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Abstract
The dialogue game-based approach to argumentation seman-
tics proposes to determine the acceptance status of arguments
through two-party zero-sum dialogue games. Furthermore,
by selecting different sets of rules to govern the moves of
arguments in the game, it allows for the characterization of
distinct argumentation semantics. This approach has proven
significant for theoretical and practical reasons. Accordingly,
the ability to identify the most suitable semantics for a given
domain is a key element in promoting the adoption of dia-
logue game-based semantics in real-world systems. This pa-
per introduces a set of principles for systematically analyzing
dialogue game-based semantics. We aim to contribute to ex-
isting frameworks by enabling a deeper understanding of the
theoretical foundations of such argumentation semantics. In
doing so, our framework may also guide the development of
new dialogue game-based semantics.

1 Introduction
Argumentation has become an effective paradigm for knowl-
edge representation and reasoning in Artificial Intelligence,
due to its ability to capture commonsense reasoning (Bench-
Capon and Dunne 2007; Rahwan and Simari 2009). The
different ways in which the arguments under consider-
ation and their relations can be evaluated offer a wide
range of possibilities and applications, such as legal reason-
ing (Prakken and Sartor 2015; Atkinson and Bench-Capon
2021), decision-support systems (Amgoud and Prade 2009)
and e-democracy (Bench-Capon, Atkinson, and Wyner
2015), among others. Such alternative behaviors can be en-
coded under the notion of argumentation semantics (Baroni,
Caminada, and Giacomin 2011), which are the subject of
continuous and ongoing studies in the literature.

The dialogue game-based approach to argumentation se-
mantics (see for instance (Modgil and Caminada 2009))
proposes determining the acceptance status of arguments
through two-party zero-sum dialogue games where the first
move corresponds to the proponent, who moves an initial ar-
gument that they wish to put to the test. Then, the opponent,
the counterpart of the proponent, and the proponent take
turns in moving arguments defeating their counterpart’s last
move while satisfying the set of rules imposed by the game.
Different sets of rules governing the move of arguments in

the game allow for characterizing distinct argumentation se-
mantics. Then, an argument is accepted if its proponent can
successfully defend it against all its defeaters.

Dialogue game-based semantics for abstract argumenta-
tion have proven significant for several reasons. From a the-
oretical perspective, they offer a complementary viewpoint
to other approaches for analyzing the foundations of argu-
mentation semantics—such as extension-based or labeling-
based. From a practical perspective, they focus on individual
argument evaluation without requiring the computation of
complete sets of extensions or labelings, thereby serving as
a basis for algorithmic development. Furthermore, several
techniques can be applied to dialogue games, allowing for
the development of efficient algorithms for argument evalu-
ation (Rotstein et al. 2011; Gottifredi et al. 2013; Alfano et
al. 2018; Cohen, Gottifredi, and Garcı́a 2019). The latter is
particularly significant for developing argumentation-based
knowledge representation and reasoning tools for real-world
applications (Briguez et al. 2012; Deagustini et al. 2013;
Briguez et al. 2014; Deagustini et al. 2017).

A key element in promoting the adoption of dialogue
game-based semantics in real-world systems is the capabil-
ity to identify the most suitable semantics for a given do-
main. To achieve this, it is essential to formally analyze
the foundations of existing dialogue game-based semantics,
compare them, and develop new ones when current alterna-
tives do not meet the requirements of a particular domain.

A principle-based framework for evaluating extension-
based argumentation semantics has been proposed in (Ba-
roni and Giacomin 2007). In that framework, several
principles embedded in different extension-based semantics
were presented, while others were introduced in subsequent
works (e.g., (van der Torre and Vesic 2017; Rienstra et al.
2020; Yu et al. 2021)). Our work introduces a set of princi-
ples that aim at contributing to existing frameworks to im-
prove the study of the theoretical foundations of argumen-
tation semantics. By deepening the understanding of the
principles underlying argumentation semantics, our frame-
work may also serve as a guide for developing new dialogue
game-based semantics. Each principle we propose mainly
emerges from the consideration of the dialogue game-based
approach to defining semantics.
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The set of principles we introduce is then used to ana-
lyze the dialogue game characterization of the grounded and
(credulous) preferred semantics (Dung 1995), the special
purpose semantics from (Garcı́a and Simari 2004)—here re-
ferred to as default semantics—and the pairwise cogency se-
mantics (Bodanza, Tohmé, and Simari 2016). The rationale
for focusing on these semantics is given in Section 4.

The rest of the paper is organized as follows. In Section 2
we present the basis of abstract argumentation. Section 3
introduces the bundle set-based approach for characterizing
dialogue games. The argumentation semantics we focus on
are given in Section 4. Section 5 proposes a set of princi-
ples for analyzing dialogue game-based semantics. Finally,
conclusions and future work are discussed in Section 6.

2 Background on Abstract Argumentation
Briefly, an argumentation framework (AF) (Dung 1995) is a
directed graph where the nodes represent arguments and the
edges represent a defeat relation between those arguments.
Definition 2.1. An argumentation framework is a pair F =
(Ar,Def), where Ar is a non-empty finite set of arguments
and Def ⊆ Ar × Ar is a defeat relation.

We say that A defeats B iff (A,B) ∈ Def. A is a self-
defeating argument iff A defeats A. If (A,B) ∈ Def and
(B,A) /∈ Def, A strictly defeats B. If (A,B) ∈ Def and
(B,A) ∈ Def, A and B mutually defeat each other.

Argumentation semantics are functions that embed some
reasonable behavior and determine, given an AF, which ar-
guments should be accepted and which should be rejected.
Next, some mainstream semantics from the literature are
presented following the extension-based approach.
Definition 2.2. Let F = (Ar,Def) be an AF, E ⊆ Ar, and
A ∈ Ar. E defends A iff for all B that defeats A there exists
C ∈ E such that C defeats B. The function Ch : 2Ar → 2Ar

such that Ch(E) = {A |E defends A} is the characteristic
function of F.
Definition 2.3. Let F = (Ar,Def) be an AF and E ⊆ Ar.
• E is conflict-free iff ∄A,B ∈ E such that A defeats B.
• E is naive iff it is a maximal (w.r.t. ⊆) conflict-free set.
• E is admissible iff it is conflict-free and E ⊆ Ch(E).
• E is a complete extension iff it is conflict-free and E =

Ch(E).
• E is the grounded extension of F iff it is the least fixed

point of the characteristic function Ch.
• E is a preferred extension of F iff it is a maximal (w.r.t. ⊆)

admissible set.

3 The Bundle Set-based Approach
Here, we build on the bundle set-based approach for dia-
logue game-based argumentation semantics (Chesñevar and
Simari 2007; Soto et al. 2024). This approach relies on the
notions of argumentation line and bundle set.
Definition 3.1. Let F = (Ar,Def) be an AF and A ∈ Ar.
An argumentation line for A from F is a finite sequence of
arguments of the form λ = [A1, . . . ,An] where A = A1

and each Ai, with 1 < i ⩽ n, is a defeater of Ai−1.

