) literals, and πl, πu ∈ [0, 1], πl ≤ πu. Their in-
terpretation is: “the fraction of As that have the property C
is between πl and πu”. We will refer to C and A respectively
as consequent and antecedent. Note that the symbol “|” is
used as a separator for the consequent and antecedent and
does not mean disjunction (as sometimes happens in ASP),
which we always indicate with “;”. To simplify the nota-
tion, we omit inserting [πl, πu] when both πl and πu are 1.
For a statement r = (C | A)[πl, πu], where C is a ground
atom and A is a conjunction of ground literals, let us define
h(r) = C and at(r) = {C} ∪

⋃
a∈A at(a) where at(a)

is the atom associated with the literal a. For example, if
r = (c | a, not b), h(r) = {c} and at(r) = {c, a, b}. We
overload at() by defining at(P) =

⋃
r∈P at(r). A PASTA

program P is composed of a (possibly empty) set of prob-
abilistic facts and a (possibly empty) set of PASTA state-
ments. To perform inference, a PASTA statement is con-
verted into a disjunctive rule C;not C :−A. This rule states
that the property C may or may not hold for each element A.
To impose the specified [πl, πu] bounds, two constraints with
two counting aggregates are added to the program, to mimic

πl ≤
#count{X : A(X), C(X)}

#count{X : A(X)}
≤ πu (1)

where X is a set of variables and A(X) and C(X) are sets
of literals. Namely, the constraints are i) :− #count{X :
A(X)} = CA, #count{X : A(X), C(X)} = CAC,
CAC < πl · CA and ii) :− #count{X : A(X)} = CA,
#count{X : A(X), C(X)} = CAC, CAC > πu · CA.

During the grounding of PASTA rules, every non-ground
rule (C | A)[πl, πu] is turned into a ground rule (C ′ |
A′)[πl, πu], where C ′ is a ground atom and A′ is a set of
sets of ground literals. Indeed, each non-ground literal in
A is a set (of ground literals) in A′. We will rely on this
characterization when studying treewidth. Note that PASTA
statements of the form (c | a)[1, 1] represent a rule c :− a.

The original proposal Azzolini, Bellodi, and
Riguzzi (2022) did not place emphasis on how the
program should behave in the case that the denominator of
Equation (1) is 0, since the translation into constraints hides
this detail. For this reason, when the denominator is 0, we
define it as vacuously fulfilled, i.e., always satisfied. Let us
now introduce two simple examples.
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Figure 1: Primal graph (left) and a TD (right) for Example 4.

Example 3. The following PASTA program models an urn
with four marbles (indexed with increasing integers from 1
to 4) which can be made of wood with a certain probability,
and where at least 40% of wooden made marbles are red.

0.3::wooden(1).
0.1::wooden(2).
0.4::wooden(3).
0.8::wooden(4).
(red(X) | wooden(X))[0.4,1].

The statement is converted into

%a wooden marble may or may not be red
red(X) ; not_red(X) :- wooden(X).
%at least 40% of wooden marbles are red
:- #count{X: wooden(X)} = W,

#count{X:red(X), wooden(X)} = RW,
100*RW < 40*W.

while the probabilistic facts are kept as they are. Note that,
since ASP does not support floating point numbers, we mul-
tiply the bounds by 100. Also note that the constraint involv-
ing πu (1 in this example) is omitted, since it imposes that at
most 100% (i.e., all) of the wooded marbles are red. In the
world where all wooden/1 facts are not present, call it w0,
both W and RW are 0. Since 100 ·0 ̸< 40 ·0, the constraint
is always satisfied. If we are interested in, for example, com-
puting the probability that the marble indexed with 1 is red
(red(1)), we obtain the range [0.0324, 0.3]. The lower MPE
state is {w(1)}, where w/1 stands for wooden/1, with a
value of 0.0324 while the upper MPE state is {w(1), w(4)},
with a probability of 0.1296.

Example 4. Consider the following simple PASTA program.

0.1::b. 0.6::e.
(q | a)[1,1]. (a | b)[1,1]. (q | d)[1,1].
(d | e)[1,1]. (d | f)[1,1]. (f | e)[1,1].

Its primal graph and one possible tree decomposition are
shown in Figure 1. Note that the treewidth of this program is
2 since there is a clique of size 3 in the primal graph. All four
worlds have only one answer set. If we consider the query q,
P(q) = P(q) = 0.64 and MPE(q) = MPE(q) = {e} with
probability 0.54.

3 The Complexity of PASTA Inference
Let us now introduce two decision problems that were stud-
ied in (Mauá and Cozman 2020) for PASP.

