
Pushdown Reward Machines for Reinforcement Learning
Giovanni Varricchione1 , Toryn Q. Klassen2,3 , Natasha Alechina4,1 ,

Mehdi Dastani1 , Brian Logan5,1 and Sheila A. McIlraith2,3

1Utrecht Universiteit, Utrecht, The Netherlands
2University of Toronto, Toronto, Canada

3Vector Institute, Toronto, Canada
4Open Universiteit, Heerlen, The Netherlands

5University of Aberdeen, Aberdeen, United Kingdom
{g.varricchione, n.a.alechina, m.m.dastani, b.s.logan}@uu.nl, {toryn, sheila}@cs.toronto.edu

Abstract

Reward machines (RMs) are automata structures that encode
(non-Markovian) reward functions for reinforcement learning
(RL). RMs can reward any behaviour representable in regular
languages and, when paired with RL algorithms that exploit
RM structure, have been shown to significantly improve sam-
ple efficiency in many domains. In this work, we present
pushdown reward machines (pdRMs), an extension of reward
machines based on deterministic pushdown automata. pdRMs
can recognise and reward temporally extended behaviours
representable in deterministic context-free languages, making
them more expressive than reward machines. We introduce
two variants of pdRM-based policies, one which has access to
the entire stack of the pdRM, and one which can only access
the top k symbols (for a given constant k) of the stack. We
propose a procedure to check when the two kinds of policies
(for a given environment, pdRM, and constant k) achieve the
same optimal state values. We then provide theoretical results
establishing the expressive power of pdRMs, and space com-
plexity results for the proposed learning problems. Lastly, we
propose an approach for off-policy RL algorithms that exploits
counterfactual experiences with pdRMs. We conclude by pro-
viding experimental results showing how agents can be trained
to perform tasks representable in deterministic context-free
languages using pdRMs.

1 Introduction
Reward machines (RMs) (Toro Icarte et al. 2018; Toro Icarte
et al. 2022) are automata structures that are used to represent
(non-Markovian) reward functions for reinforcement learn-
ing (RL). Among their merits, they enable RL algorithms to
exploit the compositional structure of RMs in learning, result-
ing in significant sample efficiency gains. By virtue of their
correspondence to deterministic finite state automata (DFAs),
any reward-worthy behaviour expressible by a regular lan-
guage, as well as variants of other formal languages such
as variants of linear temporal logic (LTL), can be encoded
by an RM. This means that a human can write their non-
Markovian reward function, or reward-worthy (temporally
extended) behaviour in a diversity of programming/formal
languages, compile them to an RM, and take advantage of
the sample efficiency gains of these RM-tailored learning
algorithms (Camacho et al. 2019).

A restriction of RMs is that reward-worthy behaviour
must be representable in a DFA-like structure—a regular
or Type-3 language, according to Chomsky’s hierarchy of
languages (Chomsky and Schützenberger 1959). However, a
number of interesting RL problems require the expressiveness
of a context-free language. To enhance the expressiveness
of RMs, Bester et al. (2024) introduced counting reward au-
tomata (CRAs) which augment RMs with counters. CRAs
have the expressive power of counter machines. As a counter
machine with two or more counters has the same expressive
power as a Turing machine (Minsky 1967), CRAs with two or
more counters can express behaviours that are representable
by recursively enumerable languages, the largest class in the
Chomsky hierarchy. Unfortunately, the expressive power
of CRAs can come at a significant computational cost for
RL. The resulting product MDP and policy incur a blowup
depending on the maximum values that the counters can as-
sume. This blowup can severely hinder training by slowing
the convergence speed: as the MDP and policy state spaces
grow, the time required to explore and learn increases.

In this paper, following Chomsky’s hierarchy, we propose
a more modest enhancement to the expressiveness of RMs by
augmenting RMs with a single stack. We call these enhanced
RMs pushdown reward machines (pdRMs). Our enhance-
ment is based on deterministic pushdown automata (DPDAs),
which allow us to encode reward-worthy behaviours that are
representable, for example, in LR grammars (Knuth 1965),
or, precisely, deterministic context-free languages. pdRMs
can recognize a wide range of practical behaviours, such as
modelling recursive calls in programming, collecting and
delivering arbitrary numbers of parcels to specific locations,
or search and rescue tasks where an agent must return to its
starting point by remembering and retracing its (safe) route.

The main contributions of this paper are as follows:
• We define reward machines based on deterministic push-

down automata. Given their structure, pdRMs can encode
tasks representable in deterministic context-free languages;

• We define two variants of pdRM-based policies. In the
first, the policy has access to the entire pdRM stack, in the
second it can only access the top k symbols (for a given k)
of the stack;

• We provide a procedure to check whether optimal policies

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

566

with access to the top k stack symbols achieve the same
state values as optimal policies with full-stack access;

• We analyse the expressive power of pdRMs and compare
it to RMs and CRAs. We also evaluate the space blowup
for pdRM- and CRA-based policies. We show that pdRM-
policies accessing only the top k symbols of the stack are
more compact than pdRM-policies accessing the entire
stack and CRA-based policies;

• We propose an approach that exploits counterfactual expe-
riences by generating synthetic experiences based on the
states of the pdRM and the stack strings observed during
training;

• We use pdRMs to train RL agents in several domains. We
compare them to CRAs in a domain from (Bester et al.
2024). Then, we show the practical effects of the space
complexity results we establish. We show how counterfac-
tual and hierarchical approaches for pdRMs can be used
to increase sample efficiency. Finally, we use pdRMs in a
continuous domain, and compare against a deep learning
algorithm using recurrent neural networks.

2 Preliminaries

In reinforcement learning (RL), the environment in which
agents act and learn is modelled as a Markov decision process
(MDPs) (Puterman 2014). A Markov decision process is a
tuple M = ⟨S,A, p, r, γ⟩ where S is the non-empty set of
states, A is the non-empty set of actions, p : S ×A→ ∆(S)
is the state transition function where ∆(S) is the set of all
probability distributions defined over S, r : S ×A× S → R
is the reward function, and γ ∈ (0, 1) is the discount factor.
We write p(s′ | s, a) to denote the probability of transitioning
from state s to state s′ when action a is performed in s. A
policy is a function π : S → ∆(A) mapping any state of the
MDP to a probability distribution over the set of actions. We
denote by π(a | s) the probability that an agent following
policy π performs action a in state s.

At each timestep t, the MDP is in some state st. The
agent takes an action at ∼ π(· | st) using its policy π, af-
ter which the environment state is updated to st+1 ∼ p(· |
st, at) and the agent is rewarded with rt = r(st, at, st+1).
The goal of the agent is to learn an optimal policy π∗,
i.e., one that maximizes the expected discounted reward
Eπ∗

[∑∞
k=0 γ

krk | S0 = s
]

from any MDP state s.
Reward machines were introduced by Toro Icarte et al.

(2018; 2022) to encode non-Markovian reward functions. A
reward machine (RM) is a tuple R = ⟨U, u0, F,Σ, δu, δr⟩,
where U is a finite non-empty set of states, u0 is the initial
reward machine state, F ̸⊆ U is the set of final states, Σ is
the input alphabet, δu : U × Σ→ (U ∪ F) is the transition
function, and δr : U × Σ→ R is the output reward function.
The transitions in the reward machine are related to transi-
tions in the MDP by a labelling function L : S×A×S → Σ
which labels each state-action-state triple of the MDP with
an input symbol of the reward machine. When the reward
function is specified by a reward machine, the agent’s policy
is defined over the Cartesian product of the set of MDP states
and the set of states of the reward machine.

