Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Efficient Volume Computation for SMT Formulas*

Arijit Shaw!? | Uddalok Sarkar®, Kuldeep S. Meel*
!Chennai Mathematical Institute
2IAI TCG CREST, Kolkata
3Indian Statistical Institute, Kolkata
4Georgia Institute of Technology
®University of Toronto

Abstract

Satisfiability Modulo Theory (SMT) has recently emerged as
a powerful tool for solving various automated reasoning prob-
lems across diverse domains. Unlike traditional satisfiability
methods confined to Boolean variables, SMT can reason on
real-life variables like bitvectors, integers, and reals. A nat-
ural extension in this context is to ask quantitative questions.
One such query in the SMT theory of Linear Real Arithmetic
(LRA) is computing the volume of the entire satisfiable re-
gion defined by SMT formulas. This problem is important in
solving different quantitative verification queries in software
verification, cyber-physical systems, and neural networks, to
mention a few.

We introduce ttc, an efficient algorithm that extends the capa-
bilities of SMT solvers to volume computation. Our method
decomposes the solution space of SMT Linear Real Arithmetic
formulas into a union of overlapping convex polytopes, then
computes their volumes and calculates their union. Our algo-
rithm builds on recent developments in streaming-mode set
unions, volume computation algorithms, and AIISAT tech-
niques. Experimental evaluations demonstrate significant
performance improvements over existing state-of-the-art ap-
proaches.

1 Introduction

Satisfiability Modulo Theories (SMT) has revolutionized au-
tomated reasoning, serving as the foundational technology for
diverse problems (Kroening and Strichman 2016). The power
of SMT stems from its ability to reason over diverse theo-
ries, including bitvectors, reals, and integers, extending well
beyond the capabilities of traditional SAT solvers (Barbosa
et al. 2022; Barrett et al. 2021; Brummayer and Biere 2009;
Cimatti et al. 2013; Niemetz and Preiner 2023). This versatil-
ity has established SMT as the de facto decision procedure
not only in formal verification of software and hardware
workflows (Hajdu and Jovanovi¢ 2020; Mattarei et al. 2018),
but across numerous domains requiring sophisticated logical
reasoning, including security (Backes et al. 2020), test-case
generation, synthesis, planning (Cashmore, Magazzeni, and
Zehtabi 2020), and optimization (Schkufza, Sharma, and
Aiken 2016).

*Full version of the paper: https://arxiv.org/abs/2508.09934

544

Meanwhile, quantitative reasoning has emerged as a crit-
ical advancement in satisfiability solving. Rather than
merely determining whether a Boolean formula can be sat-
isfied, model counting (Chakraborty, Meel, and Vardi 2021;
Gomes, Sabharwal, and Selman 2021) techniques calculate
the number of satisfying assignments — establishing a ro-
bust framework for addressing quantitative challenges like
probabilistic inference (Chavira and Darwiche 2008), soft-
ware verification (Teuber and Weigl 2021), network relia-
bility (Duenas-Osorio et al. 2017), neural network verifica-
tion (Baluta et al. 2019), and numerous other problems (Shaw
and Meel 2024).

The natural evolution of these parallel developments leads
to the compelling extension to effectively handle quanti-
tative queries within SMT frameworks. This challenge is
nuanced by the diversity of the underlying theories, each
demanding different approaches. In discrete domains like
bitvectors and linear integer arithmetic, the problem man-
ifests as model counting. For linear real arithmetic, it
transforms into volume computation or counting distinct re-
gions. Recent years have witnessed remarkable progress
across these domains, yielding both theoretical insights and
practical algorithms for bitvectors (Chakraborty et al. 2016;
Kim and McCamant 2018), linear integers (Ge and Biere
2021; Ge 2024a; Ge et al. 2019), reals (Ge et al. 2018;
Ma, Liu, and Zhang 2009), strings (Aydin, Bang, and Bul-
tan 2015), and projected counting over large classes of
SMT formulas (Chistikov, Dimitrova, and Majumdar 2017;
Shaw and Meel 2025). Apart from (Ge et al. 2018;
Ma, Liu, and Zhang 2009), these approaches are mostly
limited to discrete domains, and hardly extended to continu-
ous domains. In this work, we address the question: Given
an SMT LRA formula, can we design an efficient volume
computation algorithm?

Our primary contribution is the development of ttc, a novel
algorithmic framework that provides an affirmative answer to
this question. The ttc algorithm approximates the volume of
SMT LRA formula solution spaces with provable theoretical
guarantees.

We start with a very related and well-studied problem to
SMT volume computation: the problem of volume compu-
tation of bounded convex bodies. Sophisticated exact and
approximate methods to solve the problem have been de-
veloped in the last few decades. Although the exact vol-


https://arxiv.org/abs/2508.09934

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

ume problem is #P-hard, the seminal work by Dyer, Frieze,
and Kannan (1991) showed a polynomial-time randomized
approximation algorithm (FPRAS) for this problem. Fur-
thermore, advancements have not only improved the asymp-
totic running times of these algorithms (Lovédsz and Si-
monovits 1990; Applegate and Kannan 1991; Lovasz 1991;
Lovasz and Simonovits 1992; Lovasz and Simonovits 1993;
Kannan, Lovasz, and Simonovits 1997; Lovasz and Deak
2012; Cousins and Vempala 2018) but also yielded practi-
cally efficient methods that forgo certain theoretical guaran-
tees to eliminate prohibitive hidden constants in their run-
time (Cousins and Vempala 2016).

A central challenge in applying these ideas to SMT lies
in the non-convex nature of the solution spaces generated by
SMT formulas. Unlike convex bodies, non-convex regions
are more complex to analyze due to their irregular shapes
and potential discontinuities. A natural strategy to overcome
this hurdle is to partition the non-convex space into a union
of convex bodies, where each convex piece can be more
easily managed with existing techniques. Decomposing a
non-convex SMT solution space into convex components
introduces its own set of challenges. Current state-of-the-art
techniques can’t handle the union of non-disjoint compo-
nents. In many cases, the decomposition yields an excessive
number of disjoint components, which may not accurately
reflect the underlying structure of the solution space. In prac-
tice, solution spaces manifest as unions of overlapping, non-
disjoint polytopic regions with boundaries and intersections
that encode critical constraint information. This overlapping
structure is not merely theoretical—our empirical analysis re-
veals cases where state-of-the-art decomposition techniques
transform a natural representation of 7 overlapping polytopes
into an unwieldy collection of 20,595 disjoint components,
creating unnecessary computational complexity.

Our approach builds upon recent advancements in count-
ing distinct elements across set unions in streaming models
by Meel, Vinodchandran and Chakraborty (MVC,2021). The
fundamental challenge in adapting the MVC algorithm to vol-
ume computation arises from the inherent difference between
discrete and continuous domains. The MVC algorithm was
specifically engineered for discrete settings, while volume
computation operates in continuous space. We overcome
this obstacle through a principled discretization approach,
effectively reducing continuous volume computation to the
problem of counting lattice points within a carefully con-
structed fine-grained lattice space.