Throughout the rest of the paper we adopt the follow-
ing conventions: A,B, C, . . . represent different arguments,
while Ai denotes the argument appearing in the i-th position
of some argumentation line λ. We use Ai ∈ λ to denote that
Ai appears in λ. Sometimes we will refer to an argumen-
tation line simply as a line. If λ is an argumentation line
for A ∈ Ar, we say that λ is rooted in A. Moreover, when
the root argument of λ is not explicitly stated, we denote it
as root(λ). Lastly, when referring to multiple argumenta-
tion lines, we will denote them using lowercase subscripts
h, i, j, k, . . .. These subscripts serve solely to differentiate
lines and do not express any type of relation between them.

Next we formalize the notion of segment as a (sub) se-
quence of arguments from an argumentation line.
Definition 3.2. Let F be an AF and λ = [A1, . . . ,An] an
argumentation line from F. A segment of λ is a sequence
λ′ = [Ai, . . . ,Aj ], where 1⩽ i⩽ j⩽n. We say λ′ is initial
if i = 1, proper if it is initial and j < n, and upper if j = n.

Note that, given an argumentation line λ, every segment
λ′ of λ is also a line. Furthermore, every argumentation line
is an initial and upper segment of itself.

Next, we give the concept of bundle set, which is the
structure representing dialogue games in our setting. Intu-
itively, a bundle set is a set of argumentation lines such that
no line in the set is a proper segment of another.
Definition 3.3. Let F = (Ar,Def) be an AF and A ∈ Ar. A
finite set of argumentation lines for A is a bundle set for A,
denoted Λ(A), iff there exist no λi, λj ∈ Λ(A) such that λi

is a proper segment of λj .
Unless otherwise stated, in the following we focus on

non-empty bundle sets. We denote Λ(A) simply as Λ when-
ever A is irrelevant for the current discussion. Bundle sets
will be graphically represented as trees. This representa-
tion aligns with common practices in the literature, where
dialogue games are frequently depicted in this way. Given a
bundle set Λ, root(Λ) is the label of the root node of a tree T,
and for each node N of T labeled with an argument B, N
has a child N ′ labeled with C for each argument C defeat-
ing B and belonging to the same line (i.e., if there exists
λ ∈ Λ such that λ = [. . . ,B, C, . . .]). For a formal defini-
tion, see (Rotstein, Moguillansky, and Simari 2009).

The following concepts are part of the developments and
contributions of this paper. Bundle sets can be used to repre-
sent dialogue games that have been explored to their fullest
extent; that is, dialogue games where no line can be extended
by adding arguments, and no further lines can be considered.
This idea is formalized below.
Definition 3.4. Let F=(Ar,Def) be an AF, and Λ a bundle
set for A∈Ar. Λ is exhaustive, denoted ΛEx, iff there exists
no bundle set Λ′ for A such that Λ′ ̸=Λ and every line λj ∈Λ
is an initial segment of λk∈Λ′. Otherwise, Λ is partial.

Note that the presence of a line involving a cycle (w.r.t.the
defeat relation) is sufficient to prevent the existence of an
exhaustive bundle set. Intuitively, this represents a never-
ending dialogue game in which no conclusion about the root
argument’s acceptance can be reached. To guarantee the ex-
istence of an exhaustive bundle set, we rely on the notion
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of acceptability1, which characterizes a set of restrictions
on bundle sets. Hence, when referring to bundle sets sat-
isfying a given set of constraints, we will refer to them as
acceptable. Moreover, alternative definitions of acceptabil-
ity allow us to characterize the specific behavior of different
semantics. Thus, we will add a prefix to the term accept-
ability in order to identify the intended semantics. Since the
concepts presented below are general and apply to several
definitions of acceptability, we use the prefix σ to denote a
generic notion of acceptability for the remainder of this sec-
tion. Concrete definitions will be introduced in Section 4.
Definition 3.5. Let F = (Ar,Def) be an AF, σ a definition
of acceptability, and Λ a bundle set of F. Λ is σ-acceptable,
denoted Λσ , iff it satisfies all the constraints imposed by σ.

An argumentation line is σ-acceptable if it belongs to a
σ-acceptable bundle set. We will occasionally refer to a σ-
acceptable line without explicitly mentioning its bundle set.

In what follows, we focus exclusively on σ-acceptable
bundle sets, denoting the corresponding semantics as a sub-
script of the bundle set. This choice does not limit our ap-
proach since even the total absence of restrictions can yield
a possible version of acceptability. An exhaustive and σ-
acceptable bundle set is a bundle set such that no line in the
set can be further extended while satisfying σ-acceptability.
Definition 3.6. Let F = (Ar,Def) be an AF, σ a definition
of acceptability, and Λ a bundle set of F. Λ is exhaustive and
σ-acceptable, denoted ΛEx

σ , iff Λ is σ-acceptable and there
exists no σ-acceptable bundle set Λ′ ̸= Λ such that every
line λj ∈ Λ is an initial segment of λk ∈ Λ′.
Example 1. Let F be the AF depicted in Figure 1 (a). Let
us focus on argument A (a similar analysis holds for B) and
assume a definition of acceptability σ that does not impose
restrictions on bundle sets. Due to the cycle between A and
B, for any bundle set Λσ(A), there always exists another
bundle set Λ′

σ(A) such that λj ∈ Λσ(A) is an initial seg-
ment of λk∈Λ′

σ(A). Thus, there exists no exhaustive and σ-
acceptable bundle set for A. Let us now assume another def-
inition of acceptability σ′ that prevents the repetition of ar-
guments in a line in a bundle set. In this case, the exhaustive
and σ′-acceptable bundle set for A is ΛEx

σ′(A)={[A,B]}.
Next, we introduce the marking procedure for bundle sets,

whereby a label or mark D (defeated) or U (undefeated) is
assigned to each occurrence of an argument in an argumen-
tation line in a bundle set. The interpretation of these labels
is as follows. A label U indicates that all defeaters of the
argument are defeated, while the label D represents that at
least one defeater of the argument remains undefeated.

Before formalizing the marking procedure, let us intro-
duce the following notation. Let F = (Ar,Def) be an AF,
Λσ a bundle set for some argument in Ar, and λ′

j an ini-
tial segment of λj ∈ Λσ . The set of lines in Λσ extend-
ing λ′

j is Ex(λ′
j) = {λh ∈ Λσ |λ′

j is a proper segment
of λh}. The marking of the last argument Ai of λ′

j is de-
noted mark(Ai, λ

′
j ,Λσ). We adopt this notation since Ai

1It should not be mistaken for the notion of acceptability used
in (Dung 1995). Rather, it aligns more closely with the notion of
acceptability adopted in approaches like (Garcı́a and Simari 2004).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 1: (b)–(e) and (g)–(j) illustrate the exhaustive bundle sets
for argument A from the AFs depicted in (a) and (f), respectively.
Each bundle set corresponds to one of the following semantics (in
order): grounded, preferred, default, and pairwise cogency.

may appear in different lines, positions, bundle sets, and
with differing markings. Then, this notation allows us to
identify the argument Ai (note that λ′

j is shared by all lines
where Ai appears in the same position i) and the context in
which the marking of Ai is being analyzed, unambiguously.
Definition 3.7. Let F be an AF, Λσ a bundle set, and λ′

j =
[A1, . . . ,Ai] an initial segment of λj ∈ Λσ . The marking
of Λσ is the result of marking the last argument Ai of each
initial segment λ′

j of every λj ∈ Λσ as follows:

1. If Ex(λ′
j) = ∅, then mark(Ai, λ

′
j ,Λσ) = U.

