
Reasoning About Actual Causality in Answer Set Programming

Daniel Özcan , Dalal Alrajeh , Robert Craven
Imperial College London

danozcan@outlook.com, {dalal.alrajeh, robert.craven}@imperial.ac.uk

Abstract

Causal models provide a formal framework for identifying
and reasoning about the causes of observed phenomena, mak-
ing them valuable for decision-support contexts where under-
standing causality is essential. Yet applying these models in
practice requires automated tools for key reasoning tasks. We
present an Answer Set Programming (ASP)-based tool that
supports three core capabilities for all acyclic binary causal
models: (1) checking whether an event is an actual cause of
another; (2) finding all minimal subsets of a failed candidate
that do qualify as causes; and (3) inferring all actual causes
of an outcome without assuming any candidate. Our tool is
the first to support all three tasks within a unified framework,
guaranteeing minimal contingency sets and outperforming
prior implementations in both runtime and memory. We de-
scribe the system’s design and report on an empirical evalua-
tion using existing benchmarks.

1 Introduction
Evidence-based policy is essential in fields such as health-
care and policing, where effective interventions depend on
understanding cause and effect (Pawson, 2006; Wikström
and Sampson, 2006). Policymakers must assess both the
causes of current problems and the likely consequences of
proposed interventions—often amid uncertainty and limited
data (Alrajeh, Chockler, and Halpern, 2020). For example,
in addressing community violence, decision-makers may
need to judge whether more foot patrols would deter crime,
whether gaps in social services are fueling unrest, or whether
neighbourhood dynamics are to blame.

Recent advances in the formal study of causality (Pearl,
2000; Halpern and Pearl, 2001, 2005; Halpern, 2015, 2016)
have made it increasingly feasible to support decision-
makers computationally. Central to this literature is the view
that causal claims are best understood counterfactually: that
“eventX caused Y ” means, roughly, “ifX had not occurred,
Y would not have occurred either.” This idea is formalised
through the machinery of causal models: mathematical ob-
jects that assign truth values to claims about causal and
counterfactual relationships—statements such as “X caused
Y ” or “X would be false if we were to do Y ” (Pearl, 2022).

A causal model, or structural equations model, repre-
sents a system as a collection of variables linked by equa-
tions. Each variable comes with a domain of possible val-

ues. Events then correspond to specific assignments of val-
ues to these variables. For example, in a voting scenario with
four voters choosing between Billy and Suzy, we might de-
fine binary variables V1, . . . , V4,W , where Vi = 1 if voter
i votes for Suzy (0 otherwise), and W = 1 if Suzy wins
(0 if Billy does). Variables are either exogenous, with val-
ues fixed by external factors, or endogenous, with values
determined by the structural equations. Models are gener-
ally assumed to be acyclic, meaning that, once the values
of the exogenous variables are fixed, the rest are uniquely
determined, yielding a causal setting. Counterfactuals are
then evaluated by modifying equations within that setting—
for instance, if Suzy wins with three votes and all voters
initially vote for her, intervening to set V1 = V2 = 0
causes her to lose. This machinery underlies the well-known
Halpern–Pearl (HP) definitions of causation (Halpern and
Pearl, 2001, 2005; Halpern, 2015), which hold that an event
X1 = x1 ∧ . . . ∧Xn = xn is a cause of φ if, under certain
contingencies, intervening to change the value of each Xi

would prevent φ.
Causal modelling can be viewed from two perspec-

tives: the input side—constructing an adequate model
of the system—and the output side—answering queries
about causal and counterfactual relationships between vari-
ables1. However, while much recent work has focused on
causal discovery2—the extraction of causal models from
data—comparatively little attention has been paid to the
problem of automated causal reasoning. Yet this capability
is essential if causal models are to serve in practical settings,
including any high-stakes decision-support systems, where
explainability is critical. Legal frameworks such as Arti-
cle 22 of the EU’s GDPR reflect this priority by asserting
a “right to explanation,” including access to “meaningful in-
formation about the logic involved” in automated decisions.3

1Results of causal queries may inform judgments about a
model’s adequacy, prompting revisions. Thus, the input and out-
put sides interact. The point here is only to emphasise the distinct
roles each plays in modelling; see (Halpern, 2016, Chapter 4).

2For a recent general survey, see Zanga, Ozkirimli, and Stella
(2022). For ASP-based approaches in particular, see Russo, Rap-
berger, and Toni (2024); Zhalama et al. (2019); Hyttinen et al.
(2017); Hyttinen, Eberhardt, and Järvisalo (2015, 2014)

3See Dexe et al. (2022); Goodman and Flaxman (2017);
Fandinno and Schulz (2019) for relevant discussion.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

610

Within the HP framework, causal solvers should not only
judge the presence of causation but also identify the inter-
ventions and minimal contingency sets—the variables that
must be fixed for the counterfactual to hold. Without this,
the claim of causal dependence lacks full justification and
the underlying logic remains opaque.

This paper presents a general-purpose system for auto-
mated causal reasoning in binary models—those in which
variables take values in {0, 1}. Our system is grounded in
the HP definition of actual causation and implemented in
Answer Set Programming (ASP), a declarative paradigm for
difficult search problems (Lifschitz, 2008). It handles three
core query types: Checking, which determines whether a
given event is a cause of another; Finding, which identifies
sub-events of a non-cause that do qualify as causes; and In-
ferring, which enumerates all actual causes of a given out-
come. In each case, the solver computes all solutions with
minimal contingency sets, supporting transparency.

Our ASP encoding utilises the recent asprin system
(Brewka et al., 2023), which supports flexible preference
handling and is well-suited to the minimality requirements
of HP causation. We release an open-source implementation
in Python4, and we provide an empirical evaluation showing
that our system outperforms existing state-of-the-art solvers
in Ibrahim, Rehwald, and Pretschner (2019) and Ibrahim and
Pretschner (2020).

2 Background
2.1 Answer Set Programs
Syntax Symbolic constants, numerals and variables are
terms. if t1 . . . , tn are terms and f is a symbolic constant,
then f(t1, . . . , tn) is a functional term with n ≥ 1. Terms
are used to construct atomic propositions, or atoms. An atom
is an expression of the form p(t1, . . . , tn) where p is a sym-
bolic constant and t1, . . . , tn are terms with n ≥ 0. A literal
is an atom a, a positive literal, or its default negation not a,
a negative literal. A conditional literal is an expression of
the form ℓ : ℓ1 ∧ . . . ∧ ℓn where ℓ, ℓ1 . . . , ℓn are literals
and n ≥ 0. A choice atom is an expression of the form
{a1; . . . ; am} where m ≥ 0 and a1 through am are condi-
tional literals. A rule r is an expression of the form

h← b1 ∧ . . . ∧ bk ∧ not bk+1 ∧ . . . ∧ not bm (1)

where m ≥ 0, h is an atom or a choice atom, and
b1, . . . , bm are atoms. The head of a rule r is given by
H(r) = {h}, the body by B(r) = B+(r) ∪ B−(r), where
B+(r) = {b1, . . . , bk} is the positive body and B−(r) =
{bk+1, . . . , bm}, the negative body. If B(r) = ∅, r is
called a fact; if H(r) = ∅, r is called a constraint, and
viewed as shorthand for the rule “x ← b1 ∧ . . . ∧ bk ∧
not bk+1, . . . , not bm, notx” where x is a fresh atom not
occurring elsewhere in the program. If h is an atom, r is a
normal rule; otherwise, it is a choice rule. Choice rules are
viewed as shorthand for a collection of normal rules accord-
ing to the transformations in Gebser et al. (2022, 18–21).