We have implemented ttc and evaluated it on a compre-
hensive benchmark suite. The results demonstrate significant
gains in scalability and accuracy. Out of a benchmark set of
1131 instances, ttc solved 1112, while the current state of the
art can solve only 145.

Applications. The theory of linear real arithmetic has
significant applications in the formal verification of systems
with real variables. These include hybrid systems such as
cyber-physical systems (Koley et al. 2023), and control sys-
tems (Cimatti, Mover, and Tonetta 2012) and timed sys-
tems (Cimatti et al. 2013). Advanced verification tools like
Reluplex (Katz et al. 2017) extend SMT solving to neural
networks by encoding real-valued variables for network in-

545

puts. Extending these approaches to quantitative verifica-
tion would require LRA solvers with efficient volume com-
putation capabilities. This follows the established pattern
where model counting tools have enabled quantitative verifi-
cation advances in software (Girol, Farinier, and Bardin 2021;
Teuber and Weigl 2021) and binarized neural networks (Ba-
luta et al. 2019).

2 Notation and Preliminaries

An SMT (Satisfiability Modulo Theories) formula F' is a
quantifier-free logical formula over a background theory 7
that may contain both theory atoms (e.g., linear arithmetic
predicates) and pure Boolean variables. We focus on formu-
las over Linear Real Arithmetic (LRA), where theory atoms
are of the form ayx; + - -+ + a,z, o b, with a;,b € R and
S {<7 <=2, >}'

The Boolean abstraction F'g of I’ is obtained by replacing
each theory atom with a fresh Boolean variable while leav-
ing the original Boolean variables unchanged. We assume
that F'p is expressed in Disjunctive Normal Form (DNF) as
Fp = \/i_, ¢i, where each cube is given by ¢; /\;L:1 ij,
with each /;; being a Boolean literal (either a variable or its
negation). And-Inverter Graphs (AIGs) are used as a compact
representation for Boolean functions as a circuit, where each
node corresponds to a two-input AND gate or an inverter.

We define a mapping M on the Boolean literals corre-
sponding to theory atoms such that for each such literal /,
M (¥) is its corresponding linear inequality (or its negation).
Pure Boolean variables are not mapped, as they do not con-
tribute geometric constraints. For each cube c;, the conjunc-
tion /\;L:1 M (¢;;) (with the understanding that M is applied
only to theory literals) defines a (possibly empty) convex
polytope, which we denote by P(c;) = {x € R™ | V{ €
¢; (theory literal), M (¢)(z) holds}.

A polyhedron is defined as the intersection of a finite num-
ber of half-spaces in R™, and a polytope is a bounded poly-
hedron whose volume (measured via the Lebesgue measure)
can be computed. Concretely, any polytope K can be written
in the form {z € R™ | Az < b}, where A is a m x n matrix
and b is a n x 1 vector. Each row of the system Ax < b
defines one of the m half-spaces (the facets of K). We de-
note facet(K) = m, Sol(K) = {2z € R | Az < b}, and
Volume (K) as the number of facets, the feasible region, and
the volume of K, respectively.

(set—logic QF_LRA)

(declare—const x Real)
(declare—const y Real)

(assert (or
(and (> x 20) (< x 40) (> y 20) (< y 40))
(and (> x 10) (< x 30) (>y 10) (< y 30))))

(check—sat)

Figure 1: SMT file.



Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

40 1
30 1
20 1

10 A

. T T T > T
10 20 30 40

Figure 2: Solution space of SMT formula.

y Y
40 40
. o1
20 20{ ==
10 0] ——
. . . — T T T T —> T
10 20 30 40 10 20 30 40

Figure 3: Disjoint (left) and non-disjoint decomposition of
the solution space of the formula.

Since we are working over the domain R, precision is
crucial in our work. In our setting, we define precision as the
number of digits after the decimal point. For example, the
number 0.123456789 has a precision of 9.

Hllustrative Example. Figure 1 shows the QF_LRA formula
over two real variables = and y, which defines two overlap-
ping square regions in the xzy-plane. As depicted in Figure 3,
each square has an area of 400, with an overlapping area of
100. Thus, the union of the two regions has an area of 700. In-
ternal nodes represent logical conjunctions, and any inverted
edges (dots) indicate negations. Figure 3 (left) illustrates
a disjoint decomposition of the solution space, where each
region is separated so that no two subsets overlap. This often
simplifies volume computations but may require more parti-
tions. By contrast, Figure 3 (right) shows a non-disjoint de-
composition, allowing subsets to overlap. Figure 4 compares
the number of cubes generated by disjoint decomposition and
non-disjoint decomposition on our benchmark set.

Problem Statement Let K be the whole solution space of the
given formula F', which has d dimensions. Let 5 C R™ be an
n-dimensional measurable set. The volume of B is defined
as Volume (B) = [, dx, where dx denotes the differential
volume element. In Cartesian coordinates, this element is
expressed as dx = dx1 dzs - - - dx,.

3 Related Work

SMT Volume Computation was first addressed by Ma, Liu,
and Zhang, who developed the vinci tool (Ma, Liu, and Zhang

546

Disjoint

—_
(e}
[

10t

102

10!
Non-disjoint

Figure 4: Comparison of the number of polytopes in disjoint
and non-disjoint decomposition (notice the non-equal axis).

2009) for exact volume computation. Their approach per-
forms intelligent disjoint decomposition of the solution space
into convex polytopes using a bunching strategy, followed
by exact computation of individual polytope volumes. Later,
Ge et al. (2018) designed polyvest, which extended vinci
by incorporating MCMC-based techniques for polytope vol-
ume computation. Recently, Ge introduced the SharpSMT
tool (Ge 2024b), which integrates and optimizes various tech-
niques from previous work of polyvest and vinci (Ge et al.
2018; Ma, Liu, and Zhang 2009) to create a more compre-
hensive solution for SMT volume computation.

Weighted Model Integration (WMI) (Belle, Passerini, and
Van den Broeck 2015) represents a closely related problem
in the hybrid domain of Boolean and rational variables, in-
volving the computation of volume given weight density over
the entire domain. This area has seen significant research
advances through diverse approaches, including predicate
abstraction and All-SMT techniques (Morettin, Passerini,
and Sebastiani 2017; Morettin, Passerini, and Sebastiani
2019), knowledge compilation methods (Kolb et al. 2018),
and structurally-aware algorithms (Spallitta et al. 2022;
Spallitta et al. 2024). However, while WMI focuses pri-
marily on computing weighted integration across domains,
our work specifically addresses the fundamental problem of
determining the exact volume of the solution space.

Polytope Volume Computation has been a central focus
in computational geometry since Dyer and Frieze (1988)
proved it #P-hard, followed by Dyer, Frieze, and Kan-
nan’s FPRAS development (1991). Rigorous algorithmic
advances have improved complexity bounds from O(n?3)

to O(n®) (Applegate and Kannan 1991; Kannan, Lovész,
and Simonovits 1997; Lovasz and Vempala 2006; Lovasz
and Deédk 2012; Cousins and Vempala 2018)'. Though
these algorithms contain large hidden constants, practi-
cal implementations have been achieved by carefully re-
laxing theoretical guarantees (Cousins and Vempala 2016;
Chalkis and Fisikopoulos 2021).