3 Pushdown Reward Machines
In this section, we define pushdown Reward Machines
(pdRMs). Like RMs, pdRMs are used to express (non-
Markovian) reward functions, however their automaton struc-
ture is enhanced with a stack, which serves as additional
memory. In so doing, they enable the expression of reward-
worthy temporally-extended behaviours that correspond to
deterministic context-free languages.
Definition 1 (Pushdown Reward Machine). A push-
down reward machine (pdRM) is a tuple R =
⟨U, u0, F,Σ,Γ, Z, δu, δr⟩, where:
• U is the finite set of states;
• u0 ∈ U is the initial state;
• F ̸⊆ U is the set of final states;
• Σϵ = Σ ∪ {ϵ} where Σ is the input alphabet;
• Γϵ = Γ ∪ {ϵ} where Γ is the stack alphabet;
• Z ∈ Γ is the initial stack symbol;
• δu : U × Σϵ × Γϵ → (U ∪ F) × Γ∗

ϵ is the transition
function; and

• δr : U × Σϵ × Γϵ → R is the reward function.
where ϵ is the empty string. Below, we denote by z ∈ Γ
individual symbols of the stack alphabet, and by ζ ∈ Γ∗

(possibly empty) stack strings. The transition function δu
takes as input the current pdRM state u, the current input
symbol σ ∈ Σϵ and the topmost symbol of the stack z ∈ Γϵ,
and returns a pair (u′, ζ ′) where u′ ∈ (U ∪ F) is the next
state and ζ ′ ∈ Γ∗

ϵ is a string which replaces z as the topmost
symbol(s) of the stack. Note that σ, z and ζ ′ may be the
empty string ϵ. Whenever σ = ϵ, the pdRM does not read any
symbol from the input, making a so-called “silent” transition.
If z = ϵ, no symbol is popped from the stack. Finally, if
ζ ′ = ϵ, no symbol is pushed to the stack. In what follows,
we consider only deterministic pdRMs where, for any pdRM
state u and stack symbol z, if δu(u, ϵ, z) is defined, then
δu(u, σ, z) is not defined for any σ ∈ Σ. The reward function
δr takes as input the current pdRM state u, the current input
symbol σ and the topmost symbol z of the stack and returns
a reward.

At each timestep, a pdRM is in a configuration ⟨u, zζ⟩ ∈
U×Γ∗

ϵ , where u is the state of the pushdown reward machine
and zζ is the current string on the stack with z as the topmost
symbol on the stack. The pdRM reads the current input sym-
bol σ ∈ Σϵ, transitions to a new configuration ⟨u′, ζ ′ζ⟩where
⟨u′, ζ ′⟩ = δu(u, σ, z), and outputs a reward r = δr(u, σ, z).
We write ⟨u, ζ⟩ ⊢σ ⟨u′, ζ ′⟩ to denote that the pdRM moves
from ⟨u, ζ⟩ to ⟨u′, ζ ′⟩ upon reading the symbol σ.

We illustrate the expressive power of a pdRM using a
simple task expressible in a context-free language, which we
call “Maze” task. In the task, the agent has to navigate a
(gridlike) maze from a starting location to find a treasure and
return to the starting point by following the path it traversed
to reach the treasure in the reverse direction. The actions
available to the agent are A = {u, d, l, r}, denoting up, down,
left, and right respectively, and the task can be defined using
the following (deterministic) context-free grammar:

S → P x

P → uP d | dP u | lP r | rP l | t

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

567

u0start u1 u3

u2

{a}, z/a z, 0

{a, t}, z/a z, 0

{a}, a/ϵ, 0

{a, x}, a/ϵ, 1

{a′}, a/ϵ,−1
{a′, x}, a/ϵ,−1

Figure 1: Pushdown reward machine for the Maze task. Each
transition is labelled with a tuple ℓ, z/ζ, r, where ℓ is the input
observation, z the top symbol on the stack, ζ the string of symbols
pushed onto the stack (with the new top symbol leftmost in ζ), and r
is the output reward. The symbol “z” indicates an arbitrary symbol
in Γ. In the transition from u1 to u2, a′ represents any direction
except for a, the opposite direction to a.

where t denotes the treasure and x the starting point.
The corresponding pdRM is shown in Figure 1. The states

in the pdRM are U = {u0, u1, u2, u3}, the stack alphabet
is Γ = {u, d, l, r}, the input alphabet Σ = 2Γ∪{t,x} and the
labelling L is defined as follows:
• a ∈ L(s, a, s′);
• t ∈ L(s, a, s′) if s ̸= s′ and s′ is the location of the

treasure;
• x ∈ L(s, a, s′) if s ̸= s′ and s′ is the starting point.

As with standard reward machines, pdRMs can be used to
reward the agent in MDPs. The product of an MDP and a
pdRM gives rise to an “MDP-pdRM”, defined as follows.

Definition 2. A Markov decision process with a push-
down reward machine (MDP-pdRM) is a tuple T =
⟨S,A, p, γ, L,R⟩, where S,A, p, γ are defined as in an
MDP, L : S × A × S → Σ is a labelling function, and
R = ⟨U, u0, F,Σ,Γ, Z, δu, δr⟩ is a pdRM.

Markov decision processes with a pushdown reward ma-
chine are analogous to the Markov decision processes with a
reward machine introduced in (Toro Icarte et al. 2018), but
with rewards specified by a pdRM rather than an RM.

An MDP-pdRM induces a product MDP MT =
⟨ST , AT , pT , rT , γT ⟩ where:
• ST := S × (U ∪ F)× Γ∗;
• AT := A;
• pT (⟨s′, u′,ζ ′⟩ | ⟨s, u, ζ⟩, a) :=

p(s′ | s, a) if u ∈ F, u = u′ and ζ = ζ ′

p(s′ | s, a) if u ̸∈ F and
⟨u, ζ⟩ ⊢L(s,a,s′) ⟨u′, ζ ′⟩

0 otherwise
• rT (⟨s, u, zζ⟩, a, ⟨s′, u′, ζ ′⟩) := δr(u, L(s, a, s

′), z);
• γT := γ.
Although not specified, the starting state of the pdRM in the
product MDP is always u0.

We now define the possible policies for MDP-pdRMs. The
first type of policy has full access to the current state of the
product MDP, and thus to all of the stack’s contents.

Definition 3 (Policy). A policy in an MDP-pdRM is a func-

tion π : S × U × Γ∗ → ∆(A).

A policy has, at each timestep, access to the current MDP
state, pdRM state, and the entire contents of the pdRM stack.
Since the stack is potentially unbounded, the state space of
policies (hence their size) is potentially unbounded. As such,
policies are not well-suited to many RL algorithms, e.g., tab-
ular algorithms, especially in non-episodic tasks (i.e., a task
in which the agent must act indefinitely in the environment).
We therefore define a bounded version of policies which have
access only to a portion of the stack. In this way, we bound
the size of the policy, making it finite regardless of whether
the task is episodic or not.

Definition 4 (k-policy). Given a constant k ≥ 0, a k-policy
is a function π : S × U ×

(⋃
j≤k Γ

j
)
→ ∆(A).