2. If Ex(λ′
j) ̸= ∅, then mark(Ai, λ

′
j ,Λσ) = U iff for ev-

ery line λk ∈ Ex(λ′
j) it holds that the defeater Ai+1 of

Ai is such that mark(Ai+1, λ
′
k,Λσ) = D, where λ′

k =
[A1, . . . ,Ai,Ai+1]. Otherwise, mark(Ai, λ

′
j ,Λσ) = D.

Intuitively, condition 1 refers to the situation in which no
argument can be put against Ai; it is the last argument of
the line, accordingly marked as U. Condition 2 represents
the situation in which Ai has at least one defeater, hence
Ex(λ′

j) ̸= ∅. In this case, the marking of all defeaters Ai+1

of Ai must be considered. Only if Ai is defended from all its
defeaters (i.e., every Ai+1 is marked as D), will it be marked
as U (in all λk ∈ Ex(λ′

j)).
Building on the concepts defined thus far, we can formally

define the conditions under which an argument is ultimately
undefeated and is therefore considered accepted.
Definition 3.8. Let F = (Ar,Def) be an AF. An argument
A ∈ Ar is σ-accepted in F iff there exists an exhaustive
bundle set ΛEx

σ (A) such that mark(A, [A],ΛEx
σ (A)) = U.

Otherwise, A is σ-rejected.
With these tools, we are able to characterize some of the

semantics we want to address in this work. However, others
require additional elements, which we introduce next.

Relevance and Parsimony for Bundle Sets
This section aims at characterizing a minimal bundle set in-
cluding the argumentation lines required to unambiguously
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establish the marking of the bundle set root. This idea of
minimality is represented through the notions of relevance
and parsimony. Relevance has been defined in various ways
in the literature. In (Caminada 2006), an argument A is
relevant w.r.t. another argument B if there exists an undi-
rected path from A to B. In (Prakken 2005), an argument
is relevant for a dialogue game if its incorporation changes
the acceptance status of the root argument. Here, we align
with (Soto et al. 2024) and consider that an argumentation
line λ is relevant for the marking of the root of a bundle set Λ
if such marking depends on the presence of λ in Λ. How-
ever, we provide an alternative definition that better fits with
our requirement of representing several semantics. In what
follows, we introduce the necessary concepts to characterize
our intended notion of relevance.

The first concept that we introduce is the one of marking
sequence for argumentation lines (Rotstein, Moguillansky,
and Simari 2009; Moguillansky et al. 2013), originally intro-
duced in the context of dialectical trees (Garcı́a and Simari
2004). Below we adapt this notion to our general setting.
Given an AF F, SF, LF, and BF represent the domain of all
segments, lines, and bundle sets from F, respectively.

Definition 3.9. Let F be an AF, Λσ a bundle set from F,
λ ∈ Λσ , λ′ an initial segment of λ, and λ′′=[Ai, . . . ,Aj ] an
upper segment of λ′. The function mseq : SF×LF×BF →
{U,D}∗ defines a marking sequence mseq(λ′′, λ′,Λσ) =
[mi, . . . ,mj ], with mk = mark(Ak, λ

′′′,Λσ), where λ′′′ =
[A1, . . . ,Ak] is an initial segment of λ′, and i ⩽ k ⩽ j.

In the following, we will use regular expressions
to characterize the marking sequence of argumentation
lines (Moguillansky et al. 2013). Intuitively, only argu-
mentation lines with a marking sequence conforming to ei-
ther U(DU)∗ or (DU)∗ are relevant. The first expression,
U(DU)∗, describes the marking sequence of an odd-length
line, where the U mark is propagated from the last ele-
ment of the line to the root. The second, (DU)∗, repre-
sents an even-length line that results in the root argument
being marked as D. An argumentation line whose mark-
ing sequence contains two consecutive identical marks (i.e.,
[. . . ,D,D, . . .] or [. . . ,U,U, . . .]) is not considered relevant,
since the latter mark in such a sequence does not produce
the former—this follows directly from Definition 3.7.

Definition 3.10. Let F = (Ar,Def) be an AF and Λσ(A)
a bundle set for A ∈ Ar. An argumentation line
λ ∈ Λσ(A) is relevant for Λσ(A) iff it holds that: if
mark(A, [A],Λσ(A)) = U, then mseq(λ, λ,Λσ(A)) =
U(DU)∗; otherwise, mseq(λ, λ,Λσ(A)) = (DU)∗.

Next, we extend the notion of relevance to bundle sets.

Definition 3.11. Let F be an AF and Λσ a bundle set from F.
The relevant bundle set for Λσ , denoted ΛRe

σ , is defined as
ΛRe
σ = {λ ∈ Λσ |λ is relevant for Λσ}.

Example 2. Consider an AF F = (Ar,Def), with Ar =
{A,B, C,D} and Def = {(B,A), (C,B), (B, C), (D,A)}.
To keep the example short, let us focus on argument A and
assume a definition of acceptability σ prohibiting the rep-
etition of arguments in lines within a bundle set. We have
that ΛEx

σ (A) = {λ1, λ2}, where λ1 = [A,B, C] and λ2 =

[A,D]. Furthermore, mseq(λ1, λ1,Λ
Ex
σ (A)) = [D,D,U] and

mseq(λ2, λ2,Λ
Ex
σ (A)) = [D,U]. Then, the only relevant ar-

gumentation line for ΛEx
σ (A) is λ2. Thus, ΛRe

σ (A) = {λ2}
is the relevant bundle set for ΛEx

σ (A).

As another example, if we consider the AFs and the ex-
haustive and σ-acceptable bundle sets illustrated in Figure 1,
every ΛEx

σ (A) is also a relevant bundle set for itself.
Next, we show that the marking of a root argument is pre-

served when considering its relevant bundle set.

Proposition 1. Let F = (Ar,Def) be an AF, Λσ(A) a
bundle set for A ∈ Ar, and ΛRe

σ (A) the relevant bun-
dle set for Λσ(A). It holds that mark(A, [A],Λσ(A)) =
mark(A, [A],ΛRe

σ (A)).

Proof. We focus on bundle sets of odd-length lines. A simi-
lar analysis can be done for bundle sets of even-length lines.

(⇒) Let us assume that mark(A, [A],Λσ(A)) = U.
From Definition 3.11, every λ ∈ ΛRe

σ (A) is such that
mseq(λ, λ,Λσ(A)) = U(DU)∗. Now we need to show that
the previous marking remains unchanged in ΛRe

σ (A). Note
that all λ ∈ ΛRe

σ (A) are odd-length. Then, from Defini-
tion 3.7, for every λ ∈ ΛRe

σ (A), mseq(λ, λ,ΛRe
σ (A)) =

U(DU)∗. Therefore, mark(A, [A],ΛRe
σ (A)) = U.

(⇐) Let us assume that mark(A, [A],ΛRe
σ (A)) = U.