4https://github.com/DanHOzcan/HP ASPBinary.

A program is a collection of rules. An atom, rule or pro-
gram is ground if it does not contain any variables and non-
ground otherwise. A normal logic program is a program
containing only normal rules.

Stable Model Semantics Given a program Π, its Her-
brand Base BΠ consists of all symbolic constants occurring
in Π. An interpretation I of Π is a subset of BΠ. Satisfac-
tion with respect to I is defined inductively: for an atom a,
I |= a if a ∈ I , and I |= not a otherwise; for conjunctions
of literals, I |= ℓ1 ∧ · · · ∧ ℓn if I |= ℓ1, . . . , I |= ℓn; for dis-
junctions, I |= ℓ1∨· · ·∨ℓn if {ℓ1, . . . , ℓn}∩I ̸= ∅; for a rule
r of form (1), I |= B(r) if B+(r) ⊆ I and B−(r) ∩ I = ∅;
I |= r if either I |= H(r) or I ̸|= B(r). The semantics of
a non-ground program Π is given by its ground instantiation
Gr(Π), which is obtained by applying all substitutions from
variables to constants in Π. An interpretation I satisfies a
program Π if I |= r for every r ∈ Gr(Π). An interpretation
I is called a model of Π if I |= Π.

The Gelfond–Lifschitz reduct (Gelfond and Lifschitz,
1988, 1991) of a ground program Π with respect to I ⊆
BΠ, denoted ΠI , is obtained by deleting all rules r with
B−(r) ∩ I ̸= ∅ and deleting the negative body from the
remaining rules. A model I of Π is a stable model, or an-
swer set, of Π if there is no proper subset of I that satisfies
Gr(Π)I . Programs may have multiple, one or no answer
sets. The set of answer sets is denoted AS(Π).

The asprin System The asprin system (Brewka et al.,
2023) is a general framework for expressing qualitative and
quantitative preferences over the answer sets of a logic pro-
gram. We review the fragment of asprin’s input language
used in this paper.

A preference specification consists of a finite set S
of preference statements and a directive #optimize(s),
where s ∈ S. Each preference statement has the form
#preference(s, t){e1, . . . , em}, where s is the name of
the statement, t is a preference type, and each ei is a prefer-
ence element—a weighted formula of the form t1, . . . , tn :
φ, where φ is either a Boolean combination of classical
atoms or a naming atom name(s′) referring to another state-
ment s′ ∈ S. The specification is required to be closed
(s ∈ S whenever name(s) occurs in S) and acyclic (the
dependency relation induced by naming atoms is acyclic).

A preference statement #preference(s, t){E} de-
clares a pre-order ⪰s over answer sets, where Y ≻s X if
Y ⪰s X and X ̸⪰s Y . To be admissible, E must be in the
domain of t – the set of preference elements for which t is
well-defined. We use two types:

• subset: X ⪰s Y iff

{ℓ ∈ E | X |= ℓ} ⊆ {ℓ ∈ E | Y |= ℓ}.

• lexico: X ⪰s Y iff∨
w: name(s)∈E

(
(X ≻s Y) ∧

∧
v: name(s′)∈E

v>w

(X =s′ Y)
)

∨
∧

w: name(s)∈E

(X =s Y).

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

611

https://github.com/DanHOzcan/HP_ASPBinary

where the domain of subset consists of sets of ground
atoms occurring in Π and the domain of lexico consists of
sets of preference elements of the form w : name(s), where
each name s appears with at most one associated weight, and
each weight w applies to at most one name. An answer set
X of a program Π is preferred with respect to ⪰ if there is
no Y ∈ AS(Π) with Y ≻ X . We use ASs(Π) to denote the
collection of answer sets preferred with respect to s.
Example 1. Consider the following preference specifica-
tion:
#preference(p1, subset){a; b}.
#preference(p2, subset){c}.
#preference(p, lexico){

1::name(p1); 2::name(p2)}.
#optimize(p).

Let X = {a, c} and Y = {a, b, c} be answer sets. Then
X ≻p1

Y since {a} ⊂ {a, b}, and X =p2
Y since both

include c. So, (X ≻p1 Y) ∧ (X =p2 Y), meaning that
X ⪰p Y and Y ̸⪰p X . Therefore, X ≻p Y .

2.2 Actual Causation
A standard distinction in the causality literature is between
general (or type) causation and actual (or token) causa-
tion. The former concerns general claims such as “smok-
ing causes lung cancer,” while the latter concerns specific
instances, e.g., “David’s smoking caused his lung cancer.”
The three HP definitions (Halpern and Pearl, 2001, 2005;
Halpern, 2015) are formal definitions of actual causation.
Each attempts to address the perceived limitations of its pre-
decessors. We adopt the most recent ––modified ––defi-
nition (Halpern, 2015), which is simpler, more robust to
counterexamples, and yields lower complexity for causality
Checking. We refer to it simply as “the HP definition”. For
a comprehensive treatment of actual causation, see Halpern
(2016).

Causal Models Let U and V denote sets of exogenous and
endogenous variables, respectively. Let R associate with
each Y ∈ U ∪ V a finite set R(Y) of possible values called
its range. We call S = (U ,V,R) a signature. A causal
model is a pair M = (S,F), where S is a signature and F
assigns to each X ∈ V a function FX , called a structural
equation, where

FX :
∏

Y ∈U∪V−{X}

R(Y)→ R(X).

Y depends on X , or X is a parent of Y , if there exist
values x, x′ ∈ R(X) so that FY (x, z⃗, u⃗) ̸= FY (x

′, z⃗, u⃗)
where z⃗ is a setting of the variables in V − {X,Y } and u⃗
is a setting of the variables in U . Par(X), Parexo(X) and
Parendo(X) denote the set of all parents of X , its exoge-
nous parents and its endogenous parents, respectively. X
affects Y if (X,Y) is in the transitive closure of the depen-
dence relation. We will also say that a set X of variables
affects Y if some variable in X affects Y .

Following the literature, we restrict our attention to
acyclic (or recursive) models. In recursive models there is
a partial ordering ⪯ of V such that, if X affects Y , then

X ⪯ Y . Mrec(S) denotes the set of acyclic models over
S . A model is binary if R(Y) = {0, 1} for all Y ∈ U ∪ V .
Mbin(S) denotes the set of binary acyclic models over S .

If X⃗ = (X1, . . . , Xn) and x⃗ ∈ Πi≤nR(Xi), we write
x⃗ ∈ R(X⃗). If Y⃗ ⊆ U ∪ V , y⃗ ∈ R(Y⃗) and X⃗ ⊆ Y⃗ , y|X⃗
denotes the restriction of y⃗ to X⃗ . A context u⃗ is a setting of
the exogenous variables. Let C(S) =

∏
Y∈U R(Y) be the set

of all contexts over S . A pair (M, u⃗) ∈Mrec(S)× C(S) is
a causal setting. Each causal setting has a unique solution—
an assignment of values to each variable satisfying both the
structural equations and the context. Structural equations let
us consider what would happen if we intervened on certain
variables in a given setting. Given a model M , if X⃗ ⊆ V
and x⃗ ∈ R(X⃗), we can construct a new model MX⃗←x⃗ =
(S,FX⃗←x⃗) which is identical to M except that the equation
for each variable in X is replaced with X = x⃗|X .