While k-policies can be more suited to learning in RL, we
note that their limited observability of the product MDP’s
state can lead to suboptimal behaviours. In the next sec-
tion, we will provide a procedure to verify in which cases
a k-policy has access to enough information to achieve be-
haviours with the same state values as optimal policies.

4 When Are k-Policies Optimal?
As we have just observed, k-policies can achieve suboptimal
behaviours compared to policies, since they have limited
access to the product MDP’s state. For example, imagine a
task in which the agent is given a sequence of rooms (which
is saved on the pdRM’s stack) that it must clean. Depending
on the room, the agent needs different supplies, which are
stored in a storage room, to clean it. Gathering all the needed
supplies before cleaning the rooms is more efficient as the
agent will not have to return to the storage room, and for a
policy to anticipate which supplies are needed, it needs access
to the entire stack. However, having access to the entire stack
is not always necessary to achieve an optimal behaviour.
Indeed, in the Maze task it is possible to learn an optimal
policy given access to only the top symbol on the stack, as
the choice of direction when returning to the starting point
is determined only by the top symbol. In this section, we
characterise when, for each state, the state value for optimal
k-policies is the same as the state value for optimal policies.

First, we define the notion of k-equivalence for states in
the product MDP induced by an MDP-pdRM.

Definition 5 (k-equivalence ∼k). For a product MDP ob-
tained from an MDP-pdRM, two states ⟨s, u, ζ⟩, ⟨s, u, ζ ′⟩,
are k-equivalent, denoted by ⟨s, u, ζ⟩ ∼k ⟨s, u, ζ ′⟩, if and
only if the top k symbols of ζ and ζ ′ are the same.

k-equivalence is an equivalence relation which partitions
the state space of the product MDP into equivalence classes,
where the members of each class share the MDP state, pdRM
state, and top k symbols of the pdRM stack. In k-policies, the
agent’s policy is defined over the set of equivalence classes
of the ∼k relation. We can therefore check whether optimal
k-policies have the same value as optimal policies.

The size of the product MDP state space is potentially
countably infinite since the states of the product contain the
stack, and its size is unbounded. However the rewards are

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

568

bounded for all states and actions, and depend only on the
the pdRM state, the current input symbol and the topmost
symbol on the stack. As a result, the potentially unbounded
growth in the size of the stack does not affect the immediate
rewards. The Bellman operator therefore remains a contrac-
tion mapping and value iteration converges to the optimal
value function as in the case of finite state spaces (see, e.g.,
(Feinberg 2011)).
Proposition 1. If after performing value iteration on the
product MDP, all ∼k-equivalent states have the same value
and the same sets of optimal actions, then optimal k-policies
achieve the same state values as optimal policies.

Proof. If the condition in the proposition holds, there exists
an optimal policy where action selection depends only on the
top k symbols on the stack. Hence, there exists a k-policy
that results in the same state values as an optimal policy.

In practice, it is not possible to check whether the condition
in Proposition 1 holds for an infinite MDP. However, by
bounding the maximal stack size to, e.g., the maximal length
of a stack string given the episode length, we can check
whether the condition holds for the resulting finite MDP.

5 Comparison With CRAs
In this section, we analyse the relative expressive power of
pdRMs and counting reward automata (CRA) (Bester et al.
2024) and evaluate the space blowup for pdRM- and CRA-
based policies. CRAs are based on counter machines (CM),
i.e., finite automata augmented with k counters (for given k)
that may be incremented, decremented and tested for zero.

First, we consider the expressive power of pdRMs and
CRAs. As both pdRMs and CRAs are automata, the reward
functions that they can encode correspond to the languages
they accept. Deterministic pushdown automata are strictly
more expressive than counter machines with one counter
(Fischer 1966). On the other hand, counter machines with
2 or more counters can simulate a Turing machine (Minsky
1967), and as such they are strictly more expressive than
pdRMs with one stack.

Next, we consider the space complexity of pdRMs and
CRAs, where by “space complexity” we mean the bounds on
the sizes of policies, i.e., the size of the table representing the
polices that are learnt with pdRMs and CRAs. As pdRMs and
CRAs only augment the state space of the underlying MDP,
we analyse the blowup they cause in the state space to deter-
mine the blowup in the size of the policies. To compare space
complexity, we focus on tasks representable in deterministic
context-free languages and consider only episodic tasks of
length n, as, in the case of non-episodic tasks (i.e., tasks
where the agent acts in the environment indefinitely), both
stacks and counters can assume infinitely many values and
policies learnt with both pdRMs and CRAs may be infinite.

Policies As policies have access to the entire stack, they
incur a blowup depending on the number of possible strings
that can appear on the stack (i.e., the cardinality of the stack
language). Let m be the maximum number of symbols that
can be added to the stack at any transition of the pdRM. We

define an ϵ-sequence as a sequence of ϵ-transitions in the
pdRM which are taken before the pdRM must read a symbol
to advance. Let e be the maximum number of ϵ-transitions
pushing symbols to the stack in a single ϵ-sequence of the
pdRM. At each step, the pdRM can add at most m(e + 1)
symbols to the stack, and, for input words of length n, the
maximum length of the stack string is bounded by nm(e+1).
Hence, the cardinality of the stack language is |Γ|0 + |Γ|1 +
. . .+ |Γ|nm(e+1). If |Γ| > 1, then the number of stack strings

is exactly |Γ|nm(e+1)+1−1
|Γ|−1 ∈ O

(
|Γ|nm(e+1)

)
; for |Γ| = 1 we

have that the number of stack strings is nm(e + 1) + 1 ∈
O(nm(e+ 1)).

Thus, we have the following:

Theorem 1. If |Γ| ≥ 2, policies incur a blowup in
O
(
|Γ|nm(e+1)

)
. If |Γ| = 1, policies incur a blowup in

O (nm(e+ 1)).

k-policies Unlike for policies, for k-policies we just have
to evaluate the number of strings of length at most k made
of symbols from the stack alphabet, regardless of the task
encoded by the pdRM. Clearly, the number of stack strings
of length up to k is |Γ|0 + |Γ|1 + . . .+ |Γ|k. Then, similarly
to policies, if |Γ| > 1, the number of stack strings is exactly
|Γ|k+1−1
|Γ|−1 ∈ O(|Γ|k), and for |Γ| = 1 the number of stack

strings is k + 1 ∈ O(k). Note that for k = 1, this implies
that the blowup is linear in |Γ|. Hence, we get the following.

Theorem 2. If |Γ| ≥ 2, k-policies incur a blowup in
O
(
|Γ|k

)
. If |Γ| = 1, k-policies incur a blowup in O(k).

Counting Reward Automata policies A policy trained
with access to a CRA (CRA policy) has access to the val-
ues stored in all counters at each timestep. To evaluate the
blowup in the size of the CRA policy, we analyse the number
of possible combinations of counter values, which we call
“counter configurations”.

First of all, for any DPDA recognising some language
L, it is possible to define a CM that recognises the same
language by simulating the DPDA. The set of states and the
state-transition function of the CM are the same as those of
the DPDA. In order to simulate the stack, we need to encode
each possible stack string in a counter configuration. As we
noted in the discussion of MDP-pdRM policies above, the
cardinality of the stack language, and thus the number of
counter configurations needed, is in O(|Γ|nm(e+1)) (where
m and e are as in the argument for Theorem 1). This implies
the following.