From Definitions 3.10 and 3.11, all λ ∈ ΛRe
σ (A) are

odd-length. Then, from Definition 3.7, for all λ ∈
ΛRe
σ (A), mseq(λ, λ,ΛRe

σ (A)) = U(DU)∗. Suppose there
exists λ ∈ ΛRe

σ (A) such that mseq(λ, λ,ΛRe
σ (A)) ̸=

mseq(λ, λ,Λσ(A)). Then, mseq(λ, λ,Λσ(A)) must be of
the form [. . . ,D,D, . . .] or [. . . ,U,U, . . .]. Accordingly, λ
is not relevant and λ /∈ ΛRe

σ (A), which is absurd. Then, for
all λ ∈ ΛRe

σ (A), mseq(λ, λ,ΛRe
σ (A)) = mseq(λ, λ,Λσ(A)).

Therefore, mark(A, [A],Λσ(A)) = U.

Below we introduce the notion of parsimonious bundle
set. Intuitively, a bundle set is parsimonious if it is a sub-
set of a relevant bundle set such that, for each argument in
an even position of a line within the set, there is a unique
defeater placed at the following odd position.

Definition 3.12. Let F be an AF, Λσ a bundle set from F, and
ΛRe
σ the relevant bundle set for Λσ . The parsimonious bundle

set for Λσ , denoted ΛPa
σ , is defined as ΛPa

σ = {λj ∈ ΛRe
σ |

for every even-length proper segment λ′
j = [A1, . . . ,Ai] of

λj , λ′
k = [A1, . . . ,Ai,Ai+1] is an initial segment of every

λk ∈ (Ex(λ′
j) ∩ ΛPa

σ )}.

Note that, if ΛPa
σ (A) is the parsimonious bundle set for

ΛEx
σ (A) such that A is marked as U, then the notion of par-

simonious bundle set is equivalent to the notion of winning
strategy in (Modgil and Caminada 2009).

Proposition 2. Let F = (Ar,Def) be an AF, Λσ(A) a
bundle set for A ∈ Ar, and ΛPa

σ (A) a parsimonious bun-
dle set for Λσ(A). It holds that mark(A, [A],Λσ(A)) =
mark(A, [A],ΛPa

σ (A)).

Proof. The proof is similar to that of Proposition 1. We fo-
cus on bundle sets of odd-length lines. A similar analysis
can be done for bundle sets of even-length lines.
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(⇒) Let us assume that mark(A, [A],Λσ(A)) = U.
From Definition 3.12, ΛPa

σ (A) is a subset of ΛRe
σ (A) for

Λσ(A). From Definition 3.11, every λ ∈ ΛPa
σ (A) is

such that mseq(λ, λ,Λσ(A)) = U(DU)∗. Thus, all λ ∈
ΛPa
σ (A) are odd-length. Then, from Definition 3.7, for all

λ ∈ ΛPa
σ (A), mseq(λ, λ,ΛPa

σ (A)) = U(DU)∗. Therefore,
mark(A, [A],ΛPa

σ (A)) = U.
(⇐) Let us assume that mark(A, [A],ΛPa

σ (A)) = U.
From Definition 3.12, ΛPa

σ (A) is a subset of ΛRe
σ (A) for

Λσ(A). From Definitions 3.10 and 3.11, all λ ∈ ΛPa
σ (A)

are odd-length. Then, from Definition 3.7, for all λ ∈
ΛPa
σ (A), mseq(λ, λ,ΛPa

σ (A)) = U(DU)∗. Suppose there
exists λ ∈ ΛPa

σ (A) such that mseq(λ, λ,ΛPa
σ (A)) ̸=

mseq(λ, λ,Λσ(A)). Then, mseq(λ, λ,Λσ(A)) must be
[. . . ,D,D, . . .] or [. . . ,U,U, . . .]. Accordingly, λ is not rel-
evant and λ /∈ ΛPa

σ (A), which is absurd. Then, for all
λ ∈ ΛPa

σ (A), mseq(λ, λ,ΛPa
σ (A)) = mseq(λ, λ,Λσ(A)).

Therefore, mark(A, [A],Λσ(A)) = U.

4 Acceptability for Bundle Sets
In this section, we provide the definitions of the semantics
we address. We restrict our attention to semantics with a
dialogue game characterization and adapt them to the bundle
set-based approach. As stated in Section 1, we focus on the
grounded (gr), (credulous) preferred (pr), default (df), and
(credulous) pairwise cogency (pc) semantics. Our selection
is motivated by the following reasons:
(1) The grounded and preferred semantics are two of the
most well-known semantics in the literature.
(2) The default and pairwise cogency semantics are both
non-naive and non-admissible, offering a contrast to the
grounded and preferred semantics, which are admissibility-
based. Also, the grounded and default semantics are skepti-
cal, while the preferred and pairwise cogency semantics are
credulous. Thus, the semantics we selected cover all combi-
nations of the aforementioned characteristics.
(3) We acknowledge the existence of semantics defined
through meta-games rather than standard argument games.
For instance, in the skeptical preferred game (Vreeswijk
and Prakken 2000; Modgil and Caminada 2009), parties ex-
change extensions instead of individual arguments. Simi-
larly, in weak cogency and cyclic cogency games (Bodanza,
Tohmé, and Simari 2016), parties exchange games. These
approaches differ significantly in structure, making a direct
comparison with our selected semantics difficult. For this
reason, we leave them outside the scope of this work.
(4) Most dialogue-based semantics involve two types of
moves—argue (proposing an argument as topic of discus-
sion) and counter-argue (attacking a previous argument)—
though these are not always made explicit. The semantics
we consider follow this approach. We acknowledge that
some semantics include additional types of moves; for ex-
ample, the game for stable semantics (Caminada and Wu
2008) introduces the question move. While such additional
locutions are certainly of interest, they introduce an extra
layer of complexity when comparing semantics. For this
reason, we exclude semantics that incorporate additional
speech acts from our analysis.

Before we delve into the different definitions of accept-
ability, we introduce some additional concepts and notation
that will be of use throughout the rest of the paper. We re-
fer to the semantics resulting from using σ-acceptability in
the bundle set-based approach as “σ-semantics”. In our set-
ting, the support and the opposition will be the two parties
involved in a dialogue. Intuitively, the support represents the
reasons in favor of the root argument, whereas the opposi-
tion represents the reasons against it.

Definition 4.1. Let F be an AF, Λσ a bundle set from F, and
λ ∈ Λσ . Supp(λ) = {Ai ∈ λ | i = 2k + 1}, with k ∈ N, is
the support of λ. Similarly, Opp(λ) = {Aj ∈ λ | j = 2k},
with k ∈ N, is the opposition of λ. The Support of Λσ is
defined as Supp(Λσ) =

⋃
{Supp(λ) |λ ∈ Λσ}.

In the following, we use Ai ≡2 Aj as shorthand for Ai ≡
Aj (mod 2). Each argument Ai in a line λ is a move carried
out by the support or the opposition. Ai supports (resp.,
opposes) Ah in a line, with h < i, if Ai ≡2 Aj (resp., if
Ai ̸≡2 Aj). Similarly, λ supports (resp., opposes) root(λ) if
λ is an odd-length (resp., even-length) line.