Syntax Let S = (U ,V,R). For each Y ∈ U ∪ V and
y ∈ R(Y), Y = y is the primitive event which says that the
variable Y takes on the value y. L(S) is the language con-
sisting of all boolean combinations of these propositions and
L−(S), all such boolean combinations with no occurrences
of exogenous variables.5 Finally, a causal formula over S is
an expression of the form [Y1 ← y1, . . . , Yk ← yk]φ, where
• φ ∈ L−(S);
• Y1 . . . Yk are distinct variables in V; and
• yi ∈ R(Yi) for 1 ≤ i ≤ k.

Such a formula says “after intervening to set the variables
in Y⃗ to y⃗, φ holds” and is abbreviated with vector notation,
becoming [Y⃗ ← y⃗]φ. L+(S) is the language consisting of
all causal formulas over S .

Semantics A causal formula φ ∈ L+(S) is either true or
false in a causal setting (M, u⃗) ∈ Mrec(S) × C(S). We
write (M, u⃗) |= φ if φ is true in (M, u⃗). (M, u⃗) |= X = x
if X = x is in the unique solution to the system of equa-
tions defined by F , in the context u⃗. The truth of conjunc-
tions, negations and disjunctions is defined as usual. Finally,
(M, u⃗) |= [X⃗ ← x⃗]φ if and only if (MX⃗←x⃗, u⃗) |= φ.

The HP Definition As noted in Section 1, counterfactual
dependence is the starting point for the HP definitions. That
is, we start with the so-called but-for test: but for X , Y
would not have occurred. But counterfactual dependence
alone does not always track actual causation. Consider the
following example, well-described by Yablo (2002):

Two friends throw rocks at a window; Suzy’s rock hits,
while Billy’s sails harmlessly through the now empty
frame. It was Suzy’s throw, not Billy’s, that caused the
window to break. Yet counterfactually, the two throws
seem on a par: had neither occurred, the window would
not have broken; had either occurred without the other,
it still would have.
5Generally, atomic propositions are taken to involve only en-

dogenous variables. In our case it is useful to be able to include
exogenous variables as well since we include them in the ASP en-
coding to model the setting.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

612

The HP definitions belong to a broader class of views6

that, in response such cases, replace bare counterfactual de-
pendence with de facto (Yablo, 2002) or contingent (Halpern
and Pearl, 2005) dependence: X caused Y if, had X not oc-
curred, and had certain suitably chosen factors been held
fixed, Y would not have occurred either (Hall and Paul,
2003, p. 104). In the structural equations framework, what
we hold fixed are the values of variables in a given context.
In other words, the but-for test is applied under certain con-
tingencies.

As a first pass, in the Suzy–Billy case, we may hold fixed
the fact that Billy’s rock does not hit the window; under this
assumption, if Suzy had not thrown, the window would not
have shattered. The obvious issue is that this move can be
applied in reverse: make it so Suzy does not throw, or does
not hit, and then it holds that, had Billy not thrown, the win-
dow does not smash. Clearly, then, there must be constraints
on what we may hold fixed. What are the permissible contin-
gencies when evaluating a counterfactual? This is the ques-
tion for all approaches based on de facto dependence and
what divides the HP definitions.

Halpern’s most recent answer (Halpern, 2015) is that we
may hold fixed only the values of variables in the actual
setting. To establish Billy as the cause, we would have to
assume Suzy does not hit the window — contrary to fact.
By contrast, establishing Suzy as the cause requires hold-
ing fixed what actually occurred. It is this asymmetry that
justifies treating Suzy’s throw, but not Billy’s, as the cause.
This is the core intuition behind the HP definition, given be-
low. In this and subsequent definitions, a superscript “*” on
a variable value x∗ indicates that (M, u⃗) |= X = x∗.

Definition 1 (Actual Causation). X⃗ = x⃗ is an actual cause
of φ in (M, u⃗) iff the following hold:

AC1. (M, u⃗) |= X⃗ = x⃗ ∧ φ.
AC2. There exist W ⊆ V and x⃗′ ∈ R(X⃗) such that

(M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗∗]¬φ.

AC3. There is no X ′ ⊂ X such that X⃗ ′ = x⃗|X⃗′ satisfies
both AC1 and AC2.

If X = x is a conjunct in X⃗ = x⃗, we say that X = x is
in X⃗ = x⃗. AC1 is a sanity check: one event cannot cause
another if either of them did not occur in the first place. AC3
is a minimality condition, which excludes irrelevant events
showing up as parts of causes: it was the arsonist dropping a
lit match that caused the forest to burn down, not the arsonist
dropping the lit match and, for example, sneezing. AC2, the
core of the definition, encodes the qualified but-for test just
described, where an empty W corresponds to bare counter-
factual dependence.
Example 2 (Rock Throwing). We model the scenario with
the model MRT (“Rock Throwing”), with binary variables
ST (“Suzy throws”), SH (“Suzy hits”), BT (“Billy throws”),

6See, for example, Yablo (2002, 2004); Hitchcock (2001,
2007). The latter approach uses structural equations; the former
does not.

BH (“Billy hits”), and WS (“window shatters”), and the fol-
lowing structural equations:

SH = ST, BH = BT ∧ ¬SH, WS = SH ∨ BH.

Exogenous parents of ST and BT are omitted. In the con-
text where (ST,BT) = (1, 1), we can test whether ST = 1
caused WS = 1 by setting ST = 0 and fixing BH = 0 (its
actual value). This yields WS = 0, so AC2 holds with min-
imal contingency set W = {BH}. Since (MRT, (1, 1)) |=
ST = 1 ∧ WS = 1, AC1 holds, and since ST is a singleton,
AC3 holds. Thus, ST = 1 is an actual cause of WS = 1
in (MRT, (1, 1)). By contrast, BT = 1 is not: establishing
counterfactual dependence requires setting ST or SH to 0,
neither of which obtained in the actual setting.

Causal Queries In the Introduction, we introduced three
kinds of reasoning over causal models: Checking, Finding
and Inferring. Now that we have introduced the notation
for causal models, we are in a position to define these tasks
more precisely.
Definition 2 (Causal Queries). Fix a signature S =

(U ,V,R). Let (M, u⃗) ∈ Mrec(S) × C(S), X⃗ ⊆ V , x⃗ ∈
R(X⃗), φ ∈ L−(S).

A causal query Q is a quadruple

(M, u⃗, X⃗ = x⃗, φ),

and we distinguish two basic modes:

(i) Checking. Decide whether X⃗ = x⃗ is an actual cause
of φ in (M, u⃗).

(ii) Finding(k). Given a bound k ∈ N∪{∞}, return up to
k restrictions Y⃗ = x⃗|Y⃗ of X⃗ = x⃗ such that Y⃗ = x⃗|Y⃗
is an actual cause of φ in (M, u⃗). When k = ∞, this
amounts to Finding all causes within X⃗ = x⃗.

Finally, an Inference query is a Finding query in which the
candidate cause is V⃗ = v⃗ where (M, u⃗) |= V⃗ = v⃗ and
V consists of all the endogenous variables that affect some
variable in φ. If M ∈Mbin(S), we call Q a binary query.

