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Abstract

Gradual semantics (GS) have demonstrated great potential in
argumentation, in particular for deploying quantitative bipo-
lar argumentation frameworks (QBAFs) in a number of real-
world settings, from judgmental forecasting to explainable
AI. In this paper, we provide a novel methodology for obtain-
ing GS for statement graphs, a form of structured argumenta-
tion framework, where arguments and relations between them
are built from logical statements. Our methodology differs
from existing approaches in the literature in two main ways.
First, it naturally accommodates incomplete information, so
that arguments with partially specified premises can play a
meaningful role in the evaluation. Second, it is modularly
defined to leverage on any GS for QBAFs. We also define a
set of novel properties for our GS and study their suitability
alongside a set of existing properties (adapted to our setting)
for two instantiations of our GS, demonstrating their advan-
tages over existing approaches.

1 Introduction
Argumentation frameworks have emerged as powerful tools
for reasoning about and resolving conflicting information
in complex environments (see (Baroni et al. 2018; Atkin-
son et al. 2017) for overviews). In recent years, grad-
ual semantics (GS) have shown great promise in extend-
ing these frameworks, particularly in the realm of quanti-
tative bipolar argumentation frameworks (QBAFs) (Baroni,
Rago, and Toni 2018), where arguments have weights and
may be related by attack and support relations. These ap-
proaches thus allow for both negative and positive, respec-
tively, influences between arguments to be accounted for,
arguably aligning more closely with human judgment than
traditional argumentation frameworks (Polberg and Hunter
2018). GS have found applications in diverse (and often
human-centric) areas, from judgmental forecasting (Irwin,
Rago, and Toni 2022) to explainable AI (Vassiliades, Bassil-
iades, and Patkos 2021; Cyras et al. 2021), by allowing for
quantitative, and thus in some cases more nuanced, evalua-
tions of arguments beyond the traditional accept/reject di-
chotomy in extension-based semantics (Dung 1995; Cay-
rol and Lagasquie-Schiex 2005). These quantitative eval-
uations, typically referred to as strengths, can be particu-
larly useful in cases where the information in argumentation

frameworks is incomplete, since strengths can account for
the resulting uncertainty quantitatively.
However, most of the existing work on GS (see (Baroni,

Rago, and Toni 2019) for an overview) has focused on for-
malisms based on abstract arguments (Dung 1995), treated
as atomic entities without internal structure. This abstrac-
tion, while useful in many contexts, fails to capture the rich
logical structure that is often present in real-world argu-
ments. Meanwhile, various forms of structured argumenta-
tion frameworks (see (Besnard et al. 2014) for an overview)
allow to represent the internal composition of arguments and
the relationships between their components. They thus of-
fer a more expressive and realistic model in agent-based do-
mains, such as user modeling (Hadoux, Hunter, and Polberg
2023), scientific debates (Cramer and Dauphin 2020), and
model reconciliation settings (Vasileiou et al. 2024). How-
ever, this greater reliance on the logical (e.g., background or
contextual) knowledge can lead to more problematic cases
where this information is incomplete, where the complete-
ness of a statement (as we formally define in §4) refers to its
grounding in facts. Yet, it is only recently that the study of
GS for structured argumentation has received attention, e.g.,
for deductive argumentation (Besnard and Hunter 2014) by
Heyninck et al. (2023), for assumption-based argumenta-
tion (ABA) (Cyras et al. 2017) by Skiba et al. (2023), for
ASPIC+ (Modgil and Prakken 2014) by Spaans (2021) and
Prakken (2024), and for a restricted type of structured argu-
mentation in the form of statement graphs (SGs) (Hecham,
Bisquert, and Croitoru 2018) by Jedwabny et al. (2020).
We selected SGs as our targeted form of structured argu-

mentation in this paper. We chose this starting point for our
analysis, rather than other forms of structured argumenta-
tion, because they naturally accommodate attack and sup-
port relations. Their GS are thus naturally relatable to those
of QBAFs, which are the most widely studied form of ar-
gumentation when it comes to GS (Baroni, Rago, and Toni
2019). This allows us to undertake an interesting analysis
of properties of our GS in direct comparison with those for
QBAFs, given their widespread application.
To illustrate the need for GS in structured argumenta-

tion, Figure 1 shows a debate about climate change rep-
resented as an SG. SGs use a restricted type of structured
arguments in the form of statements, each consisting of a
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Figure 1: Example SG (with arbitrary weights ω , see §3). Green
edges with a plus denote support; red edges with a minus denote
attack. The SG includes incomplete information about the state-
ment ε4, since its premise d is not grounded in facts. However, the
given weight for ε4 provides information that our GS can use.

premise (a compound of literals, which may possibly be
⌐, i.e., true) and a claim (a literal). A typical statement
(ω1) may combine evidence about rising CO2 emissions
(a) and increasing global temperatures (b), given that they
are both supported by facts (ω2 and ω3), to support the
claim that climate change is human-caused (c). Such an
SG may be the result of mining arguments from text, e.g.,
as overviewed in (Lawrence and Reed 2019). Such ar-
gument mining techniques coupled with suitable GS for
SGs could allow for more expressive representation of ar-
guments while handling incomplete information in the mod-
elling of debates, a rapidly growing research area utilising
many forms of argumentation (Visser et al. 2020; Goffredo
et al. 2023; Ruiz-Dolz, Heras, and Garcı́a-Fornes 2023;
Budan et al. 2023; Bistarelli, Taticchi, and Meo 2023;
Bezou-Vrakatseli, Cocarascu, and Modgil 2024), especially
given the groundbreaking potential of large language models
(Oluokun et al. 2024).
The GS proposed by Jedwabny et al. (2020) for SGs uses

T-norms and T-conorms from fuzzy logic to aggregate the
strengths of a statement’s components, but this GS faces
challenges when dealing with incomplete information as it
relies on complete knowledge and the presence of a state-
ment’s supporting elements. This requirement can limit its
applicability in real-world scenarios, where such informa-
tion is almost always incomplete. For example, in Figure 1,
the strength of the statement ω1 is reduced (e.g., in the eyes
of a modelled audience) by a statement (ω4) questioning the
reliability of CO2 measurements, without being evidenced
(there is no support for d). To date, existing approaches to
GS in structured argumentation struggle to handle such in-
completeness, potentially leading to oversimplified or incor-
rect conclusions, and thus poor modelling of debates.
To address this limitation, we introduce a novel method-

ology for GS in SGs that can naturally accommodate com-
plete and incomplete information. Our approach is modular
in that it allows for different GS to be instantiated based on
the requirements of a given task and context. Specifically,
our methodology for GS can be instantiated with any exist-
ing GS for QBAFs. This existing GS is used to dialectically
evaluate the literals in a premise, based on their attacking
and supporting evidence, before these “intermediate” eval-
uations are aggregated (depending on the statement’s con-
struction) to give a final strength for the statement.
Thus, our methodology combines some of the expressive-

ness of structured argumentation with the flexibility of GS
for QBAFs, while accounting for the practical reality of in-

complete knowledge. Our contributions are as follows:
• We introduce a novel methodology for constructing GS in
SGs with incomplete information, presenting two instan-
tiations based on different existing GS for QBAFs.