Theorem 3. For any task representable as a DCFL, there
always exists a CRA which encodes it and incurs a blowup of
O
(
|Γ|nm(e+1)

)
in the size of the CRA policy.

The above result gives an upper bound on the number
of possible counter combinations. We note that there is no
general tight lower bound on the number of counter config-
urations for counter machines with k counters (k-CM) to
recognise arbitrary DCFLs. Below, we give an example of
a DCFL for which any k-CM recognising it requires at least

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

569

exponentially many (in the input’s length) counter configura-
tions.

Let Lp = {σxσR | σ ∈ {0, 1}∗} be a “marked palin-
drome” language, where σR is the string σ but reversed. We
show that, for any k-CM that recognises Lp, the number of
counter configurations is at least exponential in the length
of the input word. We recall an argument given in the proof
of Theorem 1.3 in (Fischer, Meyer, and Rosenberg 1968).
For any k-CM to recognise Lp, it must be the case that after
reading the first half of the word (i.e., before the “mark” x),
the k-CM must be in different counter configurations after
reading two distinct strings σ1, σ2 of length m. This can
happen if and only if the number of possible counter config-
urations (after reading words of length m) is in Ω(2m), as
we need to encode each string in a tuple of natural numbers.
However, in the (worst) case that the string does not contain
the mark x, the CM must encode the entire string of length n
in a combination of counter values. Therefore, in this second
case the number of counter configurations is in Ω(2n). Thus,
we obtain the following result on the size of CRA policies.
Theorem 4. There is a task representable by a DCFL for
which any CRA that encodes it incurs a blowup of Ω(2n) in
the size of the CRA policy.

In summary, pdRMs can incur an exponential, with respect
to the episode’s length, blowup in the size of policies. On
the other hand, for k-policies the blowup is polynomial (and
linear when k = 1) with respect to the cardinality of the stack
alphabet. For CRAs, we can always obtain an upper bound
for any task expressible as a DCFL by simulating a pdRM
for the task (Theorem 3).

We have seen a case in which a CRA policy incurs a
blowup which is at least exponential in the length of the
episode (Theorem 4). However, in principle there is no tight
lower bound on the blowup for policies based on CRAs, and
pdRMs. For example, it is easy to see that the number of
strings in the stack language of a pdRM which recognises the
language {0n1n | n ∈ N} is linear in the length of the input
word. Similarly, one can prove the same bound for CRAs.
Therefore, in this case, both policies and CRA policies would
incur only a linear (in the episode’s length) blowup in the
policies’ size. Because of this, whether CRAs or pdRMs
hould be used to encode a given task should be decided on
a case-by-case basis. However, if k-policies (for a given k)
are sufficient to learn optimal behaviours with respect to the
task (see Section 4), then k-policies should be preferred to
policies if the policy size is to be minimised.

6 Exploiting Counterfactual Experiences
RMs were designed, primarily, with two objectives in mind:
to provide a normal-form representation for temporally ex-
tended reward functions specified natively in RMs or trans-
lated from various languages, and to improve sample effi-
ciency of RL via exploitation of the structure of that normal-
form representation. The latter was achieved through the
development of off-policy RL algorithms that performed
counterfactual reasoning over the automata structure to con-
sider experiences in different automata states. This approach
was born out in algorithms such as QRM and CRM which

operated in tabular and deep learning settings (Toro Icarte et
al. 2018; Toro Icarte et al. 2022), with identical behaviour in
tabular domains. At each timestep, these algorithms augment
training with the real experience with a set of additional syn-
thetic counterfactual experiences that correspond to the same
(s, a, s′) transition experienced in a counterfactual (different)
state of the RM. A modified version of this algorithm and
approach was proposed by Bester et al. (2024) for use with
CRAs.

In this section, we introduce an extension of CRM, which
we dub CpRM, that can be used with pdRMs. To exploit
pdRMs, in addition to considering a counterfactual state of
the pdRM, CpRM also changes the string on the stack to pro-
duce the counterfactual experiences. However, as we noted
in Section 5, the number of stack strings can be exponen-
tial in the length of the episode. In practice, this can make
CpRM extremely slow given the number of counterfactual
updates it would make at each timestep. Moreover, observe
that in some cases it is even possible that some stack strings
are never observed. Because of this, we designed CpRM so
that it uses only the set of observed stack strings to produce
the counterfactual experiences.

A version of CpRM for policies is shown in Algorithm 1
(the approach can be adapted to k-policies by modifying
action sampling and policy updates; see Appendix D in (Var-
ricchione et al. 2025)). Compared to CRM, the main changes
in CpRM lie in lines 2, 6, and 10. In line 2, we initialise
the set of observed stack strings O; in line 6 we add the
current stack string ζ to O (obviously, if ζ ∈ O already then
this operation changes nothing); finally, in line 10 we cycle
through the observed stack strings, and use these to generate
the counterfactual experiences. The rest of the algorithm is
effectively identical to the original CRM, making it usable
with any off-policy RL algorithm. In Section 7 we provide
results for agents trained with Q-learning augmented with
CpRM.

7 Experimental Evaluation
In this section we provide empirical results we have obtained
from various experiments in five domains.1 One of the five do-
mains is taken from (Bester et al. 2024) to allow comparison
of pdRMs with CRAs. All domains were implemented using
the Gymnasium framework (Towers et al. 2024). For discrete
domains, we have trained agents using Q-learning (Watkins
and Dayan 1992), both in its vanilla form and with coun-
terfactual updates using CpRM. For the continuous domain
we have trained agents with Proximal Policy Optimization
(PPO) (Schulman et al. 2017) and its recurrent variant, using,
respectively, the STABLE-BASELINES3 (Raffin et al. 2021)
and SB3 CONTRIB implementations.

During experiments, agents were trained and then evalu-
ated by periodically running 10 test episodes after a domain-
specific number of training episodes. For all experiments we
plot the rewards obtained by the agents in the test episodes,
normalised between 1 and −1. Specifically, we plot the me-
dian rewards with lines, and the 25th and 75th percentiles of

1The code is available at
https://github.com/giovannivarr/pushdown-reward-machines.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

570

Algorithm 1 Q-learning with CpRM (policy)

Input: MDP-pdRM T , num episodes

1: Initialise q̃(s, u, ζ, a) arbitrarily for each s ∈ S, u ∈
U, ζ ∈ Γ∗, a ∈ A

2: O ← {} {Set of observed stack strings}
3: for ℓ← 0 to num episodes do
4: s← EnvInitialState(), u← u0 and ζ ← Z
5: while s is not terminal and u ̸∈ F do
6: O ← O ∪ {ζ}
7: Sample action a using policy derived from q̃ (e.g.,

ϵ-greedy) given current state ⟨s, ζ, u⟩
8: Take action a and observe the next state s′

9: for pdRM state uc ∈ U do
10: for stack string zcζc ∈ O do
11: ⟨u′

c, ζ
′
c⟩ ← δu(uc, L(s, a, s

′), zc)
12: rc ← δr(uc, L(s, a, s

′), zc)
13: if s′ is terminal or u′

c ∈ F then
14: q̃(s, uc, zcζc, a)

α←− rc
15: else
16: q̃(s, uc, zcζc, a)

α←− rc+
γmaxa′∈A q̃(s, u′

c, ζ
′
cζc, a)

17: Update pdRM configuration to ⟨u′, ζ ′⟩ ⊣L(s,a,s′)

⟨u, ζ⟩

the rewards as shadowed areas. For details on the experi-
mental setup, specifications of the machines used, and the
pdRMs we have used, we refer the reader to Section E of the
Appendix (Varricchione et al. 2025).

