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Abstract

This paper considers the complexity and properties of KLM-
style preferential reasoning in the setting of propositional lo-
gic with team semantics and dependence atoms, also known
as propositional dependence logic. Preferential team-based
reasoning is shown to be cumulative, yet violates System P.
We give intuitive conditions that fully characterise those
cases where preferential propositional dependence logic sat-
isfies System P. We show that these characterisations do,
surprisingly, not carry over to preferential team-based pro-
positional logic. Furthermore, we show how classical entail-
ment and dependence logic entailment can be expressed in
terms of non-trivial preferential models. Finally, we present
the complexity of preferential team-based reasoning for two
natural representations. This includes novel complexity res-
ults for classical (non-team-based) preferential reasoning.

1 Introduction

Preferential reasoning in the style of Kraus, Lehmann and
Magidor (1990)—henceforth abbreviated by KLM—is one
of the main non-monotonic reasoning approaches that is well
accepted in knowledge representation and reasoning, with
connections to, e.g., belief change (Makinson and Gérdenfors
1991) and human-like reasoning (Ragni et al. 2020); see also
Gabbay et al. (1993) and Brewka et al. (1997) for a general
placement within non-monotonic reasoning. The semantic
core of KLM-style preferential reasoning is its very elegant
construction by preferential models. Roughly, a preferential
model provides a strict partial order < for a set of interpret-
ations of some underlying logic (which is often classical
propositional logic). Then, one says a formula ¢ is prefer-
entially entailed from ¢ if all <-minimal models of ¢ are
models of 1, i.e.,

¢ b if min([e], <) < [¢].

Intuitively, when a non-monotonic inference ¢ | v is gen-
erically understood as ‘when ¢ holds, then usually ¢ holds’,
the preferential reasoning reading of ‘usually’ is ‘one ex-
pects that’ (Gardenfors and Makinson 1994). Hence, the
intuition is that < expresses a degree of exceptionality on
the interpretations, i.e., the more preferred interpretations are
less exceptional. Another feature of preferential reasoning
is that it is exactly characterized by the System P postu-
lates when the underlying logic is classical (KLM, 1990).
Because the System P postulates are so widely accepted,
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preferential reasoning is sometimes considered as the ‘con-
servative core of non-monotonic reasoning’ (Pearl 1989;
Gabbay 1984).

Team semantics is a logical framework for studying con-
cepts and phenomena that arise in the presence of plurality of
objects. These concepts include, e.g., functional dependence
ubiquitous in database theory and conditional independence
of random variables in statistics. The start of the field of team
semantics can be traced back to the introduction of (first-
dependence logic, formulas are interpreted by sets of assign-
ments (teams) instead of single assignments as in the usual
classical semantics. Syntactically, dependence logic intro-
duces new atomic formulas called dependence atoms =(Z, y)
expressing that the values of the variables & functionally de-
termine the value of the variable y. During the past decade,
the expressivity and complexity aspects of dependence logic
and other team-based logics have been extensively studied
and interesting connections have been found to areas such
as database theory (Hannula, Kontinen, and Virtema 2020;
Hannula and Kontinen 2016), meta-finite model theory (Han-
nula et al. 2020), inquisitive logic (Ciardelli, Ilemhoff, and
Yang 2020), and epistemic logic (Galliani 2015). These
works focus on logics in the first-order, propositional and
modal team semantics, and more recently also in the multiset
(Durand et al. 2018a), probabilistic (Durand et al. 2018b) and
semiring settings (Barlag et al. 2023).

In this paper, we study preferential propositional depend-
ence logic, i.e., preferential entailment with propositional
dependence logic as underlying logic. As far as the au-
thors know, a merger of logics in team semantics and non-
monotonic reasoning has not been studied so far except
for (Yan 2023), where the former applies a certain (non-
monotonic) team-based modal logic to the formal analysis
of natural language. In the following, we present the motiva-
tion for our study and then present an overview of this paper,
including our main contributions.

Motivation. Combining team-based reasoning and prefer-
ential reasoning is a promising way to obtain a novel con-
ceptually rich family of reasoning approaches. Consider, for
instance, the classical example with birds (b), flies (f), and
penguin (p). First, preferential entailment =(b, f) b —p
reads technically as ‘all maximally preferred teams that sat-
isfy =(b, f) also satisfy —p’. There is no obvious way to
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formulate the latter kind of expression in existing team-based
logics, so injecting non-monotonicity is a valuable extension
of team logic. Note that ‘=(b, f) o —p’ does not imply that
= (b, f)Apis inconsistent. Then, when employing the typical
understanding of preferential reasoning as realising inference
by expectation, we obtain the following. The dependence
atom =(b, f) expresses that whether it is a bird fully de-
termines whether it flies. Thus, the (monotonic) entailment
=(b, f) = —p states that

‘when whether it is a bird (b) determines whether it fliesflies

(f), then it is not a penguin (—p)’
and the preferential entailment =(b, f) |~ —p reads as

‘when whether it is a bird (b) determines whether it flies ( f),
then one expects not a penguin (—p)’.
This is an expression that preferential reasoning with an un-
derlying classical logic does not permit. But we do not have
to stop with this kind of understanding. A team corresponds
to a plurality of objects, which permits various understand-
ings of what a team stands for. Moreover, the preferential
setting allows us to explore new understandings of the un-
derlying order <. Dependent on the application context, one
reads =(b, f) ~ —p, e.g., as follows:
e Teams as databases: ‘“When the value of b determines the
value of f in a database, then one expects that the value
of pis 0.
e Teams as possible worlds. “When the agent is convinced
that whether f holds in a world always depends on b, then
usually the agent expects that p does not hold.’

o Teams as answers to a question (inquisitive reading). ‘One
expects that p does not hold whenever in all answers f
depends on b.’

» Teams as datasets and < orders them by reliability. ‘In

all most reliable datasets in which b determines the value
of f, it does not hold p.’