'O(-) hides the polylogarithmic factors in O(-).



Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Estimating the size of a set union has been a well-studied
problem since the work of Karp and Luby (1983), who pro-
posed a O(m log? |2])-time algorithm, where m denotes the
number of sets and |{2| represents the universe size. Subse-
quent research has extensively explored streaming settings,
where sets arrive sequentially over time (Flajolet and Mar-
tin 1985; Gibbons and Tirthapura 2001; Kane, Nelson, and
Woodruff 2010). More recent methods employ sampling-
based strategies in the context of streaming algorithms (Meel,
Vinodchandran, and Chakraborty 2021), which have also
been adapted for DNF counting (Soos et al. 2024). These

approaches achieve a O(nm)-time complexity for estimat-
ing the solution count of a DNF formula, where m is the
number of clauses and n is the number of variables in the
DNF formula. Our work builds upon and extends techniques
developed in the DNF counting framework.

Volume of a union of polytopes. Abboud, Ceylan, and Dim-
itrov (2020; 2022) study this problem under a DNF repre-
sentation of the underlying Boolean formula and compute
the volume of the union. Their method builds on the union
algorithm of Karp, Luby, and Madras (1989). Our approach
is based on MVC, which has shown practical performance
advantages over KLM (Soos et al. 2024). Unlike Abboud,
Ceylan, and Dimitrov (2020), we permit O(g) error in sam-
pling and volume estimation (vs. O(g2/n)), where ¢ is the
volume-approximation factor and n is the dimension.

4 Algorithm and Analysis

This section presents the core contribution of our work: the
ttc algorithm along with its theoretical analysis.

4.1 Algorithm

Given an SMT LRA formula F), the ttc algorithm returns
an estimate of Volume (F'). Initially, the algorithm decom-
poses the solution space of the SMT formula into non-disjoint
polytopes and computes the volume for each polytope. Subse-
quently, it estimates the volume of the union of the polytopes’
solution space using a sampling-based approach.

Since we only have a volume computation algorithm for
convex polytopes, but the solution space of an SMT formula
may be non-convex, we decompose the solution space as a
union of convex polytopes. First, we observe that using C, the
Boolean abstraction of F'in DNF form, we can capture the so-
lution space of F' as a union of polytopes. Let ¢; /\;L:1 4y
be a cube in the DNF. Then, the conjunction /\;;1 M(¢;;)
of the corresponding linear inequalities defines a (possibly
empty) convex polytope, which we denote by Polytope(c;).
We can show that |, Polytope(c;) = Sol(F) (Lemma 1).
This relation shows that the DNF representation of the
Boolean abstraction of an SMT formula can be used to de-
compose its solution space into convex polytopes.

To efficiently compute the union of these polytopes, we
leverage recent breakthroughs in streaming algorithms for set
union operations. The central idea is to compute the union
of volumes by maintaining a representative set of points
that approximates the total volume. The main caveat of
this approach is that the algorithm requires the underlying
sets to be finite, while the volume of a polytope cannot be

547

Algorithm 1 ttc(F ¢, 0)

: fori =1tomdo
t + ComputeVolume(Polytope(c;),&’, 8")
9: for s € X do

1: Ff§,M « BooleanAbstraction(F")

2: C + toDNF(F%)

3: b GetPrecision(C,M,%)

4 5.8 « 2

5: Thresh <+ max (24 . (1?52;{3)2 , 6(lng + In m))
6 p1;X10

7

8:

10: if s € Polytope(c;) then remove s from X
11: while p > @do

12: Remove every element of X’ with prob. 1/2
13: P+ p/2

14: N; < Poisson(t - p)

15: while N; + |X'| > Thresh do

16: Remove every element of X’ with prob. 1/2
17: N; < Poisson(t - p/2) and p + p/2

18: S« GenerateSamples(Polytope(c;), N;, b)
19: X .Append(S)

20: Output |X|/p

measured directly with a finite number of points. To over-
come this issue, we consider an axis-parallel lattice in R™
with cell side length 10, defined as L" = 10~°Z"
{(107%k1,107 k2, ...,107%,,) | k; € Zfori =1,...,n}.
If b is sufficiently large, we can use this lattice to establish a
relationship between the number of lattice points contained
within a polytope, | K N L"™|, and the volume of the polytope,
Volume (K).

We present our algorithm, ttc, in Algorithm 1, and in the
subsequent part, we describe the algorithm in detail.

In line 1 of ttc, we parse the formula F' and construct
its Boolean abstraction as a circuit, specifically as an And-
Inverter Graph (AIG). Then, in line 2, ttc converts the circuit
to DNF. The circuit representation enables us to avoid intro-
ducing any auxiliary variables. In essence, converting the
circuit to DNF is equivalent to solving a circuit AIISAT prob-
lem, for which we leverage recent advances in the literature.

Based on the desired accuracy ¢ of the volume estimate,
we begin by computing the precision parameter b using
GetPrecision in line 3, and threshold value Thresh in line 5,
which determines approximately how many points will be
maintained during the algorithm’s execution. In the main
loop (lines 7 to 19), we process each cube Polytope(c;) se-
quentially. For each cube, we first compute the (approximate)
volume of its corresponding polytope using a polytope vol-
ume computation algorithm ComputeVolume (line 8). Next,
in line 10, the algorithm removes from the current set X
all solutions that are already accounted for. We then deter-
mine the number of solutions /V; that would be sampled from
Polytope(c;) if each solution were independently sampled
with probability p; here, V; is modeled by a Poisson distribu-
tion. Since we wish to keep the size of X bounded by Thresh,
if the sum | X'| 4 IV; exceeds Thresh, we decrease p and adjust




Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

N; accordingly—this adjustment is performed by resampling
N, from a Poisson distribution with the revised parameter
(p) and by removing elements from X’ with probability 1/2
(line 12). Next, we sample NN; solutions from the cube ¢; uni-
formly at random and add to X'—this is essentially done by
uniformly sampling a lattice point from Polytope(c;) N L™.
Finally, the algorithm outputs the final volume estimate |X|
Getting precision. From Kannan and Vempala (1997),
we know that if an n-dimensional ¢2-ball of radius v =
Q(n+/log f) can be inscribed in an n-dimensional polytope
with f facets, then there exists a relationship between the
number of integer lattice points inside the polytope and its
volume. When working with the lattice L™ instead of the
standard integer lattice Z", the effective radius decreases, but
the same relationship still applies. Furthermore, as shown in
Lemma 3, the same relationship holds for a union of poly-
topes, provided each polytope contains an ¢>-ball of radius
v = Q (ny/log Y, facet(P;)). In Algorithm 2, we process
each polytope sequentially (lines 5-9). For each polytope
P, we compute ¥, the maximum radius of a ball that can
be inscribed in P?, using an LP algorithm (line 6). The
required precision for this polytope is then determined as
[logyo(v/4)]. After processing all polytopes, we take the
maximum of these precision values and return it.