2.3 Related Work
Ibrahim, Rehwald, and Pretschner (2019) were the first to
automate actual causality queries in a general setting, intro-
ducing a SAT-based strategy, SATMin, for Checking causal-
ity in binary models. This method guarantees minimal con-
tingency sets by exhaustively enumerating all satisfying as-
signments of the relevant SAT formula. Later, Ibrahim
and Pretschner (2020) proposed partial MaxSAT and Inte-
ger Linear Programming (ILP) strategies for Finding causes.
Both return a single cause, though without guaranteeing
minimality of the contingency set. The MaxSAT variant was
found to perform better in terms of runtime and memory al-
location.

Ibrahim and Pretschner (2020) also introduced ILPWhy,
an ILP-based strategy for Inference, which aims to return a
single cause with a cardinality-minimal AC2 intervention.
This approach partitions non-effect variables into cause,
contingency, or normal classes, while excluding effect vari-
ables under the assumption that “variables that appear in the

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

613

effect formula cannot be part of the cause” (Ibrahim and
Pretschner, 2020, 9).

However, this assumption leads to incorrect results when
an effect variable appears in every AC2-satisfying interven-
tion: ILPWhy will report no cause—even when one ex-
ists.7 Consequently, Theorem 2 in Ibrahim and Pretschner
(2020)—which claims that the relevant formula G∗ is sat-
isfiable iff AC2 holds—is incorrect. Allowing effect vari-
ables in interventions would fix the problem, but introduces
a different issue: if φ itself is the cardinality-minimal cause,
then φ is returned as the cause of itself—an uninformative
outcome, and likely what motivated the original restriction.
Thus, although identifying a cardinality-minimal cause may
be a reasonable objective when the details of the model are
known, it is, in general, an inadequate formulation of the
Inference problem.

3 ASP Encodings for the HP definition
Example 2 is illustrative in two respects. First, it is clear
that the manual reasoning shown there will quickly become
impractical and error-prone as causal models increase in size
and queries grow in complexity. For small models, a simple
brute-force algorithm may suffice to automate the process.
However, Ibrahim (2021) implemented such an algorithm
for Checking in binary models and found that it failed to
scale effectively beyond models with five variables.

Second, identifying a minimal contingency set is neces-
sary to fully understand why AC2 is satisfied. Suppose, for
example, that a solver returns a non-minimal set such as
W = {ST,BH,BT}8. Without further analysis, it is un-
clear which of these variables are genuinely necessary for
satisfying AC2—in this case, only BH . With just three
variables, one can resolve the ambiguity by manually test-
ing each for relevance. But in larger models with potentially
extensive contingency sets, such manual checks become in-
feasible. In the Evaluation section, for example, we mention
a query which returns a minimal contingency set of over
600 variables. A solver that does not guarantee minimal-
ity therefore lacks the transparency required to explain why
AC2 holds—the conceptual core of the HP definition. To
ensure this transparency, a causal solver ought to return in-
terventions with minimal contingency sets.

In this section, we introduce two ASP encodings that
jointly automate and generalize the reasoning in Example 2
above while ensuring that every produced contingency set is
minimal. The first encoding translates the actual setting of a
query into a normal logic program, enabling the checking of
AC1. The second encoding jointly models AC2 and AC3 as
a logic program with preferences. Together, these encodings

7Let φ ≡ WS = 1 ∨ BH = 0. There are three actual causes of
φ in (MRT, (1, 1)): ST = 1 ∧ WS = 1, SH = 1 ∧ WS = 1, and
BH = 0 ∧ WS = 1. The formula G∗ in Ibrahim and Pretschner
(2020) fails to identify any cause, as it forbids interventions on
effect variables.

8The SAT strategy in Ibrahim, Rehwald, and Pretschner (2019)
defines the contingency set of an AC2-satisfying intervention as the
set of all variables that retain their actual value under the interven-
tion.

give a unified approach to Checking, Finding, and Inferring
actual causes in any binary causal model.

Notation

AC1 We start by regimenting the syntactic form of struc-
tural equations we allow as input to our tool and describing
their translation into ASP.

Let Fx be a structural equation in a binary causal model.
Fx will be characterised symbolically as follows:

x = ψ1 ∨ . . . ∨ ψn (n ≥ 1), (2)

where each ψi is a conjunction such that each conjunct is
either a variable in the model or the negation of one. We
assume that only parents of x appear in Fx. The equations
in Example 2 follow this format, where variables in a causal
model are identified with primitive propositions in propo-
sitional logic. In this format, any Boolean function can be
translated into ASP by having a separate rule for each dis-
junct.

Let Fx be a structural equation in a binary model writ-
ten in the form above. Then T , which translates structural
equations into fragments of ASP rules, is defined as follows.
(i) T (x) = x;
(ii) T (¬x) = notx;
(iii) if each of χ1 . . . χn is a variable or the negation of

one, then T (χ1 ∧ · · · ∧ χn) = T (χ1) ∧ . . . ∧ T (χn).

For example, the formula bt∧¬sh is translated as T (bt∧
¬sh) = bt ∧ not sh. We now define the full translation of
a binary causal setting into a normal logic program. To keep
track of disjunctive structural equations, we use superscripts
on disjuncts: ψx

i denotes the i-th disjunct in the structural
equation for x, and nx denotes the number of disjuncts in
the structural equation for x.
Definition 3 (Π(M,u⃗)). Fix a signature S = (U ,V,R), and
Let (M, u⃗) ∈ Mbin(S) × C(S). Then Π(M,u⃗) is defined as
follows. {

u | u ∈ U , (M, u⃗) |= u = 1
}

(3)

∪
{
x← T (ψx

i) | x ∈ V , i ∈ [1, nx]
}

(4)

Example 3 (Π(MRT,(1,1))). The encoding of (MRT, (1, 1)),
denoted Π(MRT,(1,1)), is given below.

stexo sh← st
btexo bh← bt ∧ not sh
st← stexo ws← sh
bt← btexo ws← bh

It can easily be verified that this program has exactly
one answer set: namely, {stexo,btexo, st,bt, sh,ws},
whose members are exactly the variables that are true in
(MRT, (1, 1)). Proposition 1 generalises this observation.

Proposition 1. Fix a signature S = (U ,V,R), and let
(M, u⃗) ∈ Mbin(S) × C(S). Then there exists exactly one
I ∈ AS(Π(M,u⃗)), I(M,u⃗), such that

I(M,u⃗) = {x | x ∈ U ∪ V , (M, u⃗) |= x = 1}.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

614

Proof. See Özcan, Alrajeh, and Craven (2025).

The correspondence between each (M, u⃗) ∈ Mbin(S)×
C(S) and its encoding Π(M,u⃗) allows us to check AC1 with
respect to a candidate cause x⃗ = x⃗ and effect φ, as well
as all restrictions y⃗ = x⃗|y⃗. For example, if the candidate
cause of ws = 1 is sh = 1 ∧ bh = 1, then we can check
AC1 by checking whether sh,bh ∈ I(MRT,(1,1)) and ws ∈
I(MRT,(1,1)), which in turn means that (MRT, (1, 1)) |= sh =
1 ∧ bh = 1 ∧ ws = 1 by Proposition 1. Since sh,ws ∈
I(MRT,(1,1)) but bh ̸∈ I(MRT,(1,1)), we know that AC1 is not
satisfied with respect to sh = 1 ∧ bh = 1, but it is satisfied
with respect to the restriction sh = 1.

