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Abstract

Logic-based argumentation is a formal method for construct-
ing, evaluating and comparing arguments. In this paper we
address two (related) key issues concerning the representa-
tion of logical argumentation frameworks: how to describe
them in a compact way, and how to move from one frame-
work to another while preserving their basic logical charac-
teristics. The results are applied to various forms of attack
rules and different kinds of argumentative semantics, and are
demonstrated for transitions between several 3-valued log-
ics and classical logic. As a byproduct, our results are also
used for converting logic-based argumentation frameworks to
assumption-based argumentation frameworks.

1 Introduction
Logic-based argumentation (Besnard et al. 2014; Arieli et al.
2021) is a formal method for defining, evaluating, and deriv-
ing logical arguments from a fixed knowledge-base. It has
been shown useful for a variety of purposes, such as conflict
resolution (especially in complex domains like medicine
(Hunter and Williams 2012), law (Prakken 2017), ethical
reasoning (Straßer and Arieli 2019), etc), modeling of de-
feasible reasoning (Pollock 1992), logic programs (Garcı́a
and Simari 2004), decision making (Tamani and Croitoru
2014), database systems (Deagustini et al. 2017), and bridg-
ing between Philosophy and AI (van Berkel 2023).

In this paper we consider two important aspects in the de-
scription of logical argumentation frameworks:

• Compact Representation: By nature, logic-based argu-
mentation frameworks should be deductively closed, or
at least capable of supporting sound (and frequently also
complete) logical inferences. As such, these frameworks
are demanding in terms of space and computational com-
plexity. In this paper, we consider compact represen-
tation forms for logical argumentation frameworks and
show that as long as the set of the premises is kept finite
and the attacks between arguments depend only on the
support sets of the attacked arguments, a logical frame-
work can be translated to a finite equivalent framework.

• Preservation of Logical Properties: In relation to the
previous item, for reducing the number of arguments
to a minimum and/or having more adequate settings, it
is sometimes convenient to switch from one base logic

to another. The second subject of this paper thus in-
volves various considerations regarding such transitions
and the possibility to keep the characteristics of the origi-
nal frameworks. Most importantly: preserving their logi-
cal conclusions and the selections of arguments obtained
by standard argumentation semantics (Dung 1995).

To address the two issues above we first recall, in the next
section, the basic notions that are related to the definition of
logical argumentation frameworks and the entailment rela-
tions that are induced by them. Then, in Sections 3 and 4
we respectively consider compactness and logical preserva-
tions in such frameworks. The results are applied to dif-
ferent forms of attack rules and with respect to a variety of
Dung-style semantics, and are demonstrated for the transi-
tion to classical logic from three base logics, all of them are
3-valued: Bochvar B3, Kleene K3 and Priest LP. Finally, in
Section 5 we use the results in the paper for relating logic-
based argumentation frameworks and assumption-based ar-
gumentation frameworks, and in Section 6 we conclude.

2 Logic-Based Argumentation Frameworks
For defining logical argumentation frameworks, and argu-
ments in particular, we have to specify an underlying logic.
We start with a general definition of a logic (Tarski 1941).

Definition 1. A (propositional) logic is a pair L = ⟨L,⊢⟩,
where L is a propositional language, and ⊢ is a consequence
relation for L, that is: ⊢ is a binary relation between sets of
formulas and formulas in L, satisfying the following condi-
tions:

Reflexivity: if ψ ∈ S then S ⊢ ψ,
Monotonicity: if S ⊢ ψ and S ⊆ S ′ then S ′ ⊢ ψ,
Transitivity: if S ⊢ ψ and S ′, ψ ⊢ ϕ then S,S ′ ⊢ ϕ.

In what follows we shall denote by Cn⊢(S) the ⊢-transitive
closure of S , that is: Cn⊢(S) = {ψ | S ⊢ ψ}.

In addition, it is usual to assume that ⊢ is structural (i.e.,
closed under substitutions: for any substitution θ, if S ⊢ ψ
then θ(S) ⊢ θ(ψ)), non-trivial (i.e., p ̸⊢ q for every two
atomic formulas p, q), and finitary (if S ⊢ ψ, there is a finite
set S ′ ⊆ S such that S ′ ⊢ ψ).1

1Finitariness is often essential for practical reasoning, e.g., ex-
pressing arguments by a finite number of assumptions.
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Unless referring to a specific language, we assume that L
contains at least the following connectives and constant:

⊢-negation ¬: p ̸⊢ ¬p and ¬p ̸⊢ p (for every atomic p),

⊢-conjunction ∧: S ⊢ ψ ∧ ϕ iff S ⊢ ψ and S ⊢ ϕ,

⊢-disjunction ∨: S, ϕ ∨ ψ ⊢ σ iff S, ϕ ⊢ σ and S, ψ ⊢ σ.

⊢-truth constant T: S ⊢ T for every S .

The set of the (well-formed) formulas of L is denoted
WFF(L). For a finite set of formulas S we denote by

∧
S

(respectively, by
∨
S) the conjunction (respectively, the dis-

junction) of all the formulas in S . We denote by ℘(S) (by
℘fin(S)) the set of the (finite) subsets of S , and by Atoms(S)
the set of atoms that appear in the formulas of S . We
say that a set S is ⊢-inconsistent, if S ⊢ ¬

∧
S ′ for some

S ′ ∈ ℘fin(S).

Arguments for a base logic are defined as follows:

Definition 2. Given a logic L = ⟨L,⊢⟩, an L-argument (an
argument for short) is a pair A = ⟨S, ψ⟩, where S (the sup-
port ofA) is a finite set of L-formulas and ψ (the conclusion
of A) is an L-formula, such that S ⊢ ψ (i.e., ψ ∈ Cn⊢(S)).
We denote: Supp(⟨S, ψ⟩) = S and Conc(⟨S, ψ⟩) = ψ. Ar-
guments of the form ⟨∅, ψ⟩ are called tautological.

Example 1. The pairs ⟨∅, p∨¬p⟩, ⟨{p}, p⟩ and ⟨{p,¬p}, q⟩,
are all L-arguments for L = CL (classical logic). Note that
the first argument is tautological since its support is empty,
the second argument holds in every logic (by reflexivity),
and the last argument is not valid in any paraconsistent base
logic (such as LP that will be considered in Section 4.3).

Arguments may attack and counter-attack each other ac-
cording to pre-defined attack rules. Some of the better
known rules are listed in Table 1. Further attack rules
are considered, e.g., in (Gorogiannis and Hunter 2011;
Straßer and Arieli 2019). Each rule R in this table is
equipped with a set CR of conditions (on the rightmost col-
umn of the table), the satisfaction of which enables the appli-
cation of the rule. For instance, according to the rule Def an
argument ⟨S1, ψ1⟩ attacks an argument ⟨S2 ∪ S ′

2, ψ2⟩, if the
conclusion ψ1 of the attacking argument entails ¬

∧
S2, the

negation of (part of) the support of the attacked argument.
Clearly, the rules in Table 1 are not unrelated (see, e.g.,

(Arieli et al. 2021, Remark 7)).

Argumentation frameworks are now defined follows:

Definition 3. Let L = ⟨L,⊢⟩ be a logic and A a set of attack
rules for L. Let also S be a set of L-formulas. The (logical)
argumentation framework for S , induced by L and A, is the
pair AFL,A(S) = ⟨ArgL(S),Attack(A)⟩,2 where

• ArgL(S) is the set of the L-arguments whose supports
are subsets of S , and

• Attack(A) is a relation on ArgL(S)×ArgL(S), defined
by (A1, A2) ∈ Attack(L) iff there is some R ∈ A such
that A1 R-attacks A2.