These are examples of interpretations of preferential depend-

ence logic. We expect that one discovers more potential

interpretations and applications of preferential team-based

logics, when one considers preferential versions of other

team-based logics.

Contributions. In this paper, we consider the complexity

and properties of KLM-style preferential logics in the context

of team-based logics. Specifically, we will encounter the

preferential counterparts of the following logics:

* Propositional logic with classical semantics (CPL)
* Propositional logic with team-based semantics ~ (TPL)
* Propositional dependence logic (PDL)

Our study will focus on preferential propositional depend-
ence logic (PDIP®"). But, we will also discuss preferential
entailment of propositional logic with classical semantics
(CP1P*") and team-based semantics (TP1”*"). The following
list summarizes the main contributions of this paper:

* [Relationship of PDI™ to System P] It is shown that
PDI”" satisfies System C and violates System P. We
present two properties, (x) and (A) (see p.5), for which
each of them precisely characterize those preferential
models in which System P is satisfied.

524

Problem Tract. Complexity Result
ENT(CPLP) v €P,NC'-hard Thm. 28
SUCCENT(CPI)., . X Ab-complete Thm.31
SUCCENT(CPL") X €115, Ab-hard Thm. 32
ENT(PDL™) X € ©5 NP-hard Thm. 33
SUCCENT(PDL™) X €15, Ab-hard Thm. 34
ENT(TPL™) v €P,NC'-hard Col. 35
SUCCENT(TPL™) X €115, Ab-hard Col. 35

Table 1: Overview of novel complexity results for entailment
based on preferential models. Tract. stands for tractability.
ENT/SUCCENT are the (succinct) entailment problem for preferen-
tial propositional logic (see Section 7 for the definition).

* [Properties of TP .] We observe that characterization
of System P via (x) and (A) does not carry over to TPL”*f
from PDIP. This is surprising, as TPL is a fragment of
PDL. It is shown that TPL” still satisfies System C and
violates System P.

* [Complexity of Preferential Reasoning.] We give a full
classification in terms of tractable and intractable cases
for the problem of inference from a given preferential
model. Note that—unlike the problem of inference from
a set of conditional assertions for CPL”f (Lehmann and
Magidor 1992; Eiter and Gottlob 1992)—the complexity
of inference from preferential models for PDLf, CPLP,
and TPL” has not been studied. We prove upper and
lower bounds for the complexity of preferential classical
propositional logic and preferential propositional depend-
ence logic. Table 1 summarises these complexity results.

In the next section, we present the preliminaries on logic
and computational complexity. Section 3 presents the back-
ground on preferential reasoning. In Section 4 we study the
relationship of preferential propositional dependence logic to
System P. A non-trivial preferential representation of stand-
ard entailment is presented in Section 5. In Section 6, we
discuss implications for preferential proposition logic with
team semantics. Section 7 is dedicated to presenting upper
and lower bounds for the complexity of preferential entail-
ment. Finally, Section 8 concludes the paper.

2 Preliminaries

We present the background on propositional logics with clas-
sical semantics, team semantics and propositional depend-
ence logic (a survey on team-based logics can be found by
Durand, Kontinen, and Vollmer, 2016). Furthermore, we
present the background on computational complexity.

Language of Propositional Logic. We denote by Prop =
{ pi | i € N } the countably infinite set of propositional
variables. We will use letters p,q,r,... (with or without
subscripts) to stand for elements of Prop. In this paper, we
consider propositional formulas in negation normal form, i.e.,
well-formed PL-formulas ¢ are formed by the grammar:

pu=p|lp|L]IT|lpApleVe,
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where p € Prop, and T, L are the usual syntactic sugars for
true and false. We write Prop(() for the set of propositional
variables occurring in .

Classical Propositional Logic (CPL). We consider the clas-
sical semantics for PL-formulas. If one considers a non-
empty finite subset N C Prop of propositional variables,
then define for valuations v: N — {0,1} over N and PL-
formulas ¢:

[0l ={v: N ={0,1} [ v =}

We also write v = p in case v(p) = 1, and v [~ p otherwise.
The valuation function v is extended to the set of all PL-
formulas in the usual way. We denote by A the set of all
assignments over N. Furthermore, we will write PL(V) for
all propositional formulas using variables only from N. We
write ¢ = 9 for [p]© C [¢]° and ¢ =€ 1 if both ¢ |=° ¥
and 1) E=° . When we talk in this paper about CPL, we refer
to the logic with PL-formulas and classical semantics.

Propositional Logic with Team Semantics (TPL). Next,
we define team semantics for PL-formulas (cf. (Hannula et
al. 2018; Yang and Viinédnen 2016)). A team X is a set of
valuations for some finite set N C Prop. We write dom(X)
for the domain NV of X and Ty for the set of all such teams.

Definition 1 (Team semantics of PL). Let X be a team. For
any PL-formula ¢ with dom(X) D Prop(yp), the satisfaction
relation X |=  is defined inductively as:

XEp ifforallve X :vl=p
XE-p ifforallve X :vlEp
XL iFX =0

XET is always the case
XEeny ifXEpandX =1
X EpVYy ifthereexistY,Z C X

5. X=YUZY =, and Z = 1.

The set of all teams X with X = ¢ is denoted by [¢].
For any two PL-formulas ¢, ), we write ¢ = 9 if ] C

[+)]. Write ¢ =t 4 if both ¢ =t ) and ¢ E! . With
TPL we refer to the logical setting of PL-formulas with
team semantics. We define the following properties for a
formula ¢:

c X EF ¢ < forallv e X, {v} E .
D E o
cIfXEypandY C X, then Y |= ¢. (Downwards closure)

Proposition 2. TPL has the flatness property, the empty team
property, and the downward closure property.

(Flatness)
(Empty team)

Due to the flatness property, logical entailment of pro-
positional logic with team-based semantics |=! and logical
entailment of propositional logic with classical semantics
¢ coincide. However, we will see later that these differ-
ent semantic approaches will lead to different preferential
entailment relations.