AC2 In the following two sections, we introduce the
logic program with preferences (ΠAC2(Q), Smin), whose
preferred answer sets correspond to the AC2-satisfying in-
terventions that are minimal with respect to AC2 and the
contingency set. The following definitions formalise the cor-
respondence we aim for.
Definition 4 (Correspondence 1). Let I be a set of ground
atoms

(
My⃗←y⃗, w⃗←w⃗∗ , u⃗

)
be a causal setting. We say that

I and
(
My⃗←y⃗, w⃗←w⃗∗ , u⃗

)
correspond to each other, written

I ∼= (My⃗←y⃗,w⃗←w⃗∗ , u⃗), if, for all x ∈ V and all exogenous
parents of mixed-dependency variables, the following con-
ditions hold:

(i) in x(y, |1− y|) ∈ I iff y = y is in y⃗← y⃗;
(ii) in w(w, |1− w|) ∈ I iff w = w is in w⃗← w⃗∗;
(iii) I |= x iff (My⃗←y⃗,w⃗←w⃗∗ , u⃗) |= x = 1.

Example 4. Let I1 = {in x(sh, 1), in w(bh, 0),bt, st}
and I2 = {in x(st, 1), in w(bh, 0),bt} Then I1 ∼=
(MRTsh←0,bh←0,, (1, 1)) and I2 ∼= (MRTst←0,bh←0,, (1, 1))

Definition 5 (Correspondence 2). Let A be a collection of
answer sets and let S be a collection of causal settings. We
say that A corresponds to S, written A ∼= S, if and only if:

(i) for every I ∈ A, there exists a (My⃗←y⃗,w⃗←w⃗∗ , u⃗) ∈ S
such that I ∼= (My⃗←y⃗,w⃗←w⃗∗ , u⃗);

(ii) for every (My⃗←y⃗,w⃗←w⃗∗ , u⃗) ∈ S, there exists an I ∈
A such that I ∼= (My⃗←y⃗,w⃗←w⃗∗ , u⃗).

Note that A ∼= S implies that |A| = |S|.9

Example 5. Let A = {I1, I2} (see Example 4). Then A ∼=
{(MRTsh←0,bh←0,, (1, 1)), (MRTst←0,bh←0

, (1, 1))}.
Reduct Returning to the query in Example 2, note that
AC2 reasoning focuses only on variables relevant to the in-
tervention under consideration: in that case, sh, bh and ws.
Variables upstream of sh and bh (st, bt, stexo,btexo), or
downstream of ws, are not considered. In effect, then, when
reasoning about AC2 we operated with a reduced model
containing only the endogenous variables sh,bh,ws and
the exogenous variables st,bt. We formalise this feature of
AC2-reasoning with the reduct of a setting with respect to a

9This way of formulating a correspondence definition is in-
spired by the argumentation literature. See: Egly, Gaggl, and
Woltran (2010); Brewka et al. (2020); Dvořák et al. (2011); Gaggl
et al. (2015).

causal query, writing ParM (x) for the parents of x in M
and V ar(φ) for the variables appearing in φ.
Definition 6 ((MQ, u⃗Q)). Given a causal model M =
((U ,V,R),F) and a query Q = (M, u⃗, x⃗ = x⃗, φ), we
define the reduct of (M, u⃗) with respect to Q, denoted
(MQ, u⃗Q), as follows.

• VQ = {y ∈ V | x affects y, y affects V ar(φ)}
• UQ = {u ∈ U ∪ V | ¬(x affects u), ∃y ∈ VQ(u ∈
ParM (x))}

• RQ = R
∣∣
UQ∪VQ , FQ = F

∣∣
VQ, and (M, u⃗) |= u⃗Q =

u⃗Q.

For example, if Q = (MRT, (1, 1),bh = 0,ws = 1),
then VQ = {sh,bh,ws}, UQ = {st,bt} and both R and
F are adjusted accordingly. Proposition 2, whose proof is
straightforward, justifies employing the reduct in place of
the full setting.
Proposition 2. For any query Q = (M, u⃗, x⃗ = x⃗, φ), x⃗ =
x⃗ is an actual cause of φ in (M, u⃗) if and only if it is an
actual cause of φ in (MQ, u⃗Q).

Checking AC2 using the reduct has two advantages: (1)
structural equations irrelevant to the query are ignored, and
(2) variables that are either unaffected by x or that don’t af-
fect V ar(φ) are removed as candidates for a minimal con-
tingency set. For small models such as MRT, employing
the reduct will make little difference, but in large models
the savings can be substantial. In our dataset, for instance,
some queries on models with about 8,000 variables reduced
to roughly 700 relevant variables. Because contingency in-
terventions are encoded via choice rules (see ΠAC2 rules(Q)),
this pruning avoids generating more than 14,000 redundant
rules.

AC2 By Proposition 2, AC2 holds if there exist x′ ∈ R(x⃗)
and w⃗ ⊆ VQ such that

(MQx⃗←x⃗′,w⃗←w⃗∗ , u⃗
Q) |= ¬φ.

Modelling this condition requires representing its three com-
ponents: (1) the reduct (MQ, u⃗Q); (2) the possible inter-
ventions on x⃗ and w⃗; and (3) the formula ¬φ. ΠAC2(Q),
introduced in this section, models each with a distinct sub-
program: Π(MQ,u⃗Q) for the reduct, ΠAC2 rules(Q) for in-
terventions, and Π¬φ for enforcing the negated effect. We
describe each below.

Π(MQ,u⃗Q), given in Definition 7, is similar to Π(M,u⃗),
with three key modifications. First, anticipating (2), we de-
fine the candidate contingency set w⃗Q by removing from
VQ all variables without endogenous parents, since such
variables cannot belong to a minimal contingency set. Sec-
ond, we omit structural equations for first-level endogenous
variables, whose values in (MQ, u⃗Q) are already known
from I(M,u⃗). Third, for variables that may participate in
an AC2-satisfying intervention, we append exceptions to
their structural equation rules, allowing the solver to over-
ride them when needed. Conditions C1–C4 allow us to
specify precisely when such exceptions are introduced.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

615

Definition 7 (Π(MQ,u⃗Q)). Let Q = (M, u⃗, x⃗ = x⃗, φ). For
any variable x in MQ, define:

C1x :ParM
Q

endo(x) = ∅ C3x : x = 1 is in x⃗ = x⃗

C2x : (MQ, u⃗Q) |= x = 1 C4x : x = 0 is in w⃗Q = w⃗∗Q

Then Π(MQ,u⃗Q) is defined as:

{u | ∃x ∈ V(u ∈ Parexo(x), Parendo(x) ̸= ∅),
C2x} (5)

∪ {x | C1x,C2x,¬C3x} (6)
∪ {x← not in x(x, 1) | C1x,C2x,C3x} (7)
∪ {x← T (ψx

i), not in x(x, 1) | ¬C1x,C2x,C3x} (8)
∪ {x← T (ψx

i), not in w(x, 0) | C4x} (9)
∪ {x← T (ψx

i) | ¬C1x,¬C4x, (¬C2x ∨ ¬C3x)} (10)

Example 6 (Π(MQRT ,(1,1)
Q)). Let

Q = (MRT, (1, 1), sh = 1,bh = 0 ∧ws = 1).