2In what follows we shall sometimes omit the subscripts and
write just AF(S) for ⟨ArgL(S),Attack(A)⟩.

Acronym Attacking Attacked Conditions
Argument Argument

Def ⟨S1, ψ1⟩ ⟨S2 ∪ S ′
2, ψ2⟩ ψ1 ⊢ ¬

∧
S2

FullDef ⟨S1, ψ1⟩ ⟨S2, ψ2⟩ ψ1 ⊢ ¬
∧
S2

DirDef ⟨S1, ψ1⟩ ⟨{φ} ∪ S ′
2, ψ2⟩ ψ1 ⊢ ¬φ

Ucut ⟨S1, ψ1⟩ ⟨S2 ∪ S ′
2, ψ2⟩ ψ1 ⊣ ⊢ ¬

∧
S2

FullUcut ⟨S1, ψ1⟩ ⟨S2, ψ2⟩ ψ1 ⊣ ⊢ ¬
∧
S2

DirUcut ⟨S1, ψ1⟩ ⟨{φ} ∪ S ′
2, ψ2⟩ ψ1 ⊣ ⊢ ¬φ

CmpUcut ⟨S1,¬
∧
S2⟩ ⟨S2 ∪ S ′

2, ψ2⟩

CmpFullUcut ⟨S1,¬
∧
S2⟩ ⟨S2, ψ2⟩

CmpDirUcut ⟨S1,¬φ⟩ ⟨{φ} ∪ S ′
2, ψ2⟩

ConUcut ⟨∅,¬
∧
S2⟩ ⟨S2 ∪ S ′

2, ψ2⟩

Reb ⟨S1, ψ1⟩ ⟨S2, ψ2⟩ ψ1 ⊣ ⊢ ¬ψ2

DefReb ⟨S1, ψ1⟩ ⟨S2, ψ2⟩ ψ1 ⊢ ¬ψ2

Table 1: Argumentative attacks. Def, Ucut, and Reb abbreviate,
respectively, Defeat, Undercut, and Rebuttal. Each of these attack
types has variations: Full, Dir (for direct), Cmp (for compact), and
Con (for consistency). For instance, ConUcut stands for consis-
tency undercut, i.e., an undercut attack by a tautological attacker.

A logical argumentation framework AF(S) may be asso-
ciated with a directed graph, in which the nodes are argu-
ments in ArgL(S) and the edges represent attacks between
arguments in Attack(A) (see Example 2 below). What can
be deduced from AF(S) is defined in terms of Dung-style
semantics (Dung 1995) and the corresponding entailment re-
lations, as indicated in the next two definitions.

Definition 4. Let AF(S) = ⟨ArgL(S),Attack(A)⟩ be a
logical argumentation framework, and let E ⊆ ArgL(S).

• E attacks argument A if there is an argument B ∈ E s.t.
(B,A) ∈ Attack(A). E defends A if E attacks every
argument that attacks A. E+ is the set of arguments that
are attacked by E , and E ∪ E+ is called the range of E .

• E is called conflict-free if it does not attack any of its ele-
ments (i.e., E+∩E = ∅). A maximally conflict-free set is
called a naive extension of AF(S). A set E whose range
is ⊆-maximal among the conflict-free sets is a stage ex-
tension of AF(S). A conflict-free set E whose range is
equal to ArgL(S) is a stable extension of AF(S).

• An admissible set of AF(S) is a subset of ArgL(S)
that is conflict-free and defends all its elements. A
⊆-maximally admissible set is a preferred extension
of AF(S). The ideal extension of AF(S) is the ⊆-
maximal admissible set that is included in each preferred
extension.

• A complete extension of AF(S) is an admissible ex-
tension that contains all the arguments that it defends.
The ⊆-minimally complete extension of AF(S) is the
grounded extension of AF(S). A semi-stable extension
of AF(S) is a complete extension with a ⊆-maximal
range, and the eager extension of AF(S) is the ⊆-
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maximal admissible set that is included in every semi-
stable extension.3

We shall denote by Adm(AF(S)) [respectively, by
Cmp(AF(S)), Grd(AF(S)), Prf(AF(S)), Stb(AF(S)),
Sstb(AF(S)), Stg(AF(S)), Idl(AF(S)), Egr(AF(S))]
the set of all the admissible [respectively, the complete,
grounded, preferred, stable, semi-stable, stage, ideal, eager]
extensions of AF(S). The selections of arguments by argu-
mentation semantics are the basis of the argumentative en-
tailments, defined next.
Definition 5. Let AF(S) = ⟨ArgL(S),Attack(A)⟩ be a
logical argumentation framework, and let Sem ∈ {Adm,
Cmp,Grd, Stb,Prf, SStb, Stg, Idl,Egr}. We denote:

S |∼L,A
∪Sem ψ if there is ⟨Γ, ψ⟩ ∈

⋃
Sem(AF(S)),

S |∼L,A
∩Sem ψ if there is ⟨Γ, ψ⟩ ∈

⋂
Sem(AF(S)),

S |∼L,A
⋒Sem ψ if for every E ∈ Sem(AF(S)) there is

some ΓE ⊆ S such that ⟨ΓE , ψ⟩ ∈ E .

When the framework is clear from the context, we shall
write S |∼⋆Sem ψ instead of S |∼L,A

⋆Sem ψ (for ⋆ ∈ {∪,∩,⋒}).

By their definitions, clearly |∼L,A
∩Sem ⊂ |∼L,A

⋒Sem ⊂ |∼L,A
∪Sem.

Example 2. Let L = CL and S = {p,¬p, q}. Some of the
elements in ArgL(S) are considered in Example 1. Suppose
that A consists of Ucut (Undercut) and ConUcut (Consis-
tency Undercut). Part of AFL,A(S) is presented in Figure 1.

⟨q, q⟩

⟨¬p,¬p⟩ ⟨p, p⟩

⟨{p,¬p},¬q⟩

⟨{p,¬p, q},¬q⟩
⟨∅, p ∨ ¬p⟩

Figure 1: Part of the argumentation framework of Example 2.

Here, the tautological argument ⟨∅, p∨¬p⟩ defends ⟨q, q⟩
from any possible attacker, thus the grounded extension Egrd
in the figure above consists of these two arguments. The
preferred (and also the [semi]-stable) extensions in this fig-
ure are Egrd ∪ {⟨p, p⟩} and Egrd ∪ {⟨¬p,¬p⟩}.

When the whole framework AFL,A(S) is considered,
the corresponding grounded extension is ArgL({q}) and
the preferred, stable, semi-stable and stage extensions are
ArgL({q, p}) and ArgL({q,¬p}). Since the grounded ex-
tension is also the ideal and the eager extension in this case,
it follows that q is entailed by S according to all the entail-
ments in Definition 5 and for every Sem ∈ {Cmp,Grd, Stb,
Prf, SStb, Stg, Idl,Egr}, as expected.

3 In (Dung 1995) it is shown that the grounded extension of
AF(S) is unique, the preferred extensions are maximally com-
plete, and every stable extension is also preferred. Thus, every
stable extension (if exists) is also semi-stable and stage, and the
ideal and the eager extensions are complete. For further facts and
other extensions, see e.g., (Baroni, Caminada, and Giacomin 2011;
Baroni, Caminada, and Giacomin 2018).