• We present a collection of novel and existing (by Jed-
wabny et al. (2020)) properties for GS in SGs and discuss
their suitability in different settings.

• Using these properties, we conduct a comprehensive theo-
retical analysis of our two proposed instantiations, two in-
stantiations of the T-norm semantics (Jedwabny, Croitoru,
and Bisquert 2020) and two existing GS for QBAFs, dis-
cussing the strengths and limitations of each approach.

2 Related Work
GS have received significant attention within abstract argu-
mentation in recent years, given their professed alignment
with human reasoning (Vesic, Yun, and Teovanovic 2022;
de Tarlé, Bonzon, and Maudet 2022) and applicability to
real-world settings (Potyka 2021; Rago et al. 2021). This
has given rise to a rich field of research, with a broad
repertoire of GS (Gonzalez et al. 2021; Yun and Vesic
2021; Wang and Shen 2024), in-depth analyses of GS’
behaviour (Delobelle and Villata 2019; Oren et al. 2022;
Yin, Potyka, and Toni 2023; Kampik et al. 2024), and a num-
ber of open-source computational toolsets (Potyka 2022;
Alarcón and Kampik 2024). One issue in this area is that
many abstract GS, e.g., those we use (Rago et al. 2016;
Potyka 2018), do not satisfy the uniqueness property in as-
signing strengths in cyclic graphs due to their recursive na-
ture (Gabbay and Rodrigues 2015a; Anaissy et al. 2024).
This must be considered if our acyclicity restriction is re-
laxed in future work.
There have been other works related to GS in struc-

tured argumentation, differing from our work as follows.
Within ASPIC+, Spaans (2021) introduced initial strength
functions, with corresponding properties, though they use
weights on rules and do not consider explicit support re-
lations. Further, Prakken (2024) gives a formal model of
argument strength across graphs and deploys it. A major
difference between this work and our approach is our lever-
aging of existing bipolar abstract GS for handling incom-
plete information. We leave to future work the assessment of
this approach with respect to our proposed properties. Also
for ASPIC+, extension-based semantics have been used for
cases with incomplete information (Odekerken et al. 2023).
Meanwhile, Heyninck et al. (2023) compare properties of

GS with those concerning culpability when applied to ab-
stract argumentation frameworks extracted from deductive
argumentation, whereas we lift abstract GS to the structured
level. Skiba et al. (2023) assess a family of GS for ranking
arguments in structured argumentation, specifically ABA.
Both of these works do not consider the support relation.
Finally, Amgoud and Ben-Naim (2015) give a method for
ranking logic-based argumentation frameworks, but do not
consider an explicit strength or a support relation.
Finally, probabilistic argumentation (Kohlas 2003; Dung

and Thang 2010; Thimm 2012; Hunter 2013; Gabbay
and Rodrigues 2015b; Polberg, Hunter, and Thimm 2017;
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Hunter, Polberg, and Thimm 2020; Fazzinga, Flesca, and
Furfaro 2018; Thimm, Polberg, and Hunter 2018; Man-
tadelis and Bistarelli 2020), is a related but distinct subfield
where strengths, which may be over (sets of) arguments, re-
lations or both, must adhere to strict probabilistic principles,
whereas GS may not.

3 Preliminaries
We consider a propositional language L comprising a finite
set of atoms, including a special atom ⌐ to represent truth. A
literal is an atom ε or its negation ¬ε. Note that ¬(¬ε) ≡ ε.
A compound is an expression, limited in this paper to be
constructed from literals using the connective ∧.
A statement is defined as a pair ⌜!,”⌜, where ! ∈ L is

either ⌐ or a logically consistent compound and ” ∈ L is a
literal. We refer to ! as the premise and to ” as the claim of
statement ω = ⌜!,”⌜. We define Prem(ω) = {x ⌝ x ∈ !} ⋊
{⌐} as the set of literals in the premise of statement ω. Note
that if the premise of a statement ω is ⌐ then Prem(ω) = ∅.
For simplicity and ease of presentation, we restrict atten-

tion to statements with conjunctive premises, similarly to
(Jedwabny, Croitoru, and Bisquert 2020). In §4.1, we will
define our methodology generally, before instantiating it for
these restricted statements, pointing towards other instanti-
ations which could be used for more complex compounds,
such as those in conjunctive normal form.
A statement attacks or supports another if the former

gives justification against or for the latter’s premise:
Definition 1. Let ω1 = ⌜!1,”1⌜ and ω2 = ⌜!2,”2⌜ be two
statements. We say that:
• ω1 supports ω2 iff ⋉x ∈ Prem(ω2) s.t. ”1 ≡ x;
• ω1 attacks ω2 iff ⋉x ∈ Prem(ω2) s.t. ”1 ≡ ¬x.