As mentioned in Section 3, acceptability allows us to
characterize different semantics by imposing restrictions on
bundle sets. These constraints can be seen as rules that the
support and the opposition must satisfy. Depending on the
semantics, such rules may or may not be the same for both
parties. To distinguish them, we denote the rules governing
the support and the opposition according to a given seman-
tics σ as SRσ and ORσ , respectively.

Except for the df semantics, multiple dialogue games ex-
ist for each of the semantics we address. Although these di-
alogue games are equivalent in terms of the set of accepted
arguments, they differ essentially in the number of moves re-
quired to conclude the root argument’s acceptance. We focus
on the most restrictive dialogue games—those constraining
the moves of each party the most. This choice is motivated
by the fact that such dialogue games tend to be the most brief
and concise, a feature we consider desirable. However, we
acknowledge that in certain scenarios, less restrictive vari-
ants of the dialogue games may be preferable.

gr-semantics. The first acceptability definition we con-
sider is equivalent to the grounded game (Prakken and Sartor
1997; Modgil and Caminada 2009). Hence, we refer to it as
grounded acceptability (gr-acceptability for short).

Definition 4.2. Let F be an AF. A bundle set Λσ from F
is gr-acceptable, denoted Λgr, iff for all λ ∈ Λσ , every
Ai ∈ Supp(λ) satisfies SRgr, which is characterized by the
following rules

1. There is no Aj ∈ λ such that i ≡2 j and Ai defeats Aj .
2. For all Aj ∈ λ such that j < i and i ≡2 j, Ai ̸= Aj .
3. Ai is a strict defeater of Ai−1.

Intuitively, rule 1 establishes that the support of each line
must be conflict-free. Rule 2 states that the support cannot
repeat arguments to defend the root argument. Finally, rule 3
says the support must strictly defeat each argument moved
by the opposition. Note that gr-acceptability only imposes
restrictions on the support, i.e., the set of rules ORgr is empty
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and that is why it is not given. The opposition is only re-
stricted by the concept of argumentation line, i.e., for all Ai

(with i even) in some λ ∈ Λgr, Ai is a defeater of Ai−1.

Credulous pr-semantics. The second version of accept-
ability we address is equivalent to the credulous preferred
game (Vreeswijk and Prakken 2000; Cayrol, Doutre, and
Mengin 2001; Modgil and Caminada 2009). Accordingly,
we call it preferred acceptability (pr-acceptability for short).
Definition 4.3. Let F be an AF. A bundle set Λσ from F
is pr-acceptable, denoted Λpr, iff for all λ ∈ Λσ , every
Ai ∈ Supp(λ) satisfies SRpr and every Aj ∈ Opp(λ) sat-
isfies ORpr, where:
• SRpr:

1. There is no Ah∈λ such that i ≡2 h and Ai defeats Ah.
2. Let ΛPa

σ be a parsimonious bundle set for Λσ . If Ai ∈
λj , with λj ∈ ΛPa

σ , then there is no Ah ∈ λk, with
λk ∈ ΛPa

σ , such that i ≡2 h and Ai defeats Ah.
• ORpr:

1. For all Ak ∈ λ such that k < j and j ≡2 k, Aj ̸= Ak.
2. There is no Ak ∈ λ such that j ̸≡2 k, k < j, and Ak

defeats Aj .
Rule 1 for the support is the same as in gr-acceptability.

Rule 2 extends the requirement of conflict-freeness to the
support of ΛPa

σ for Λσ . In the case of ORpr, rule 1 specifies
that the opposition cannot repeat arguments. Then, rule 2
prohibits the opposition from advancing any argument that
is defeated by a prior argument in the support.

df-semantics. The following acceptability definition is de-
fault acceptability, df-acceptability for short. It was pro-
posed in (Garcı́a and Simari 2004) for DeLP, a structured
formalism for defeasible argumentation. DeLP was a pio-
neer in the use of the notion of acceptability for argumenta-
tion lines, firstly introduced in (Simari and Garcı́a 1994).
Although the notion of acceptability is modular in DeLP
and several variations exist (e.g., (Garcı́a and Simari 2014;
Cohen et al. 2021; Brarda, Tamargo, and Garcı́a 2023)),
the definition provided in (Garcı́a and Simari 2004) has be-
come the default one, hence the name and why we focus
on it. Here, we introduce a slightly modified version of df-
acceptability adapted to abstract argumentation.
Definition 4.4. Let F be an AF. A bundle set Λσ from F is
df-acceptable, denoted Λdf, iff for all λ ∈ Λσ , every Ai ∈ λ
satisfies Rdf, with Rdf = SRdf = ORdf, and is characterized
by the following rules:
1. There is no Aj ∈ λ such that i ≡2 j and Ai defeats Aj .
2. For all Aj ∈ λ such that i ̸= j, Ai ̸= Aj .
3. If Ai−1 is a mutual defeater of Ai−2, then Ai is a strict

defeater of Ai−1.
Note that the support and the opposition must satisfy the

same set of rules. Rules 1 and 2 define restrictions imposed
by gr and pr-acceptability, but in a broader sense. According
to rule 1, the support (resp., the opposition) of each line must
be conflict-free. Rule 2 goes beyond by establishing that no
argument (neither from the support nor the opposition) can
be repeated in a line. Finally, by rule 3, a strict defeat is the
only available move after a mutual defeat.

Credulous pc-semantics. The last acceptability version
we consider corresponds to the pairwise cogency game (Bo-
danza, Tohmé, and Simari 2016); hence, we refer to it as
pairwise cogency acceptability, or pc-acceptability for short.
To clarify the underlying ideas of this dialogue game, we of-
fer an intuitive overview of the concepts of cogency and pair-
wise cogency (for a formal and detailed discussion see (Bo-
danza, Tohmé, and Simari 2016)). The cogency principle is
a relation among arguments. It is based on admissibility but
relaxed to offer alternative solutions to cycles of arguments.
Given an AF F = (Ar,Def) and S, S′ ⊆ Ar, S is at least as
cogent as S′ if S is admissible in F↓S∪S′—the restriction of
F to S ∪ S′. The set S is pairwise cogent iff S is maximal
w.r.t. cogency, i.e., if there exists no set S′ such that S′ is at
least as cogent as S and S is not as cogent as S′.

Definition 4.5. Let F be an AF. A bundle set Λσ from F
is pc-acceptable, denoted Λpc, iff for all λ ∈ Λσ , every
Ai ∈ Supp(λ) satisfies SRpc, and every Aj ∈ Opp(λ) satis-
fies ORpc, where:

• SRpc = SRpr.
• ORpc = ORpr ∪ {Aj is not a self-defeating argument}.

It is easy to see that pc-acceptability is based on pr-
acceptability. The additional restriction is that the opposi-
tion is prohibited from moving self-defeating arguments.

5 A Set of Principles for Studying Dialogue
Game-based Semantics

In this section we propose a set of formal principles to
analyze dialogue game-based semantics. These principles
emerge from addressing argumentation semantics as dia-
logue games, and are not meant to be exhaustive. This is
a first step towards a deeper discussion on the foundations
of dialogue game-based semantics.