Definition 1 (Inference). Given a propositional PASP P , a
set of ground literals q (query), a set of ground atoms e (evi-
dence), and a rational number γ, inference requires deciding
whether P(q | e) ≥ γ.

Note that we can decide whether P(q | e) ≤ γ by deciding
whether P(not q | e) ≥ 1 − γ, so one problem can be
reconducted to the other. Thus, considering only one of the
two is sufficient.
Definition 2 (Most Probable Explanation). Given a proposi-
tional PASP P with probabilistic facts Q, a set of ground lit-
erals e (evidence), and a rational number γ, the Most Prob-
able Explanation task decides whether argmaxq P(Q = q |
e) ≥ γ.

The computational complexity of the two aforementioned
tasks highly depends on the considered fragment (Mauá and
Cozman 2020) and span different levels of the polynomial
hierarchy. However, the special case of the PASTA fragment
was not considered. Here, we ask the question of whether
restricting to PASTA programs has an impact on the com-
putational complexity of the two aforementioned tasks. In
the following, we only consider ground PASTA programs,
which is already hard.

3.1 How Hard is PASTA?
We now study the complexity of the two aforementioned
tasks, starting from inference.

Inference
Theorem 1 (Complexity). Inference in ground PASTA pro-
grams is PPΣP

2 -complete.

Proof. Hardness: reduce from #≥qX.∀Y.∃Z.φ(X,Y, Z) =
#≥qX.∀Y.¬(∀Z.¬φ(X,Y, Z)). Observation: We can de-
terministically derive information if both probability bounds
are 1. We construct a PASTA program P , where for every
variable x occurring in X , we add:

0.5::t(x).

For every 3-CNF term c and the i-th positive occurrence
vi (j-th negative occurrence vj) add:

posi(c, vi). negj(c, vj).

Note that we can indeed map any atom a to a PASTA
statement by using a as consequent and πl = πu = 1.

We guess truth value for every variable y in Y :

(t(y) | ⊤) [0,1].

Similarly, we guess truth values for every variable z in Z:

(t(z) | ⊤) [0,1].

We derive satisfiability via an auxiliary atom sat if c
holds, for any 3-DNF term c in ¬φ. Concretely, for a 3-
DNF term c = u∧¬v ∧w over variables in X ∪ Y ∪Z, we
construct the following:

(sat | pos1(c,u), t(u), neg2(c,v), not t(v),
pos3(c,w), t(w))[1,1].

Note that this construction reuses atoms over auxiliary
predicate not t/1. Further, it easily extends in the same
manner to any arbitrary 3-DNF term c′, where the i-th posi-
tive occurrence of u in c′ is addressed by posi(c

′, u), t(u)
and the j-th negative occurrence of v is referred to by
negj(c

′, v), not t(v).
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To check whether this holds for all assignments, we apply
the saturation technique (Eiter and Gottlob 1995) over Z:
(t(z) | sat)[1,1]. (not t(z) | sat)[1,1].

Finally, to query for an atom instead of a negated atom, we
derive usat if sat does not hold (using default negation):
(usat | ¬sat)[1,1].

It is easy to observe that every world has an answer set,
as we do not have constraints excluding a world. Then,
P(usat) ≥ q

2|X| iff #≥qX.∀Y.¬(∀Z.¬φ(X,Y, Z)).
Membership: follows directly from previous work (Mauá

and Cozman 2020, Table 1), which shows PPΣP
2 member-

ship for disjunction and default negation.

Theorem 1 positions inference in PASTA programs in
PPΣP

2 , the same complexity class obtained in (Mauá and
Cozman 2020) for inference in propositional PASP with any
construct. This shows that, despite being seemingly simpler,
PASTA statements retain a huge expressive power.

We now provide other complexity results by further re-
stricting this fragment, in particular not allowing negation
and not allowing disjunction and negation.
Theorem 2 (Complexity). Inference in ground PASTA pro-
grams without negation or with only head-cycle-free dis-
junction (denoted with PASTA̸¬) is PPNP-complete.

Proof. Hardness: Reduce from #≥qX.∀Y.φ(X,Y ), simi-
larly to above. However, we query for sat and skip the part
about variables z in Z.

Membership: follows directly from previous work (Mauá
and Cozman 2020, Table 1), which shows PPNP member-
ship for aggregates and default negation. Indeed, disjunction
can be directly translated to default negation (Eiter and Got-
tlob 1997), as by definition there cannot be cyclic dependen-
cies between disjunctive head atoms.

Corollary 1. Inference in ground PASTA programs with-
out disjunction and negation (denoted PASTA̸¬̸;) is PP -
complete.

Proof (Idea). In this sub-fragment we only have probabilis-
tic facts and derivable consequences, so we simply need to
count the number of satisfying assignments.