We can then generate an SG structured with respect to the
support and attack relations between statements, as in the
works by Hecham et al. (2018) and Jedwabny et al. (2020).1
However, differently to these works, we include the quanti-
tative weights of each statement within the SG, rather than
applying them separately. This reformulation allows for di-
rect comparisons with properties of QBAFs (Baroni, Rago,
and Toni 2019), which provided inspiration for some of our
properties.
Definition 2. An SG is a quadruple ⌜X ,A,S, ϑ⌜ s.t.:
• X is a set of statements;
• A ⊆X ×X is s.t. ⧖ω1,ω2 ∈X , (ω1,ω2) ∈A iff ω1 attacks
ω2;

• S ⊆X ×X is s.t. ⧖ω1,ω2 ∈X , (ω1,ω2) ∈S iff ω1 supports
ω2;

• ϑ ∶ X → [0,1] is a weight over the statements.
For any ω1 ∈ X , we call A(ω1) = {ω2 ∈ X ⌝(ω2,ω1) ∈ A}

ω1’s attackers and S(ω1) = {ω2 ∈ X ⌝(ω2,ω1) ∈ S} ω1’s

1Note that we chose to use SGs similarly to Hecham et
al. (2018) and Jedwabny et al. (2020) in order to allow for direct
comparisons with the gradual semantics in the latter work. Their
focus on attacks and supports on premises, rather than conclusions,
also aligns with other works in the literature, e.g., ABA.

supporters. For any ωx,ωy ∈ X , let a path from ωx to ωy

via R ⊆ A ∪ S be (ω0,ω1), . . . , (ωn⌐1,ωn) for some n > 0,
where ω0 =ωx, ωn =ωy and, for any 1 ≤ i ≤ n, (ωi⌐1,ωi) ∈

R.
Corollary 1. Given a SG ⌜X ,A,S,ϑ⌜,A ∩ S =∅.2

An SG thus gives a restricted form of structured argumen-
tation framework with conjunctive premises, undercutting
attacks, deductive/evidential supports and weights. Note
that weights may be fixed, i.e., identical for all arguments
which are considered a-priori equal as in classical argumen-
tation frameworks, or variable, representing, e.g., different
attributes such as source authority, premise credibility, or
goal importance.3 We envisage a usage of weights similar
to that in (Alsinet et al. 2008) within the realm of defea-
sible logic programming (Garcı́a and Simari 2004), where
weighted certainties on arguments (including facts) are used
to introduce possibilistic argumentation. Also, we focus on
acyclic graphs, following several works on GS (Rago et al.
2016; de Tarlé, Bonzon, and Maudet 2022), leaving cyclic
graphs to future work.
For the remainder of the paper, we assume as given a

generic SG G = ⌜X ,A,S, ϑ⌜.
Definition 3. A GS ϖ ∶ X → [0,1] assigns each statement
ω ∈ X a strength ϖG

(ω) ∈ [0,1].4

In essence, GS offer a principled approach to evaluating
statements quantitatively. We refer informally throughout
the paper to any GS that takes into account the premises of
any statement as a structured GS, and any that does not as
an abstract GS. It should be noted that while abstract GS
can be applied to SGs, structured GS cannot be applied to
frameworks using abstract argumentation such as QBAFs,
since the statements therein are abstract entities.
We refer to any statement ω ∈ X with ϖG

(ω) = 1 as
having/being top-strength, and ϖG

(ω) = 0 as having/being
bottom-strength. We note here that other notions of accep-
tance and rejection, e.g., with thresholds over the strength
range as in (de Tarlé, Bonzon, and Maudet 2022; Rago, Li,
and Toni 2023), would be possible in our setting, but we
leave the study of this to future work.
Next, we recall two notions from (Jedwabny, Croitoru,

and Bisquert 2020).5 The first gives the notion indicating
when an argument’s premises is grounded in facts, while the
second defines operators used in the GS.
Definition 4. A complete support tree (CST) for some ω1 ∈

X is a set of statements T ⊂ X s.t.:
• ω1 ∈ T ;
• ⧖ω2 ∈T , ⧖x∈Prem(ω2), ⋉ω3=⌜!3,”3⌜∈T s.t. ”3 ≡ x;

2The proofs for all theoretical results can be found in Appendix
B here: https://arxiv.org/abs/2410.22209.

3While methods for learning these weights represent an impor-
tant research direction, e.g., as in (Rago et al. 2025) within the
setting of review aggregation, they fall outside the scope of this
work.

4With an abuse of notation, when referring to GS generally, we
drop the G superscript for clarity.

5We omit the acyclicity condition since we use acyclic graphs.
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• ∄ω2,ω3 ∈ T s.t. (ω2,ω3) ∈ A;
• ∄T ′⊂T s.t. T ′ is a CST for ω1 (minimal wrt set inclusion).
We denote with T G

(ω1) the set of CSTs for ω1 wrt G. Given
two CSTs T ∈ T G

(ω1) and T ′ ∈ T G
(ω2) for ω1,ω2 ∈ X ,

respectively, T attacks T ′ iff ⋉ω3 ∈ T
′ s.t. (ω1,ω3) ∈ A.

Definition 5. A triple (∧,∨,¬), where ∧ is a T-norm, ∨
is a T-conorm, and ¬ is a negation, is called a De Morgan
triple iff ⧖v1, v2 ∈ [0,1], ∧(v1, v2) = ¬(∨(¬(v1),¬(v2)),
and ∨(v1, v2) = ¬(∧(¬(v1),¬(v2)).

Then, Jedwabny et al. (2020) introduce the following GS.
Definition 6. Given a De Morgan triple (∧,∨,¬), the T-
norm semantics ϖT is a structured GS s.t. for any ω ∈
X , where ϖG

T (ω) = ⩀T ∈T G(ω)O(T ), O(T ) = I(T ) ∧
¬⩀T ⌐∈T G(ω⌐∈X ), T ⌐ attacks T I(T ′) and I(T ) =⊍ω∈T ϑ(ω).

While the T-norm semantics is modular wrt the De Mor-
gan triple, the methodology is based on a statement’s CSTs,
and thus it can be seen that it inherently relies on complete
information, i.e., a statement’s grounding in facts.
In this paper, we instantiate two T-norm semantics. For

the first, which we name the T-norm-p semantics, denoted by
ϖTp , we let, as in the illustrations by Jedwabny et al. (2020):
∧ be the product, i.e., ∧(v1, v2) = v1 × v2; ∨ be the prob-
abilistic sum, i.e., ∨(v1, v2) = v1 + v2 − (v1 × v2); and ¬

be standard negation, i.e., ¬(v1) = 1 − v1. For the second,
which we name the T-norm-m semantics, denoted by ϖTm ,
we let: ∧ be the minimum, i.e., ∧(v1, v2) = min(v1, v2); ∨
be the maximum, i.e., ∨(v1, v2) = max(v1, v2); and ¬ be
standard negation as for the T-norm-p semantics.
We now recap two abstract GS from the literature, as de-

fined by Rago et al. (2016) and Potyka (2018), respectively.
Definition 7. The DF-QuAD semantics ϖD is an
abstract GS s.t. for any ω ∈ X , ϖG

D(ω) =

c(ϑ(ω),#(ϖG
D(A(ω))),#(ϖG

D(S(ω)))) where, for any S ⊆
X , ϖG

D(S) = (ϖG
D(ω1), . . . ,ϖ

G
D(ωk)) for (ω1, . . . ,ωk), an

arbitrary permutation of S, and:

• # is s.t. #(()) = 0, where () is an empty sequence, and,
for v1, . . . , vn ∈ [0,1] (n ≥ 1), if n = 1, then #((v1)) =

v1; if n = 2, then #((v1, v2)) = v1+v2−v1 ⋅v2; and if n >

2, then #((v1, . . . , vn)) = #(#((v1, . . . , vn⌐1)), vn);
• c is s.t., for v0, v⌐, v+ ∈ [0,1], if v⌐ ≥ v+, then
c(v0, v⌐, v+) = v0 − v0 ⋅ ⌝v+ − v⌐⌝ and if v⌐ < v+, then
c(v0, v⌐, v+) = v0 + (1 − v0) ⋅ ⌝v+ − v⌐⌝.