3 Compact Representations of Logical
Argumentation Frameworks

Logical argumentation frameworks are, by their nature,
space demanding. For instance, for every argument ⟨Γ, ϕ⟩
in a given framework AFCL,A(S) there are infinitely many
arguments based on the same support (such as ⟨Γ, ϕ ∧ ϕ⟩,
⟨Γ, ϕ∨ψ⟩, ⟨Γ,¬¬ϕ⟩, etc.). In this section, we consider com-
pact representations of logical frameworks without loosing
information. In particular, we show that as long as the set
of premises is kept finite and the attacks depend only on the
support set of the attacked arguments, any logical argumen-
tation framework can be translated to an equivalent frame-
work with a finite number of arguments.

The next definition identifies attack rules that are trig-
gered only by the content of the supports of the attacked
arguments. This includes all the rules in Table 1, except of
rebuttal attacks.

Definition 6. An attack rule R is support-driven, if there is a
function CR :℘fin(WFF(L))×WFF(L)×℘fin(WFF(L)) →
{true, false}, such that for every S1,S2 ∈ ℘fin(WFF(L))
and ψ1, ψ2 ∈ WFF(L), the following conditions are met:
(1) ⟨S1, ψ1⟩ R-attacks ⟨S2, ψ2⟩ iff CR(S1, ψ1,S2) holds,
(2) CR(S1, ψ1, ∅) is false.

Thus, R is support-driven if its condition (if any) refers
only to the support of the attacked argument (apart of the
attacking argument), and the condition is satisfied provided
that this support is non-empty.

Note 1. Two remarks are in order here:

(a) The function CR in Definition 6 allows to abstractly rep-
resent support-driven attacks, which exclusively depend
only on the supports of the attacking and the attacked ar-
guments, and the conclusion of the attacking argument.
This function reduces questions of attacks between spe-
cific arguments to relations between equivalence classes
representing supports sets that are logically equivalent
(see also Note 2). As we shall show in what follows, this
enables finite representations of support-driven attacks.

(b) We concentrate on attack on the supports of arguments,
since in logical argumentation conclusion-based attacks
(and rebuttal attacks in particular) are rather problematic.
To see this, consider again the set S = {p,¬p, q} in Ex-
ample 2. As shown in that example, the use of support-
driven attacks rules yields the expected conclusions, in-
cluding tautological arguments (such as ⟨∅, p ∨ ¬p⟩)
and arguments supported by q (such as ⟨q, q⟩), which is
not involved in the contradiction in S . However, nei-
ther of ⟨q, q⟩ and ⟨∅, p ∨ ¬p⟩ is in the grounded exten-
sion once rebuttals are incorporated. To see this, note
that these arguments are rebutted by ⟨{p,¬p},¬q⟩ and
⟨{p,¬p},¬(p ∨ ¬p)⟩. Another problem is, e.g., that for
S = {p, q,¬(p ∧ q)} with rebuttals there is a complete
extension containing ⟨p, p⟩, ⟨q, q⟩, and ⟨¬(p ∧ q),¬(p ∧
q)⟩. Such an extension is not consistent.4

4An extension E is inconsistent if so is the set of its arguments’
conclusions: {Conc(s) | s ∈ E}.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

48



A compact representation of support-induced frameworks
is described by the following structures:
Definition 7. Let AFL,A(S) = ⟨ArgL(S),Attack(A)⟩ be
an argumentation framework in which all the rules in A are
support-driven. The support-induced argumentation frame-
work (SAF), based on the logic L, the attack rules in A,
and the set of premises S is the framework SAFL,A(S) =
⟨℘fin(S),S -Attack(A)⟩, where (S1,S2) ∈ S -Attack(A) iff
there is an attack rule R ∈ A such that CR(S1, ψ1,S2) holds
for some ψ1 such that ⟨S1, ψ1⟩ ∈ ArgL(S) and S2 ⊆ S .
Example 3. The support-induced argumentation frame-
work that corresponds to the argumentation framework
AFL,A(S) in Example 2 is represented in Figure 1

¬p
¬p, q

p

p, q

q

p,¬p

p,¬p, q

Figure 2: A support-induced framework for Example 2. The nodes
{¬p, q}, {¬p} and {p, q}, {p} are grouped to two outer nodes, as
the inner nodes within each group share the same incoming and
outgoing edges. The unlabeled node represents ∅ ∈ ℘fin(S).

Note that while the graph of AFL,A(S) is not finite, the
graph of SAFL,A(S) contains only eight nodes (the size of
the power-set of S). Thus, for instance, all the arguments of
the form ⟨p∧¬p, ψ⟩ for some formula ψ are reduced to one
node (that of {p ∧ ¬p}) in the graph of SAFL,A(S).
Note 2. The support-induced argumentation framework
SAFL,A(S) gives rise to a quotient structure for AFL,A(S)
by a simple translation. Indeed, let ∼ ⊆ ArgL(S)×ArgL(S)
be defined by A∼ A′ iff Supp(A) = Supp(A′). It is easy
to see that ∼ is an equivalence relation on ArgL(S). Let
ArgL(S)∼ be the set of equivalence classes induced by ∼,
and define π : ArgL(S) → ℘(S) by [A] 7→ Supp(A). Due
to the reflexivity of ⊢L, π is a bijection, if L has theorems
(that is, if Cn⊢L

(∅) ̸= ∅). Let ([A]∼, [A′]∼) ∈ Attack(S)∼
iff (A,A′) ∈ Attack(S). Then, ⟨ArgL(S)∼,Attack∼⟩ is a
quotient structure for AFL,A(S). The latter is isomorphic
to SAFL,A(S), in case that the base logic L has theorems.5

Note that, given a finite set S of premises, and assum-
ing that the rules in A are support-driven, the support-
induced argumentation framework SAFL,A(S) is finite.
It is therefore interesting to check whether AFL,A(S)
and SAFL,A(S) give rise to the same extensions (un-
der the translation which associates arguments of the form
⟨S ′, ψ⟩ ∈ Arg(S) with their support S ′). This is confirmed
by the following proposition.

5If L has no theorems, then π is injective with co-domain
℘fin(S) \ {∅}. By the reflexivity of ⊢L, ⟨S ′, ψ⟩ is an argument for
every ∅ ̸= S ′ ⊆ S and ψ ∈ S ′. In this case ⟨ArgL(S)∼,Attack∼⟩
is isomorphic to ⟨℘fin(S)\{∅},S -Attack(A)∩ (℘fin(S)\{∅})2⟩.

Proposition 1. Let AFL,A(S) = ⟨ArgL(S),Attack(A)⟩ be
an argumentation framework with only support-driven rules,
and let SAFL,A(S) = ⟨℘fin(S),S -Attack(A)⟩ be the cor-
responding support-induced argumentation framework. For
every Sem ∈ {Cmp,Grd,Prf, Stb, SStb, Idl,Egr, Stg},

1. if E ∈ Sem(AFL,A(S)) then
{Supp(A) | A ∈ E} ∪ {∅} ∈ Sem(SAFL,A(S)), and

2. if Ξ ∈ Sem(SAFL,A(S)) then
{A ∈ ArgL(S) | Supp(A) ∈ Ξ} ∈ Sem(AFL,A(S)).