Before introducing our proposed set of principles, it is
worth mentioning that all the semantics we address share
some characteristics. On the one hand, all of them corre-
spond to two-party zero-sum argument games. Moreover,
each argument moved in the dialogue might receive mul-
tiple arguments in response, and each party must respond
with each available argument. This last point is a direct
consequence of adopting the bundle set-based approach and
might differ in other approaches. However, this difference
in the characterization of a dialogue game-based seman-
tics does not affect the outcome—the set of arguments ac-
cepted/rejected by it.

We emphasize that some results in this section depend
both on the chosen semantics and on the specific set of re-
strictions used to characterize it. That is, different sets of
rules characterizing the same semantics may yield distinct
results regarding some principles.

The first principle we consider is finiteness, which intu-
itively refers to the fact that each dialogue game must end.
This is a crucial characteristic of any semantics; otherwise,
one would not be able to make a decision about an argu-
ment’s acceptance status. Here, this is captured by the exis-
tence of an exhaustive bundle set.
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Proposition 3. Let F = (Ar,Def) be an AF and σ ∈ {gr,
pr, df, pc} an acceptability-based semantics. For every non-
self-defeating argument A ∈ Ar, there exists an exhaustive
bundle set ΛEx

σ (A).

Proof. By Definition 2.1, every AF F = (Ar,Def) is fi-
nite. Also, from Definitions 4.2–4.5, all considered seman-
tics avoid the repetition of arguments for at least one of the
parties. Then, Lσ

A is finite for every A ∈ Ar. Further-
more, there exists at least one bundle set Λσ(A) such that all
λj ∈ Lσ

A are initial segments of λk ∈ Λσ(A). Thus, by Def-
inition 3.4, Λσ(A) is an exhaustive bundle set for A.

Self-defeating arguments represent an interesting case be-
cause, no exhaustive bundle set exists for them under the
considered semantics.

Proposition 4. Let F = (Ar,Def) be an AF, A ∈ Ar
a self-defeating argument and σ ∈ {gr, pr, df, pc} an
acceptability-based semantics. There exists no ΛEx

σ (A).

Proof. From Definitions 4.2–4.5, all considered semantics
require Supp(λ) to be conflict-free, for every line λ in any
bundle set. Since A is self-defeating, there exists no σ-
acceptable bundle set for A. Therefore, there exists no ex-
haustive and σ-acceptable bundle set for A.

By Proposition 4 and Definition 3.8, all self-defeating ar-
guments are σ-rejected in F under all considered semantics.

We refer to the next principle as impartiality. The under-
lying intuition is that, in certain contexts, a dialogue game
should be fair or impartial for both parties. To characterize
this, we adopt an approach based on determining the set of
available moves for each party according to each set of rules
provided by a given semantics. We formalize this below.

Definition 5.1. Let F be an AF and λ = [A1, . . . ,Ai] a
σ-acceptable argumentation line for some argument from F.

• If λ is even-length, the set of available moves for λ w.r.t.
SRσ is MSRσ(λ) = {Ai+1 |λ′ = [A1, . . . ,Ai,Ai+1]
and all Aj ∈ Supp(λ′) satisfy SRσ}. The set of avail-
able moves for λ w.r.t. ORσ is MORσ(λ) = {Ai+1 |λ′ =
[A1, . . . ,Ai,Ai+1] and all Aj ∈ Supp(λ′) satisfy ORσ}.

• If λ is odd-length, the set of available moves for λ w.r.t.
SRσ is MSRσ(λ) = {Ai+1 |λ′ = [A1, . . . ,Ai,Ai+1],
and all Aj ∈ Opp(λ′) satisfy SRσ}. The set of avail-
able moves for λ w.r.t. ORσ is MORσ(λ) = {Ai+1 |λ′ =
[A1, . . . ,Ai,Ai+1] and all Aj ∈ Opp(λ′) satisfy ORσ}.

We use common abbreviations for set inclusion. Let
X,Y ∈ {MSRσ(λ),MORσ(λ)}. We write X = Y if
X ⊆ Y and Y ⊆ X . Moreover, if X ⊆ Y and Y ⊈ X ,
we write X ⊂ Y .

Definition 5.2. Let σ be an acceptability-based semantics.
σ is impartial iff for every AF F and for every σ-acceptable
argumentation line λ, MSRσ(λ) = MORσ(λ). σ is incom-
parable w.r.t. impartiality iff there exist σ-acceptable argu-
mentation lines λ, λ′, possibly from different AFs, such that
MSRσ(λ) ⊈ MORσ(λ) and MORσ(λ

′) ⊈ MSRσ(λ
′). Oth-

erwise, σ is partial, i.e., σ is not incomparable w.r.t. im-
partiality, and there exists some σ-acceptable argumentation

(a)

(c)

(b)

(d)

(e)

Figure 2: AFs used to illustrate results in Section 5.

line λ from some F such that MSRσ(λ) ⊂ MORσ(λ) or
MORσ(λ) ⊂ MSRσ(λ).
Proposition 5. The df-semantics (1) is impartial; the gr-
semantics (2) is partial; and both the pr-semantics (3) and
pc-semantics (4) are incomparable w.r.t. impartiality.

Proof. (1) From Definition 4.4, SRdf = ORdf. Then,
MSRdf (λ) = MORdf (λ) for all df-acceptable line λ for any
AF F. Thus, from Definition 5.2, df-semantics is impartial.

(2) Note that MORgr(λ) = {Ai+1 | Ai+1 defeats Ai} for
all gr-acceptable line λ = [A1, . . . ,Ai] for any AF F. Then,
it is always the case that MSRgr(λ) ⊆ MORgr(λ). Let us
consider the AF depicted in Figure 1 (a), and the line λ2 =
[A]. Then, MSRgr(λ) = ∅ and MORgr(λ) = {B}. Thus,
MSRgr(λ) ⊂ MORgr(λ). Accordingly, from Definition 5.2,
the gr-semantics is partial.

(3) We prove this through counterexamples. Let us
consider the AF from Figure 2 (a) and the pr-acceptable
line λj = [A,B, C]. We have MSRpr(λj) = {B} and
MORpr(λj) = ∅. Then, MORpr(λj) ⊂ MSRpr(λj). Let us
also consider the AF from Figure 2 (b) and the pr-acceptable
line λk = [A,B]. MSRpr(λk) = ∅ and MORpr(λk) = {C};
thus, MSRpr(λk) ⊂ MORpr(λk). As a result, from Defini-
tion 5.2, the pr-semantics is incomparable w.r.t. impartiality.

(4) From Definition 4.5, the pc-semantics adds to the
pr-semantics a rule prohibiting the opposition from mov-
ing self-defeating arguments. Since the above counterexam-
ples for the pr-semantics do not include self-defeating argu-
ments, we obtain the same results as for the pr-semantics.
Then, pc-semantics is incomparable w.r.t. impartiality.

Whether impartiality is desirable in a given semantics de-
pends on the context of its application. For instance, in
multi-agent decision-making, an agent may refuse to en-
gage in a dialogue game it perceives as unfair. Conversely, a
partial semantics benefiting the opposition may be sensible
whenever cautious conclusions are required.