Algorithm 2 GetPrecision(C,M, n)

1: maxRatio~— 1, r<«+ 0

2: for c; in C do

3 P* < Polytope(c;)

4 r + r + facet(P")

5: fori =1tomdo _
6 4 < MaxInscribedBall(P*)
7

8

16n Ar
n

1fg > maxRatio then
9: maxRatio + %

v log

10: return [log,,(maxRatio)]

4.2 Analysis

Theorem 1. Given a set F, and parameters £,6 € (0,1],
ttc returns an estimate Est of Volume (F) such that with
probability at least 1 — 9,

Est € [(1 —€) - Volume (F), (1 +¢€) - Volume (F)].

Theorem 2. The ttc algorithm takes exponential time w.r.t.
v in decomposing the polytope, where v is the number of
variables in g. The number of cubes m can be exponential
of v as well.

Proof. The runtime complexity follows from the dual-rail
algorithm of circuit AIISAT algorithm. There exists CNF
formulas, for which DNF representation is exponential sized,
resulting in the exponential blowup of m. O

Theorem 3. Let m denote the number of decomposed poly-
topes. Then the ttc algorithm runs in time O(mn*), where n

548

is the number of dimensions and the O(+) notation suppresses
polylogarithmic factors in € and §.

Proof. The algorithm’s main loop (lines 7-19) executes ex-
actly m iterations. In each iteration, the volume computation
(line 8) requires O(n*) time, while the sampling step (line 18)
consumes O(n?3) time per sample. Since these two opera-
tions dominate the computational cost in each iteration, the
total runtime is given by m x O(n*) = O(mn*), where the
polylogarithmic dependencies on € and § are hidden in the
O(+) notation. O

Now we prove the theorem 1 using the following lemmas.

Lemma 1. Ler C = /]| ¢; be the DNF abstraction of the
SMT formula F'. Then,

U Polytope(c;) = Sol(F)

i=1

Proof. First, we show the soundness of each cube: we claim
that for every cube ¢; in C, Polytope(c;) C Sol(F'). Let
= /\;L:1 ¢;; be an arbitrary cube of C'. By construction,
we have ¢; ; |= C. Therefore, by the property of Boolean
abstraction, if A M (¢; ;) can be satisfied, then F' is satisfied.
Any point z € Polytope(c;) satisfies A\ M (¢; ;), therefore
x € Sol(F'), proving that Polytope(c;) C Sol(F).

Next, we show the completeness of the union, that
Sol(F') C U:~, Polytope(c;). Consider any arbitrary point
2 € Sol(F'). Now z induces a Boolean assignment satisfying
C. Since C = \/" | ¢;, there exists at least one cube ¢; such
that x satisfies every literal in ¢;. By the definition of M, we
have that for every I € ¢;, M (1)(z) holds, which implies that
x € Polytope(c;). Thus, Sol(F) C |J;~, Polytope(c;). O

Lemma 2 (Theorem 3 of Kannan and Vempala (1997)). Let
P be a polytope in R™ that contains an {5-ball of radius at
least 8n+/log(2facet(P)/n), where 0 < n < 1 is a constant.
Then Volume (P) satisfies the following bounds,

17
Volume (P) € T"\Pmm, (1 +n)PmZ”|}

We extend this result to the case of the union of polytopes
in the following lemma.
Lemma 3. Let Q = |J;", P, with P; = Polytope(c;). If
16n lo 4r
g

where 0 <1 < 1aconstantandr =", facet( P,), then
Volume (Q) € [(1 —n) [@ NZ"[, (1 +n1)|Q N Z"]]
Proof. Recall the description of P; as P, = {z € R" |

every P; contains an l5-ball of radius at least

Aijjz <by; (j=1,...,facet(P;))} and set
g + JoToar by + Ay
=4/2log — ++/2logr, k:=max L — "
U i bij — K[| Asll

where r = > facet(P;) and || - || denotes the {5-norm.
Expand/shrink every facet by +xl||A;;|| and write P} :=

e Ay < by 4 sllAgl), P Ay < by -
n|\A,]||} and let Q' := |, P/ =, P/’. Let X be

19



Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

the randomized rounding process as defined in Kannan and
Vempala (1997), which takes a point p € R™ and returns a
point in the lattice © € Z™ such that |« —p| < 1. To complete
the proof, we will need the following lemma.

Lemma 4. The following properties hold for the sets Q'
and Q" : (a) Draw p uniformly from the continuous body Q’.

Then for every x € Q NZ", Pr[X, = x] > WZ/(ZQ/) (b)

Draw p uniformly from the continuous body Q” The event
that p still lies in Q satisfies Pr[X, € Q] > 1 — 2. and (c)
forevery x € QNZ", Pr[X, =z] <

Vqume(Q”)'

We now use this lemma to complete the proof. Consider
the case where p is drawn uniformly from @Q”. Then using
lemma 4(b) and 4(c) we have:

1 < _1@nzZ7|
Volume (Q") — Volume (Q)

3

TEQNZN

The last inequality follows from @ C Q". Since for all
0 < n < 1we have, (1- g)_l < (1 + n), therefore,
Volume (@) < (1 + n)|Q N Z™|. Again, consider the case
where p is drawn uniformly from Q’. Then, using lemma 4(a)

1> > PrX, =
TEQNZ™
QNz"|

1—1n/2 -(1 n),m

Volume (Q’) 2

zeQnzn
Now consider p € @’. Then A;;p < b for all ¢, 7 and
therefore A;; % < b, for all i, j. This 1mphes that £ € Q".
This implies that Q' C kQ"”. Therefore, Vqume(Q) <
kE™Volume (Q"). Since each P; contains an ¢2-ball of radius

at least 167" A /1og , it follows that for the pair 7, j at which &k
is attained, we have b;; > 2% /log 7[|A;;||. Consequently,

n

16n 4r

o e log w T
16n 1 4r

—_— og — — K
n € n

Claim 1. Forn € N we have,

< 1+n/4
—1-n/4

Using Claim 1, we can upper bound Volume (Q’) as fol-
1+n/4 1+n/4

lows: Volume (Q') < 73 - Volume Q" < g -
. . L 1-p/4

Volume (Q). Using the inequality 1+Z§4 (1-2)>@1-n)

forall 0 < n < 1, we have Volume (Q) > (1 — n)|Q NZ"|,

completing the proof of the lemma. O

549

Lemma 5. Let Q = |J;~, P; with P, = Polytope(c;) such
that every P; follows the condition of lemma 3, then we have
the following bound on the number of lattice points in @),

Volume (Q) € |Q L™, \Qan|

]_Ob n ]_Ob n

where b is the precision parameter selected by GetPrecision.