7.1 LETTERENV

The LETTERENV domain is a domain introduced in the orig-
inal paper on counting reward automata (Bester et al. 2024).
The environment is a gridworld where the agent can observe
three different events A,B, and C in specific cells. Initially,
only the events A and C can be observed. Every time that the
agent observes the event A by visiting the corresponding cell,

Figure 2: LETTERENV results, comparing agents trained with a
pdRM and with a CRA. This shows how pdRMs can be used to
encode part of the tasks encodable by CRAs.

there is a probability of 1
2 that the cell becomes labelled with

the event B from that timestep onwards. The task consists
in repeatedly observing the event A until the agent observes
the event B, and then observing the event C for the same
number of times that the event A was observed. We include
this domain to show that pdRMs can be used to obtain com-
parable results to CRAs when encoding tasks representable
in deterministic context-free languages (DCFLs).

For this experiment, we have used the implementation
and experimental setup from Bester et al.’s Github repos-
itory as of May 12th 2025.2 Additional documentation is
also available online.3 We trained six agents. Two were
trained with the CRA from the repository of Bester et al.,
one using Q-learning and the other using CQL, a variant of
the original QRM algorithm (Toro Icarte et al. 2022) that
uses counterfactual experiences to improve sample efficiency,
adapted by Bester et al. (2024) for CRAs. We refer to the
two CRA-based agents as the Q-CRA agent and CQL-CRA
agent respectively. For the pdRM-based agents, we trained
a 1-policy and a policy agent with vanilla Q-learning, and a
1-policy and a policy agent with CpRM Q-learning. We refer
to these agents as the 1-pdRM agent, pdRM agent, 1-CpRM
agent, and CpRM agent respectively, and write -pdRM and
-CpRM agents to refer to all agents trained with the respective
variant of Q-learning.

The results of the experiment are shown in Fig. 2. As can
be seen, the agents that achieve the best performance are
the -CpRM agents, the 1-pdRM agent, and the CQL-CRA
agent. In contrast, the Q-CRA and the pdRM agents manage
to increase their accrued rewards only towards the end of
the training episodes; however, they both cannot match the
performance of the other agents (although, given enough
time, they will eventually reach the same performance). For
the agents trained with the pdRM, the results suggest that the
smaller state space of the 1-pdRM agent allows it to more
easily learn to achieve the task compared to the pdRM agent;
moreover, the smaller state space allow the 1-pdRM agent
to converge as fast as the CQL-CRA agent, which is trained
with counterfactual experiences. Note how the 1-CpRM and
the CpRM agents converged faster than the rest, and how the
latter agent achieved the task as opposed to the pdRM agent
which did not. This shows that CpRM can increase sample
efficiency. The results suggest that pdRMs can be used in
place of CRAs when tasks can be encoded in DCFLs.

7.2 1-TREASUREMAZE
In the 1-TREASUREMAZE environment, the goal of the agent
is to navigate a maze to find a treasure, retrieve it, and then
return to the initial location by following the reversed path
it took to find the treasure. For a detailed explanation of the
environment, we refer the reader to the example in Section 3.
The aim of this experiment is to show there are cases where
pdRMs are more sampe efficient than CRAs.

For this experiment, we trained the same agents as in the
LETTERENV experiment. The CRA encodes the task by
encoding the path the agent is following to reach the treasure,

2https://github.com/TristanBester/counting-reward-machines
3https://crm-74a68705.mintlify.app

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

571

https://github.com/TristanBester/counting-reward-machines
https://crm-74a68705.mintlify.app

Figure 3: 1-TREASUREMAZE (left) and MULTIPLETREASUREMAZE (right) results. We provide individual plots for each maze in Section
E of the Appendix in (Varricchione et al. 2025). In both plots, each maze is identified by a line style, and each agent by a colour. The
1-TREASUREMAZE plot shows how the 1-pdRM agent could achieve the task on all mazes, whereas the pdRM and the Q-learning CRA agents
only on the smallest maze. The -CpRM agents only managed to achieve the task in the smallest maze; in the other cases training timed out due to
the time required to perform the policy updates. The CQL-CRA agent never managed to achieve the task. For the MULTIPLETREASUREMAZE
experiment, we include only results from the 1-pdRM and pdRM agents trained with vanilla Q-learning. As can be seen, on mazes the 1-pdRM
agent learnt to achieve the task, whereas the pdRM agent did not. We believe this is due to the smaller size of the 1-policy.

similarly to the CM for the marked palindrome language in
Section 5. At each step, the counters of the CRA are updated
so that their configuration correctly encodes the path taken
so far. As there are four possible directions identifying each
step in the path, the number encoding a path is the translation
in base 10 of a number in base 4. We define 0, 1, 2, and 3
to be respectively the directions u, d, l, and r. Thus, at step i,
we add to the current encoding of the path the value 4i times
the direction’s value. In order to add this value, note how
the CRA must repeatedly add 4’s, as it can only add constant
values in each of its transitions.

Three different mazes were used: a 5×5 maze, a 10×10
maze, and a 20×20. In this experiment, we end episodes
when either the maximum number of timesteps has elapsed,
or a limit on wall clock time has been reached. In the left
plot in Fig. 3, we show the results obtained on all mazes for
the 1-TREASUREMAZE experiment. We identify each agent
with a colour, and each maze with a line style. In Section E of
the Appendix (Varricchione et al. 2025), we provide further
details on the maximum timesteps and wall clock limit per
episode, and three further plots, each containing the results
of the agents on each of the three mazes.

As can be seen (left plot in Fig. 3), all the -pdRM agents
managed to achieve the task in the 5 × 5 maze. However,
only the 1-pdRM agent managed to learn to also achieve the
task in the 10×10 and 20×20 mazes. We believe this is due
to the fact that the state space for the 1-pdRM agent is much
smaller than that for the pdRM agent. The -CpRM agents
could not learn to achieve the task as the training episodes
ended prematurely due to the wall clock time limit. This is
because of the number of counterfactual updates, which in
this scenario is large given the size of the stack language.
Note that it can be shown using the approach in Section 4
that optimal 1-policies learnt by the 1-pdRM agent have the
same state values as optimal pdRM and -CpRM policies.

The Q-CRA agent learned to achieve the task in the 5×5

maze, but not in the larger mazes. We believe the agent could
not learn to achieve the task in the larger mazes because the
counter values incur an exponential blowup with respect to
the number of elapsed timesteps, resulting in an exponential
number of operations per timestep and the episodes to end
prematurely due to the wall clock time limit. Finally, the
CQL-CRA agent never learnt to achieve the task. In addition
to having the same issue with respect to the exponential
blowup in the number of CRA operations that we observed
in the Q-CRA agent, the CQL-CRA agent’s training was
further slowed down by the counterfactual policy updates.
There are exponentially many counterfactual policy updates
as the number of possible combinations of counter values
is exponential in the maximum number of timesteps (due to
an argument similar to the one we have given to establish
Theorem 4).