The proof of Proposition 1 is rather long and thus it is
postponed to the full version of the paper (like the proofs of
some of the other results in this paper). Here we only show
a basic property that is required for the proof: If a (complete
or stage) extension of an argumentation-framework based
on support-driven rules includes an argument ⟨∆, δ⟩, then it
includes all the other arguments that are based on the same
support set ∆.

Lemma 1. Let AFL,A(S) = ⟨ArgL(S),Attack(A)⟩ be an
argumentation framework with only support-driven rules,
and let E ∈ Cmp(AFL,A(S)) ∪ Stg(AFL,A)(S).6 Then, if
⟨∆, δ⟩, ⟨∆, δ′⟩ ∈ ArgL(S) and ⟨∆, δ⟩ ∈ E , so ⟨∆, δ′⟩ ∈ E .

Proof. Suppose that ⟨Θ, θ⟩ ∈ ArgL(S) R-attacks the argu-
ment ⟨∆, δ′⟩ for some R ∈ A. Then, CR(Θ, θ,∆) holds,
and so ⟨Θ, θ⟩ also R-attacks ⟨∆, δ⟩ ∈ E .

Suppose first that E ∈ Cmp(AFL,A(S)). Since E is ad-
missible, there is an argument ⟨Λ, λ⟩ ∈ E that R′-attacks
⟨Θ, θ⟩ for some R′ ∈ A. Thus, E defends ⟨∆, δ′⟩ and by the
completeness of E , ⟨∆, δ′⟩ ∈ E .

Suppose now that E ∈ Stg(AFL,A(S)). So, ⟨Θ, θ⟩ /∈ E
by the conflict-freeness of E . Thus, E ∪{⟨∆, δ′⟩} is conflict-
free. By the ⊆-maximality of E , ⟨∆, δ′⟩ ∈ E .

Example 4. Consider again the support induced framework
of Example 3. By Proposition 1 and Example 2 we get
that the grounded, ideal and eager extension in this case is
{∅, {q}}, while the preferred, stable, semi-stable and stage
extensions of the framework are {∅, {q}, {p}, {q, p}} and
{∅, {q}, {¬p}, {q,¬p}}.

4 Argumentative Preservation of Logical
Inclusion

The ability to compactly represent logic-based argumenta-
tion frameworks raises questions about transitions of repre-
sentations in more general cases: Given two logics with the
same language L1 = ⟨L,⊢L1

⟩ and L2 = ⟨L,⊢L2
⟩, where

L1 is included in L2 (i.e., ⊢L1
⊆ ⊢L2

), under what condi-
tions is the inclusion of the logics preserved when reasoning
argumentatively with these logics? As we will show in what
follows, in some cases such preservations allow for compact
representations of the argumentative reasoning based on a
given logic (such as classical logic) by means of another
logic (e.g., a 3-valued logic).

Formally, then, we would like to keep the following argu-
mentative inclusion:

6By Footnote 3, this covers all the semantics in Proposition 1.
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Definition 8. Given a semantics Sem, a logical framework
AF1 = AFL1,A1(S) is Sem-argumentatively included in a
logical framework AF2 = AFL2,A2(S), if L1 is included
in L2 and the following conditions hold:

• Inc1: If E ∈ Sem(AF1) then E↑ ∈ Sem(AF2) and
• Inc2: If E ∈ Sem(AF2) then E↓ ∈ Sem(AF1), where:

E↑={A ∈ ArgL2
(S) | ∃B ∈ E s.t. Supp(A) = Supp(B)},

E↓={A ∈ ArgL1
(S) | ∃B ∈ E s.t. Supp(A) = Supp(B)}.

A primary benefit of argumentative inclusion is that it
allows for a preservation of logical entailments: If for ev-
ery S it holds that AFL1,A1(S) is Sem-argumentatively
included in AFL2,A2(S), then |∼L1,A

◦Sem ⊆ |∼L2,A
◦Sem for every

◦ ∈ {∪,∩,⋒} (recall Definition 5).
As we show below, argumentation inclusion is guaranteed

by the following property:

Definition 9. Two support-driven attack relations R1 and
R2 are corresponding relative to two base logics L1 and L2,
if for every set of formulas S the following two conditions
are satisfied:

• Att1: If A R1-attacks B for some A,B ∈ ArgL1
(S),

then there is A′ ∈ ArgL2
(S) with Supp(A) = Supp(A′)

and A′ R2-attacks B.
• Att2: If A R2-attacks B for some A,B ∈ ArgL2

(S),
then there is A′ ∈ ArgL1

(S) with Supp(A) = Supp(A′)

and A′ R↓
1-attacks B.7

The pairs ⟨L1,A1⟩ and ⟨L2,A2⟩ have corresponding at-
tacks, if A1 and A2 are sets of support-driven attacks, and
for each R1 ∈ A1 there is a corresponding attack R2 ∈ A2

(relative to L1 and L2), and vice versa.

We now show that having corresponding attacks is a suf-
ficient condition for argumentative inclusion with respect to
all standard semantics. For this, we show that the support
induced argumentation frameworks of AF1 and AF2 coin-
cide.

Proposition 2. Suppose that L1 is included in L2 and that
⟨L1,A1⟩ and ⟨L2,A2⟩ have corresponding attacks. Then,
for every set S , we have: SAFL1,A1

(S) = SAFL2,A2
(S).

Proposition 2 follows directly from the next lemma.

Lemma 2. In the notations and assumptions of Proposi-
tion 2, let R1 ∈ A1 and R2 ∈ A2 be corresponding attacks.
For all Γ,Θ ∈ ℘fin(S), ΓR1-attacks Θ iff ΓR2-attacks Θ.

Proof. Suppose that ΓR1-attacks Θ. Then there areA,B ∈
ArgL1

(S) such that Supp(A) = Γ, Supp(B) = Θ, and
CR1

(Γ,Conc(A),Θ) holds. Thus, A R1-attacks B. By
Att1, there is an argumentA′ ∈ ArgL2

(S) with Supp(A′) =
Supp(A), and A′ R2-attacks B. So, CR2(Γ,Conc(A

′),Θ)
also holds, and therefore Γ R2-attacks Θ.

Suppose now that ΓR2-attacks Θ. Thus, there areA,B ∈
ArgL2

(S) such that Supp(A) = Γ, Supp(B) = Θ and
CR2(Γ,ConcA),Θ) holds. So, A R2-attacks B. By Att2

7In Condition Att2, the requirement A′ R↓
1-attacks B denotes

that CR1(Supp(A
′),Con(A′), Supp(B)) holds. We do not require

that A′ R1-attacks B, since it may happen that B /∈ ArgL1
(S).

there is an argument A′ ∈ ArgL1
(S) with Supp(A′) =

Supp(A) and A′ R↓
1-attacks B. Let B↓ = ⟨Θ, ϕ⟩, where

ϕ ∈ Θ (Note that Θ ̸= ∅, so by the reflexivity of ⊢L1
,

B↓ ∈ ArgL1
(S)). Then, CR1(Γ,Conc(A

′),Θ) also holds,
and therefore Γ R1-attacks Θ.

Note 3. When L1 is strictly included in L2 (i.e., ⊢L1 ⊊
⊢L2

), there are sets S for which ArgL1
(S) ⊊ ArgL2

(S), in
which case the corresponding logical argumentation frame-
works are not the same (thus AFL1,A1

(S) ̸= AFL2,A2
(S)).