Then Π(MQRT ,(1,1)
Q) is given below.

bh← bt ∧ not sh ∧ not in w(bh, 0) bt
sh← not in x(sh, 1) ws← sh

ws← bh

Note that bh is a mixed-dependency variable—it depends
on the endogenous sh and the newly exogenous bt—so we
include its equation and add bt as a fact. Note also that both
ws and bh remain candidates for the minimal contingency
set, despite being part of the effect. This is crucial: as we
know from Example 2, bh is included in the minimal con-
tingency set for the intervention on sh. This illustrates the
point made in Related Work section: effect variables must
not be excluded from candidate contingency sets when Find-
ing, as opposed to Checking.

ΠAC2 rules(Q) is defined in (11)–(14) below. It uses
choice rules to represent the space of possible interventions
on x and w.

{{in x(x, x)} | x = x is in x⃗ = x⃗} (11)
∪{{in w(w, w)} | w = w is in w⃗Q = w⃗∗Q} (12)
∪{x← in x(x, 0) | x = 0 is in x⃗ = x⃗} (13)

∪
{
w← in w(w, 1) | w = 1 is in w⃗Q = w⃗∗Q}. (14)

Finally, if φ ≡ ψ1 ∨ · · · ∨ψm, Π¬φ enforces the negation of
φ by including a constraint for each of its disjuncts:

Π¬φ = {← T (ψi) | i ∈ [1,m]}. (15)

The combined encoding is:

ΠAC2(Q) = ΠAC2(MQ,u⃗Q) ∪ ΠAC2 rules(Q) ∪ Π¬φ. (16)

We now define the collection of AC2-satisfying settings
that AS(ΠAC2(Q)) corresponds to.

Definition 8 (AC2(Q)). Let Q = (M, u⃗, x⃗ = x⃗, φ) be a
causal query. Then we define AC2(Q) as the set of all set-
tings

(
MQ

y⃗←y⃗, w⃗←w⃗∗ , u⃗
Q
)

such that the following hold:

(i) (MQy⃗←y⃗, w⃗←w⃗∗ , u⃗
Q) |= ¬φ;

(ii) y ⊆ x and y⃗ ∈ R(y⃗);
(iii) w ⊆ wQ;
(iv) for each yi ∈ y⃗:

yi = yi is in y⃗ = y⃗ iff yi = |1− yi| is in x⃗ = x⃗.

Condition (i) is just the condition for AC2. The remain-
ing conditions rule out irrelevant interventions. In particular,
the second part of condition (ii) excludes the empty interven-
tion, which will satisfy AC2 trivially ifφ is false in the actual
setting. In our tool, we do not initiate the AC2 program if
I(M,u⃗) ̸|= φ. Condition (iv), anticipating AC3, requires that
any part of the candidate cause included in the intervention
be negated.10

Example 7. LetQ = (MRT, (1, 1), st = 1∧ sh = 1,ws =
1). Then

AC2(Q) =

{
(MQRTsh←0,bh←0

, (1, 1)),

(MQRTst←0,bh←0
, (1, 1))

}
Proposition 3. For any binary query Q,

AS(ΠAC2(Q)) ∼= AC2(Q).

Proof. Özcan, Alrajeh, and Craven (2025).

AC3 Given Proposition 3, it is straightforward with asprin
to identify interventions minimal with respect to both AC2
and the contingency set. We need three preference state-
ments: (1) a subset preference over in x/2 atoms; (2) a
subset preference over in w/2 atoms; and (3) a lexico
preference that minimises in x/2 atoms before in w/2
atoms. An accompanying #optimize directive completes
the specification Smin, shown below.

#preference(min_x, subset)in_x(X,Y).
#preference(min_w, subset)in_w(X,Y).
#preference(min, lexico)

2::name(min_x), 1::name(min_w).
#optimize(min).

Define AC2min(Q) so that
(
MQ

y⃗←y⃗, w⃗←w⃗∗ , u⃗
Q
)
∈

AC2min(Q) iff
(
MQ

y⃗←y⃗, w⃗←w⃗∗ , u⃗
Q
)
∈ AC2(Q) and the the

following conditions hold.
• ¬∃y′ ⊂ y such that

(
My⃗′←y⃗|y⃗′ , w⃗←w⃗∗ , u⃗

)
∈ AC2(Q);

• ¬∃w′ ⊂ w such that
(
My⃗←y⃗, w⃗′←w⃗∗|w⃗′

, u⃗
)
∈ AC2(Q).

Proposition 4. For any binary causal query Q,

ASmin(ΠAC2(Q)) ∼= AC2min(Q).

Proof. See Özcan, Alrajeh, and Craven (2025).

Propositions 5 and 6 establish the soundness of using
Π(M,u⃗) and (ΠAC2(Q), Smin) to answering Finding and
Checking queries. Since Inferring is a special case of Find-
ing, these results extend to Inference. In practice, a Check-
ing query can be resolved by instructing asprin to gener-
ate at most one preferred answer set (via --models=1)

10See Ibrahim, Rehwald, and Pretschner (2019, Lemma 1).

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

616

and verifying whether it matches the candidate cause. From
here, we distinguish two tool variants: ASPCheck, which re-
turns True with the associated minimal contingency set if
the candidate cause satisfies HP, and False otherwise; and
ASPFind.
Proposition 5 (Finding Causes). For any binary queryQ =
(M, u⃗, x⃗ = x⃗, φ) and for any y ⊆ x, y⃗ = x⃗|y⃗ is an actual
cause of φ in (M, u⃗) if and only if
(i) I(M,u⃗) |= T

(
y⃗ = x⃗|y⃗

)
∧ T (φ);

(ii) there is some I ∈ ASmin(ΠAC2(Q)) such that
in x(x, x) ∈ I if and only if x = x is a part of
y⃗ = x⃗|y⃗.

Proof. See Özcan, Alrajeh, and Craven (2025).

Proposition 6 (Checking Causes). For any binary query
Q = (M, u⃗, x⃗ = x⃗, φ) x⃗ = x⃗ is an actual cause of φ in
(M, u⃗) if and only if
(i) I(M,u⃗) |= T

(
x⃗ = x⃗

)
∧ T (φ);

(ii) there is exactly one I ∈ ASmin(ΠAC2(Q)) such that
in x(x, x) ∈ I if and only if x = x is a part of x⃗ = x⃗.

Proof. See Özcan, Alrajeh, and Craven (2025).

Non-binary Models The framework developed in this
section admits a natural extension to the non-binary set-
ting. We replace propositional atoms with atoms of the
form val(x, x), which appear in an answer set when x = x.
Structural equations are modified accordingly. Next, we in-
troduce range/2 atoms, where range(x, x) appears in an-
swer set if x ∈ R(x). Interventions on cause variables can
then be expressed as follows:

{val(x, X) : range(x, X)∧X ̸= v} ← in cause(x, v).11

This encoding supports both binary and non-binary vari-
ables. However, queries involving variables with large nu-
merical domains will quickly make grounding infeasible
(Gebser et al., 2018). In future work we will explore sys-
tems like clingcon (Banbara et al., 2017) for more efficient
reasoning over such models.