Definition 8. TheQEM semantics6 ϖQ is an abstract GS s.t.
for any ω ∈ X , ϖG

Q(ω) = ϑ(ω)+ (1− ϑ(ω)) ⋅h(Eω)− ϑ(ω) ⋅

h(−Eω) whereEω = ⊍ω1∈S(ω) ϖG
Q(ω1)−⊍ω2∈A(ω) ϖG

Q(ω2)

and for all v ∈ R, h(v) = max{v,0}2
1+max{v,0}2 .

While these abstract GS do not take into account the struc-
ture of statements, they do consider a weight on each state-
ment, which gives an intrinsic strength which may be used
as a starting point for calculating statement strengths, e.g.,
in the case of incomplete information.

6We define a simplified GS for the case of acyclic graphs.

Figure 2: SG from Example 1 with initial (added) statements
shown in solid (striped, respectively) turquoise, no attacks, initial
(added) supports as solid (dashed, respectively) green arrows and
some arbitrary ω (not shown here). The statement ε⌐1 ∈ X is in-
complete when X = {ε⌐1,ε⌐2,ε⌐3}, but is partially-complete when
ε⌐4 (or ε⌐5) is added and complete when both ε⌐4 and ε⌐5 are added.

4 Gradual Semantics for Statement Graphs
We now introduce a novel methodology for defining struc-
tured GS, leveraging abstract GS, to evaluate the strength of
statements in SGs (§4.1). We then redefine and discuss the
suitability of existing (redefined for this setting) and novel
properties for GS in SGs (§4.2), before we evaluate our ap-
proach with the properties, comparing against existing struc-
tured and abstract GS (§4.3). These contributions will be
discussed with a focus of the following notion.
Definition 9. For any ω1 ∈ X , we say ω1 is:
• complete iff ⧖ω2 ∈ X , where ω2 = ω1 or there exists a
path from ω2 to ω1 via S , T G

(ω2) ≠ ∅;
• partially-complete iff it is not complete and T

G
(ω1) ≠ ∅;

• incomplete otherwise, i.e., iff T G
(ω1) = ∅.

Note that partially-complete and incomplete statements
are in the same spirit as potential arguments in ABA (Toni
2013), but the latter are used for computational purposes, as
steps towards complete statements, rather than as represen-
tations in their own right, as we do. Further investigation,
e.g. on the equivalent in ASPIC+, is left to future work.
Example 1. Consider the SG in Figure 2, in which X =

{ω′1,ω′2,ω′3}, ω′1 = ⌜b, a⌜, ω′2 = ⌜c, b⌜ and ω′3 = ⌜d, b⌜,
giving S = {(ω′2,ω′1), (ω′3,ω′1)} and A = ∅ (the ϑ val-
ues are irrelevant here). In this first case, ω′1 incom-
plete as it has no CSTs. If we add the statement ω′4 =

⌜⌐, c⌜, leading to S = {(ω′2,ω′1), (ω′3,ω′1), (ω′4,ω′2)}, ω′1
becomes partially-complete as it has one CST, but ω′3,
which has a path to ω′1, does not have a CST. Finally,
if we add the statement ω′5 = ⌜⌐, d⌜, leading to S =

{(ω′2,ω′1), (ω′3,ω′1), (ω′4,ω′2), (ω′5,ω′3)}, ω′1 becomes com-
plete as all statements with a path to it have CSTs. Cru-
cial here is the fact that in the incomplete case the T-norm
semantics ignores the (potentially useful) information from
both ω′2 and ω′3, regardless of ϑ , while in the partially-
complete case it ignores that of ω′3.

To solve this issue, we target a methodology which be-
haves well in all cases, i.e., considering all available infor-
mation.
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Figure 3: The conventional way (left) in which abstract GS (ϑ∗) are used for SGs (centre), with a strength calculated for ε1 using the strengths
of its supporters (ε2 and ε4) and attacker (ε3), and our approach (right), modular structured GS (ϑM ), which calculate the strength, using
ϑ∗, of each literal in ε1’s premises (b and c) within the premise graph of ε1, before ϑM aggregates these strengths in a premise aggregation
function to calculate the strength of ε1.

4.1 Methodology
First, we introduce the following notion.
Definition 10. A premise graph for some ω1 ∈ X is an SG
G
1
=⌜X

1,A1,S1,ϑ1⌜ s.t. X 1
=Prem(ω1)∪A(ω1)∪S(ω1) and:

• A
1
= {(⌜!2,”2⌜, x) ∈ A(ω1) × Prem(ω1) ⌝ ¬x ≡ ”2};

• S
1
= {(⌜!2,”2⌜, x) ∈ S(ω1) × Prem(ω1) ⌝ x ≡ ”2}.

A statement’s premise graph contains a new set of state-
ments representing the statement’s premises, attackers and
supporters from the original SG, as shown in the dashed blue
box on the right of Figure 3. Note that we do not specify ϑ1

at this point; we will do so in the specific instantiation of
our methodology. In introducing a premise graph, we allow
for the literals in statements’ premises to be evaluated by
abstract gradual semantics, a core tenet of our approach.
Our methodology, illustrated in Figure 3, is as follows.7

Definition 11. Given an abstract GS ϖ⋊, a modular struc-
tured GS supported by ϖ⋊ is a structured GS ϖM s.t. for any
ω1 ∈ X , where G1 is the premise graph of G for ω1:

ϖG
M(ω1) = ⩕({ϖ

G1

⋊ (x) ⌝ x ∈ Prem(ω1)})

where ⩕ ∶ [0,1]⋊ → [0,1] is a premise aggregation function.
The modular structured GS thus dialectically evaluates

the evidence supporting or attacking each literal in a state-
ment’s premise via an abstract GS using the premise graph,
rather than based on the completeness of its support as
in (Jedwabny, Croitoru, and Bisquert 2020). These dialecti-
cal evaluations are then used to evaluate the statement with
the premise aggregation function. This permits the incor-
poration of incomplete information, since the evidence for
or against premises is combined dialectically starting from a
statement’s weight, giving an approximation of the strength
of a statement based on the available evidence, giving de-
sirable behaviour in all three cases in Definition 9. This
modular methodology permits instantiations tailored to in-
dividual applications based on choices in Definition 11. We
now define one such instantiation, tailored to our restricted

7Given the modular nature of our approach, we leave a study of
the complexities of the resulting GS to future work.