In summary, the experiment shows that there are scenarios
where pdRMs are more suited to encode tasks and train agents
than CRAs. Note that we do not claim this to always be the
case, and believe that it should be decided on a case-by-case
basis which of the two machines is more appropriate.

7.3 MULTIPLETREASUREMAZE
The MULTIPLETREASUREMAZE environment is a variant
of the previous environment where the agent has to retrieve
multiple treasures. Before retrieving the treasures, the agent
has to first find an intermediate “safe” location. After finding
a safe location, the agent starts looking for treasures: as
soon as it finds one, it must return to the safe location by
following the reversed path it took to find such treasure. This
is repeated until the agent finds all treasures, after which
the agent observes a special event informing it that it has
found all treasures. The agent must then return from the
safe location to the initial exit location, by following the
reversed path it took to reach the safe location. We include
this experiment to show how pdRMs can enable learning of

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

572

Figure 4: DELIVERWORLD results. Left plot: agents performed 8 deliveries during training and testing (DELIVERWORLD-8). Right plot:
agents performed 4 deliveries during training episodes and 8 during testing episodes (DELIVERWORLD-4-8). For DELIVERWORLD-8, the
only agents that consistently achieve the task at the end of training are the -CpRM agents, the Q-learning 1-pdRM agent and the hierarchical
1-pdRM and 2-pdRM agents. The hierarchical pdRM agent manages to achieve the task but not as consistently. The other Q-learning agents
show the worse performance out of all agents, with the pdRM agent flatlining at a reward of −1. On the other hand, for DELIVERWORLD-4-8,
only the -CpRM agents and the hierarchical agents eventually learn to consistently achieve the task. This shows how pdRMs can help in
obtaining agents that complete longer tasks than the ones they were trained in.

more complex tasks.
In this experiment we have trained only the -pdRM agents.

We have excluded the -CpRM and CRA-based agents be-
cause the wall clock time limit would have stopped the train-
ing episodes prematurely as in the 1-TREASUREMAZE en-
vironment. Only a 10×10 maze and a 20×20 one were
used. Note that, for this experiment, the maximum number
of timesteps per episode for each maze is larger than in the
1-TREASUREMAZE experiments.

As can be seen (right plot in Fig. 3), the 1-pdRM agent
managed to eventually achieve the task in both mazes. Given
the longer episodes compared to the 1-TREASUREMAZE
domain, the agents were also able to learn to consistently
achieve the task in a relatively small number of episodes.
This shows that a pdRM can also be used in tasks where
more complex operations with the stack are required. On
the other hand, the pdRM agent did not manage to learn
to complete the task by the end of training in either maze.
We believe that this is mainly due to the size of the policy,
which seems to be too large for the agent to learn in this more
complex task.

The results show that, thanks to the flexible amount of
stack information that pdRMs allow in defining the agent’s
policy, pdRMs allow us to train agents in more complex tasks.

7.4 DELIVERWORLD

In DELIVERWORLD, the agent that is supposed to deliver
packages to locations. Each location is assigned a “type”
(e.g., shopping mall, clothing store, etc.), and there can be
multiple locations of the same type. At the start of each
episode, the agent observes an event which determines the
sequence of delivery location types it needs to visit to achieve
the task. This sequence is chosen randomly from a set. The
aim of this experiment is to illustrate that there are scenarios
where it is beneficial for the agent to have access to more
than the top symbol on the stack. In this experiment, we show

how CpRM and a hierarchical approach can improve sample
efficiency. Moreover, in a variant of the experiment, we show
how pdRMs allow training of agents that can perform a larger
number of subtasks in testing than in training episodes.

In this experiment we have compared three sets of agents,
all trained with access to the same pdRM: one was trained
with vanilla Q-learning, one with CpRM Q-learning, and the
last with a hierarchical approach.

For the hierarchical approach, we have adapted the hier-
archical algorithm proposed in (Toro Icarte et al. 2022). In
our pdRM-based version, the meta-policy has access to the
current MDP state, pdRM state and the stack of the pdRM.
The options’ policies have access to the current MDP state,
pdRM state, and only the topmost symbol on the pdRM stack.

We have used a 20×20 grid, with two possible setups
for the number of deliveries during training and the num-
ber of deliveries during testing. In the first, which we call
DELIVERWORLD-8, the agents perform 8 deliveries dur-
ing training and testing episodes. In the second, which we
dub DELIVERWORLD-4-8, the agents perform 4 deliveries
during training episodes and 8 during testing episodes. In
DELIVERWORLD-8, we trained three agents per approach: a
1-policy agent, a 2-policy agent (denoted 2-pdRM agent and
2-CpRM agent for the Q-learning approaches), and a policy
agent. In DELIVERWORLD-4-8, we have trained two agents
per approach: a 1-policy and a 2-policy agent.

Figure 4 shows the plots for both experiments. In both
plots, we can clearly see that the most sample efficient agents
are the -CpRM ones, followed by the hierarchical ones, and
with the vanilla Q-learning ones coming last.

In both scenarios, the -CpRM agents clearly outperform all
other agents in speed of convergence. Notice how CpRM and
the hierarchical approach improve the performance compared
to the pdRM agent in the DELIVERWORLD-8 task: when
trained with vanilla Q-learning, the pdRM agent never learns
to achieve the task; however the CpRM and hierarchical

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

573

Figure 5: WATERWORLD results, 17×17 map (left) and 20×20 map (right). We compare the performance of a 1-pdRM agent trained with
PPO against that of an agent trained with PPO and one of an agent trained with recurrent PPO. In the 17×17 map, the 1-pdRM agent is able to
achieve the task very quickly. Only the recurrent PPO agent manages to considerably improve its performance, but does not match that of the
1-pdRM agent. Similarly to the results of the 17×17 map, in the 20×20 map the 1-pdRM agent is the only one that consistently achieves the
task; significanly outperforming the other agents which do not improve their performance. These two plots show how the pdRM is crucial in
training agents to achieve this task.

agent both do. This shows how the hierarchical approach and,
when the stack language is not too large, CpRM can greatly
increase sample efficiency.

In the hierarchical approach, we can see that in the plot of
DELIVERWORLD-8 (left in Fig. 4) the 2-pdRM converges
faster. We believe that this is due to the fact that, by having
access to the top two symbols, the agent learns to correctly
plan which delivery location type to visit first. On the other
hand, in the plot of DELIVERWORLD-4-8 (right in Fig. 4),
the 1-pdRM and the 2-pdRM seem to converge at the same
pace. For this setup, we think that the fact that the agent needs
to perform fewer deliveries during training penalizes agents
with larger policy state spaces. Shorter training episodes
(compared to the testing ones) imply that the agents can
explore fewer states during training, thus leading to worse
performance for the 2-pdRM agent compared to the results it
obtained in DELIVERWORLD-8.

Finally, for the Q-learning agents, the 1-pdRM agent has
the best performance in both plots. In principle, the other
two Q-learning agents should be able to learn a policy that
is at least as good as that of the 1-pdRM agent. Note that of
the Q-learning agents, the only one which is guaranteed to
achieve an optimal policy in the limit is the pdRM agent (see
Section 4). However, given the state-space complexity of the
policies and the limited number of episodes, the 2-pdRM and
pdRM agents do not learn to achieve the task.