Most Probable Explanation (MPE)
Corollary 2. Computing the most probable explanation for
ground PASTA programs, is ΣP

3 -complete.

Proof. The reduction works as in the proof of The-
orem 1. It therefore follows that a given QBF
∃X.∀Y.(¬∀Z.¬φ(X,Y, Z)) is valid if and only if
argmaxq P(Q = q | sat≤r) ≥ 0 + ϵ for some ϵ > 0.

Corollary 3. Computing the most probable explanation for
ground PASTA programs without negation, is ΣP

2 -complete.

Proof. Reduction works as in the proof of Theorem 2.

This leads to the following result without disjunction.
Corollary 4. Computing MPE for ground PASTA programs
without disjunction and negation is NP -complete.

4 Exploiting Structure to the Rescue
Given the high complexity of probabilistic reasoning, we ex-
ploit dynamic programming on tree decompositions (Bod-
laender 1988a) for inference. This paradigm works for
Logic Programming (Jakl, Pichler, and Woltran 2009; Fichte
et al. 2017), but it has not been studied in detail for PASP. In
the context of the PASTA fragment and for the ease of pre-
sentation, we mainly focus on tight programs (Fages 1994)
(prohibiting cycles in the positive dependency graph of a
program). Note that there are treewidth-aware translations
readily available, see, e.g., (Hecher 2022; Eiter, Hecher, and
Kiesel 2024), to translate a non-tight program into a tight
program that only increase the treewidth from k to k log(k).
While this might seem problematic, alternatively, one could
extend our algorithms below. However, we probably cannot
avoid this treewidth blowup to k log(k) (Hecher 2022).

4.1 Beginner: Make Programs Locally Provable
Before discussing a dynamic programming algorithm for ex-
ploiting treewidth, we first normalize PASTA programs to
make them locally provable. This normalization reduction
will later also simplify the reduction from non-tight PASTA
programs to tight programs. That is, we simplify a given
PASTA program P , thereby transforming P along a tree de-
composition. This results in a program P ′ such that prov-
ability of atoms in P ′ can be locally verified within a tree
decomposition bag (hence the term “locally”). Consider a
PASTA program P . Let (T, χ) be a tree decomposition of
the primal graph PP . For an atom C, let PC = {r ∈ P |
h(r) = C} be the set of all rules with C in the conse-
quent. For every node t in T , we define the bag program
Pt =

⋃
C∈at(P):at(PC)⊆χ(t) PC to contain those rules with

C as a consequent that only contain atoms in the bag.
Let us introduce a simple running example that will be

used several times in this section.

Example 5. Consider this locally provable PASTA program.

0.2::a. 0.3::b.
(q1 | a)[1,1]. (q2 | b)[1,1].
(q2 | q1)[1,1]. (q | q2)[1,1].

Its tree decomposition has only one path with the following
bags (root to leaf): [q], [q, q2], [q1, q2, b], and [q1, a]. The
first two columns of Table 2 show a possible nice TD and the
bag program at each node, respectively. Let us discuss some
of them: at [q1, a] the bag program is {(q1 | a)} since there
is only one statement with q1 in the consequent and a in the
antecedent. At [q1, q2], despite having a statement (q2 | q1)
in the program, the bag program is empty. To include it, we
would need all statements with q2 in the consequent, so also
(q2 | b), but b is not present in this bag, so it is empty. This
happens at the node [q1, q2, b] above.

Definition 3 (Locally Provable). Let P be a PASTA pro-
gram and T =(T, χ) be a tree decomposition of PP . P is
locally provable (for T ) if for every a ∈ at(P) there is a
unique node t in T with Pt containing rules of the form
(a | L)[πl, πu].
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Nice TD Bag Programs Tables
[q] {} {⟨∅, 0.56⟩, ⟨{q}, 0.44⟩}

[q, q2] {(q | q2)} {⟨∅, 0.56⟩, ⟨{q, q2}, 0.44⟩}
[q2] {} {⟨∅, 0.56⟩, ⟨{q2}, 0.44}
[q2, b] {} {⟨∅, 0.8⟩, ⟨{q2}, 0.2⟩, ⟨{q2, b}, 1.0⟩}

[q1, q2, b] {(q2 | q1), (q2 | b)} {⟨∅, 0.8⟩, ⟨{q1, q2}, 0.2⟩, ⟨{q2, b}, 0.8⟩, ⟨{q1, q2, b}, 0.2⟩}
[q1, q2] {} {⟨∅, 0.8⟩, ⟨{q1}, 0.2⟩, ⟨{q2, 0.8}⟩, ⟨{q1, q2}, 0.2⟩}
[q1] {} {⟨∅, 0.8⟩, ⟨{q1}, 0.2⟩}
[q1, a] {(q1 | a)} {⟨∅, 1⟩, ⟨{q1, a}, 1⟩}
[a] {} {⟨∅, 1⟩, ⟨{a}, 1⟩}
[] {} {⟨∅, 1⟩}

Table 2: (Left): Nice tree decomposition (a path) of the program of Example 5 (that we also report here for clarity: {(q1 | a), (q2 | b), (q2 |
q1), (q | q2).}). (Middle): bag programs. (Right): Tables obtained by applying Algorithm 1. Green denotes intr nodes while red rem nodes
(bottom to top). The bottom node is a leaf so it is not colored.