SGs of Definition 2, where premises are conjunctions, with
its supporting abstract GS left unspecified.
Definition 12. Given an abstract GS ϖ⋊, the dialectical
conjunction (DC) semantics supported by ϖ⋊, denoted by
ϖ∧∗ , is a modular structured GS s.t., for any ω1 ∈ X , if
Prem(ω1) = ∅, then ϖG∧∗(ω1) = ϑ(ω1); otherwise:

ϖG∧∗(ω1) = ⨉

x∈Prem(ω1)
ϖG1

⋊ (x)

where ϑ1(x) =
n
⌝

ϑ(ω1), n = ⌝Prem(ω1)⌝ and ϑ1(ω2) =

ϖG∧∗(ω2) ⧖ω2 ∈ X
1
⋊ Prem(ω1).

Corollary 2. For any abstract GS ϖ⋊ that satisfies existence
and uniqueness, ϖ∧∗ also satisfies existence and uniqueness.
Note that conjunctive premises represent a challenge for

handling incomplete information, as the failure of any sin-
gle premise invalidates the entire statement. For that matter,
the DC semantics has been designed such that certain desir-
able theoretical properties will be satisfied, as we will see
in §4.2. Importantly, the DC semantics represents a natu-
ral starting point for our methodology because conjunctive
premises are typically abound in real-world argumentative
reasoning. For instance, when people construct arguments,
they typically combine multiple pieces of evidence conjunc-
tively to support their claims. This pattern is evident in
scientific argumentation, legal reasoning and everyday dis-
course, where people naturally aggregate supporting facts
with “and” connectives (Mercier and Sperber 2011). In fu-
ture work, modular structured GS could be instantiated for
different structures of SGs, e.g., for SGs with disjunctions as
premises, a probabilistic sum could be used for the premise
aggregation function. This would align with the intuition
that multiple independent supporting lines of reasoning may
strengthen a statement’s overall strength. For other logical
structures such as statements in conjunctive normal form, a
hierarchical aggregation approach could be employed, i.e.,
first combining literals within clauses using disjunctive op-
erators, then aggregating clauses conjunctively.
Example 2. Consider the SG from Figure 1, where S =

{(ω2,ω1), (ω3,ω1)} and A = {(ω4,ω1)}. Given the DC
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semantics supported by DF-QuAD, the strength of state-
ment ω1 is calculated as follows: ϖG∧D(ω1) = ϖG1

D (a) ×

ϖG1

D (b) = 0.916 × 0.957 = 0.877, where ϑ1(a) = ϑ1(b) =
2
⌝
0.8 = 0.894. In contrast, the T-norm-p semantics pro-

duces a strength of: ϖG
Tp
(ω1) = ϑ(ω1) × ϑ(ω2) × ϑ(ω3) =

0.8 × 0.9 × 0.6 = 0.432. Here, we see how the DC and T-
norm-p semantics differ. The DC semantics considers the
individual strengths of the premises of ω1, while the T-norm-
p semantics takes into account the weight of ω1 and its direct
supporters.

4.2 Properties
We now discuss existing (from (Jedwabny, Croitoru, and
Bisquert 2020)8) and novel properties for GS in SGs. Note
that the properties apply to either all or exclusively struc-
tured GS as specified.
The first property (Jedwabny, Croitoru, and Bisquert

2020) is a fundamental requirement for GS, stating that a
statement’s strength only depends on statements that are
connected to it, and are thus relevant to it.
Property 1. Given two SGs G and G

′
= ⌜X ∪

{ω1},A
′,S ′, ϑ ′⌜, where ω2 = ω1 or ω3 = ω1 ⧖(ω2,ω3) ∈

(A
′
∪ S

′
) ⋊ (A ∪ S), a GS ϖ satisfies directionality iff for

any ω2 ∈ X , where there exists no path from ω1 to ω2

via A ∪ S and ϑ ′(ω3) = ϑ(ω3) ⧖ω3 ∈ X , it holds that
ϖG⌐

(ω2) = ϖG
(ω2).

As in previous works (Amgoud and Ben-Naim 2018;
Amgoud, Doder, and Vesic 2022), we would advocate that
this property is satisfied in the vast majority of settings since
we would not expect information that is unrelated to a state-
ment to have an effect on its strength.
Next, Jedwabny et al. (2020) introduced a property which

requires that the length of a proof in the logic, i.e., a chain
of reasoning, should not affect the strength of a statement.
Property 2. A structured GS ϖ satisfies rewriting iff for any
ω1,ω2,ω3 ∈ X , if:
• ω1 = ⌜!1,”1⌜, where !1 ≡ x1 ∧ . . . ∧ xn ∧ xn+1 and
”1 ≡ x;

• ω2 = ⌜!2,”2⌜, where !2 ≡ x1 ∧ . . . ∧ xn and ”2 ≡ x
′;

• ω3 = ⌜!3,”3⌜, where !3 ≡ x
′
∧ xn+1 and ”3 ≡ x;

• ∄⌜!4,”4⌜ where x′ ∈ Prem(⌜!4,”4⌜) or x′ ≡ ”4;
• ϑ(ω1) = ϑ(ω3) and ϑ(ω2) = 1;

then ϖG
(ω1) = ϖG

(ω3).
This property is indeed intuitive in a number of settings

where we would prioritise the logical consistency over ap-
proximate evaluations of statements. However, in some
settings, e.g., when modelling human discourse, it may be
the case that the same logical conclusions, when reached
over the course of multiple statements, are weaker, or even
stronger, than those stated succinctly (e.g., see the study of
priority in (Yin, Potyka, and Toni 2024)). For example,