Interestingly, from the plot of DELIVERWORLD-4-8, we
can see that agents trained with pdRMs learn policies that,
even though trained in smaller instances, performed ade-
quately in larger testing instances. The -CpRM agents are
able to achieve the test task relatively quickly, whereas the
hierarchical agents eventually manage to achieve the test task
by the end of training. Moreover, although the Q-learning
agents do not achieve the test task, their testing rewards in-
crease over time. We conjecture that with a longer training
they should also converge to policies that achieve the test
task. This suggests that pdRMs can, to a certain degree, help
agents to learn policies that can achieve longer tasks than the

ones that they are trained in.

7.5 WATERWORLD

The last domain is based on the WATERWORLD domain
(Karpathy 2015). The task consists of two steps. In the first,
the agent must touch 8 balls. Each of these balls is labelled
with a (unique) number from 2 to 9: whenever the agent
touches the ball identified with i, the pdRM pushes the parity
of i to the stack and the ball disappears. Once all 8 balls are
touched, the pdRM moves to a new state and the second phase
of the task begins. In this phase, the agent has to touch one of
two other balls, numbered 0 and 1 determined by the topmost
parity on the stack. When the agent correctly touches the ball,
it is moved to a new random location and the topmost symbol
of the stack is popped. The task is considered achieved when
the stack has been emptied.

The aim of this experiment is to evaluate whether pdRMs
can provide an advantage in continuous domains when using
a deep algorithm. We trained three agents using Proximal
Policy Optimization (PPO) (Schulman et al. 2017): the first
has access to the pdRM that encodes the task (and is trained
with a 1-policy), the second does not, and the third also does
not have access to the pdRM, but is trained with recurrent
PPO, i.e., an implementation of PPO where both the actor
and critic networks employ long short-term memory (LSTM)
units (Hochreiter and Schmidhuber 1997). LSTMs are a
type of recurrent neural network, meaning they can capture
sequential dependencies in data. Intuitively, using an LSTM
should help the agent “remember” important events that have
happened during the episode. Note that, as PPO is an on-
policy algorithm, CpRM cannot be used. Instead, we used
Soft Actor Critic (SAC) in conjunction with CpRM; however,
the training of the agents did not terminate, as the server we
used to run the WATERWORLD experiments had a time limit
on each job. We therefore do not report the results of agents
trained with the counterfactual approach for this experiment.

We have trained the agents in two different maps, a 17×17
one and a 20×20 one, and the results are shown in the left

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

574

and right plot of Fig. 5 respectively.
As can be seen, in the 17×17 map (left in Fig. 5) the

agent trained with the pdRM was able to achieve the task
very quickly, and while it showed a small decrease in perfor-
mance between the 5th and 20th episodes, it recovered and
managed to outperform its initial results. The agent trained
with recurrent PPO managed to improve its policy, but by the
end of training its performance still showed high variance.
Finally, the vanilla PPO agent only showed an increase in
performance at the end of training, however, its resulting per-
formance was not comparable to that of the 1-pdRM agent or
the recurrent PPO agent. In the 20×20 map (right in Fig. 5)
neither the recurrent PPO nor vanilla PPO agents learnt a
policy that achieved the task in the test episodes. However,
the agent with access to the pdRM could learn a policy that
consistently achieved the task in the test episodes from the
20th training episode. The results suggest that, in this sce-
nario, using a pdRM is crucial in training and in increasing
sample efficiency, performing better than deep algorithms
employing recurrent networks.

8 Related Work
The literature on reward machines is now quite large. We
focus specifically on work in which reward machines are mod-
ified in a way that is similar to our approach. The approach
of Bester et al. (2024) is closest to ours and is discussed in
Section 5. The task monitors of Jothimurugan, Alur, and Bas-
tani (2019) are automata with numeric registers (and so are
similar to Bester et al.’s counting reward automata), but the
purpose of the registers was not to define more complicated
temporal patterns but to keep track of the quantitative degrees
to which subtasks had been completed and constraints satis-
fied (so as to provide shaped rewards). Furelos-Blanco et al.
(2023) augment reward machines by introducing a hierarchy.
In such hierarchies, RMs are able to call other RMs during
execution. However, as they assume that there is always a leaf
RM that cannot call other RMs, and that each RM cannot be
called by itself, even via recursive calls, they cannot express
all tasks representable in DCFLs. Another modification of
reward machines, First-Order Reward Machines (FORMs),
is proposed by Ardon et al. (2025), where transitions are
labelled by first-order logic formulas. However, FORMs only
increase the expressivity of the events labelling transitions
in RMs. On the other hand, our increased expressivity lies
in the set of tasks that can be encoded by pdRMs, which is
strictly larger than the set of tasks encodable by RMs.

Other work has proposed approaches where RL agents are
trained to achieve tasks that can be represented as determin-
istic context-free languages. In particular, Hahn et al. (2022)
introduce recursive reinforcement learning, where recursive
MDPs (RMDPs) model the environment in which agents
act. RMDPs generalise MDPs in that they consist of a set of
MDPs where each MDP can “call” other MDPs. By keeping
a stack of calls, RMDPs can encode tasks representable as
DCFLs. Indeed, the authors specifically mention context-free
reward machines as a possible application of recursive RL;
however they do not provide a formal argument. While it
would be interesting to formally connect recursive RL to

pdRMs, this lies outside of the scope of this work and we
leave it to future research.

9 Conclusions
In this paper, we have presented pushdown reward machines,
an extension of reward machines which can encode non-
Markovian tasks representable as deterministic context-free
languages. Compared to reward machines, pdRMs are thus
able to encode a strictly larger set of tasks. We have proposed
two policy types for pdRMs, one where the agent has access
to the full stack (policies), and one where it can access only
its top k symbols (k-policies). In general, the state values of
an optimal k-policy might not be as high as those of a policy.
We described a procedure to check whether an MDP and a
pdRM are such that the two policy types have the same opti-
mal state values. We have also compared pdRMs to counting
reward automata (Bester et al. 2024), another extension of
reward machines capable of encoding tasks representable
as any recursively enumerable language. We showed that,
when an agent trained with a pdRM has access only to the
top symbol of the pdRM’s stack, the size of a 1-policy can
be exponentially smaller (with respect to the episode’s maxi-
mum length) than the size of a policy an agent trained with
a CRA for the same task. Finally, in the experimental eval-
uation, we have shown how pdRMs can be used in practice.
We have seen how in certain scenarios it is more convenient
to use pdRMs than CRAs. We have also provided counter-
factual and hierarchical algorithms specifically tailored for
pdRMs, and saw how they can increase convergence speed.
Finally, we have used pdRMs in a continuous domain, and
showed how they can outperform state-of-the-art algorithms
employing recurrent neural networks.

There are several directions for future work. First, we
plan to investigate the mixed performance of CpRM in the
1-TREASUREMAZE and WATERWORLD tasks. It would
also be interesting to automatically synthesise pdRMs, as
was done with reward machines via, e.g., logic formalisms
(Camacho et al. 2019; Varricchione et al. 2023), search and
learning (Toro Icarte et al. 2019; Toro Icarte et al. 2023;
Furelos-Blanco et al. 2023; Hasanbeig et al. 2024) or plan-
ning (Illanes et al. 2019; Varricchione et al. 2024). As deter-
ministic pushdown automata are the underlying structure of
pdRMs, we think LR(k) grammars (Knuth 1965) could be
good candidates to synthesise pdRMs, as they can be easily
translated into DPDAs (Aho and Ullman 1973). Finally, as
the stack can provide the agent with even further memory,
pdRMs can be an interesting alternative approach to RMs
(Toro Icarte et al. 2019; Toro Icarte et al. 2023) in dealing
with partially observable environments.