Proof. We define a canonical isomorphism ¢ : L” — Z™.
For convenience, we use the same notation to denote the
image of a polytope P; (resp. @) under ¢, writing ¢(P;)
(resp. ¢(Q)). This mapping scales the distance between
any two consecutive points [a, b] along a dimension by 10°.
Consequently, a ball of radius 7 in L™ corresponds to a ball of
radius 10°r in Z™. Furthermore, the volume of a polytope P;
(resp. ) scales by a factor of 10°” when transformed into
Z", leading to Volume (P;)-10"™ (resp. Volume (Q)-10°™).
Since the mapping ¢ preserves the lattice structure, we have
|6(P,) N Z"| = |P; NL"| and [$(Q) N Z"| = |Q N L"].
Finally, the choice of b as selected by GetPrecision
guarantees that each P; contains a ball of radius at least

1()4’167n V1og(4 >, facet(P;)/n). Therefore, we can ap-
ply lemma 3 to complete the proof. O

Lemma 6. Let Q = |J", Polytope(c;). Then ttc outputs
an estimate Est such that with probability at least 1 — 6,

(1-¢/3) (1+¢/3)

Est
st € 10b-n 10b-n

QML |QNL"|

Now we finish the proof of theorem 1 by combining the
results from lemma 6 and lemma 5.

Proof of theorem 1. Using lemma 6, we have Est > L—¢/3

106 :
L" Vol
|@Q N'IL"|, and from lemma 35, ‘Cfgl_n | > E’li“;e/(g ). Com-

bining these two inequalities, we get Est > ﬁijg .
Volume (Q) > (1 — ) - Volume (Q) . Similarly, the cor-
responding upper bounds from lemma 6 and lemma 5 we

yield Est < ifi;goVolume (Q) < (1+¢)-Volume (Q). O

4.3 Implementation

We implemented a Python prototype? for testing the algo-
rithm and its efficiency. We use the following tools for differ-
ent parts of the Algorithm 1.

Decomposing into Polytopes. We use a combination of the
existing SMT solver and Circuit AIISAT solver to decompose
the SMT solution space into convex polytopes. Specifically,
we do the following:

Boolean Abstraction. To create the Boolean abstraction of
the SMT formula in line 1 of Algorithm 1, we instrument
CVvC5 (Barbosa et al. 2022) to create the abstraction as an
AIG. By default, cvc5 creates the abstraction as a CNF,
which we wanted to avoid, since converting to CNF intro-
duces numerous auxiliary variables, making it difficult to
enumerate the solutions in a DNF form. For this purpose,

2Source code: https://github.com/meelgroup/ttc


https://github.com/meelgroup/ttc

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

we carefully examined each different type of Boolean opera-
tion used in SMT formulas, which is typically translated to
CNF, including And, Or, Iff, Implies, Ite, and Xor. For each
of these operations, we constructed corresponding gates for
the AIG. This avoids unnecessary blow-up and retains the
semantic structure of the original formula.

Circuit to DNF. To convert the AIG to DNF in line 2,
we use the HALL tool (Fried, Nadel, and Shalmon 2023;
Fried et al. 2024), which employs a dual-rail based imple-
mentation to generate all solutions of the AIG. The solutions
are represented as a non-disjoint DNF.

Constructing the Polytopes. While instrumenting CVCS5 to
generate the Boolean abstraction, we simultaneously capture
which variables correspond to which linear inequalities. For
each cube of the DNF, therefore, we maintain a mapping indi-
cating which set of linear inequalities this cube corresponds
to. Given this map and the cube, we construct the polytope.

Polytope Volume Computation. In ComputeVolume (line 8),
we employ the Gaussian cooling-based algorithm devel-
oped by Cousins and Vempala (2016), which offers a more
practical implementation of their theoretically rigorous ap-
proach (Cousins and Vempala 2018). While the original algo-
rithm (Cousins and Vempala 2018) provides volume approx-
imation with (e, §) guarantees, its prohibitive running time
of 10*°O(n?) limits practical applications. The key insight
in (Cousins and Vempala 2016) was that these substantial
constant factors can be significantly reduced in practical sce-
narios without severely compromising accuracy, though this
comes at the cost of theoretical guarantees. Our implemen-
tation utilizes VOIEsti, the software package by Chalkis and
Fisikopoulos (2021) that implements this practical algorithm.

Preprocessing The polytopes generated by the Polytope(c)
procedure may contain redundancies and hidden equalities.
Hidden equalities render the polytope degenerate - resulting
in zero volume in d dimensions. Additionally, redundan-
cies significantly complicate the volume computation for the
underlying algorithm. We address these challenges by in-
corporating CDD as a preprocessing step, which effectively
identifies hidden equalities and eliminates redundant inequal-
ities. This preprocessing phase yields substantial perfor-
mance improvements, particularly valuable when processing
inequalities derived from SMT files, which often lack optimal
formulation.

Polytope Sampling. For polytope sampling algorithm
GenerateSamples in line 18, we employ the Monte Carlo
random walk hit-and-run algorithm (Smith 1984). Each ran-
dom walk begins from a point within the convex body and
executes a specified number of steps, termed the walk length.
Greater walk lengths produce final points less correlated with
the starting position. The number of steps required to gener-
ate an uncorrelated point, one approximately sampled from a
distribution, is known as the mixing time. Lovasz and Vem-
pala( 2004) showed that 101°O(n?) is a sufficient mixing
time for hit and run. However, such requirements are com-
putationally intractable in practice. Following the empirical
observations of Lovasz and Dedk (2012), we therefore con-
strain our implementation to n steps of hit-and-run, which

550

offers a reasonable balance between sampling quality and
computational efficiency.

Compromises. While ttc is theoretically sound, the imple-
mentation involves a few compromises that prioritize effi-
ciency over strict adherence to theoretical guarantees:

1. For volume approximation, algorithms with theoretical
guarantees require a running length of 1010O(n?) steps,
which is impractical. Therefore, in our implementation
(line 8), we use a practical volume algorithm that employs
a convergence-based criterion to determine running length.

2. The sampling algorithm in line 18 relies on the hit-and-run

method. Known results indicate that achieving indepen-
dent samples requires 101912 steps, which is also imprac-
tical. However, Lovasz and Deak (2012) demonstrated
that taking n steps of hit-and-run provides practically in-
dependent samples. As a result, we use n steps in our
implementation. Notably, the theoretical guarantees of
this sampling algorithm are in /1 norm, that is, the samples
are guaranteed to be within ¢; distance of the uniform dis-
tribution over the polytope. However, ttc requires samples
to be within ¢, distance of the uniform distribution - a
stronger requirement than the ¢; guarantees provided by
the hit-and-run sampling algorithm.

It is worth noting that the state-of-the-art tool, SharpSMT
(in the non-exact mode i.e., when relying on polyvest),
also makes similar compromises, and therefore, ttc and
SharpSMT (in non-exact mode) have similar behavior. The
exact mode of SharpSMT, on the other hand, fails to scale to
larger instances, as demonstrated in the following section.

5 Experimental Evaluation

We evaluated our implementation concerning both efficiency
and accuracy.