8Jedwabny et al. (2020) also defined properties that are specific
to CSTs, which we reformulate and assess in Appendix A here:
https://arxiv.org/abs/2410.22209.

given the statements instantiated in rewriting, consider the
effect of adding a statement ω4 = ⌜!4,”4⌜, where ” ≡ ¬x1.
In some settings it may be desirable that the weakening ef-
fect of ω4 on ω3 is lesser than that on ω1 due to the distance.
We leave a formalisation of this (non-trivial) property to fu-
ture work. We would, however, argue that rewriting may not
be universally applicable, as illustrated below.
Example 3. Continuing from Example 2, let us introduce
two additional statements in the SG of Figure 1: ω5 = ⌜a, e⌜
(“CO2 emissions are rising, therefore extreme weather
events are increasing”), and ω6 = ⌜e ∧ b, c⌜ (“Extreme
weather events and global temperatures are increasing,
therefore climate change is human-caused”). Let ϑ(ω5) = 1
and ϑ(ω6) = 0.8. A = {(ω4,ω1), (ω4,ω5)}. Under the
DC semantics, we get ϖG∧D(ω1) = 0.877 and ϖG∧D(ω6) =

ϖG1

D (e) × ϖG1

D (b) = 1 × 0.957 = 0.957. In contrast, under
T-norm-p semantics, we get ϖG

Tp
(ω1)=ϖ

G
Tp
(ω6)=0.432. We

can see that the DC semantics violate the rewriting property,
as ω1 and ω6 have different strengths despite making the
same claim through different reasoning paths. The T-norm-
p semantics, however, is agnostic to the different lengths of
the reasoning chain.
Next, Jedwabny et al. (2020) state that a statement with-

out at least one supporter for each of its premises, i.e., with
no evidence for any of them, is bottom-strength.
Property 3. A structured GS ϖ satisfies provability iff for
any ω1 ∈ X , if ⋉x ∈ Prem(ω1) and ∄⌜!2,”2⌜ ∈ S(ω1) s.t.
x ≡ ”2, then ϖG

(ω1) = 0.
This property is clearly useful in cases under complete

information, i.e., first case in Definition 9, but in the other
two cases, we posit that this property may be too demanding.
Example 4. In our running example, consider ω4 = ⌜d,¬a⌜.
Note that, while ω4 is an attacker of ω1 and ω5, it is incom-
plete because its premise d does not have a support. Under
the T-norm-p semantics, the strength of ω4 is ϖG

Tp
(ω4) = 0.

Consequently, it has no effect on the strengths of ω1 and
ω5. In contrast, under the DC semantics, the strength of ω4

defaults to its weight, i.e., ϖG∧D(ω4) = ϑ(ω4) = 0.7. This
non-zero strength is then used when computing the strengths
of ω1 and ω5, thus reducing their overall strength.
As an optional alternative, we propose a weaker property

(trivially implied by provability), which makes the same de-
mands but only when the statement’s weight is zero.
Property 4. A structured GS ϖ satisfies weak provability iff
for any ω1 ∈ X such that ϑ(ω1) = 0, if ⋉x ∈ Prem(ω1) and
∄⌜!2,”2⌜ ∈ S(ω1) s.t. x ≡ ”2, then ϖG

(ω1) = 0.
Corollary 3. A structured GS ϖ which satisfies provability
necessarily satisfies weak provability.
In Example 3, weak provability would not require that

ω4’s strength is zero, allowing a form of “trust” in the state-
ment’s weight in the absence of complete information pro-
viding the logical reasoning to support its premises. This
means the information is not lost in the partially-complete
or incomplete cases, unless it is assigned the minimal weight
by the GS, which essentially indicates it cannot be trusted.
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We now propose more novel properties that offer alter-
natives to provability, firstly considering the “initial state”
of statements, i.e., that the strength of a statement with no
attackers or supporters should be equal to its weight, as in
properties defined for abstract GS, namely stability (Am-
goud and Ben-Naim 2018) and balance (Baroni, Rago, and
Toni 2019). It is also related to logical void precedence
(Heyninck, Raddaoui, and Straßer 2023).

Property 5. A GS ϖ satisfies stability iff for any ω ∈ X , if
A(ω)=S(ω)=∅, then ϖG

(ω)=ϑ(ω).

The desirability of this property is clear: as demonstrated
below, it gives an intuitive starting point for the strength of a
statement, regardless of its completeness from Definition 9.

Example 5. Using statement ω4 = ⌜d,¬a⌜ again, note that
S(ω4) = A(ω4) = ∅, meaning that ω4 has no supporters
or attackers. Under the DC semantics, ϖG∧D(ω4) = ϑ(ω4) =

0.8, whereas, under the T-norm-p semantics, ϖG
Tp
(ω4) = 0.

The DC semantics respects the stability property, defaulting
to the weight for ω4’s strength. The T-norm-p semantics,
however, rejects ω4 due to its lack of a CST.

Stability then works in tandem with the following proper-
ties such that the behaviour of semantics can be proven to be
desirable iteratively over any state under any completeness.
First, we consider the effect of adding a statement that

has been assigned a zero strength, i.e., it should not affect
the strength of any statement it attacks or supports, as in
neutrality (Amgoud and Ben-Naim 2018) for abstract GS.

Property 6. Given two SGs G and G′=⌜X∪{ω1},A
′,S ′, ϑ ′⌜,

a GS ϖ satisfies neutrality iff for any ω2 ∈X , where A′(ω2)∪

S
′
(ω2)=A(ω2)∪S(ω2)∪{ω1}, ϖG⌐

(ω3)=ϖ
G
(ω3) ⧖ω3 ∈ A(ω2)∪

S(ω2), ϑ ′(ω2)=ϑ(ω2) and ϖG⌐
(ω1)=0, ϖG⌐

(ω2)=ϖ
G
(ω2).

This property, as with stability, takes a notably different
approach to the T-norm semantics given their focus on CSTs,
namely that the strengths of statements are calculated recur-
sively, but should be unaffected by bottom-strength state-
ments, which must be unsubstantiated, as illustrated below.

Example 6. Let us revisit our running example and let
ω7 = ⌜⌐, d⌜ (“It is a fact that CO2 measurements are unreli-
able”) with ϑ(ω7)=0. Then, under the DC and T-norm-p se-
mantics, ϖG∧D(ω7)=ϖ

G
Tp
(ω7)=0, i.e., ω7 is bottom-strength.