Propositional Dependence Logic (PDL). A (proposi-
tional) dependence atom is a string =(a . .. ag, b), in which
ai,...,ag,b are propositional variables from Prop. The
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team semantics of dependence atoms is defined as follows,
whereby @ stands for a4, ..., ax:

X E=(a,b) ifforalv,v" € X,

v(@) = v'(a@) implies v(p) = v’ (p).

A dependence atom with the empty sequence in the first
component will be abbreviated as =(p) and called constancy
atoms. The team semantics of the constancy atoms is reduced
to

X [ =(p) if forallv,v’ € X,v(p) = v'(p).

We define the language of propositional dependence logic
(denoted as PL(=(,))) as the extension of PL-formulas with
dependence atoms. With PDL we refer to the whole logical
approach, including the language and the above-mentioned
semantics. We consider an example for PDL.

Example 3. Consider the team X over {p, q,r} defined by:

p q T
V1 1 0 0
v 0 1 O
V3 0 1 0

We have X | =(p,q) and X = =(r). Moreover, X
=(p) V =(p) but X |~ =(p).

The following proposition describes properties of PDL.

Proposition 4. PDL has the empty team property and the
downward closure property.

Note that PDL does not satisfy the flatness property. We
can define the flattening ¢/ of a PL(=(,))-formula by repla-
cing all dependence atoms in ¢ by T. Clearly, ¢/ is a PL
formula. Furthermore, one checks easily that ¢ = ¢/ and
that {v} |= ¢ < v |= ¢/ for all assignments v.

Generic View on Logics. Some parts of this paper will re-
quire a generic view on logics. The following provides a
view that offers the right abstraction to capture the necessary
aspects of logics in this paper in a generic way. A satisfac-
tion system is a triple S = (£, Q, =), where L is the set of
formulas, €2 is the set of interpretations, and = C Q x L is
the model-relation. An entailment relation for a satisfaction
system is a relation v C £ x L. A satisfaction system S
together with an entailment relation |~ is denoted as logic
L = (L,Q, =, p). Wesay alogic .Z is standard, if |~ is the
canonical logical entailment given by ¢ ~ ¢ if [¢] C [¢],
whereby [¢] = {v € Q | v |= ¢}. The canonical logical
entailment is often written with the same symbol |=. The
propositional logics described in this section provide the fol-
lowing instances of the generic approach for each N C Prop,
which are all standard logics:

CPLy = <[’§:\IPL’ Q?VPLv ):7 ':CPL> = (PL(N>7 An, ):7 ':C>
TPLy=(LIPE QW b=, =T = (PL(N), T, k=, =)
PDLy= <L‘]PVDL7 Q?VDL’ ):a ':PDL> = <PL(:(7))v Tn, ):a |:t>
Often, we will not mention N explicitly and assume that

there is some N of appropriate size. Moreover, we will write
k= instead of |=* when there is no ambiguity.
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Computational Complexity. We assume basic familiarity
with computational complexity theory (Papadimitriou 1994).
We will make use of the complexity classes P and Af = PNP,
as well as standard reducibility notions, e.g., logspace-many-
to-one reductions <98,

Before we define a natural complete problem for AY, we

need to formally introduce the lexicographic order on as-
signments. Let P C Prop with |P| = n. An assignment
function v: P — {0, 1} is interpreted as a string v, from
{0,1}" in the natural way, i.e., v = v(z1)---v(z,) if
P = {z1,...,2,}. We denote by vi[i] for 1 < i < n
the ith bit of vs.
Definition 5 (lexicographic order). For two strings s,s’ €
{0,1}"™ with s # s' we say that s <iex 8’ if there exists a
(possibly empty) prefix 0 < j < n such that s[k] = s'[k] for
all0 <k < jandslk+1] < s'[k+1].

Next, we define the decision problem ODDLEXMAXSAT
studied by Krentel (1988), which we abbreviate by OLMS.

Problem: OLMS

Input: A propositional formula ¢ over variables
{xlw..,xn}.
Question: ¢ is satisfiable, and for the largest satisfying

assignment 6 with respect to <jex do we
have that 0(x,,) = 1?

Proposition 6 (Krentel 1988). OLMS is AL-complete under
<lo8_reductions.

The complementary problem to OLMS is denoted here
as OLMS, where 6(x,,) # 1. As A} is a deterministic
complexity class, OLMS of OLMS is also Ab-complete.

Now we will present the standard notion of a circuit and
the notion of a circuit family. For a comprehensive overview
of the topic of circuit complexity, refer to the textbook by
Vollmer (1999).

Definition 7. Ler B {V,A,—,0,1}. A Boolean cir-
cuit over B with n inputs and one output gate is a tuple
C = (V,E,a,B,w), where (V, E) is a finite directed acyc-
lic graph, a: E — N is an injective function, §: V —
BU{z1,...,xn},andw: V — {y1,...,ym} U {x} such
that the following is true:

1. Ifv € V has in-degree 0, then B(v) € {z1,...,x,} isan

input gate, or 3(v) is a 0-ary Boolean constant from B.

2. If v € V has in-degree k > 0, then $(v) is a k-ary

Boolean function from B.

3. For every 1 < i < n, there is at most one node v € V
such that 5(v) = x;.

4. For every 1 < i < m, there is exactly one node v € V
such that w(v) = y;.

If B(v) = x; for some i then v is an input node. If w(v) # *
then v is an output node.

Definition 8. Ler B = {V,A,—,0,1}. A circuit family
over B is a sequence C = (Cy,C1,...), where for every
n €N, C, is a circuit over B with n inputs. Let f™ be
the function computed by C,,. Then we say that C com-
putes the function f: {0,1}* — {0,1}*, defined for every
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w € {0,1}* by f(w) = fl*l(w). We write f = (f")nen
and C = (Cy) nen-

As usual, AC® denotes the class of all polynomial-sized
circuit families of constant depth using gates with unbounded
fan-in, i.e., the number of inputs a logic gate can handle. NC!
denotes the class of all polynomial-sized circuit families of
logarithmic depth using gates with fan-in two.