Impartiality appears to be related to how difficult it is to
accept an argument under a given semantics and whether
that semantics is skeptical or credulous. Intuitively, a more
skeptical semantics makes less committed decisions regard-
ing the acceptance status of arguments. This can be seen
as a more skeptical semantics requiring stricter conditions
for accepting an argument: only those arguments that do not
require committed decisions will be accepted. This corre-
sponds with a partial semantics that imposes stricter rules
on the support, such as the gr-semantics. Conversely, an
impartial semantics, such as df-semantics, represents a dia-
logue in which it is easier to accept an argument—in con-
trast to a partial semantics in favor of the opposition—since
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it is committed to the acceptance status of some arguments.
On the other hand, a hypothetical partial semantics favor-
ing the support would make acceptance even easier, since
the burden lies in rejecting arguments. While this analysis
offers useful insights—which we explore in the following
principles—we acknowledge that it has limitations. For in-
stance, both the pr- and pc-semantics are credulous, yet they
are incomparable w.r.t. impartiality.

To characterize how impartial a semantics is, we com-
pared MSRσ(λ) and MORσ(λ) (i.e., the sets of available
moves according to the support and the opposition rules, re-
spectively). Now, we will compare MSRσ(λ) and MSRσ′(λ)
(resp., MORσ(λ) and MORσ′(λ)) to analyze how restricted
each party is at each stage of a dialogue game under two
acceptability-based semantics σ and σ′.
Definition 5.3. Let σ, σ′ be acceptability-based semantics.
σ′ is at least as support-permissive as σ, denoted σ ⪯s σ

′,
iff for all σ-acceptable and σ′-acceptable argumentation
line λ from any AF F it holds that MSRσ(λ) ⊆ MSRσ′(λ).
Definition 5.4. Let σ, σ′ be acceptability-based seman-
tics. σ′ is at least as opposition-permissive as σ, denoted
σ ⪯o σ′, iff for all σ-acceptable and σ′-acceptable argu-
mentation line λ from any AF F it holds that MORσ(λ) ⊆
MORσ′(λ).

Let ⪯x be such that x ∈ {s, o}. Given two acceptability-
based semantics σ and σ′, we write σ ≺x σ′ if σ ⪯x σ′

and σ′ ̸⪯x σ. If σ ⪯x σ′ and σ′ ⪯x σ, we write σ ≡x σ′.
Moreover, we use σ ̸≡x σ′ if σ ̸⪯x σ′ and σ′ ̸⪯x σ.

We first study the support-permissiveness among the se-
mantics presented in Section 4.
Proposition 6. gr-semantics ≺s df-semantics.

Proof. Let λ = [A1, . . . ,Ai] be a gr-acceptable and df-
acceptable argumentation line from some AF F. From Def-
initions 4.2 and 4.4, we know that SRgr and SRdf only differ
in that the former prevents the support from moving a mu-
tual defeater Ai+1 while SRdf allows it as long as Ai is not
a mutual defeater of Ai−1. Then, it is always the case that
MSRgr(λ) ⊆ MSRdf (λ) and, by Definition 5.3, it holds that
gr-semantics ⪯s df-semantics.

To prove that df-semantics ̸⪯s gr-semantics, it suffices
to show that there might exist a gr-acceptable and df-
acceptable line λ such that MSRgr(λ) ⊂ MSRdf (λ). Con-
sider the AF from Figure 2 (a), and λ = [A,B]. Then,
MSRdf (λ) = {C} and MSRgr(λ) = ∅. Thus, MSRgr(λ) ⊂
MSRdf (λ) and gr-semantics ≺s df-semantics.

Proposition 7. pr-semantics ≡s pc-semantics.

Proof. By Definition 4.5, SRpr = SRpc. Then, for ev-
ery pr-acceptable and pc-acceptable line λ from any AF
F, MSRpc(λ) = MSRpr(λ). Therefore, it holds that pr-
semantics ≡s pc-semantics.

Observation 1. pr-semantics ̸≡s df-semantics.
The above observation follows straightforwardly from the

following two examples. Let us consider the AF from Fig-
ure 2 (d) and the pr-acceptable and df-acceptable bundle set
Λ = {λ1, λ2}, where λ1 = [A,B, C,D,G] and λ2 = [A, E].

Then, MSRdf (λ2) = {F} and MSRpr(λ2) = ∅, because F is
defeated by G, an argument belonging to Supp(λ1). There-
fore, MSRpr(λ2) ⊂ MSRdf (λ2). Let us now consider the AF
from Figure 2 (c) and λ = [A,B]. Then, MSRdf (λ) = ∅ and
MSRpr(λ) = {A, C}. Therefore, MSRdf (λ) ⊂ MSRpr(λ)
and pr-semantics ̸≡s df-semantics.

Proposition 8. gr-semantics ≺s pr-semantics.

Proof. From the results proved in (Modgil and Caminada
2009) it follows that if there exists a parsimonious bun-
dle set ΛPa

gr for some ΛEx
gr such that root(ΛEx

σ ) is U-marked,
then Supp(ΛPa

gr ) is conflict-free. From the above and Def-
initions 4.2 and 4.3, it follows that SRgr implies a super-
set of SRpr. Then, MSRgr(λ) ⊆ MSRpr(λ) for all gr-
acceptable and pr-acceptable line λ from any AF F. Hence,
by Definition 5.3, gr-semantics ⪯s pr-semantics. To prove
that pr-semantics ̸⪯s gr-semantics, it is sufficient to show
that there might exist a gr-acceptable and df-acceptable line
λ such that MSRgr(λ) ⊂ MSRpr(λ). Consider the AF
from Figure 2 (a), and λ = [A,B]. Then, MSRpr(λ) = {C},
MSRgr(λ) = ∅, and MSRgr(λ) ⊂ MSRdf (λ). Thus, gr-
semantics ≺s pr-semantics.

Corollary 1. The set of semantics {gr, pr, df, pc} is a par-
tially ordered set w.r.t. ⪯s.

Proof. It follows from Props. 6–8 and Observation 1.

The following results address opponent-permissiveness.

Proposition 9. df-semantics ≺o gr-semantics.

Proof. From Definitions 4.2 and 4.4, we know that ORdf
is a superset of ORgr. Then, MORdf (λ) ⊆ MORgr(λ) for
all gr-acceptable and df-acceptable line λ from any AF F.
Let us consider the AF from Figure 1 (f), and λ2 = [A].
Then, MORgr(λ2) = {B} and MORdf (λ2) = ∅. There-
fore, MORdf (λ2) ⊂ MORgr(λ2) and df-semantics ≺o gr-
semantics.

Proposition 10. pc-semantics ≺o pr-semantics.

Proof. From Definition 4.5, ORpc is a superset of ORpr
which incorporates a restriction to avoid moving self-
defeating arguments. Then, MORpc(λ) ⊆ MORpr(λ) for
all pr-acceptable and pc-acceptable line λ from any AF F.
Let us consider the AF depicted in Figure 1 (f), and the line
λ2 = [A]. Then, MORpr(λ2) = {B} and MORpc(λ2) = ∅.
Therefore, MORpc(λ2) ⊂ MORpr(λ2) and pc-semantics ≺o

pr-semantics.

Observation 2. pr-semantics ̸≡o df-semantics.