Example 6. Example 5 is locally provable as there are no
two bag programs having statements with the same conse-
quent.

Next, we design a reduction to make any program P lo-
cally provable with only a linear increase of treewidth.
Reduction 1. Let (T, χ) be a tree decomposition of a non-
locally provable program P . Then, we create P ′ by guiding
the evaluation of P along (T, χ). Fist, we add in P ′

Probabilistic Facts
p::a for every p::a ∈ P (2)
Define Rule Provability
(a | ⊤)[0, 1] for every a∈at(P)\pf (P) (3)

Then, for every node t in T , we add the following rules:

Define Rule Provability
(at | A)[πl, πu] for every (a | A)[πl, πu] ∈ Pt (4)
(⊥t | ¬⊥t,¬a, at) for every a ∈ χ(t)\pf (P) (5)
Guide Provability Upwards
(pa≤t | at) for every a ∈ χ(t)\pf (P) (6)

(pa≤t | pa≤t′) for every t′ ∈ chld(t), a ∈
χ(t)∩χ(t′), a /∈ pf (P) (7)

Prohibit Unproven Atoms
(⊥t | ¬⊥t, a,¬pa≤t) for every a ∈ χ(t)\pf (P),

a/∈ ∪t∗:t∈chld(t∗) χ(t
∗) (8)

Equation (2) copies probabilistic facts and Equation (3)
guesses truth values for the remaining atoms in P . Then, in
Equation (4) we derive at, whenever we are capable of prov-
ing a in a tree decomposition node t. Consequently, we must
not derive at and do not have a, which is ensured by Equa-
tion (5). It remains to guide this information of provability
upwards along the tree decomposition, which is ensured for
a by Equation (6) due to local proofs and by Equation (7)
if a has been proven already below t in the tree. It is left
to model the equivalence to answer sets, which we ensure
by Equation (8), verifying that if a is in an answer set can-
didate, it has to be proven up to the last bag where it oc-
curs. Note that this reduction bijectively preserves answer

sets since it neither removes nor creates additional worlds
(see also Theorem 3). Note that this reduction linearly pre-
serves the treewidth.

Theorem 3. A PASTA program P can be converted to
locally-provable program P ′ with a bijection between an-
swer sets of P and those of P ′, which linearly preserves
treewidth.

Proof. Let P be a PASTA program and T = (T, χ) be
any tree decomposition of PP . Then, we refer to the pro-
gram obtained from Equations (2)–(8) by P ′. For estab-
lishing linear treewidth increase, we construct a tree de-
composition T ′ = (T, χ′) of PP′ as follows. For ev-
ery node t in T , let χ′(t) = χ(t) ∪ {⊥t, p

a
≤t, at | a ∈

χ(t)} ∪ {pa≤t∗ | t ∈ chld(t∗), a ∈ χ(t∗)}. Therefore, we
have |χ′(t)| ≤ 4|χ(t)| + 1 (⊥t causes the +1, remaining
subscripted variables contribute to the factor 4).

Observe that P ′ is locally-provable on T ′. Indeed, by
construction, every atom of P ′ can be proven in precisely
one tree decomposition node of T . While Equation (3)
might seem to allow free choices of every atom, it is en-
sured by Equation (5) that there is no choice to set a to false.
Further, Equation (8) ensures that setting a to true implies
that, eventually, we found a proof for a. Consequently, we
have a bijective relationship between the answer sets of P
and those of P ′. Therefore, we do not lose probability mass
nor create additional mass.