Baseline.  For performance evaluation, we used the
current state of the art volume computation framework
SharpSMT (Ge 2024b), which offers two distinct modes: the
polyvest algorithm, which estimates the volume, and vinci,
which performs exact volume computation. To establish
meaningful comparisons, we utilized polyvest for perfor-
mance analysis and vinci for accuracy check.  Another
relevant baseline is Abboud, Ceylan, and Dimitrov (2020).
Their approach assumes a DNF representation, i.e., a set
of polytopes as input; for this purpose we would pass the
polytopes generated at line 2 of Algorithm 1. The publicly
available implementation appears to be an early prototype,
and in our environment we observed volume discrepancies on
some benchmark-derived instances. Resolving these likely
requires additional engineering, so we defer a thorough inte-
gration and evaluation of this baseline to future work.

Benchmarks. As a first step, we sought to rely on benchmarks
from SMT-Lib, but these benchmarks could not be handled
by polyvest or vinci owing to them containing extremely thin
geometric regions where dimensions may be constrained to
narrow ranges (e.g., (0,10~7)). In these cases, polyvest and
vinci fail to handle the required precision and incorrectly
classify these polytopes as degenerate with zero volume. To
avoid results confounded by numerical precision rather than



Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning

performance computer cluster, with each node consisting of
Intel Xeon Gold 6148 CPUs. We allocated one CPU core and
a 5GB memory limit to each solver instance pair. To adhere
to the standard timeout used in model counting competitions,
we set the timeout for all experiments to 3600 seconds. We
use values of € = 0.8 and § = 0.2, in line with prior work in
the model counting community.

With the above setup, we conduct extensive experiments to
understand the following:

RQ1. How does the runtime performance of ttc compare to
that of polyvest?

RQ2. How does the performance of ttc scale with different
benchmark parameters?

RQ3. How accurate is the count computed by ttc in compar-
ison to the exact count?

Summary of Results. ttc achieves a significant performance
improvement over polyvest by finishing on 1112 instances
in a benchmark set consisting of 1131, while polyvest could
only finish on 145 instances. polyvest barely finishes on
instances with more than 25 polytopes or 20 dimensions,
while ttc seamlessly handles 40 polytopes of 35 dimensions.
The accuracy of the approximate count is also noteworthy,
with an average error of a count by ttc of only 0.0593.

5.1 Performance of ttc

Instances Solved. In Table 1, we compare the number of
benchmarks that can be solved by polyvest and ttc. First, it

3Benchmarks and logfiles:
16782810

https://doi.org/10.5281/zenodo.

551

Main Track
Solver Solved  PAR-2 3500 ;
vinci 142 6097.63 2000 e ttcl
polyvest 145  6199.73 e
ttc 1112 25548 25
Z 2000
Table 1: Performance comparison on 1131 instances. E
2 1500
1000
algorithmic differences, we do not include SMT-LIB in our 500 Jon j
evaluation. Accordingly, we focus on the construction of syn- __—’
thptlc instances that are dlsjqnctlons of intersecting polytopes, 0s 00 200 600 00 1000
with each polytope defined in H-representation (Az < b). In Benchmarks
total, our benchmark suite consists of 1131 benchmarks.
1. We vary two parameters: (1) dimension parameter n: Figure 5: Cactus plot comparing runtime of different tools.
ranges from 6 to 34, (2) number of polytopes m: ranges
from 6 to 42. < 7
2. For each instance, we generate polytopes using three dif- 108 dip' }» '; ///
ferent geometric shapes studied by Cousins and Vem- LI Y C
pala (2016): (a) Cubes: n-dimensional cubes with ran- o0 o o,
dom bounds, then translated and rotated. (b) Zonotypes: B 102 4 .33.- .: i
Minkowski sum of n different d-dimensional vectors gen- z od S0
erated randomly. (c) Simplex: Shapes where all coordi- e oY d
nates are nonnegative and sum to at most 1, defined as 101 4 .".‘fg °
{z eR: Y0 2, <1,z; >0} fag X
/, ®
Environment. We conducted all our experiments on a high- 100 o & o

Figure 6: Runtime comparison of ttc w.r.t. polyvest.

is evident that the polyvest only solved 145 out of the 1131
benchmarks in the test suite, indicating its lack of scalabil-
ity. Conversely, ttc solved 1112 instances, demonstrating a
substantial improvement compared to polyvest.

Solving Time Comparison. A performance evaluation of
polyvest and ttc is depicted in Figure 5, which is a cactus
plot comparing the solving time. The x-axis represents the
number of instances, while the y-axis shows the time taken.
A point (i, 7) in the plot represents that a solver solved j
benchmarks out of the 1131 benchmarks in the test suite in
less than or equal to j seconds. The curves for polyvest and
ttc indicate that for a few instances, polyvest was able to give
a quick answer, while in the long run, ttc could solve many
more instances given any fixed timeout.

In Table 1 we also show the PAR-2 score of the solvers,
which is the mean runtime over all instances, assigning a cost
of 27 to each instance timed out at 7. ttc shows significantly
small PAR-2 score. In Figure 6, we present a comparative
analysis of solving times between ttc and polyvest. Each
data point (z, y) represents an instance that was solved in
seconds by ttc and y seconds by polyvest. Points appearing
below the dotted red diagonal line indicate instances where
polyvest outperformed ttc in solving time. ttc demonstrates
superior performance on the vast majority of instances.

Time utilization in different components. Theoretically, AIG
to DNF conversion can take exponential amount of time.


https://doi.org/10.5281/zenodo.16782810
https://doi.org/10.5281/zenodo.16782810

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

3 - ]
§7- " om
xmg = = 3000
% | i
}‘3—‘- ] - " =
» <
Eﬁ'—-l =
‘F A u 2000
88
Ewx
£
= 1000
<
N 0
~

-
6 8 10 12 14 16 18 20 22 24 26 28 30 39

Number of Polytopes

(a) polyvest

- 3000

2000

Dimensions
6 8 10121416182022242628303234

1000

6 9 12 15 18 21 24 27 30 33 36 39 42
Number of Polytopes

(b) ttc
Figure 7: Time taken by w.r.t. dimensions and #polytopes.
Theoretical 0.1 04 08
Observed Median 0.03 0.04 0.04
Max 022 020 0.39

Table 2: Theoretical vs. observed error at different <.

However, in our experiments, the DNF conversion time was
negligible. The maximum time spent on this conversion was
1.2 seconds, with most instances completing the conversion
in less than one second. The majority of the computation
time was spent on calculating the individual volumes of the
polytopes. For all instances that took more than 100 seconds
to solve, over 60% of the time was dedicated to polytope
volume computation.