Yet, what Proposition 2 indicates is that when the sets of at-
tacks of the two logical frameworks are corresponding, the
compact representations of these frameworks are the same.

The next proposition relates logical inclusion to argumen-
tative inclusion when the condition in Definition 9 is met.
Proposition 3. Suppose that L1 is included in L2 and
that ⟨L1,A1⟩ and ⟨L2,A2⟩ have corresponding attacks.
Then, for every S and Sem ∈ {Adm,Cmp,Grd, Stb, SStb,
Prf, Idl,Egr, Stg}, it holds that AFL1,A1

(S) is argumenta-
tively included in AFL2,A2

(S).

Proof. We show Inc1 (the proof of Inc2 is similar): Let E ∈
Sem(AFL1,A1

(S)). By Item 1 of Proposition 1,
{Supp(A) | A ∈ E} ∪ {∅} ∈ Sem(SAFL1,A1(S)).

By Proposition 2,
{Supp(A) | A ∈ E} ∪ {∅} ∈ Sem(SAFL2,A2(S)).

By Item 2 of Proposition 1,

(†)
{
A ∈ ArgL2

(S) | Supp(A) ∈ {Supp(A) | A ∈ E} ∪ {∅}
}

∈ Sem(AFL2,A2
(S)).

The first line in (†) is E↑, thus E↑ ∈ Sem(AFL2,A2
(S)).

As a corollary of Proposition 3, we have the next results:
Corollary 1. If L1 is included in L2 and ⟨L1,A1⟩ and
⟨L2,A2⟩ have corresponding attacks, then for every S and
Sem ∈ {Adm,Cmp,Grd, Stb, SStb,Prf, Idl,Egr, Stg},

• S |∼L2,A2

∩Sem ψ if
{
ϕ | S |∼L1,A1

∩Sem ϕ
}
⊢L2 ψ

• S |∼L2,A2

⋒Sem ψ if
{
ϕ | S |∼L1,A1

⋒Sem ϕ
}
⊢L2

ψ

• S |∼L2,A2

∪Sem ψ if
ψ ∈

⋃
E∈Sem(AFL1,A1

(S)) CnL2
{ϕ | ∃(Γ, ϕ) ∈ E})

• S |∼L1,A1

∩Sem ψ if
∃⟨Γ, ψ⟩ ∈

⋂
Sem(AFL2,A2(S)) ∩ ArgL1

(S)
• S |∼L1,A1

⋒Sem ψ if
∀E ∈ Sem(AFL2,A2

(S)) ∃⟨Γ, ψ⟩ ∈ E ∩ ArgL1
(S)

• S |∼L1,A1

∪Sem ψ if
∃⟨Γ, ψ⟩ ∈

(⋃
Sem(AFL1,A1(S))

)
∩ ArgL1

(S)
Next, we demonstrate the results above in three cases. In

each case one starts with a framework based on a 3-valued
logic: Bochvar (1938), Kleene (1952), Priest (1989). This
framework is used for generating essential conclusions from
a concise setting, and only then a transformation is made to a
more standard framework, based on classical logic. As guar-
anteed by our results, a careful choice of (corresponding) at-
tack rules in each case allows to preserve the argumentative
inclusion between the resulting logical frameworks.
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4.1 Application I: Bochvar B3 and Classical Logic
Bochvar’s 3-valued logic B3 (Bochvar 1938) (also known
as weak Kleene logic, as opposed to strong Kleene logic,
considered in the next section) can be represented by the two
classical truth values t, f and a third intermediate element
i, together with the following truth tables for disjunction,
conjunction, and negation:

∨ t f i
t t t i
f t f i
i i i i

∧ t f i
t t f i
f f f i
i i i i

¬
t t
f f
i i

Thus, on {t, f} the truth table coincide with those of classical
logic CL, while the third element i has an “infectious” effect:
compound formulas are assigned the value i iff at least one
of their subformulas has the value i. Accordingly, ⟨S, ψ⟩ is
a B3-argument (that is, S ⊢B3 ψ), if every B3-interpretation
that assigns t to every formula in S , also assigns t to ψ.
Note 4. Some remarks and illustrations are in-order here:
(a) If Atoms(ψ) ⊆ Atoms(S) and if S is classically con-

sistent, then S ⊢B3 ψ iff S ⊢CL ψ. In this case, then,
B3-arguments and CL-arguments coincide. Moreover, S
is classically consistent iff it is B3-consistent.

(b) If Atoms(ψ) ̸⊆ Atoms(S) then S ̸⊢B3 ψ. Thus, for
instance, ⟨{p}, p ∨ q⟩ is not a B3-argument (consider a
B3-interpretation that assigns t to p and i to q).

(c) The properties in Items (a) and (b) above render B3 par-
ticularly interesting for applications in argumentation.
B3-inferences are classical as long as the reasoner “stays
on topic”, while it disallows arguments that go “off-
topic” (Beall 2016). The example in Item (b) constitutes
such a case: the disjunct q in the conclusion p ∨ q has
nothing to do with the given support p. In this interpre-
tation, the third truth value i expresses that a sentence is
“off-topic”.

(d) Generally, CL and B3 have different arguments and
therefore may lead to different, non-corresponding, argu-
mentative selections. Therefore, unless the attack rules
are corresponding w.r.t. these logics, argumentative in-
clusion might get lost, as illustrated in the next example.

Example 5. Consider S = {p ∧ q,¬p}. Then,
• A = ⟨{p ∧ q},¬¬p⟩ ∈ ArgCL(S) ∩ ArgB3(S), but
• B = ⟨{¬p},¬(p ∧ q)⟩ ∈ ArgCL(S) \ ArgB3(S).

Thus, for instance, in frameworks that are induced either
from B3 or from CL, and having Direct Defeat (DirDef)
as the sole attack rule, A DirDef-attacks C = ⟨¬p,¬p⟩,
but only in frameworks that are induced from CL, C can
be defended (e.g., by B) from this attack. In fact, it
holds that ArgCL({¬p}) ∈ Stb(AFCL,{DirDef}(S)), while
ArgB3({¬p}) /∈ Stb(AFB3,{DirDef}(S)).

The situation in Example 5 seems undesired. However, as
indicated in Note 4(c), B3 is an attractive logic for applica-
tions in argumentation that is very close to classical logic.
So, the question arises, whether B3 can serve as a base logic
in logical argumentation in such a way that argumentative
inclusion (Definition 8) holds for classical logic.

For the purpose of utilizing B3 as a base logic for argu-
mentation frameworks, we enhance B3 with a verum (⊢B3-
truth) constant T that is always interpreted as t. We call the
resulting logic B3T.

Next, we consider cases where logical inclusion is pre-
served when trading B3T by CL. For this, we introduce the
reductio attacks in Table 2.

Acronym Attacking Attacked Conditions
Argument Argument

Red ⟨S1, ψ1⟩ ⟨S2 ∪ S ′
2, ψ2⟩ {ψ1} ∪ S2 ⊢ ¬ψ1

FullRed ⟨S1, ψ1⟩ ⟨S2, ψ2⟩ {ψ1} ∪ S2 ⊢ ¬ψ1

DirRed ⟨S1, ψ1⟩ ⟨{φ} ∪ S ′
2, ψ2⟩ {φ,ψ1} ⊢ ¬ψ1

Table 2: Reductio attacks. We again abbreviate the rules’ names:
‘red’ and ‘dir’ stand, respectively, for ‘reductio’ and ‘direct’.