Example 7. Suppose we have a PASTA program with (q | a)
and (q | b) where 0.2 :: a and 0.3 :: b. A possible TD has a
root node t2 with q having two child nodes containing [q, a]
(t0) and [q, b] (t1), respectively. This has treewidth 1. This is
not locally provable. If we apply Reduction 1, we get 2 rules
from Equation (2), 1 rule from Equation (3), 3 rules from t0
(from Equation (4), (5), and (6)), 3 rules from t1 (from Equa-
tion (4), (5), and (6)), 5 rules from t2 (from Equation (5), (6),
2 from Equation (7), and from Equation (8)) with treewidth
3. Each rule obtained from Reduction 1 is detailed in Ta-
ble 3.
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Equation t0 t1 t2

4 {(qt0 | a)} {(qt1 | b)} ∅
5 {(⊥t0 | not ⊥t0 , not q, qt0)} {(⊥t1 | not ⊥t1 , not q, qt1)} {(⊥t2 | not ⊥t2 , not q, qt2)}
6 {(pq≤qt0

| qt0)} {(pq≤qt1
| qt1)} {(pq≤qt2

| qt2)}
7 ∅ ∅ {(pq≤t2

| pq≤t1
) , (pq≤t2

| pq≤t0
)}

8 ∅ ∅ {(⊥t2 | not ⊥t2 , q, not p
q
≤t2

)}

Table 3: Steps of Reduction 1 applied to Example 7.

Algorithm 1: Dynamic Programming Algorithm Strat-
PASTA, called for every TD node t in a post-order traversal.

In: Node t, bag χ(t), bag program Pt, child tables {τ1, . . . τℓ}.
Out: Table τ for node t.

1 if type(t) = leaf then τ := {⟨∅, 1⟩}
2 else if type(t) = intr and a ∈ χ(t) is introduced then
3 τ := {⟨I ′, c⟩ | ⟨I, c⟩ ∈ τ1, I

′ ∈ {I, I∪{a}},
4 I ′|=Pt, I

′∩h(Pt)⊆pr(I ′,Pt)}
5 else if type(t) = rem and a ̸∈ χ(t) is removed then
6 τ := {⟨I\{a},

∑
⟨J,c⟩∈τ1:J\{a}=I\{a} ϕ(a, J)·c⟩|⟨I, ·⟩ ∈ τ1}

7 else if type(t) = join then
8 τ := {⟨I, c1 · c2⟩ | ⟨I, c1⟩ ∈ τ1, ⟨I, c2⟩ ∈ τ2}

4.2 Intermediate: Stratified Tight Programs
From now on, given the efficient translation to locally prov-
able programs, we assume P is locally provable (see Def-
inition 3). We start with a simple dynamic programming
algorithm for the case of stratified tight programs. This
simplifies the presentation, as stratified programs guarantee
that there is only a single answer set. As noted in the be-
ginning of this section, focusing on tight programs is not
a huge restriction as there are optimal translations (Hecher
2022) from non-tight programs. For simplicity, we present
our dynamic programming algorithm for nice decomposi-
tions, but the algorithm extends to arbitrary decompositions,
where cases may overlap. For gathering atoms that are jus-
tified by an interpretation, let pr(I,P) be the set of atoms
in P that are justified by I , i.e., where there is a rule de-
riving these. Formally, let pr(I,P) = pf (P) ∪ {C | (C |
A)[πl, πu] ∈ P , I |= A}.

Dynamic Programming Algorithm. Algorithm 1 is called
for every tree decomposition node t in a bottom-up (post-
order) traversal, where we traverse nodes from the leaves of
the decomposition towards its root and store information in
tables. For every node t, we compute its table τ , thereby
considering bag χ(t), bag program Pt, and previously com-
puted tables for child nodes of t.

To evaluate a PASTA program, we need to store in a ta-
ble τ (1) the assignments I restricted to χ(t) and (2) the
weighted count c over probabilistic facts needed to answer
the query. For simplicity, we assume that the query com-
prises a single atom q that is solely present in the root of the
tree decomposition, i.e., the root bag contains only q. In-
tuitively, (1) ensures that we only compute answer sets that
fulfill every rule of the program and (2) allows computing
the probability of the query q in the tree decomposition root

by considering c. Since the program is stratified, there can
be only a single answer set for each world. Hence, I can
compute interpretations alongside answer set candidates.

The four cases of Algorithm 1 work as follows. Initially,
in Line 1, since leaf bags are empty, the assignment I is
empty, and its weight is 1, i.e., c = 1. Then, whenever
we introduce an atom a, we take every preceding tuple and
guess whether in the successor I ′ we set a to false or to true
(see Line 3). Additionally, Line 4 concerns checking (i) sat-
isfiability, i.e., we do not allow for disobeyed rules in Pt