5.2 Scaling

In Figure 7a and 7b, we evaluate the scalability of ttc and
polyvest with respect to both the number of polytopes and
dimensions. The plots are organized with the number of poly-
topes increasing from left to right along the x-axis, while the
number of dimensions increases from top to bottom along the
y-axis. Each pixel corresponds to a specific instance in our
benchmark dataset, with the color intensity representing the
solver’s runtime performance. As demonstrated in Figure 7a,
polyvest exhibits significant performance degradation when
handling instances exceeding 12 polytopes or 12 dimensions.
By contrast, Figure 7b reveals that ttc efficiently processes

552

L
--- y=08
0.6 1
g
45
o
2041
A
Qo
&
+
02 ¥
0.0 - T T T T
0 25 50 75 100 125

Instances

Figure 8: Quality of approximation: observed error.

configurations with up to 40 polytopes and 35 dimensions
without notable performance deterioration.

5.3 Quality of Approximation

In our experimental evaluation, we found the exact volume of
142 benchmarks from vinci, enabling us to calculate the error
made by ttc on these instances. We quantify the error made

by ttc by the parameter e = ‘bgs‘, where b represents the
count from vinci and s from ttc. This measure is the observed
error, analogous to the theoretical error guarantees provided
by ttc. Analysis of all 142 cases found the median e to be
0.059, geometric mean 0.038, and maximum 0.39, contrast-
ing sharply with a theoretical guarantee of 0.8. This signifies
ttc substantially outperforms its theoretical bounds. In Fig-
ure 8 we plot the observed error, where z-axis, we have the
benchmarks, and on the y-axis we have the observed errors.
The observed error is below 0.2 for most of the instances.

In Table 2 we showed different observed errors when we
run ttc with different ¢ values. The median and maximum
observed errors decrease with the theoretical €. The maxi-
mum observed error with € = 0.1, is greater than theoretical,
which is not unnatural, given the (&, J) guarantee nature.

6 Conclusion

This paper introduces ttc, a scalable approximate SMT vol-
ume computation tool that demonstrates exceptional perfor-
mance on practical benchmarks. Our approach harnesses
probabilistic techniques to deliver theoretical guarantees on
computation results, and empirical results significantly sur-
passing theoretical guarantees. Our work suggests several
promising research directions. First, many formulas contain
equality constraints that result in zero volume when comput-
ing in d dimensions. A natural extension would be to develop
methods for correctly computing (d — k)-dimensional vol-
ume in such cases. Second, while we prioritized performance
over strict theoretical guarantees in our implementation, ex-
perimental results consistently demonstrate error rates well
below theoretical bounds. This raises the intriguing ques-
tion, whether rigorous guarantees can be established for our
current implementation without sacrificing its performance
advantages.



Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Acknowledgements

We are thankful to Sourav Chakraborty, Radoslav Dimitrov,
Arijit Ghosh and Mate Soos for the many useful discussions.
This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC) [RGPIN-
2024-05956]. The work was done when Arijit Shaw was a
visiting graduate student at the University of Toronto. Ud-
dalok Sarkar was supported by Google PhD fellowship. Com-
putations were performed on the Niagara supercomputer at
the SciNet HPC Consortium. SciNet is funded by Innovation,
Science and Economic Development Canada; the Digital
Research Alliance of Canada; the Ontario Research Fund:
Research Excellence; and the University of Toronto.

References

Abboud, R.; Ceylan, 1. I.; and Dimitrov, R. 2020. On
the approximability of weighted model integration on DNF
structures. In Proc. of KR.

Abboud, R.; Ceylan, I. I.; and Dimitrov, R. 2022. Approxi-
mate weighted model integration on DNF structures. Artif.
Intell.

Applegate, D., and Kannan, R. 1991. Sampling and inte-
gration of near log-concave functions. In Proceedings of the
twenty-third annual ACM symposium on Theory of comput-
ing, 156-163.

Aydin, A.; Bang, L.; and Bultan, T. 2015. Automata-based
model counting for string constraints. In Proc. of CAV.
Backes, J.; Berrueco, U.; Bray, T.; Brim, D.; Cook, B.; Gacek,
A.; Jhala, R.; Luckow, K.; McLaughlin, S.; Menon, M.; et al.
2020. Stratified abstraction of access control policies. In
Proc. of CAV.

Baluta, T.; Shen, S.; Shinde, S.; Meel, K. S.; and Saxena, P.
2019. Quantitative verification of neural networks and its
security applications. In Proc. of CCS.

Barbosa, H.; Barrett, C.; Brain, M.; Kremer, G.; Lachnitt,
H.; Mann, M.; Mohamed, A.; Mohamed, M.; Niemetz, A.;
Notzli, A.; et al. 2022. cvc5: A versatile and industrial-
strength smt solver. In Proc. of TACAS.

Barrett, C.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C. 2021.
Satisfiability modulo theories. In Handbook of satisfiability.
Belle, V.; Passerini, A.; and Van den Broeck, G. 2015. Prob-
abilistic inference in hybrid domains by weighted model
integration. In Proc. of IJCAL

Brummayer, R., and Biere, A. 2009. Boolector: An efficient
SMT solver for bit-vectors and arrays. In Proc. of TACAS.
Cashmore, M.; Magazzeni, D.; and Zehtabi, P. 2020. Plan-
ning for hybrid systems via satisfiability modulo theories.
Journal of Artificial Intelligence Research.

Chakraborty, S.; Meel, K.; Mistry, R.; and Vardi, M. 2016.
Approximate probabilistic inference via word-level counting.
In Proc. of AAAI

Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2021. Ap-
proximate model counting. In Handbook of Satisfiability.
Chalkis, A., and Fisikopoulos, V. 2021. volesti: Volume
Approximation and Sampling for Convex Polytopes in R. R
Journal (2).

553

Chavira, M., and Darwiche, A. 2008. On probabilistic
inference by weighted model counting. Artificial Intelligence.

Chistikov, D.; Dimitrova, R.; and Majumdar, R. 2017. Ap-
proximate counting in smt and value estimation for proba-
bilistic programs. Acta Informatica 54(8):729-764.

Cimatti, A.; Griggio, A.; Schaafsma, B. J.; and Sebastiani, R.
2013. The mathsat5 SMT solver. In Proc. of TACAS.

Cimatti, A.; Mover, S.; and Tonetta, S. 2012. Smt-based
verification of hybrid systems. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 26, 2100-2105.

Cousins, B., and Vempala, S. 2016. A practical volume
algorithm. Mathematical Programming Computation (2).

Cousins, B., and Vempala, S. 2018. Gaussian cooling and

0"*(n"3) algorithms for volume and gaussian volume. SIAM
Journal on Computing 47(3):1237-1273.

Duenas-Osorio, L.; Meel, K.; Paredes, R.; and Vardi, M.
2017. Counting-based reliability estimation for power-
transmission grids. In Proc. of AAAL

Dyer, M. E., and Frieze, A. M. 1988. On the complexity of
computing the volume of a polyhedron. SIAM Journal on
Computing 17(5):967-974.

Dyer, M.; Frieze, A.; and Kannan, R. 1991. A random
polynomial-time algorithm for approximating the volume of
convex bodies. Journal of the ACM (JACM) 38(1):1-17.
Flajolet, P., and Martin, G. N. 1985. Probabilistic counting

algorithms for data base applications. Journal of computer
and system sciences 31(2):182-209.