However, the strength of ω4 under DC is ϖG∧D(ω4)=0.8 (un-
changed). However, under the T-norm-p semantics, it is still
ϖG
Tp
(ω4)=0 (bottom-strength). Under the DC semantics, ω7

is bottom-strength and, thus, has no influence on the strength
of ω4. In contrast, the bottom-strength of ω7 under T-norm-p
leads to the bottom-strength of ω4 due to the multiplicative
property, thus violating neutrality.

The next two properties consider the effect of an attacking
or supporting statement being added which is not bottom-
strength, taking inspiration from bi-variate monotony (Am-
goud and Ben-Naim 2018), monotonicity (Baroni, Rago,
and Toni 2019) and P3 in (Skiba, Thimm, and Wallner
2023). The first requires that adding an attacker should not
strengthen a statement.

Property 7. Given two SGs G and G
′

= ⌜X ∪

{ω1},A
′,S ′, ϑ ′⌜, a GS ϖ satisfies attacked premise iff for

any ω2 ∈ X , whereA′(ω2)=A(ω2)∪{ω1}, S ′(ω2)=S(ω2),
ϖG⌐

(ω3) = ϖG
(ω3) ⧖ω3 ∈ A(ω2) ∪ S(ω2) and ϑ ′(ω2) =

ϑ(ω2), ϖG⌐
(ω2)≤ϖ

G
(ω2).

Next, adding a supporter should not weaken a statement.
Property 8. Given two SGs G and G

′
= ⌜X ∪

{ω1},A
′,S ′, ϑ ′⌜, a GS ϖ satisfies supported premise iff for

any ω2 ∈ X , whereA′(ω2)=A(ω2), S ′(ω2)=S(ω2)∪{ω1},
ϖG⌐

(ω3) = ϖG
(ω3) ⧖ω3 ∈ A(ω2) ∪ S(ω2) and ϑ ′(ω2) =

ϑ(ω2), ϖG⌐
(ω2)≥ϖ

G
(ω2).

These properties offer an iterative view of how the effects
of added attackers and supporters should be governed, which
does not depend on CSTs and thus considers cases with
partially-complete or incomplete statements. For instance,
in Example 6, adding statement ω7, which is an attacker of
ω1, leads to a decrease in ω1’s overall strength, despite ω7

missing a support for its premise g.
Next, we consider the effect of increasing the strengths

of statements that attack or support other statements, as in
bi-variate reinforcement (Amgoud and Ben-Naim 2018) and
monotonicity (Baroni, Rago, and Toni 2019). First, strength-
ening an attacker should not strengthen a statement.
Property 9. Given two SGs G and G

′
= ⌜X

′,A′,S ′, ϑ ′⌜, a
GS ϖ satisfies weakened premise iff for any ω1 ∈ X , where
A
′
(ω1) = A(ω1), S ′(ω1) = S(ω1), ϑ ′(ω1) = ϑ(ω1), and

ϖG⌐
(ω2) = ϖG

(ω2) ⧖ω2 ∈ A(ω1) ∪ S(ω1) ⋊ {ω3}, where
ω3 ∈ A(ω1) and ϖG⌐

(ω3) > ϖG
(ω3), ϖG⌐

(ω1) ≤ ϖ
G
(ω1).

Analogously strengthening a supporter should not weaken
a statement.
Property 10. Given two SGs G and G

′
= ⌜X

′,A′,S ′, ϑ ′⌜,
a GS ϖ satisfies strengthened premise iff for any ω1 ∈ X ,
where A′(ω1) = A(ω1), S ′(ω1)=S(ω1), ϑ ′(ω1) = ϑ(ω1),
and ϖG⌐

(ω2) = ϖG
(ω2) ⧖ω2 ∈ A(ω1)∪S(ω1)⋊{ω3}, where

ω3 ∈ S(ω1) and ϖG⌐
(ω3) > ϖG

(ω3), ϖG⌐
(ω1) ≥ ϖ

G
(ω1).

These properties assess added statements’ effects, condi-
tioning on their strengths rather than weights, and direct at-
tackers and supporters rather than CSTs, thus accommodat-
ing statements of all three levels of completeness.
Note that, for Properties 6-10, the opposite effect on the

statement’s strength holds for the reverted modification, i.e.,
for removing or reducing the strengths of statements.
Next, a bottom-strength premise causes a statement to be

bottom-strength. This property is related to argument death
(Spaans 2021).
Property 11. A structured GS ϖ satisfies bottom-strength
premise iff for any ω1 ∈ X , where ⋉x ∈ Prem(ω1) such that
⋉ω2 = ⌜!2,”2⌜ ∈ A(ω1) with ”2 ≡ ¬x and ϖG

(ω2) = 1
and ∄ω3 = ⌜!3,”3⌜ ∈ S(ω1) with ”3 ≡ x and ϖG

(ω3) > 0,
ϖG

(ω1) = 0.
For partially-complete or incomplete statements espe-

cially, this property provides an alternative reason for requir-
ing rejection, i.e., there is maximal evidence to the contrary
of one of its premises since they are, critically, part of a con-
junction, as opposed to provability, where this is the case
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unless every premise in the statement is supported. Note
that bottom-strength premise is also desirable for complete
statements. We illustrate this property in the following.
Example 7. In our running example, let ω8 = ⌜e ∧ f,¬b⌜
(“Extreme weather events are increasing and solar activity
is high, thus global temperatures are not increasing”) with
ϑ(ω8) = 0.5. Now, ϖG∧D(ω8) = 0.707 and ϖG

Tp
(ω8) = 0.