and (ii) provability, i.e., the atoms a in I that occur in the
head of a rule in Pt are justified. The former (i) satisfiability
is ensured by requiring I ′ |= Pt; the latter (ii) provabil-
ity is due to I ′ ∩ h(Pt) ⊆ pr(I ′,Pt). In Line 6, a is re-
moved so we can forget about a as all rules containing a are
already covered by the properties of a tree decomposition.
There, we merge counts c whose corresponding interpreta-
tions are identical after removing a. Thereby, we need to
weigh counts by the probability of a. Given a set of atoms
J , the function ϕ(ai, J) returns pi if ai ∈ J and 1 − pi if
ai ̸∈ J for a probabilistic fact pi :: ai. If ai is not a prob-
abilistic fact, ϕ(ai, J) is assumed to return 1. Line 8 joins
rows of compatible interpretations (both child nodes agree).
Example 8. Consider again Example 5. Table 2 (third col-
umn) also shows the tables involved in the steps of Algo-
rithm 1 while traversing the TD bottom up. Let us discuss
some of them: at [q1, a] we are at an intr node where q1 is
introduced. Note that here we do not have only {a} in the
table since if we have a also q1 is present (there is (q1 | a)).
At [q1], a, which is a probabilistic fact with probability 0.2,
is removed, so the counter of the first tuple is multiplied by
(1-0.2) and the one of the second tuple by 0.2. At [q2, b],
q1 is removed. The last two tuples of the preceding node
([q1, q2, b]) are equal after the removal of q1 from the latter,
so we have to sum their counters (0.8+0.2=1.0). Note that,
not being q1 a probabilistic fact, we multiply by 1 (by defini-
tion of function ϕ, see Section 2). At [q2], we remove b: for
the right tuple, 0.44 is computed as 0.2 · 0.7 (since b is not
present in {q2} of the preceding node) +1.0 · 0.3.

Answering Queries. To answer a query P(q) we check
table τr for the root r. For computing p=P(q), we
query p=Σ⟨{q},c⟩∈τrc. Note that for stratified programs
P(q)=P(q). Observe further that for stratified programs this
algorithm extends to conditional probability queries.
Example 9 (Example 5 cont’d.). The table associated with
the root node [q] has two tuples: one with {q} with associ-
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ated the probability of the query q being true and one with
{}, associated with the probability of q being false. Note
that the two probabilities sum to 1.

4.3 Advanced: Eliminate Non-Stratified Negation
We perform the following reduction that eliminates non-
stratified negation by translation at the cost of an increase
of treewidth. While this translation is not exponential in the
instance size, it is exponential in the treewidth of the pro-
gram. However, we will show later that this increase cannot
be avoided (under reasonable complexity assumptions).
Reduction 2. Let P be a PASTA program and (T, χ) be a
tree decomposition of PP of width k. For upper probability
queries, we first add the probabilistic facts.

Probabilistic Facts
p::a for every p::a ∈ P (9)

Then, we perform the following for every node t in T .

Rule Satisfiability (Depending on Probabilistic Facts)
(satJt | J∩pf (P), {¬x | x ∈ for every J∈2χ(t), J |=Pt,

pf (Pt) \ J}) J∩h(Pt)⊆ pr(J,Pt) (10)
Propagation of Satisfiability
(satJ≤t | satJ<t, sat

J
t ) for every J∈2χ(t) (11)

(satJ<t,t′ | satK≤t′) for every t′ ∈ chld(t),

J∈ 2χ(t),K∈ 2χ(t
′),

J ∩χ(t′) = K ∩χ(t) (12)
(satJ<t | {satJ<t,t′ : t

′∈ chld(t)}) for every J ∈ 2χ(t) (13)

By Equation (9), probabilistic facts are copied as is (this
is done only once). Then, we use auxiliary atoms of the
form satJt for every tree decomposition node t in T and as-
signment J ∈ 2χ(t). The idea of Equation (10) is to encode
all possible parts of answer sets for every tree decomposi-
tion node into facts that are compatible with the probabilistic
facts in the bag. Then, it remains to propagate this informa-
tion upwards in the tree. Equation (11) propagates assign-
ments J upwards, if satisfiability holds in t, i.e., satJt , and
if compatible assignments for J are satisfiable below (indi-
cated by satJ<t). To determine that compatible assignments
exist below, we determine by Equation (12) whether such a
compatible assignment exists in a child node t′ of t. Then,
for J to be compatible with all nodes below t, such a com-
patible assignment has to exist for every child node below t,
ensured by Equation (13).
Example 10. Using Reduction 2 we can answer upper
probability queries on q assuming a decomposition with
bag {q} of the root r for query atom q, by computing
Σ⟨{sat{q}≤r

},c⟩∈τr
c.

Theorem 4. There is a translation from a head-cycle-free
PASTA program P of treewidth k to a non-disjunctive, strat-
ified tight PASTA program P ′ of treewidth k′ = 5 · 2k+1.

Proof. We take any tree decomposition T = (T, χ) of PP
of width k and apply Equations (9)–(13) on P , resulting in
P ′. Observe that by construction the resulting program is
non-disjunctive, tight, and stratified.