Fried, D.; Nadel, A.; Sebastiani, R.; and Shalmon, Y. 2024.
Entailing generalization boosts enumeration. In Proc. of SAT.
Fried, D.; Nadel, A.; and Shalmon, Y. 2023. Allsat for
combinational circuits. In Proc. of SAT.

Ge, C., and Biere, A. 2021. Decomposition strategies to
count integer solutions over linear constraints. In Proc. of
1JCAL

Ge, C.; Ma, F;; Zhang, P.; and Zhang, J. 2018. Computing
and estimating the volume of the solution space of SMT (LA)
constraints. Theoretical Computer Science.

Ge, C.; Ma, F; Ma, X.; Zhang, F.; Huang, P.; and Zhang,
J. 2019. Approximating integer solution counting via space
quantification for linear constraints. In Proc. of IJCAI.

Ge, C. 2024a. Approximate integer solution counts over
linear arithmetic constraints. In Proc. of AAAL

Ge, C. 2024b. sharpsmt: A scalable toolkit for measuring

solution spaces of smt(la) formulas. Frontiers of Computer
Science (FCS).

Gibbons, P. B., and Tirthapura, S. 2001. Estimating simple
functions on the union of data streams. In Proc. of SPAA,
281-291.

Girol, G.; Farinier, B.; and Bardin, S. 2021. Not all bugs are
created equal, but robust reachability can tell the difference.
In Proc. of CAV. Springer.

Gomes, C. P.; Sabharwal, A.; and Selman, B. 2021. Model
counting. In Handbook of satisfiability.



Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Hajdu, A., and Jovanovié, D. 2020. solc-verify: A modular
verifier for solidity smart contracts. In Proc. of VSTTE.

Kane, D. M.; Nelson, J.; and Woodruff, D. P. 2010. An
optimal algorithm for the distinct elements problem. In Proc.
of PODS, 41-52.

Kannan, R., and Vempala, S. 1997. Sampling lattice points.
In Proc. of STOC.

Kannan, R.; Lovdsz, L.; and Simonovits, M. 1997. Random
walks and an 0*(n5) volume algorithm for convex bodies.
Random Structures & Algorithms 11(1):1-50.

Karp, R. M., and Luby, M. 1983. Monte-carlo algorithms
for enumeration and reliability problems. In Proc. of FOCS,
56-64.

Karp, R. M.; Luby, M.; and Madras, N. 1989. Monte-carlo
approximation algorithms for enumeration problems. Journal
of algorithms 10(3):429-448.

Katz, G.; Barrett, C.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An efficient smt solver for
verifying deep neural networks. In Proc. of CAV.

Kim, S., and McCamant, S. 2018. Bit-vector model counting
using statistical estimation. In Proc. of TACAS.

Kolb, S.; Mladenov, M.; Sanner, S.; Belle, V.; and Kersting,
K. 2018. Efficient symbolic integration for probabilistic
inference. In Proc. of IJCAL

Koley, I.; Dey, S.; Mukhopadhyay, D.; Singh, S.; Lokesh, L.;
and Ghotgalkar, S. V. 2023. CAD Support for Security and
Robustness Analysis of Safety-critical Automotive Software.
ACM Transactions on Cyber-Physical Systems.

Kroening, D., and Strichman, O. 2016. Decision procedures.

Lovasz, L., and Dedk, I. 2012. Computational results of an
O(n4) volume algorithm. European journal of operational
research 216(1):152-161.

Lovész, L., and Simonovits, M. 1990. The mixing rate of
markov chains, an isoperimetric inequality, and computing
the volume. In Proceedings [1990] 3 1st annual symposium
on foundations of computer science, 346-354. IEEE.

Lovasz, L., and Simonovits, M. 1992. On the randomized
complexity of volume and diameter. In Proc. of FOCS, 482—
492. IEEE Computer Society.

Lovasz, L., and Simonovits, M. 1993. Random walks in a
convex body and an improved volume algorithm. Random
structures & algorithms 4(4):359—-412.

Lovész, L., and Vempala, S. 2004. Hit-and-run from a corner.
In Proc. of STOC, 310-314.

Lovész, L., and Vempala, S. 2006. Simulated annealing in
convex bodies and an 0*(n4) volume algorithm. Journal of
Computer and System Sciences 72(2):392-417.

Lovasz, L. 1991. How to compute the volume? DIMACS,
Center for Discrete Mathematics and Theoretical Computer
Science.

Ma, F; Liu, S.; and Zhang, J. 2009. Volume computation
for boolean combination of linear arithmetic constraints. In
Proc. of CADE.

554

Mattarei, C.; Mann, M.; Barrett, C.; Daly, R. G.; Huff, D.;
and Hanrahan, P. 2018. Cosa: Integrated verification for
agile hardware design. In Proc. of FMCAD.

Meel, K. S.; Vinodchandran, N.; and Chakraborty, S. 2021.
Estimating the size of union of sets in streaming models. In
Proc. of PODS.

Morettin, P.; Passerini, A.; and Sebastiani, R. 2017. Ef-
ficient weighted model integration via smt-based predicate
abstraction. In Proc. of AAAL

Morettin, P.; Passerini, A.; and Sebastiani, R. 2019. Ad-
vanced smt techniques for weighted model integration. Arti-
ficial Intelligence.

Niemetz, A., and Preiner, M. 2023. Bitwuzla. In Proc. of
CAV.

Schkufza, E.; Sharma, R.; and Aiken, A. 2016. Stochastic
program optimization. Communications of the ACM (2).

Shaw, A., and Meel, K. S. 2024. Model counting in the wild.
In Proc. of Knowledge Representation and Reasoning (KR).

Shaw, A., and Meel, K. S. 2025. Approximate smt counting
beyond discrete domains. In Proc. of DAC.

Smith, R. L. 1984. Efficient monte carlo procedures for
generating points uniformly distributed over bounded regions.
Operations Research 32(6):1296-1308.

Soos, M.; Sarkar, U.; Aggarwal, D.; Chakraborty, S.; Meel,
K. S.; and Obremski, M. 2024. Engineering an efficient
approximate dnf-counter. arXiv preprint arXiv:2407.19946.
Spallitta, G.; Masina, G.; Morettin, P.; Passerini, A.; and
Sebastiani, R. 2022. Smt-based weighted model integra-
tion with structure awareness. In Uncertainty in Artificial
Intelligence, 1876-1885. PMLR.

Spallitta, G.; Masina, G.; Morettin, P.; Passerini, A.; and
Sebastiani, R. 2024. Enhancing smt-based weighted model

integration by structure awareness. Artificial Intelligence
328:104067.

Teuber, S., and Weigl, A. 2021. Quantifying software relia-
bility via model-counting. In Proc. of QEST.



	Introduction
	Notation and Preliminaries
	Related Work
	Algorithm and Analysis
	Algorithm
	Analysis
	Implementation

	Experimental Evaluation
	Performance of ttc
	Scaling
	Quality of Approximation

	Conclusion