The above observation follows straightforwardly from the
following two examples. Let us consider the AF depicted
in Figure 1 (a) and the line λ2 = [A]. Then, MORdf (λ2) =
{B} and MORpr(λ2) = ∅. Let us also consider the AF
depicted in Figure 1 (f) and the line λ2 = [A]. Then,
MORdf (λ2) = ∅ and MORpr(λ2) = {B}. Consequently,
df-semantics ̸≡o pr-semantics.

Proposition 11. pr-semantics ≺o gr-semantics.
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Proof. From Definitions 4.2 and 4.3, it is easy to see that
ORpr is a superset of ORgr. Then, MORpr(λ) ⊆ MORgr(λ)
for all gr-acceptable and pr-acceptable line λ from any AF
F. By Definition 5.4, it holds that pr-semantics ⪯o gr-
semantics. Let us consider the AF depicted in Figure 1 (a),
and the line λ2 = [A]. Then, MORgr(λ) = {B} and
MORpr(λ) = ∅. Therefore, MORpr(λ) ⊂ MORgr(λ) and
pr-semantics ≺o gr-semantics.

Observation 3. df-semantics ̸≡o pc-semantics.

The above observation follows straightforwardly from
the following two examples. Let us consider the AF de-
picted in Figure 1 (a), and the line λ2 = [A]. Then,
MORdf (λ2) = {B} and MORpc(λ2) = ∅. Let us also con-
sider the AF from Figure 2 (e) and λ = [A,B, C]. Then,
MORdf (λ) = ∅ and MORpc(λ) = {D}. Thus, df-semantics
̸≡o pc-semantics.

Corollary 2. The set of semantics {gr, pr, df, pc} is a par-
tially ordered set w.r.t. ⪯o.

Proof. It follows from Props. 9–11 and Obs. 2–3.

The following intuition inspired our last proposed princi-
ple. The acceptance of an argument A is always grounded2

in a set of arguments. This set might be the empty set (if
the argument has no defeaters), the argument itself, or a set
of arguments S such that A /∈ S. It seems reasonable to
require that the groundings of A also be σ-accepted, since
otherwise we are accepting an argument without basis. This
is formalized below.

Definition 5.5. Let F = (Ar,Def) be an AF and A a σ-
accepted argument in F. Supp(ΛPa

σ (A)) is a grounding for
A, where ΛPa

σ (A) is a parsimonious bundle set for ΛEx
σ (A).

The set of groundings for A is denoted Grσ(A).

Definition 5.6. Let F be an AF, A a σ-accepted argument in
F, and Grσ(A) the set of groundings of A. The semantics
σ satisfies the grounding soundness property iff for every
S ∈ Grσ(A) and B ∈ S it holds that B is σ-accepted in F.

Proposition 12. The gr-semantics (1), pr-semantics (2), and
pc-semantics (3) satisfy the grounding soundness property.

Proof. (1) Let F be an AF and A a gr-accepted ar-
gument in F. By Definition 3.8, there exists ΛEx

gr (A)

such that mark(A, [A],ΛEx
gr(A)) = U. From Proposition 2,

mark(A, [A],ΛPa
gr (A)) = U for any parsimonious bundle set

ΛPa
gr (A) for ΛEx

gr (A). From Definition 3.11, for all λ ∈
ΛPa

gr (A), mseq(λ, λ,ΛPa
gr (A)) = U(DU)∗. Let An be the

last argument of λ ∈ ΛPa
gr (A). By Definition 4.2, An has

no defeaters and, by Definition 2.3, An is in the grounded
extension E. Let A2k−1, with 1 ⩽ 2k − 1 < n, be the last
argument of a proper segment λ′

h of λh ∈ ΛPa
gr (A) such

that for all λk ∈ Ex(λ′
h), A2k+1 ∈ λk and A2k+1 ∈ E.

Then, A2k−1 ∈ E since E defends A2k−1 from all A2k ∈
λk. Thus, Supp(ΛPa

gr(A)) ⊆ E. Then, for every B ∈

2The term grounded as used here should not be confused with
the name of the grounded semantics.

Supp(ΛPa
gr (A)), B is gr-accepted and, by Definition 5.6, the

gr-semantics satisfies grounding soundness.
(2) Let F be an AF and A a pr-accepted argument

in F. By Definition 3.8, there exists ΛEx
pr (A) such that

mark(A, [A],ΛEx
pr (A)) = U. From Proposition 2, it fol-

lows that mark(A, [A],ΛPa
pr (A)) = U for any parsimo-

nious bundle set ΛPa
pr (A) for ΛEx

pr (A). From Definition 4.3,
Supp(ΛPa

pr (A)) is conflict-free. Furthermore, for every B de-
feating C ∈ Supp(ΛPa

pr (A)), there exists D ∈ Supp(ΛPa
pr (A))

defeating B. Then, by Definition 2.3, Supp(ΛPa
pr (A)) is an

admissible set and, accordingly, a subset of a preferred ex-
tension of F. Therefore, for all C ∈ Supp(ΛPa

gr (A)), C is
pr-accepted and, by Definition 5.6, pr-semantics satisfies
grounding soundness.

(3) From Definition 4.5, the pc-semantics is based on
the pr-semantics while also preventing the opposition from
moving self-defeating arguments. Then, the proof for the
pr-semantics also applies to the pc-semantics.

In the case of df-semantics, a counterexample is sufficient
to show that it does not satisfy the grounding soundness
property. Let us consider the AF from Figure 2 (a). We
have ΛEx

df (A)= {[A,B, C]} and mark(A, [A],ΛEx
df (A))=U.

Then, by Definition 3.8, A is df-accepted. From Def-
inition 3.12, it holds that ΛPa

df (A) = ΛEx
df (A). Here,

Supp(ΛPa
df (A)) = {A, C}. Moreover, ΛEx

df (C) = {[C,B]} and
mark(C, [C],ΛEx

df (C)) = D. Thus, by Definition 3.8, C is df-
rejected. As a result, by Definition 5.6, df-semantics does
not satisfy the grounding soundness property.

6 Conclusions and Future Work
In this work, we introduced a set of principles to extend ex-
isting principle-based frameworks for analyzing the theoreti-
cal foundations of argumentation semantics. Each proposed
principle arises from adopting a dialogue game-based ap-
proach to defining semantics. By deepening the understand-
ing of the principles underlying argumentation semantics,
we offer a basis for both critical analysis and the develop-
ment of new dialogue game-based semantics.

Several future lines of research remain open. We aim to
extend the present work by considering a broader range of
dialogue-game based semantics and principles. In addition,
we plan to explore different variants of each semantics to
examine how distinct protocol versions affect the principle-
based analysis. We also intend to investigate in detail the
relationship between existing principles for extension-based
(or labeling-based) semantics and those introduced in this
paper. Finally, to evaluate the broader applicability of the
proposed principles, we plan to apply them to the analy-
sis of dialogue-game-based semantics for formalisms that
extend AFs by incorporating additional relations—such as
the sub-argument relation—and elements such as hashtags
or multiple agents.
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Falappa, M. A.; Chesñevar, C. I.; and Simari, G. R. 2013.
Relational databases as a massive information source for de-
feasible argumentation. Knowl. Based Syst. 51:93–109.
Deagustini, C. A. D.; Dalibón, S. E. F.; Gottifredi, S.;
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