To visualize the claim on treewidth, we construct a tree
decomposition T ′ = (T, χ′) of PP′ and relate bag sizes to
those of T . For every t in T , let χ′(t) = (pf (P) ∩ χ(t)) ∪
{satJt , satJ≤t, sat

J
<t | J ∈ 2|χ(t)|} ∪ {satJ<t∗,t, sat

K
≤t | J ∈

2|χ(t
∗)|,K ∈ 2|χ(t)|, J ∩ χ(t) = K ∩ χ(t∗), t ∈ chld(t∗)}.

It is easy to see that |χ′(t)| ≤ |χ(t)| + 3 · 2|χ(t)| + 2|χ(t
∗)|,

where t∗ is the unique parent node of t, i.e., t ∈ chld(t∗).
Hence, the claimed treewidth bound holds as desired.

For Lower Probability Queries we can still apply an anal-
ogous of Reduction 2. However, instead of variables of the
form satJ≤t we use variables AsatJ≤t to propagate that up to
node t every answer set that is compatible with J exists.

Reduction 3. For a PASTA program P , a tree decomposi-
tion (T, χ) of PP , we first add Equation (9) and (10). Then,
for any node t of T , we construct the following.

Propagation of All-Satisfiability
(AsatJ≤t | AsatJ<t, sat

J
t ) for every J∈2χ(t) (14)

(AsatJ<t,t′ | {AsatK≤t′ | t′ ∈ chld(t), J∈ 2χ(t),

K∈ 2χ(t
′), J ∩ χ(t′) = K ∩ χ(t)}) (15)

(AsatJ<t | {AsatJ<t,t′ : t
′∈ chld(t)}) for every J ∈ 2χ(t)(16)

Consequently, for lower probability queries, instead of
Equations (11)–(13) we use Equations (14)–(16). Observe
that Equations (14) and (16) are almost identical to Equa-
tions (11) and (13), respectively. The only difference is in
the variable names. Hence, the only substantial difference
lies in Equation (15)). Indeed, Equation (15) ensures that
we can only derive AsatJ<t,t′ if all compatible answer set
candidates for t′ sustain, whereas in Equation (12) a single
answer set candidate in t′ is enough for satJ<t,t′ .

Example 11. With the same assumptions of Example 10
we can ask lower probability queries by computing
Σ⟨{Asat

{q}
≤r

},c⟩∈τr
c after applying Reduction 3.

Note that we can apply both Reduction 2 and 3 and obtain
both satqt and Asatqt in the root. Then, to ask for one of the
two probability bounds we can ask for the corresponding
atom. Furthermore, this approach can be straightforwardly
extended to compute conditional probabilities.

4.4 Lower Bounds: We Cannot Do Much Better
We need to slightly adapt the proof of Theorem 1 in a way
to show that structural dependency measures like treewidth
are linearly preserved, which yields the lower bounds be-
low. To this end, we assume the exponential time hypothesis
(ETH) (Impagliazzo, Paturi, and Zane 2001), implying that
SAT with n variables cannot be solved in time 2o(n).

Theorem 5. Let P be any PASTA program whose primal
graph has treewidth k. Then, under ETH, probabilistic in-

ference cannot be achieved in time 22
2o(k)

· poly(P).

Proof. Note that QBFs of the form ∃X.∀Y.∃Z.φ(X,Y, Z)
precisely admit this runtime bound under ETH, if k is the
treewidth of the primal graph Pφ, see, e.g., (Fichte, Hecher,
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and Pfandler 2020). Consequently, since the QBF can be
easily reduced to #≥1X.∀Y.∃Z.φ(X,Y, Z), for the lower
bound to sustain, it remains to show that the reduction of
Theorem 1 linearly preserves the treewidth. To this end,
let T = (T, χ) be a tree decomposition of Pφ of treewidth k.
From this, we construct a tree decomposition T ′ = (T, χ′)
of PP with a linear increase of width compared to T . With-
out loss of generality, we assume that φ is in 3-CNF and
that each node t in T gets assigned at most one clause ct
whose variables are in χ(t). This can be achieved via copy-
ing decomposition nodes. For every node t in T , let χ′(t) =
{sat, usat,⊤} ∪ {t(x), not t(x) | x ∈ χ(t)} ∪ facts(ct),
where facts gives the (up to three facts) over predicates
posct and negct . Then, |χ′(t)| is at most 2|χ(t)|+ 6.

Analogously, it turns out that, under ETH, Algorithm 1
and the reductions of Sections 4.2 and 4.3 are asymptotically
optimal. As above, we obtain the following lower bounds.

Corollary 5. Let P be any non-disjunctive PASTA program
whose primal graph has treewidth k. Under ETH, proba-
bilistic inference cannot be achieved in time 22

o(k) ·poly(P)
(or 2o(k) · poly(P) if P is also negation-free).