4 Evaluation
In this section, we evaluate the performance of our tool
in comparison to the current state-of-the-art approaches,
namely those presented in Ibrahim, Rehwald, and Pretschner
(2019) and Ibrahim and Pretschner (2020), discussed in the
Related Work section. The evaluation spans three core tasks:
Checking, Finding, and Inferring causes. We focus on two
key performance criteria: (1) the ability to process queries
within the memory constraints typical of standard comput-
ing environments, and (2) execution time relative to practical
usability thresholds.

11Note that this encoding requires us to allow arithmetic terms
into the language described in Section 2.1, in addition to functional
terms. To represent linear equations, we would also introduce com-
parison operators and so-called built-in atoms (see Calimeri et al.
(2020) for the definition of these).

Query Size 1 2 3 4 5 10 11 15 20 22 50
Frequency 195 131 95 27 8 8 10 8 8 2 8

Table 1: Frequency of Query Sizes for Checking/Finding queries.

Benchmark To enable a direct comparison with the Java-
implemented SAT, MaxSAT, and ILP strategies evaluated
by Ibrahim, Rehwald, and Pretschner (2019) and Ibrahim
and Pretschner (2020), we adopt the same benchmark suite.
Specifically, we use a total of 50012 Checking/Finding
queries and 187 Inferring queries, spanning 37 binary mod-
els of varying sizes. These include 21 smaller models with
fewer than 400 endogenous variables and 16 larger models
with up to approximately 8,000 variables. Table 1 shows the
breakdown of query sizes across Checking/Finding queries.

Full details of the benchmark models are available at:
https://git.io/Jf8iH.

Evaluation Metrics and Research Questions We evalu-
ate our tool using two primary performance metrics: execu-
tion time and peak memory usage. Our evaluation is guided
by the following research questions:

RQ1. Is our ASP-based tool able to successfully answer
all queries in the benchmark within a given time and
memory budget?

RQ2. For queries successfully answered by both toolsets,
does our ASP-based tool outperform the Java-based
strategies in execution time and memory usage?

Execution Environment All experiments were conducted
on macOS 14.5 with an Apple M1 Pro (32 GB RAM). Our
ASP-based tool used Clingo v5.7.1 with asprin v3.1.1 (in-
ternally Clingo v5.4.0) under a 25 GB memory cap. Time
limits were set to two hours for Checking queries (based
on preliminary runs of the longest cases) and 10 minutes
for Inference queries. Java-based tools were tested in two
batches: one measuring execution time (10 warm-up runs, 5
measured runs, average reported), and one measuring peak
memory usage (single execution, maximum reported). The
ASP tool was executed once per query, reporting single-shot
time and memory usage.

Due to the error in ILPWhy identified in the Related Work
section, we checked whether there were any queries it would
produce an incorrect result for. No such queries were found,
indicating that the comparisons with ILPWhy remain valid.

4.1 Results
RQ1 Both ASPCheck and ASPFind answered all 500
Checking and Finding queries within the allotted time.
SATMin failed on 22 out of 500 queries, mostly due to run-
ning out of memory. MaxSAT failed on just one query.
However, given the speed with which it completed the ma-
jority of queries and the relatively short 10-minute cut-
off, the remaining query would likely have been solved

12Ibrahim and Pretschner (2020) reports 484 queries, but we
found 500 in the authors’ benchmarking repository.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

617

https://git.io/Jf8iH

0 100 200 300 400 500
Queries (Ordered By Maximum Memory Usage)

0

1

2

3

4

5
M

ax
im

um
 M

em
or

y
U

sa
ge

 (G
B)

ASP_Find
MaxSAT
SAT_Min

0 100 200 300 400 500
5

7

10

12

15

17

20
Full Range

(a) Memory usage for Checking/Finding queries

0 100 200 300 400 500
Queries (Ordered By Execution Time)

0

5

10

15

20

25

30

Ex
ec

ut
io

n
Ti

m
e

(s
)

0 100 200 300 400 500
2500

2600

2700

2800

2900

3000
Full Range

ASP_Find
MaxSAT
SAT_Min

(b) Execution times for Checking/Finding queries

0 25 50 75 100 125 150 175
Queries (Ordered By Execution Time)

0

100

200

300

400

500

600

Ex
ec

ut
io

n
Ti

m
e

(s
)

ASP_Find
ILP_Why

(c) Execution times for Inference queries

0 25 50 75 100 125 150 175
Queries (Ordered By Maximum Memory Usage)

0

5

10

15

20

25

M
ax

im
um

 M
em

or
y

U
sa

ge
 (G

B
)

ASP_Find
ILP_WHY

(d) Memory usage for Inference queries

Figure 1: Cactus plots for Checking and Inference queries.

with slightly more time. For Inference, both ASPFind and
ILPWhy successfully answered all 187 queries.

RQ2 Figure 1b reports execution times for ASPFind,
SATMin, and MaxSAT (we omit ASPCheck, which behaves
identically to ASPFind). ASPFind solves all 500 queries
in under 10 seconds, while using less than 1 GB of mem-
ory (Figure 1a). MaxSAT, which returns at most one cause
without enforcing minimality, takes up to 25 seconds and
peaks at 10 GB of memory. SATMin, though guaranteeing
minimality, performs substantially worse, often failing due
to memory exhaustion and with the two slowest runs exceed-
ing 50 minutes with memory usage reaching 17 GB.

Figure 1d compares Inference performance between
ASPFind and ILPWhy. As with Finding queries, ASPFind

uses less memory (≤ 10GB vs. 18GB) while solving the
harder task of enumerating all causes with minimal contin-
gency sets. In some cases, for example, it finds multiple
causes, each with contingency sets exceeding 600 variables.
The increased memory usage relative to pure Finding re-
flects the higher complexity of the Inference task. Figure 1c
shows that ILPWhy slightly outperforms ASPFind on execu-
tion time, which solves all but the hardest query in 100–300
seconds, with one outlier at 504 seconds.

5 Conclusion
In this work, we introduced an ASP encoding of the modi-
fied HP definition of actual causation, supporting Checking,
Finding, and Inferring queries over all binary acyclic causal
models while guaranteeing minimal contingency sets. We
demonstrated the tool’s time and memory efficiency through
experimental evaluation, marking a step toward practical
causal reasoning tools.

As future work, we plan to extend the tool to handle non-
binary causal models and develop an interactive graphical
interface to make the tool more accessible and interactive.
Additionally, we intend to explore mechanisms for the tool
to learn from users’ causal interpretations, supporting col-
laborative reasoning, negotiation, and discussion about pos-
sible interventions. We plan to evaluate these enhancements
with crime analysts investigating serial sexual offending.