Acknowledgements
We thank the anonymous reviewers for their helpful com-
ments. The second and final authors gratefully acknowl-
edge funding from the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the Canada CI-
FAR AI Chairs Program. Resources used in preparing this
research were provided, in part, by the Province of Ontario,
the Government of Canada through CIFAR, and companies

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

575

sponsoring the Vector Institute for Artificial Intelligence
(www.vectorinstitute.ai/partners). Finally, the second and
final authors thank the Schwartz Reisman Institute for Tech-
nology and Society for providing a rich multi-disciplinary
research environment.

References
Aho, A. V., and Ullman, J. D. 1973. The Theory of Pars-
ing, Translation, and Compiling, volume 1. Prentice-Hall
Englewood Cliffs, NJ.
Ardon, L.; Furelos-Blanco, D.; Parac, R.; and Russo, A. 2025.
FORM: Learning expressive and transferable first-order logic
reward machines. arXiv preprint arXiv:2501.00364.
Bester, T.; Rosman, B.; James, S.; and Tasse, G. N. 2024.
Counting reward automata: Sample efficient reinforcement
learning through the exploitation of reward function structure.
arXiv preprint arXiv:2312.11364.
Camacho, A.; Toro Icarte, R.; Klassen, T. Q.; Valenzano,
R.; and McIlraith, S. A. 2019. LTL and beyond: Formal
languages for reward function specification in reinforcement
learning. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, IJCAI-19, 6065–6073.
Chomsky, N., and Schützenberger, M. P. 1959. The algebraic
theory of context-free languages. In Studies in Logic and the
Foundations of Mathematics, volume 26. Elsevier. 118–161.
Feinberg, E. A. 2011. Total expected discounted reward
MDPs: Existence of optimal policies. In Cochran, J. J., ed.,
Wiley Encyclopedia of Operations Research and Management
Science. John Wiley & Sons, Hoboken, NJ.
Fischer, P. C.; Meyer, A. R.; and Rosenberg, A. L. 1968.
Counter machines and counter languages. Mathematical
Systems Theory 2(3):265–283.
Fischer, P. C. 1966. Turing machines with restricted memory
access. Information and Control 9(4):364–379.
Furelos-Blanco, D.; Law, M.; Jonsson, A.; Broda, K.; and
Russo, A. 2023. Hierarchies of reward machines. In Inter-
national Conference on Machine Learning, 10494–10541.
PMLR.
Hahn, E. M.; Perez, M.; Schewe, S.; Somenzi, F.; Trivedi,
A.; and Wojtczak, D. 2022. Recursive reinforcement learn-
ing. Advances in Neural Information Processing Systems
35:35519–35532.
Hasanbeig, H.; Jeppu, N. Y.; Abate, A.; Melham, T.; and
Kroening, D. 2024. Symbolic task inference in deep rein-
forcement learning. J. Artif. Intell. Res. 80:1099–1137.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation 9(8):1735–1780.
Illanes, L.; Yan, X.; Toro Icarte, R.; and McIlraith, S. A. 2019.
Symbolic planning and model-free reinforcement learning:
Training taskable agents. In 4th Multidisciplinary Conference
on Reinforcement Learning and Decision Making (RLDM-
19), 191–195.
Jothimurugan, K.; Alur, R.; and Bastani, O. 2019. A compos-
able specification language for reinforcement learning tasks.
In Advances in Neural Information Processing Systems 32,
13021–13030.

Karpathy, A. 2015. REINFORCEjs: Waterworld
demo. https://cs.stanford.edu/people/karpathy/reinforcejs/
waterworld.html.
Knuth, D. E. 1965. On the translation of languages from left
to right. Information and Control 8(6):607–639.
Minsky, M. L. 1967. Computation. Prentice-Hall Englewood
Cliffs.
Puterman, M. L. 2014. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons.
Raffin, A.; Hill, A.; Gleave, A.; Kanervisto, A.; Ernestus,
M.; and Dormann, N. 2021. Stable-Baselines3: Reliable
reinforcement learning implementations. Journal of Machine
Learning Research 22(268):1–8.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Toro Icarte, R.; Klassen, T. Q.; Valenzano, R.; and McIlraith,
S. A. 2018. Using reward machines for high-level task
specification and decomposition in reinforcement learning. In
Proceedings of the 35th International Conference on Machine
Learning (ICML 2018), 2112–2121.
Toro Icarte, R.; Waldie, E.; Klassen, T. Q.; Valenzano, R. A.;
Castro, M. P.; and McIlraith, S. A. 2019. Learning reward
machines for partially observable reinforcement learning. In
Advances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems
2019, 15497–15508.
Toro Icarte, R.; Klassen, T. Q.; Valenzano, R.; and McIlraith,
S. A. 2022. Reward machines: Exploiting reward function
structure in reinforcement learning. Journal of Artificial
Intelligence Research 73:173–208.
Toro Icarte, R.; Klassen, T. Q.; Valenzano, R.; Castro, M. P.;
Waldie, E.; and McIlraith, S. A. 2023. Learning reward
machines: A study in partially observable reinforcement
learning. Artificial Intelligence 323:103989.
Towers, M.; Kwiatkowski, A.; Terry, J.; Balis, J. U.; De Cola,
G.; Deleu, T.; Goulao, M.; Kallinteris, A.; Krimmel, M.;
KG, A.; et al. 2024. Gymnasium: A standard interface
for reinforcement learning environments. arXiv preprint
arXiv:2407.17032.
Varricchione, G.; Alechina, N.; Dastani, M.; and Logan, B.
2023. Synthesising reward machines for cooperative multi-
agent reinforcement learning. In Malvone, V., and Murano,
A., eds., Proceedings of the 20th European Conference on
Multi-Agent Systems (EUMAS 2023), 328–344. Springer
Nature Switzerland.
Varricchione, G.; Alechina, N.; Dastani, M.; and Logan, B.
2024. Maximally permissive reward machines. In Proceed-
ings of the 27th European Conference on Artificial Intelli-
gence (ECAI 2024), 1181–1188. IOS Press.
Varricchione, G.; Klassen, T. Q.; Alechina, N.; Dastani,
M.; Logan, B.; and McIlraith, S. A. 2025. Pushdown re-
ward machines for reinforcement learning. arXiv preprint
arXiv:2508.06894.
Watkins, C. J., and Dayan, P. 1992. Q-learning. Machine
learning 8:279–292.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

576

https://cs.stanford.edu/people/karpathy/reinforcejs/waterworld.html
https://cs.stanford.edu/people/karpathy/reinforcejs/waterworld.html

	Introduction
	Preliminaries
	Pushdown Reward Machines
	When Are k-Policies Optimal?
	Comparison With CRAs
	Exploiting Counterfactual Experiences
	Experimental Evaluation
	LetterEnv
	1-TreasureMaze
	MultipleTreasureMaze
	DeliverWorld
	WaterWorld

	Related Work
	Conclusions