Example 9. Given two binary strings @ = a,_1 -- - ag,b =
bn—1--- by (so the least significant bit is the rightmost bit),

the lexicographic order <iox can be defined via an AC°-
circuit, where the overline ~ means an outermost negation

n—1 n—1
V (@>bin N (a5 =0))),
=0 Jj=i+l

and conjunctions (disjunctions) over the empty set are defined
as true (false). Here a > b is then merely encoded via a \ —b,
and a = bwith (a A b) V (—a A —b).

3 Background on Preferential Logics

In this section, we present background on preferential logics
in the style of Kraus, Lehmann and Magidor (1990) (KLM).
In preferential logic, an entailment ¢ [~ ¢ holds, when
minimal models of ¢ are models of 1. This is formalized via
preferential models, which we introduce in the following.

For a strict partial order < C S x S on aset S and a subset
S C S, anelement s € S is called minimal in S with respect
to < if for each s’ € S holds s’ £ s. Then, min(.S, <) is the
set of all s € S that are minimal in S with respect to <.

Definition 10 (KLM, 1990). Let ¥ = (L,Q, }=,=%) be a
logic. A preferential model for £ is a triple W = (S, ¢, <)
where S is a set, {: S — (), < is a strict partial order on S,
and the following condition is satisfied:

[Smoothness] S(p) = {s € S | £(s) E ¢} is smooth
with respect to < for every formula p € L, i.e, for each
s € S(p) we have either s € min(S(p), <) or there
exists a state s' € min(S(p), <) with s’ < s.

We say a preferential model is finite if S is finite.

Smoothness guarantees the existence of minimal elements.
For convenience, we make use of the following abbreviations:
min([e], <) = {¢(s) | s € min(S(p), <)} and we write
s k= pforl(s) = .

Definition 11 (KLM, 1990). Let ¥ = (L,Q, =, =7) be a
standard logic. The entailment relation ~y, C L x L for a
preferential model W for £ is given by

@ by ¢ if min([e], <) € [¥] .

An entailment relation b C L x L is called preferential if
there is a preferential model W for £ such that v = .

Every preferential model W for a standard logic . =
(L,Q, =, E7) gives rise to a logic Zw = (L, &, bay)-
We say that each such logic %y is a preferential logic for .Z.
Preferential propositional dependence logic (PDIP®) refers
to the preferential logics for PDL; and analogously for prefer-
ential classical propositional logic (CP1”*) and preferential
propositional logic with team semantics (TPL™).
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4 On the Relationship of PDI™ to System P

In this section, we consider the satisfaction of properties by
preferential propositional dependence logic. We make use of
the following postulates for non-monotonic entailment p:

oEY by
e (ReD v RW)
e=v% @pv oY oy
Yy (LLE) NP Py (€M)
OANYPy oY oy Yy
cu) 2L T O
) (Co eV oy ©n

Note that |= is the entailment relation of the underlying mono-
tonic logic, and = the respective semantic equivalence. The
rules (Ref), (RW), (LLE), (CM) and (Cut) form System C.
Notably, the rule (CM) goes back to the foundational paper
on non-monotonic reasoning systems by Gabbay (1984) and
is a basic weakening of monotonicity. System P consists of
all rules of System C and the rule (Or). The rule of (Or) is
motivated by reasoning by case (Pearl 1989).

A seminal result for CPL by KLM (1990) is the direct cor-
respondence between preferential entailment and System P.

Proposition 12 (KLM, 1990). An entailment relation |~ for
CPL satisfies System P if and only if |~ is preferential.

System C and System P are of utmost importance for non-
monotonic reasoning. System C is considered to be the basic
properties of good non-monotonic reasoning, and System P
is considered the ‘conservative core’ of non-monotonic reas-
oning (KLM, 1990).

Satisfaction of PDI” of System C. Our first observation
is that preferential entailment for PDL satisfies System C.
This is a novel result as the proof of System C satisfaction
for CPL”" given by KLLM does not carry over to preferential
propositional dependence logic.

Proposition 13. PDI”™ satisfies System C.

Proof. We show that p, satisfies all rules of System C:
[Ref.] Considering the definition of |y, yields that ¢ vy, ¢ if
for all minimal s € S(¢) holds ¢(s) |= ¢. By the definition
of S(p), we have s € S(yp) if £(s) = ¢. Consequently, we
have ¢ vy .

[LLE.] From ¢ = 1, we obtain that S(¢) = S(¢) holds.
By using this last observation and the definition of -, we
obtain 1) fvy, v from @ ey, .

[RW.] Clearly, by definition of ¢ |= v we have [¢] C [¢].
From the definition of y ), ¢, we obtain that £(s) |= ¢ holds
for each minimal s € S(7y). The condition £(s) = ¢ in the
last statement is equivalent to stating £(s) € [¢]. Because of
[¢] C [v], we also have £(s) € [¢]; and hence, £(s) |= 9
for each minimal s € S(vy). This shows that 7y g 9 holds.
[Cut.] By unfolding the definition of pvy, we obtain
min(S(p A1), <) € S(v) from ¢ A 1) by 7. Analogously,
¢ P ¥ unfolds to min(S(y), <) € S(v). Moreover, em-
ploying basic set theory yields that S(p A ¥) = S(p) N
S(¢) € S(p) holds. From S(p A ) C S(p) and
min(S(y), <) C S(v), we obtain min(S(p), <) C S(p A
). Consequently, we also have that min(S(y), <)
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min(S(p A 9), <) holds. Using the last observation and
min(S(p A ¥),<) C S(v), we obtain min(S(p), <) C
S(7y). Hence also ¢ f~y, v holds.