Acknowledgements
This work has been partially supported by the CHED-
DAR funded by the UK EPSRC under grant numbers
EP/Y037421/1 and EP/X040518/1.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

618

References
Alrajeh, D.; Chockler, H.; and Halpern, J. Y. 2020. Com-
bining experts’ causal judgments. Artificial Intelligence
288:103355.
Banbara, M.; Kaufmann, B.; Ostrowski, M.; and Schaub,
T. 2017. Clingcon: The next generation. Theory and
Practice of Logic Programming 17(4):408–461.
Brewka, G.; Diller, M.; Heissenberger, G.; Linsbichler,
T.; and Woltran, S. 2020. Solving advanced argumenta-
tion problems with answer set programming. Theory and
Practice of Logic Programming 20(3):391–431.
Brewka, G.; Delgrande, J.; Romero, J.; and Schaub, T.
2023. A general framework for preferences in answer set
programming. Artificial Intelligence 325:104023.
Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski,
R.; Krennwallner, T.; Leone, N.; Maratea, M.; Ricca, F.;
and Schaub, T. 2020. Asp-core-2 input language format.
Theory and Practice of Logic Programming 20(2):294–
309.
Dexe, J.; Franke, U.; Söderlund, K.; van Berkel, N.;
Jensen, R. H.; Lepinkäinen, N.; and Vaiste, J. 2022.
Explaining automated decision-making: a multinational
study of the gdpr right to meaningful information. The
Geneva Papers on Risk and Insurance–Issues and Prac-
tice 47(3):669–697.
Dvořák, W.; Gaggl, S. A.; Wallner, J. P.; and Woltran,
S. 2011. Making use of advances in answer-set pro-
gramming for abstract argumentation systems. In Ap-
plications of Declarative Programming and Knowledge
Management. Berlin, Heidelberg: Springer. 114–133.
Egly, U.; Gaggl, S. A.; and Woltran, S. 2010. Answer-set
programming encodings for argumentation frameworks.
Argument & Computation 1(2):147–177.
Fandinno, J., and Schulz, C. 2019. Answering the “why”
in answer set programming – a survey of explanation ap-
proaches. Theory and Practice of Logic Programming
19(2):114–203.
Gaggl, S. A.; Manthey, N.; Ronca, A.; Wallner, J. P.; and
Woltran, S. 2015. Improved answer-set programming en-
codings for abstract argumentation. Theory and Practice
of Logic Programming 15(4–5):434–448.
Gebser, M.; Leone, N.; Maratea, M.; Perri, S.; Ricca, F.;
and Schaub, T. 2018. Evaluation techniques and systems
for answer set programming: a survey. In Proceedings
of the Twenty-Seventh International Joint Conference on
Artificial Intelligence (IJCAI 2018), 5450–5456.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2022. Answer Set Solving in Practice. Springer Nature.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Logic Program-
ming: Proceedings of the Fifth International Conference
and Symposium, 1070–1080. Cambridge: MIT Press.
Gelfond, M., and Lifschitz, V. 1991. Classical negation
in logic programs and disjunctive databases. New Gener-
ation Computing 9:365–385.

Goodman, B., and Flaxman, S. 2017. European union
regulations on algorithmic decision-making and a “right
to explanation”. AI Magazine 38(3):50–57.
Hall, N., and Paul, L. A. 2003. Causation and pre-
emption. In Philosophy of Science Today. Oxford:
Clarendon Press. 100–130.
Halpern, J. Y., and Pearl, J. 2001. Causes and expla-
nations: A structural-model approach. part i: Causes.
In Proceedings of the Seventeenth Conference on Uncer-
tainty in Artificial Intelligence (UAI 2001), 194–202.
Halpern, J. Y., and Pearl, J. 2005. Causes and explana-
tions: A structural-model approach. part ii: Explanations.
The British Journal for the Philosophy of Science.
Halpern, J. Y. 2015. A modification of the halpern–pearl
definition of causality. arXiv preprint arXiv:1505.00162.
Halpern, J. Y. 2016. Actual Causality. MIT Press.
Hitchcock, C. 2001. The intransitivity of causation re-
vealed in equations and graphs. The Journal of Philoso-
phy 98(6):273–299.
Hitchcock, C. 2007. Prevention, preemption, and the prin-
ciple of sufficient reason. Philosophical Review 116:495–
532.
Hyttinen, A.; Plis, S. M.; Järvisalo, M.; Eberhardt, F.; and
Danks, D. 2017. A constraint optimization approach to
causal discovery from subsampled time series data. Inter-
national Journal of Approximate Reasoning 90:208–225.
Hyttinen, A.; Eberhardt, F.; and Järvisalo, M. 2014.
Constraint-based causal discovery: Conflict resolution
with answer set programming. In Proceedings of the Con-
ference on Uncertainty in Artificial Intelligence (UAI),
340–349.
Hyttinen, A.; Eberhardt, F.; and Järvisalo, M. 2015. Do-
calculus when the true graph is unknown. In Proceedings
of the Conference on Uncertainty in Artificial Intelligence
(UAI), 395–404.
Ibrahim, A., and Pretschner, A. 2020. From checking to
inference: Actual causality computations as optimization
problems. In Proceedings of the International Symposium
on Automated Technology for Verification and Analysis
(ATVA), 343–359. Springer International Publishing.
Ibrahim, A.; Rehwald, S.; and Pretschner, A. 2019. Effi-
cient checking of actual causality with sat solving. In En-
gineering Secure and Dependable Software Systems. IOS
Press. 241–255.
Ibrahim, A. 2021. An actual causality framework for ac-
countable systems. Ph.D. Dissertation, Technische Uni-
versität München.
Lifschitz, V. 2008. What is answer set programming? In
Proceedings of the Twenty-Third National Conference on
Artificial Intelligence (AAAI 2008), 1594–1597. Chicago,
IL: AAAI Press.
Özcan, D. H.; Alrajeh, D.; and Craven, R. 2025. Rea-
soning about actual causality in answer set programming:

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

619

Extended version. Extended version of the paper pub-
lished in the Proceedings of KR 2025 (KR in the Wild
track). Available at https://github.com/DanHOzcan/HP
ASPBinary/releases/download/v1.0.0/KR Extended.pdf.
Pawson, R. 2006. Evidence based policy: proceed with
care. BMJ 332(7539):582–585.
Pearl, J. 2000. Causality: Models, Reasoning, and Infer-
ence. Cambridge University Press.
Pearl, J. 2022. Probabilities of causation: three counter-
factual interpretations and their identification. In Proba-
bilistic and Causal Inference: The Works of Judea Pearl.
317–372.
Russo, F.; Rapberger, A.; and Toni, F. 2024. Argumenta-
tive causal discovery. arXiv preprint arXiv:2405.11250.
Wikström, P.-O. H., and Sampson, R. J., eds. 2006. The
Explanation of Crime: Context, Mechanisms and Devel-
opment. Cambridge University Press.
Yablo, S. 2002. De facto dependence. The Journal of
Philosophy 99(3):130–148.
Yablo, S. 2004. Advertisement for a sketch of an outline
of a prototheory of causation. In Causation and Counter-
factuals. MIT Press. 119–137.
Zanga, A.; Ozkirimli, E.; and Stella, F. 2022. A survey
on causal discovery: Theory and practice. International
Journal of Approximate Reasoning 151:101–129.
Zhalama; Zhang, J.; Eberhardt, F.; Mayer, W.; and Li,
M. J. 2019. ASP-based discovery of semi-markovian
causal models under weaker assumptions. In Proceed-
ings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence (IJCAI-19), 1488–1494.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR in the Wild

620

https://github.com/DanHOzcan/HP_ASPBinary/releases/download/v1.0.0/KR_Extended.pdf
https://github.com/DanHOzcan/HP_ASPBinary/releases/download/v1.0.0/KR_Extended.pdf

	Introduction
	Background
	Answer Set Programs
	Actual Causation
	Related Work

	ASP Encodings for the HP definition
	Evaluation
	Results

	Conclusion