These attacks have the form of an ‘argumentum ad ab-
surdum’ (also known as reductio). To see this, consider the
direct variant where A = ⟨S, ψ⟩ attacks B = ⟨{ϕ}∪S ′, ψ′⟩
and {ϕ, ψ} ⊢ ¬ψ holds. A establishes that ψ is true, while
{ϕ, ψ} ⊢ ¬ψ expresses that from one of the premises of ar-
gument B a contradiction follows, namely that ψ is false.
Therefore B has to be rejected.

Lemma 3. Consider the following two cases: (i) L1 = B3T
and L2 = CL, (ii) L1 = CL and L2 = CL. In both cases,

1. Reductio and Defeat are corresponding attacks (recall
Definition. 9) relative to L1 and L2,

2. Full Reductio and Full Defeat are corresponding attacks
relative to L1 and L2.

3. Direct Reductio and Direct Defeat are corresponding at-
tacks relative to L1 and L2,

Proof. Let S be a set of LT-formulas and let S1,S2 ⊆ S . In
the proof we rely on the following two fact:

F1 If Atoms(ϕ) ⊆ Atoms(S), then S ⊢CL ϕ iff S ⊢B3T ϕ.
F2 S is classically inconsistent iff S is B3T-inconsistent. In

this case, S ⊢B3T ϕ for every ϕ ∈ LT.

Now, we paradigmatically show the lemma for Item 1 and
Case (i) (respectively, Case (ii)). For Att1, suppose thatA =
⟨S1, ψ1⟩ DirRed-attacksB = ⟨S ′

2∪{φ}, ψ2⟩, whereA,B ∈
ArgB3T(S) (respectively, where A,B ∈ ArgCL(S)). Then
{φ,ψ1} ⊢B3T ¬ψ1 (respectively, {φ,ψ1} ⊢CL ¬ψ1). In any
case, by F1, {φ,ψ1} ⊢CL ¬ψ1, and so ψ1 ⊢CL ¬φ. Thus, A
directly defeats B.

For Att2, suppose thatA = ⟨S1, ψ1⟩ directly defeatsB =
⟨{φ} ∪ S2, ϕ⟩. Then ψ1 ⊢CL ¬φ. We distinguish between
two cases: (a) S1 ̸= ∅ and (b) S1 = ∅.

• Suppose first (a). Then
∧
S1 ⊢CL ¬φ, and hence∧

S1, φ ⊢CL ¬
∧
S1. By F2,

∧
S1, φ ⊢B3T ¬

∧
S1.

Thus, A′ = ⟨S1,
∧
S1⟩ ∈ ArgB3T(S) (respectively,

A′ = ⟨S1,
∧
S1⟩ ∈ ArgCL(S)) DirRed-attacks B.

Hence, CDirRed(S1,
∧

S1, Supp(B)) holds for B3T (re-
spectively, for CL), which assures Att2.
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• Suppose now (b). So, ⊢CL ¬φ and thus {T, φ} ⊢CL ¬T.
By F2, {T, φ} ⊢B3T ¬T. So, ⟨∅,T⟩ DirRed-attacks B.
Hence, CDirRed(∅,T, Supp(B)) holds for B3T (respec-
tively, for CL), which again assures Att2.

Note 5. The reason we enhanced B3 with T is to ob-
tain Att2. Note that, for instance, ⟨∅,T⟩ DirRed-attacks
⟨{p ∧ ¬p}, q⟩ (since T, p ∧ ¬p ⊢B3T ¬T), but ⟨∅,T⟩ is not
an argument according to B3. Thus Lemma 3 fails for B3.

By Proposition 3, and since B3T is included in CL, we
have the following corollary:
Corollary 2. Let A1 ⊆ {Red,FullRed,DirRed} and A2 ⊆
{Def,FullDef,DirDef} be two non-empty sets of attacks
that correspond relative to B3T and CL as described in
Lemma 3. Then, for every set of formulas S and semantics
Sem ∈ {Adm,Cmp,Grd, Stb, SStb,Prf, Idl,Egr, Stg}, the
framework AFB3T,A1(S) is Sem-argumentatively included
in AFCL,A2

(S).
Example 6. Consider again Example 5, where B3T is the
underlying logic, but this time DirRed is the attack rule
(instead of DirDef). We still have that A and C are in
ArgB3T(S), but now C defends itself from the attack of A,
since it DirRed-attacks A. It follows that ArgB3T({¬p}) ∈
Stb(AFB3T,{DirDef}(S)), as intuitively expected (and as is
the case when B3T is traded by CL). As shown in the last
corollary, this is not a coincidence.

In sum, argumentative reasoning with CL can be pre-
served when switching to a logic that enforces relevance of a
specific kind, namely staying “on-topic”. This coheres with
insights from informal argumentation (Blair 1992).

We conclude this case study by noting another corollary
of Proposition 3 and Lemma 3: The reductio-based attacks
are also argumentatively equivalent to defeat-based attacks
in the context of classical logic.
Corollary 3. Suppose that A1 ⊆ {Red,FullRed,DirRed}
and A2 ⊆ {Def,FullDef,DirDef} are two non-empty sets
of attacks that correspond relative to CL and CL as de-
scribed in Lemma 3. For every set of formulas S and seman-
tics Sem ∈ {Adm,Cmp,Grd, Stb, SStb,Prf, Idl,Egr, Stg},
the frameworks AFCL,A1

(S) and AFCL,A2
(S) are Sem-

argumentatively equivalent, namely: each one of them is
Sem-argumentatively included in the other.

4.2 Application II: Kleene K3 and Classical Logic
(Strong) Kleene’s logic K3 (Kleene 1952) is perhaps the
best-known 3-valued logic. Its negation connective is the
same as that of Bochvar’s logic, while the conjunction ∧
and the disjunction ∨ are defined by the minimum and the
maximum relative to the ordering f < i < t.

∨ t f i
t t t t
f t f i
i t i i

∧ t f i
t t f i
f f f f
i i f i

¬
t t
f f
i i

Again, ⟨S, ψ⟩ is a K3-argument (that is, S ⊢K3 ψ), if
every K3-interpretation that assigns t to every formula in S
also assigns t to ψ. In particular (like B3), K3 does not have

tautologies (and so there are no tautological K3-arguments),
and it is paradefinite: the rule of excluded middle does not
hold in it ( ̸⊢K3 ψ ∨ ¬ψ).

In order to allow tautological arguments, and better ac-
commodate K3 for argumentative inclusion in classical
logic, we again add the propositional constant T (with the
usual meaning of representing truth) to the language. The
resulting logic is denoted K3T.

The logic K3 (respectively, K3⊤) lays strictly between
classical logic and B3 (respectively, B3⊤). For instance, we
have that p ⊢K3 p ∨ q while p ⊬B3 p ∨ q. Similarly for K3T
and B3T.
Lemma 4. Relative to K3T and CL, we have the following
correspondences:
1. Reductio corresponds to Defeat,
2. Full Reductio corresponds to Full Defeat.
3. Direct Reductio corresponds to Direct Defeat,

By Proposition 3, and since K3T is included in CL, we
have the following result:
Corollary 4. Suppose that A1 ⊆ {Red,FullRed,DirRed}
and A2 ⊆ {Def,FullDef,DirDef} are two corresponding
non-empty sets of attacks relative to K3T and CL, as de-
scribed in Lemma 4. For every set of formulas S and seman-
tics Sem ∈ {Adm,Cmp,Grd, Stb, SStb,Prf, Idl,Egr, Stg},
it holds that AFK3T,A1

(S) is Sem-argumentatively included
in AFCL,A2

(S).