[CM.] By unfolding the definition of fv, we obtain
min(S(p), <) € S(¢) and min(S(p), <) € S(y). We
have to show that min(S(y A 1), <) C S(7) holds. Let s
be element of min(S(p A ), <). Clearly, we have that
s € S(p) holds. We show by contradiction that s is
minimal in S(¢). Assume that s is not minimal in S(y).
From the smoothness condition, we obtain that there is an
s’ € S(p) such that s < s and s’ is minimal in S(yp)
with respect to <. Because s’ is minimal and because we
have min(S(p), <) C S(¢), we also have that s € S())
holds and hence that s € S(p A ) holds. The latter con-
tradicts the minimality of s in S(p A ). Consequently,
we have that s € min(S(g), <) holds. Because we have
min(S(p), <) € S(7), we obtain ¢ A 1) pay, . O

Relationship of PDI”*' to System P. The following example
shows that Proposition 12 does not carry over to PDL, i.e.,
there are preferential entailments for PDL that witness a
violation of (Or).

Example 14. Assume that N = {p, q} C Prop holds. The
following valuations vy, vo, vs Will be important:

vi(p) =vi(q) = v2(q) =1 wv2(p) = vs3(p) = v3(q) =0

We consider the teams Xpq = {v1}, Xpq = {v2}, and
Xpirg = {v1,v3}. Let W,y = (Spg, Lpg, =<pq) be the pref-
erential model such that

Spq = {sx | X is a non-empty team}  lpy(sx) =X

holds, and such that <, is the strict partial order given by
(for the sake of readability, we identify sx with X)

Xperg <pg Xpg Xpg <pg X
Xperg <pg Xpq Xpg <pg X

where X stands for every team different from Xz, and X,,c4.
We obtain the following preferential entailments:

PV p Fw,q

This shows that %qu violates (Or), and thus, System P.

P Py G

P4

P b, 4

Pq

Proposition 15. PDI”* violates System P.

We will now identify two properties that will fully capture
those preferential entailment relations that satisfy all rules
of System P within PDL. First, we can observe that one
obtains System P, when the underlying preferential model
W = (S, ¢, <) satisfies the following property:

min([e V 9], <) € min([¢], <) Umin([¢], <) %)
One easily checks that (x) guarantees satisfaction of (Or).

Proposition 16. Let W be a preferential model for PDL. If
() is satisfied for all formulas @, ), then py, satisfies (Or).

Second, we say that W satisfies the (A)-property if for all
state s € S hold:

If [6(s)| > 1,then£(s") C £(s) and s’ < sforsomes’€S. (A)
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The (A)-property demands (when understanding states as
teams) that for each non-singleton team X exists a proper
subteam Y of X that is preferred in W over X.

In the following theorem, we show that the A-property
and (x)-property guarantee satisfaction of System P.
Theorem 17. Let W = (S, ¢, <) be a preferential model for
PDL. The following statements are equivalent:

(a) vy satisfies System P,
(b) W satisfies the /\-property.
(c) The (x)-property holds for all v, € PDL.

We prepare the proof of Theorem 17 via the following lem-
mata. For the first lemma, assume that N = {p1,...,pn},
and let X be an N-team. We define the following formula:

Ox \/ (™

veX

/\.../\pz(")) ,

whereby pf(i) is p; if v(p;) = 1 and —p; otherwise. Note that
for a team X, the powerset P(X) is the set of all subteams
of X. It is straightforward to check the following.

Lemma 18. O x defines the family of subteams of X, i.e., we
have that [©x] = P(X).

The next lemma guarantees that for a sufficiently large
team X, there exist formulas ¢, ¢ such that X is a model of
the disjunction ¢ V 1), but X is not a model of ¢ and 1.

Lemma 19. For each team X with | X| > 1, there exist
formulas ¢ and 1) such that

XEeVYy, X e, and X .

Proof. Since |X| > 1 there exists non-empty YV, Z C X
suchthat X =Y U ZandY # X and Z # X. There are
formulas ¢ and v such that [¢] = P(Y) and [¢] = P(2),
namely ¢ = Oy and 1) = Oz from Lemma 18. O

We will now show that the (A)-property implies the
(x)-property, i.e., if a preferential model satisfies the (A)-
property, then the model also satisfies the (x)-property.

Lemma 20. [f a preferential model W for PDL satisfies the
(AN)-property, then it also satisfies the (x)-property.

Proof. Assume (A) holds. Then it is easy to see that the
minimal elements of the order < are states that are mapped,
via ¢, to singleton teams. Furthermore, by the downward
closure property, for any ¢ V v the minimal teams satisfying
the formula are all singletons. Since for singleton teams
the interpretation of V is equivalent to that of the Boolean
disjunction, the (x)-property follows. O

Next, we will show that satisfaction of (Or) guarantees,
that the (A)-property is always satisfied.

Lemma 21. Let W be a preferential model for PDL. If
satisfies (Or), then W satisfies the (A\)-property.

Proof. The proof is by contraposition. For that, assume that
() fails. Then there exists a team X of size j > 2 such that
forallY C X, Y £ X.Letj=1+k({,k>1and] < k)
and define

p:=0xANOV---V0),
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where 0 := A,,.,, =(p;) and ¢ has [ many copies of 6.
It is easy to check that ¢ is satisfied by subteams of X of
cardinality at most /. The formula ) is defined similarly
with k copies of € in the disjuncts. Now it holds that ¢ = ),
@ = ¥ but X [~ p, 1. Using reflexivity and right weakening,
it follows that 1 vy, 1 and ¢ -y, 1. On the other hand, since
X is now a minimal model of ¢ V % that does not satisfy 1
we have shown ¢ V 9 [ w ¢ and that (Or) fails for fvy,. O

Now we are ready to give the proof of Theorem 17.

Proof of Theorem 17. From Lemma 20, we obtain (A\)=-(x).
From Proposition 16 we obtain (x)=-(Or). Moreover, from
Lemma 21 we obtain (Or)=-(A). Hence, we have a closed
ring of implications and conclude (Or) < (A) < (%). O]

In conformance with Theorem 17, the model W, from
Example 14 violates the (A)-property and (*)-property.