5 Related Work
The complexity of PASP under the credal semantics has
been extensively studied (Cozman and Mauá 2017; Mauá
and Cozman 2020; Cozman and Mauá 2020). There are
other semantics that were proposed for handling programs
under the stable model semantics extended to manage uncer-
tainty, such as LPMLN (Lee and Wang 2016), P-log (Baral,
Gelfond, and Rushton 2009), smProbLog (Totis, De Raedt,
and Kimmig 2023), and the L-credal semantics (Rocha and
Cozman 2022; Mauá, Cozman, and Garces 2024). These
differ on how they express and manage uncertainty. For ex-
ample, LPMLN associates weights to atoms and rules, rather
than probabilities, and does not consider worlds but only an-
swer sets. smProbLog is a specialization of the credal se-
mantics, since the probability of a world is uniformly dis-
tributed on its answer sets, while the credal semantics has no
such assumption. That is, the contribution of a world w to
the probability of a query q, is P (w) divided by the number
of answer sets in which q is present. Furthermore, worlds
without answer sets are admitted, since a third truth value is
considered. The L-credal semantics is an extension of the
credal semantics, also capable of also handling inconsistent
worlds by considering a third “undefined” truth value.

Several solvers exist to perform inference in PASP:
PASTA (Azzolini, Bellodi, and Riguzzi 2022), aspmc (Eiter,
Hecher, and Kiesel 2024), DPASP (Geh et al. 2024), and
PASOCS (Tuckey, Russo, and Broda 2021). However,
PASTA is the only tool that supports PASTA statements,
and it is based on projected answer set enumeration (Gebser,
Kaufmann, and Schaub 2009). Both DPASP and PASOCS
are based on exhaustive enumeration. aspmc (Eiter, Hecher,
and Kiesel 2024) is a tool that also adopts tree decomposi-
tions to guide knowledge compilation (KC, (Darwiche and
Marquis 2002), largely adopted in probabilistic inference)
to solve tasks that can be expressed within the second level

algebraic model counting framework (Kiesel, Totis, and
Kimmig 2022) (which is an extension of algebraic model
counting (Kimmig, Van den Broeck, and De Raedt 2017)
which, in turn, is a generalization of the well-known task of
weighted model counting), such as inference in PASP (Az-
zolini and Riguzzi 2024). However, they restrict themselves
to programs composed by normal rules only. Here, we go a
step further since we consider PASTA programs, also com-
posed of disjunctive rules and aggregates, and develop algo-
rithms that work on the tree decomposition.

There are known complexity results for logic program-
ming and treewidth (Jakl, Pichler, and Woltran 2009; Fichte
et al. 2017; Hecher 2022). If we consider Probabilistic Logic
Programming (PLP) (Riguzzi 2022), where each world has
exactly one answer set, there are also multiple available lan-
guages. Most of them are based on the Distribution Se-
mantics (Sato 1995), such as ProbLog (De Raedt, Kim-
mig, and Toivonen 2007) and Logic Programs with An-
notated Disjunctions (LPADs) (Vennekens, Verbaeten, and
Bruynooghe 2004). Note that these programs can be con-
sidered as a special case of PASP, so existing PLP solvers
such as ProbLog (De Raedt, Kimmig, and Toivonen 2007),
PITA (Riguzzi and Swift 2011), and schlandals (Dubray,
Schaus, and Nijssen 2023) cannot be adopted here.

6 Conclusion and Future Work
In this paper, we studied the complexity of cautious rea-
soning and computing the most probable explanation in
PASTA programs, i.e., programs composed by probabilis-
tic facts and statistical statements only and interpreted un-
der the credal semantics. According to the original proposal
by Azzolini, Bellodi, and Riguzzi (2022), statistical state-
ments are converted into disjunctive rules and constraints
with aggregates. Being these seemingly restricted, in this
paper, we precisely place them in the polynomial hierarchy,
showing that inference belongs to the PPΣP

2 class, which is
the same class obtained in (Mauá and Cozman 2020) by con-
sidering propositional PASP with all constructs: this shows
that, even with such simple programs, we retain a huge ex-
pressivity. Such a complexity requires also efficient algo-
rithms. Thus, we assessed whether applying tree decomposi-
tion techniques can improve the efficiency of reasoning and
provided a dynamic programming algorithm for inference
obtaining precise upper bounds and matching lower bounds
(under ETH). To the best of our knowledge, this is the first
parameterized complexity study for probabilistic logic pro-
gramming. As future work, we plan to extend the investiga-
tion to different semantics and different metrics and develop
practical implementations. Furthermore, while in principle
our (treewidth-based) algorithms carry over to PLP, special-
izing them for PLP inference is an exciting direction.
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