4.3 Application III: Priest LP and Classical Logic
Priest’s 3-valued logic LP (Priest 1989)8 has the same truth
tables for the basic connectives {¬,∧,∨} as those of strong
Kleene’s 3-valued logic. The difference is that in LP the
middle element (i) is designated. Thus, ⟨S, ψ⟩ is an LP-
argument (and so S ⊢LP ψ), if every LP-interpretation that
assigns either t or i to every formula in S also assigns t or i
to ψ. This implies, in particular, that LP (unlike K3 and B3)
is not paracomplete (⊢LP ψ ∨ ¬ψ)9 but it is paraconsistent,
i.e., avoids logical explosion: p,¬p ⊬LP q (consider for this
a valuation in which p is assigned i, while q is assigned f).
Example 7. Consider S = {p ∨ q,¬p,¬q}. Note that
⟨{p ∨ q,¬p}, q⟩, ⟨{p ∨ q,¬q}, p⟩ /∈ ArgLP(S). This is
due to the fact that disjunctive syllogism does not hold
for LP. For instance, when Direct Defeat is the sole at-
tack rule, the only stable set of the corresponding LP-based
argumentation framework for S is ArgLP({¬p,¬q}) since
⟨{¬p,¬q},¬(p ∨ q)⟩ attacks every argument with p ∨ q
among its premises. This is an undesired asymmetry since
one also expects ArgLP({p∨q,¬p}) and ArgLP({p∨q,¬q})
to be stable sets.

To avoid the problem in the last example, we introduce in
Table 3 another family of attack rules, called LP-defeats.
Lemma 5. Consider the following two cases: (i) L1 = LP
and L2 = CL, (ii) L1 = CL and L2 = CL. In both cases, we
have that:

8Also attributed to Asenjo (1966).
9In fact, the theorems of LP are exactly those of CL; See for

instance (Avron, Arieli, and Zamansky 2018).
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Acronym Attacking Attacked Attack Condition

LPDef ⟨S1, ψ1⟩ ⟨S2 ∪ S ′
2, ψ2⟩ (†)

FullLPDef ⟨S1, ψ1⟩ ⟨S2, ψ2⟩ (†)

DirLPDef ⟨S1, ψ1⟩ ⟨{φ} ∪ S ′
2, ψ2⟩ (‡)

Table 3: LP-Defeats. Condition (†) is ψ1 ⊢ ¬
∧
S2∨

∨
{(φ∧¬φ) |

φ ∈ S1} and Condition (‡) is ψ1 ⊢ ¬φ∨
∨
{(φ∧¬φ) | φ ∈ S1}.

1. LP-Defeat corresponds to Defeat, relative to L1 and L2,
2. Full LP-Defeat corresponds to Full Defeat, relative to

L1 and L2,
3. Direct LP-Defeat corresponds to Direct Defeat, relative

to L1 and L2.
By Proposition 3, and since LP is included in CL, we then

have the next corollary:
Corollary 5. Let A1 ⊆ {LPDef,LPFullDef,LPDirDef}
and A2 ⊆ {Def,FullDef,DirDef} be two non-empty at-
tack sets that correspond relative to LP and CL as described
in Lemma 5. Then for every set of formulas S and seman-
tics Sem ∈ {Adm,Cmp,Grd, Stb, SStb,Prf, Idl,Egr, Stg},
it holds that AFLP,A1(S) is Sem-argumentatively included
in AFCL,A2(S).
Example 8. Consider again the set S = {p ∨ q,¬p,¬q}
from Example 7, where LP is the underlying logic. When
DirLPDef is the attack rule we avoid the problem in Ex-
ample 7, since this time, as followed from the last corol-
lary, ArgLP({¬p,¬q}), ArgLP({p∨ q,¬p}) and ArgLP({p∨
q,¬q}) are all stable extensions of AFLP,{DirLPDef}(S).

Finally, we note that, by Proposition 3 and Lemma 5, LP-
defeat-based attacks are also argumentatively equivalent to
defeat-based attacks in the context of classical logic:
Corollary 6. Let A1 ⊆ {LPDef,LPFullDef,LPDirDef}
and A2 ⊆ {Def,FullDef,DirDef} be two non-empty at-
tack sets that correspond relative to CL and CL as described
in Lemma 5. For every set of formulas S and seman-
tics Sem ∈ {Adm,Cmp,Grd, Stb, SStb,Prf, Idl,Egr, Stg},
the frameworks AFCL,A1(S) and AFCL,A2(S) are Sem-
argumentatively equivalent.

5 Links to Assumption-Based
Argumentation

In what follows we show that the results in this paper may
be used for another purpose: converting logic-based frame-
works to simple contrapositive extensions (Heyninck and
Arieli 2020) of assumption-based frameworks (Bondarenko
et al. 1997) (See, e.g., (Čyras et al. 2018) for a survey on
such frameworks and their applications).
Definition 10. An assumption-based framework (an ABF,
for short) is a tuple ABF = ⟨L,X ,S,∼⟩, where:

• L = ⟨L,⊢⟩ is a propositional Tarskian logic.
• X (the strict assumptions) and S (the defeasible assump-

tions) are distinct (countable) sets of L-formulas, where
the former is ⊢-consistent and the latter is nonempty.

• ∼ : S → ℘(L) is a contrariness operator, assigning a
finite set of L-formulas to every defeasible assumption
in S , such that for every consistent and non-tautological
formula ψ ∈ S it holds that ψ ̸⊢

∧
∼ψ and

∧
∼ψ ̸⊢ ψ.

A simple contrapositive ABF is an assumption-based frame-
work ABFX

L (S) = ⟨L,X ,S,∼⟩, where
• for every ψ ∈ S it holds that ∼ψ = {¬ψ}, and
• the logic L is an explosive (i.e., for every L-formula
ψ, the set {ψ,¬ψ} is ⊢-inconsistent) and contrapositive
(i.e., for every nonempty set of formulas Γ and formula
ψ, it holds that Γ ⊢ ¬ψ iff for every ϕ ∈ Γ we have that
Γ \ {ϕ}, ψ ⊢ ¬ϕ).

Let ABFX
L (S) be a (simple contrapositive) ABF. Let also

∆,Θ ⊆ S , andψ ∈ S . We say that ∆ attacksψ iff X ,∆ ⊢ ϕ
for ϕ ∈ ∼ψ. Also, ∆ attacks Θ if ∆ attacks some ψ ∈ Θ.
Dung semantics for (simple contrapositive) ABFs is defined
just as in Definition 4 (see (Heyninck and Arieli 2020)).
Example 9. The (simple contrapositive) assumption-based
argumentation framework ⟨CL, ∅, {p,¬p, q},¬⟩ is the same
as the support-induced framework in Example 3 and has the
same extensions as of the latter, as specified in Example 4.
Proposition 4 below shows that this is not a coincidence.

Suppose now that q is a strict assumption. The revised
ABF is then ⟨CL, {q}, {¬p, p},¬⟩. Its attack diagram is rep-
resented in Figure 3.