On the Expressivity on PDI” with System P. Next, we
show that preferential models for System P reasoning are
quintessentially the same as their flat (see Section 2) counter-
part in CPLP"',

Theorem 22. Let W = (S, ¢, <) be a preferential model for
PDL such that p~y, satisfies System P. Then, ¢ 1) if and
only if pf ey ¥F, where W' = (S', ¢/, <') denotes the pref-
erential model for CPL induced by W, i.e., one obtains W'
from W by first removing all states labelled by non-singleton
teams, then replacing labels of the singleton teams by their
content.

Proof. By construction, for all valuations s, s’ it holds that
s <’ §"if and only if {s} < {s'}. By Theorem 17, W
satisfies the (A\)-property and hence the minimal elements
of < are singleton teams. Hence ¢ |~ 1, if and only if, for
all minimal {s} € [¢] with {s} |= 4, if and only if, for all
<’-minimal s € [¢/] : s = /. The last equivalence holds
due to the remark on flattening after Proposition 4. O

Theorem 22 demonstrates that System P reasoning in
PDL”" does not fully employ the underlying team semantics.

5 Preferential Reconstruction of PDL and CPL

In this section, we characterize the logical entailment j:t for
PDL, as well as the logical entailment |=° for propositional
logic with classical semantics in a non-trivial canonical way.
Let Wy = <Ssub7£suba <sub> and Wup = <Ssup7 ésupa <sup>
be the preferential models such that the following holds:

Squb = Seup = {sx | X is a non-empty team}
gsub(SX) = Esup(sX) =X
Y < XifY C X Y <up Xif X CY

In Wy, and Wy, for each team X there is exactly one state
sx that is labelled by X. In <, subsets of a team are
preferred, whereas in <, superset teams are preferred.

The preferential model Wy, gives rise to the PDL entail-
ment relation |=, and the preferential model Waup gives rise
to CPL entailment of the flattening |=°.
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Proposition 23. For all PL(=(,))-formulas v, we have:
(a) @ by, ¥ if and only if pf = T
(b) @ b, ¥ if and only if o = 9

Proof. We show statements (a) and (b) separately.

(a) First, observe at first that we have ¢ |'vWsub 1) exactly when
we also have min([¢], <sw) C [¢]. Because PL(=(,)) has
the downwards closure property, we also have that stating
min(J¢], <sw) € [¢] is equivalent to stating that for all
singleton teams {v} it holds that {v} |= ¢ implies {v}
1. The latter statement is equivalent to stating that for the
flattening o/ and 1/ it holds that for all valuations v it holds
that v |= of implies v |= ¥/ (see also Section 2). Hence, we
have ¢ vy 1) if and only if of EC .

(b) We obtain that holds = C P“Wsup immediately by the
definition of %\’W\up- Next, we show that }\’Wup C Eholds. The

statement ¢ = 1) is equivalent to [¢] C [¢]. Because [¢]
is downward-closed, there are (pairwise C-incomparable)
teams X7, ..., X, such that [¢] = P(X1)U...UP(X,).
Because of the last property, we have that ¢ = 1 holds
exactly when { X7, ..., X,,} C [¢] holds. By construction
of Wy, we have min([¢], <ap) = {X1,..., Xy} for ¢.
Thus, we also have that ¢ fvwsup 1) holds and consequently,

we also have oy, C [=. O

6 Implications for TPL"

We consider the preferential version of the fragment TPL of
PDL. By inspecting Example 14 and the proof of Proposi-
tion 13, we observe that they also apply to TP

Proposition 24. TP satisfies System C and violates Sys-
tem P.

Surprisingly, Theorem 17 does not carry over to TPL,
In the following, we consider an example that witnesses that
(%) and (A) do not characterize System P in TPL[""',

Example 25. Assume that N = {p} C Prop holds. There
are exactly two valuations v, and vy with v,(p) = 1 and
vp(p) = 0. We consider the teams X, = {vp}, X5 =
{vp}, and X5 = {v1,v2}. Let Wg = (S, le, <) be the
preferential model such that

8®:{5Xp’SXF7SXpF} E@(Sx):X

holds, and such that <, is the strict partial order given by
(for the sake of readability, we identify sx with X):

Xpﬁ <@ Xp Xpﬁ <@ Xﬁ

One can check that for all PL-formulas the postulates (Or)
is satisfied. System P satisfaction follows then from Propos-
ition 24. Clearly, X,; <g X, witness a violation of the
(AN)-property. For a violation of the (x)-property, we make
the following observation:

min([p V —p], <e) = {Xpp} € {Xp} U{ X3}
= min([p]], <e) U min([-p], <e)

In summary, we obtain from Example 25 the following.
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Proposition 26. Wy, is a preferential model for TPL that
violates (x) and (), yet fvw® satisfies System P.

Unfortunately, a corresponding alternative for (x) and (A)
that characterizes System P within TPL eludes us so far.

Remark 27. One might note that Wg from Example 25
is also a preferential model for PDL. However, in com-
pliance with Theorem 17, System P is violated by |~W® in
PDL. To see this, we are setting ¢, 1 and v in (Or) to
=(p). When doing so, we obtain that =(p) vy =(p) and
=(p) V =(p) Paw, =(p) hold. The latter is the case, because
min([=(p) V=(p)], <) = {Xpp } and Xpp = =(p)
holds. Clearly, =(p) is not a PL-formula, and thus, =(p) is
also not a formula of TPL.

7 Complexity of Entailment

In this section, we study the computational complexity of
entailment-related problems. Informally this means, that we
are given a preferential model W and two formulas ¢, ¢ as
inputs. Then we ask whether ¢ v, 1) is true.

Preferential Propositional Logic. Preferential models W
encompass three components: a set S, a labelling function ¢,
and an order <. Let us first define the problem of interest.

Problem: ENT(CPL) — entailment problem for
preferential propositional logic
Input: A finite preferential model W = (S, ¢, <)

for CPL and ¢,y € PL.
Question: Is it true that ¢ vy, 1?

First, we see how this problem can be solved in polynomial
time in a brute-force approach.

Theorem 28. ENT(CPIP™) is in P and NC'-hard under
gfnco -reductions.

Proof. We show membership and hardness separately.
[Membership.] Consider an input W, ¢, ¢ with W =
(8,4, <) as defined above. We construct a polynomial-time
algorithm in the following:

1. Check for every s € S whether s |= ¢ and place a mark
in S at this element if yes.

2. In the corresponding graph (S, <) search for all marked
minimal elements s and check if s = . If not, reject.

3. Accept.

The |= checks are in NC! C P (Buss et al. 1992). The min-
imum search is a simple graph search for minimal elements
in DAGs, which can be done in time linear in the size of the
graph (S, <).

[Hardness.] The model checking problem for CPL is NC'-
complete (Buss et al. 1992). Given a propositional assign-
ment # and a propositional formula ¢, reduce it quite directly
as follows showing NC'-hardness:

(9’ 90) = (({9}7 ids, @>7 T, 90)~

As S contains only one element which also is satisfied by
the first formula T, we require it to satisfy also ¢. This is
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equivalent to the model checking problem for CPL. The
reduction is a sheer mapping of values or constant parts, so

computable by an AC" circuit family. O

Clearly, there are exponentially many assignments in the
number of variables of a considered formula. This can easily
result in an exponentially large set S and hides the “real”
complexity of the problem. Accordingly, we want to consider
a more succinct version of the problem. We approach this
observation with the following definition.

Definition 29. Let N C Prop be a set of propositions with
IN| = n, S = {0,1}™ be a set for m € n°Y), and < C
S x § be a strict partial order. Now let W be a preferential
model W = (S,0,<) such that {: S — Ap is a partial
labelling. Let there be two n° (Y -sized circuit families £, O
(labelling, ordering) such that the following is true:

1. ! is computed by L,

2. 0: 8§ xS — {0,1} is a partial function such that for
s,s" € S, the circuit outputs 1 if and only if s < s’ is true.

We call (£, 0) an n°MY-sized circuit representation of W.

Remark 30. Notice that the size of S is always 2™. However,
the two circuit families L and O need to deal with so-to-speak
irrelevant input strings in a reasonable way. In this light, the
preimage of the partial function ¢ induces what part of S is
relevant.

Now, let SUCCENT(CPL”") be the problem considering
only instances that have a n®(")-sized circuit representation
of the preferential model, i.e., the input then is of the form
(0. L), 0,0).

For some < order, we write SUCCENT(CPLP"®)  for the
problem SUCCENT(CPI”*) where the order for given in-
stances is fixed to <.

Theorem 31. SUCCENT(CPI™"). is Ab-complete under
§lﬁg-reducti0ns.

Proof. We show hardness and membership separately.
[Hardness.] @~ We state a reduction from OLMS to
SUCCENT(CPLP®"). By virtue of Example 9, there exists a
polynomial-sized (in the number of variables) circuit family
(even in AC?) that defines the lexicographic order on binary
strings <jex. Now, just swap the inputs of this circuit and
thereby define the lexicographic order >).,. Call this circuit
O. Let p(x1,...,z,) be the input of OLMS. Regarding
the circuit representation of the preferential model, we let
m=mn,s0S = Ay where N = {x1,...,2,}. Asaresult,
L = idg, where ids is the identity function on S. Then, we
define the reduction

o ((£,0),0,-2,)

Example 9 shows that O is logspace-constructible and
thereby f is logspace-constructible.

We claim that the reduction is correct, i.e., ¢ € OLMS if
and only if f() € SUCCENT(CPL™).

“=": Let ¢ be a positive instance of OLMS and 6 be the
>lex-Maximal satisfying assignment. Then there are two
possibilities.
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1. ¢ is unsatisfiable. Then, because pvy suffers logical ex-
plosion all formulas are implied and ¢ vy —,, s true.

2. ¢ is satisfiable, but for the >.-minimal assignment 6
(notice that this is the <jo«-largest assignment) we have
that 6(x,) = 0. Hence, 6 is not a model for z,, and
thereby ¢ vy —2,, holds.

“e": Let ¢ ¢ OLMS. Clearly, 0(x,) = 1 by require-
ment of OLMS. Then, the string representation of 6 is
minimal w.r.t. >}ox. Furthermore, for any model that sat-
isfies z,, we have that x,, is assigned 1, hence, also 6 is
in the set of models of x,. As a result ¢ ¢ w —2,, and
f(v) ¢ SUCCENT(CPL™).

[Membership.] We sketch a polynomial time algorithm that
uses an oracle for proposition satisfiability. Let ¢, ¢ be the
input formulas and (£, O) be the circuit-representation of the
preferential model. Then, we use the SAT oracle as follows.

For ¢ € {0, 1}, we let p(x; = ¢) be the formula ¢ where
every occurrence of x; is substituted by the value of c. Now
the AB-algorithm works as follows. Ask the SAT oracle if
@(z1 = 0) is satisfiable. If yes, then proceed similarly with
x4 for p(z1 = 0). If no, then proceed similarly with x5 for
@(x1 = 1). In the end, we know the lexicographic maximal
assignment and need to merely check if it satisfies . O

Because of the previous result, we now have of a complete
problem regarding the specific order >1ex.

Theorem 32. SUCCENT(CPL™) is in 115 and Ab-hard un-

der <'98_reductions.

Proof. Hardness is given by Theorem 31. Hence, it suffices
to show that SUCCENT(CPL) is in IT5. Let ((O, L), ¢, )
be the input. Without loss of generality, assume that the
set of propositions is N = {z1,...,z,}. We describe the
behaviour of the IT5-machine that decides the problem.

1. Univerisally nondeterministically branch on all elements
j € & specified by inputs to O, and all assignments
s:{x1,...,xn} — {0,1}.