¬p
¬p, q

p

p, q

q

p,¬p

p,¬p, q

Figure 3: Assumption-based framework (Example 9).

Note that, since q appeared in every extension of the ABF
as a defeasible assumption, treating it as a strict assumption
does not alter the set of conclusions derived from the ABF.

To relate ABFs and logic-based argumentation frame-
works, we need to extend the latter with strict (non-
attackable) set of assumptions X , in addition to the defea-
sible assumptions in S . Next, we do so (cf. Definition 3):
Definition 11. Let L = ⟨L,⊢⟩ be a logic and A a set of
attack rules with respect to L. Let also X and S be two
distinct sets of L-formulas, where X is ⊢-consistent. The
(logical) argumentation framework for X and S , induced by
L and A, is the pair AFX

L,A(S) = ⟨ArgXL (S),AttackX(A)⟩,
where ArgXL (S) = {⟨S ′, ψ⟩ | X ,S ′ ⊢ ψ and S ′ ⊆ S} and
AttackX(A) is defined by (A1, A2) ∈ AttackX (L) iff there
is some RX ∈ A such that A1 RX -attacks A2.

9Again, for simplifying the figure, nodes sharing identical in-
coming and outgoing edges are grouped as inner nodes in a single
outer node.
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In AFX
L,A(S), an argument remains a pair A = ⟨S ′, ψ⟩

with S ′ ⊆ S , but ψ now follows from S ′ ∪ X , where X is
a set of strict assumptions. These assumptions are protected
from attacks, as defined by the rules in AttackX(A). For
instance, a variation DirDefX of DirDef appears in Table 4:

Acronym Attacking Attacked Attack Conditions

DirDefX ⟨S1, ψ1⟩ ⟨{φ} ∪ S ′
2, ψ2⟩ X , ψ1 ⊢ ¬φ, φ ̸∈ X

Table 4: Direct defeat with strict assumptions.

Thus, based on the formulas in X , the conclusion ψ1 of the
attacking argument entails the negation of some formula in
the support of the attacked argument, provided that this for-
mula is not a strict assumption (that cannot be attacked).
Clearly, Definition 3 is a particular case of Definition 11
when X = ∅ (and DirDef is the same as DirDef∅).

Now, we are ready to relate logical argumentation frame-
work and assumption-based argumentation frameworks.
Proposition 4. Let L be explosive and contrapositive logic,
and let A = {DirDefX }. Given a logical argumentation
framework AFX

L,A(S) (Definition 11), let SAFX
L,A(S) be

the corresponding support-induced argumentation frame-
work (Definition 7), and let ABFX

L (S) be the corresponding
simple contrapositive ABF (Definition 10). Then, for every
Sem ∈ {Cmp,Grd,Prf, Stb, SStb, Idl,Egr, Stg},

Ξ ∈ Sem(SAFX
L,A(S)) iff Ξ ∈ Sem(ABFX

L (S)).
Moreover, for every such Ξ, it holds that:

{A ∈ ArgL(S) | Supp(A) ∈ Ξ} ∈ Sem(AFX
L,A(S)).

Additionally, for every E ∈ Sem(AFX
L,A(S)), we have:

{Supp(A) | A ∈ E} ∪ {∅} ∈ Sem(ABFX
L (S)),

{Supp(A) | A ∈ E} ∪ {∅} ∈ Sem(SAFX
L,A(S)).

Proof. By the definitions of SAFs and ABFs, as since the
attack relation of the latter is DirDef, it is easy to see that

(†) Sem(SAFX
L,A(S)) = Sem(ABFX

L (S))
for every semantics Sem. In fact, these structures are iso-
morphic, since they have the same nodes (arguments) and
edges (attacks). Indeed, for every S1,S2 ⊆ S ,

S1 attacks S2 in SAFX
L,A(S) iff

(S1,S2) ∈ S -Attack(A), iff
∃ψ1 s.t.⟨S1, ψ1⟩ ∈ ArgL(S) and CDirDefX (S1, ψ1,S2), iff
X ,S1 ⊢ ψ1 and X , ψ1 ⊢ ¬φ for some φ ∈ S2, iff
X ,S1 ⊢ ¬φ for some φ ∈ S2, iff

S1 attacks S2 in ABFX
L (S).

Let now E ∈ Sem(AFX
L,A(S)). By Item 1 of Proposition 1,

{Supp(A) | A ∈ E} ∪ {∅} ∈ Sem(SAFX
L,A(S)),10 and

by (†), also {Supp(A) | A ∈ E} ∪ {∅} ∈ ABFX
L (S)). The

converse follows similarly from Item 2 in Proposition 1.
10Proposition 1 does not take into account strict assumptions, but

it is not difficult to extend the result to this case as well.

Example 10. Consider again the two ABFs in Example 9
(i.e., where q is either defeasible or strict assumption). By
Example 4 and Proposition 4 we get that the grounded,
ideal and eager extension of these ABFs is {∅, {q}}, while
the preferred, stable, semi-stable and stage extensions are
{∅, {q}, {p}, {q, p}} and {∅, {q}, {¬p}, {q,¬p}}.

To summarize the results in this section, we have ob-
tained a correspondence among three forms of argumenta-
tive frameworks:

1. logic-based frameworks with strict assumptions,

2. the related support-induced frameworks, and

3. the corresponding assumption-based frameworks.

This correspondence is shown with respect to direct defeat,
since this is the rule traditionally used for attacks in ABFs.
However, under some straightforward modifications it is not
difficult to show further results, similar to those of Proposi-
tion 4, with respect to other attack rules.

6 Conclusion
In this paper, we addressed two key and interconnected is-
sues in the representation of logical argumentation frame-
works: how to represent them compactly by finite frame-
works, and how to translate a framework based on a logic
that captures the core reasoning into a broader and more con-
ventional representation without losing logical inferences.
In process, we introduced some new attack rules that allow
to bridge between argumentation frameworks based on spe-
cific logics, and provided a conversion method between two
well-established argumentative settings: logic-base frame-
works and assumption-based frameworks (see (Borg 2020)).

The problem of reducing the size of logic-based argumen-
tation frameworks has already been considered in the litera-
ture (see, e.g., (Amgoud, Besnard, and Vesic 2011)). Such
reductions are often formulated by equivalence classes (cf.
Note 2 and (Arieli et al. 2022, Section 4.3)), but are applied
to specific cases.11 Here, we consider broader settings and
stricter reductions, yielding frameworks with a finite num-
ber of arguments (and not only finite number of attacks per
argument, as in (Amgoud, Besnard, and Vesic 2011)).

The issues considered in this work bring up a bunch of
new questions. One such question is how to adjust the
attack rules when changing the base logics. The inter-
play between the nature of the underlying logic and the
formulation of the attack rules has already been consid-
ered in the literature (see, e,.g., (Corsi and Fermüller 2017;
Shi, Smets, and Velázquez-Quesada 2018; Arieli and Straßer
2020; Corsi 2025)). However, all these works assume a fixed
setting from which base logics and attack rules need to be
correlated. The adaptation of given attack rules when the
setting itself changes (e.g., for having a more compact rep-
resentation), is a topic that, to our knowledge, has not yet
been investigated, and remains a subject for future research.

11For example, (Amgoud, Besnard, and Vesic 2011) focuses on
classical logic, direct undercut attacks, stable semantics, and argu-
ments with subset-minimal and classically consistent supports.
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