2. Existentially nondeterministically branch on all assign-

ments s": {x1,...,2,} = {0,1}.

If j # L(s) then accept.

If j = ¢ then accept.

If L(s") | ¢ and O(s', s) then accept.

6. Reject.

wos W

The nondeterminism induced by 1./2. is V3, hence IT5.
Steps 3. and 5. make use of the circuit family £ resulting
in a P computation. Again, the =-checks in 4./5. are in
NC! (Buss et al. 1992). The computation of the circuit value
O(s,s") in 5.1s in P. Reaching 6. means that

G =LNNGEPAUS) FpVs £s)

resulting in a negative answer to the input. O
Preferential Propositional Dependence Logic. The fol-
lowing version of ENT(CPL*®) lifts the problem to team
semantics and the logic PDL by similar definitions.
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Problem: ENT(PDL™) — entailment problem for
preferential propositional dependence logic

A finite preferential model W = (S, ¢, <)
for PDL and ¢, ¢ € PL(=(,)).
Question: Is it true that ¢ vy, ?

Input:

In the following, we will state a result regarding the less
known complexity class ©%. This class is defined as PNP[log]
meaning a restriction to logarithmic many calls to the NP or-
acle. By definition, we then have the containment ©5 C AL,
Also it can be characterised by P/IN? which is having non-
adaptive but unrestricted many parallel NP oracle calls (Buss
and Hay 1991; Hemachandra 1989).

Theorem 33. ENT(PDL™) is in ©5 and NP-hard under
giﬁg-reductions.

Proof. We show membership and hardness separately.
[Membership.] We present a ©% algorithm deciding the prob-
lem. The model checking problem for PDL is NP-complete
(Ebbing and Lohmann 2012, Thm. 1). We use it as an oracle
here.

1. In parallel, ask the NP-oracle for each team 7" € S
whether T' = p and T' |= .

2. For every minimal element in the order induced graph
(S, <), if the oracle answers were of the form (1, 0) (that
is,  was satisfied but ¢ not) then reject.

3. Accept.

An oracle answer does not imply a different call afterwards.
As aresult, the oracle calls are non-adaptive and can be asked
in parallel. As the input consists of S, we have enough time to
browse through all elements which also allows of identifying
the minimal elements in the graph (S, <). The algorithm is
correct as Step 3. is executed if no contradiction of the form
that a minimal assignment satisfies  but falsifies ¢ occurs.

[Hardness.] The model checking problem for PDL is NP-
complete (Ebbing and Lohmann 2012, Thm. 1). Now reduce
it quite directly as follows showing NP-hardness:

(Tv QD) = (({T}st, @)7 T, SD)

As S contains only one element which also is satisfied by
the first formula T, we require it to satisfy also ¢. This is
equivalent to the model checking problem for PDL. O

Analogously as before, we assume for the succinct version
SUCCENT(PDLIP™®), that the circuit families now are of size
(2”)0(1) (saving one exponential step via succinct repres-
entations), where n is the number of variables in ¢ and ).
Notice that, while the inputs can be still of exponential size
in n (a single team can have this size), it is still meaningful
to have smaller inputs (avoiding doubly exponentially many
such teams as trivial bound for |S|).

It might be a bit surprising at first sight that having a harder
model checking problem does not increase the complexity,
but as stated in the proof above, this is compensated by the
V3 structure of I15.
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Theorem 34. SUCCENT(PDL”®) is in 115 and Ab-hard un-

der <1°¢_reductions.

Proof. [Membership.] The algorithm stated in the proof of
Theorem 32 works if it is modified as follows. While Steps 4.
and 5. have a higher model checking complexity for PDL,
that is, NP compared to NC', we can guess the required
certificates (to obtain membership in P) also in Step 2. This
does not increase complexity, as Step 2. is already existential.
That is why this still yields a IT5 algorithm.

[Hardness.] Use a circuit family that encodes S as a set of
singleton teams: S := { {v} | v: {p1,...,pn} — {0,1} }.
Flatness and the hardness proof of Theorem 31 then yields
the result. O

Preferential Propositional Logic over Teams. From The-
orem 33 and 34, we can deduce similar ones for the team
logic without dependence atoms TPL. Note, that the model
checking problem for TPL is (potentially) easier than for
PDL, as has been shown in P (Ebbing and Lohmann 2012,
Tab. 1). As a result, the influence of the NP completeness of
model checking for PDL, needs to be reconsidered.

Corollary 35. The following holds:

1. ENT(TPL®) is in P and NC!-hard under §f,\1co-
reductions.

2. SUCCENT(TPL™) is in 115 and AL-hard under <19&-
reductions.

8 Conclusion

We have established a foundation for preferential non-
monotonic reasoning within the framework of team se-
mantics. Our results also provide new insights into the al-
gorithmic properties of preferential reasoning for classical
propositional logic.

Team-based logics have a wide range of applications, e.g.,
in the formal semantics of natural language, in the semantics
of statements and questions (as in inquisitive logic), and in
modelling free choice inferences (as addressed by BSML
modal logics (Aloni 2022)). For the combination of team
semantics and non-monotonic reasoning—as studied here—
we expect a large variety of applications in these and other
domains. As one of many areas of application, we want to
highlight reasoning over datasets of different qualities. In this
scenario, datasets are modelled as teams. The highly flexible
approach of putting preferences on teams allows for imposing
a metric on datasets. Within this setting, preferential team-
based reasoning becomes a framework for studying selective
reasoning of preferred datasets. We think this is a highly
relevant matter, for which our work provides a foundation.

In future work, we plan to extend our axiomatics stud-
ies of preferential reasoning over teams to other team-based
logics, e.g., inclusion logic. For that, we will build upon
recent results on the axiomatics of choice in restricted set-
tings (Sauerwald et al. 2025). In the realm of complexity, we
will study the query and data complexity of the problems dis-
cussed in Section 7, and find tight complexity bounds for the
problems studied. This includes investigating the complexity
of a team variant of OLMS (see Section 2).
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