Let us now add a new statement ω9 = ⌜⌐,¬f⌜ (“It is a fact
that solar activity is not high”) with ϑ(ω9) = 1. Then, the
strength of ω8 is ϖG∧D(ω7) = ϖG1

D (e) × ϖG1

D (g) = 0.707 ×

0 = 0 and ϖG
Tp
(ω8) = 0. Both semantics now reject ω8, but

for different reasons. The DC semantics rejects it because
one of its premises (f ) is fully contradicted by ω9, while the
T-norm-p semantics already gives it bottom-strength due to
incomplete support.
Next, statements with universally top-strength premises

should also be top-strength.
Property 12. A structured GS ϖ satisfies top-strength
premises iff for any ω1 ∈ X , where ⧖x ∈ Prem(ω1), ∄ω2 =

⌜!2,”2⌜ ∈ A(ω1) such that ”2 ≡¬x and ϖG
(ω2)>0 and

⋉ω3 = ⌜!3,”3⌜ ∈ S(ω1) such that ”3 ≡ x and ϖG
(ω3) = 1,

ϖG
(ω1)=1.
This property somewhat overrides a statement’s weight

when its premises are maximally supported, as in many ap-
proaches in argumentation that do not include weights. This
seems intuitive particularly in our SGs, where the premises
of statements (of any completeness) are conjunctions.
Example 8. In our running example, consider ω5 = ⌜a, e⌜,
ω2 = ⌜⌐, e⌜, with ϑ(ω5)=0.8, ϑ(ω2)=1. Then, ϖG∧D(ω5)=1,
ϖG
Tp
(ω5) = 0.8. Despite ω2 fully supporting the premise of

ω5 (as the weight of ω2 is 1), the strength of ω5 under the T-
norm-p semantics is not 1. In contrast, the DC semantics as-
signs full strength to ω5 when its premise is fully supported.
Finally, attackers and supporters may affect statements

symmetrically, i.e., two statements’ premises that negate
one another have “opposite” strengths, as in duality (Potyka
2018) and franklin (Amgoud and Ben-Naim 2018).9

Property 13. A structured GS ϖ satisfies mirroring iff for
any ω1,ω2 ∈ X , where ω1 = ⌜!1,”1⌜, ω2 = ⌜!2,”2⌜,
⌝Prem(ω1)⌝ = ⌝Prem(ω2)⌝, !1 ≡ ¬!2 and ϑ(ω1) =

ϑ(ω2) = 0.5. Then, ϖG
(ω1) = 1 − ϖG

(ω2).
Mirroring seems intuitive and reflects a fairness in how

statements are evaluated, potentially inspiring trust in users.
Example 9. In our running example, let ω10 = ⌜¬a,¬e⌜
(“CO2 emissions are not rising, thus extreme weather events
are not increasing”) with ϑ(ω5) = ϑ(ω10) = 0.5. Then,
ϖG∧D(ω10)=1 − ϖ

G∧D(ω5)=1 − 0.55=0.45, and ϖG
Tp
(ω5)=0

and ϖG
Tp
(ω10) = 0.45. Despite ω5 and ω10 having premises

that negate one another and equal base weights, their
strengths are not complementary (do not sum to 1) under

9For the DC semantics, mirroring’s conditions are triggered
only for statements with single literals in their premises. However,
this may not be the case for other modular structured GS.

Property ϑTp ϑTm ϑ⋊D ϑ⋊Q ϑD ϑQ

1: Directionality ⌐ ⌐ ⌐ ⌐ ⌐ ⌐
2: Rewriting ⌐ ⌐ × × ⋊ ⋊
3: Provability ⌐ ⌐ × × ⋊ ⋊

4: Weak Provability ⌐ ⌐ ⌐ ⌐ ⋊ ⋊
5: Stability × × ⌐ ⌐ ⌐ ⌐
6: Neutrality × × ⌐ ⌐ ⌐ ⌐

7: Attacked Premise ⌐ ⌐ ⌐ ⌐ ⌐ ⌐
8: Supported Premise ⌐ ⌐ ⌐ ⌐ ⌐ ⌐
9: Weakened Premise × × ⌐ ⌐ ⌐ ⌐

10: Strengthened Premise ⌐ ⌐ ⌐ ⌐ ⌐ ⌐
11: Bottom-Strength Premise ⌐ ⌐ ⌐ × ⋊ ⋊
12: Top-Strength Premises × × ⌐ × ⋊ ⋊

13: Mirroring × × ⌐ ⌐ ⋊ ⋊
Table 1: Structured (ϑTp , ϑTm , ϑ⋊D and ϑ⋊Q ) and abstract (ϑD

and ϑQ) GS’ satisfaction (denoted with ⌐) or violation (denoted
with ×) of the assessed properties, where incompatibility of a GS
with a property is denoted with ⋊.

T-norm-p semantics. In contrast, the DC semantics shows a
desirable duality in attackers’ and supporters’ effects.

4.3 Theoretical Analysis
We now assess whether instantiations of the DC semantics,
as well as existing structured and abstract GS, satisfy the
properties from §4.2. Table 1 summarises the results.
First, we assess theT-norm semantics in §3,ϖTp and ϖTm.

Proposition 1. ϖTp and ϖTm satisfy Properties 1-4, 7-8, and
10-11, but violate Properties 5-6, 9, and 12-13.
Both GS satisfy identical properties across our collection,

performing poorly when we consider the novel properties.
Even stability and neutrality, two basic properties in the
realm of abstract GS, are violated due to the fact that they do
not consider the weight as a starting point, nor the strength
as a recursive function, respectively. Attacked and supported
premises are both satisfied, while only weakened, and not
strengthened, premise is satisfied due to the asymmetry in
the way the attackers and supporters are evaluated, which
leads to mirroring being violated also. Similarly, bottom-
strength premises is satisfied, but top-strength premises is
violated due to the (potentially non-maximal) weight of
the statement playing a role in the calculation. Given top-
strength premises’ fundamental role across statements of
any completeness, this represents a significant weakness.
Next, we consider the DC semantics, supported by ei-

ther the DF-QuAD semantics (ϖ∧D ) or the QEM semantics
(ϖ∧Q ), as defined in §4.1.
Proposition 2. ϖ∧D satisfies Properties 1 and 4-13, but vi-
olates Properties 2-3. ϖ∧Q satisfies Properties 1, 4-10, and
13, but violates Properties 2-3 and 11-12.
Both DC semantics only satisfy directionality of the exist-

ing properties. The violation of the other existing properties
(rewriting and provability) can be justified by their incom-
patibility with the novel properties which we introduce.
Proposition 3. Rewriting, stability and top-strength
premises are incompatible.
Proposition 4. Provability and stability are incompatible.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

507



This means that a user selecting a semantics must choose
between its satisfation of one set of properties or another, so
our approach represents a viable alternative to the existing
work, particularly in cases with incomplete information. Ex-
amples 3 and 4 demonstrate what we believe is further jus-
tification for this. For example, rewriting is not satisfied by
either semantics since more evidence, even if the statements
constituting it are not complete, will strengthen a statement,
which seems to be reasonable particularly for our settings
with partially-complete or incomplete statements. More-
over, provability is violated by design, since we wanted GS
that do not necessarily reject a statement when its support is
missing, only when the statement’s weight is also minimal,
hence the GS’ satisfaction of weak provability instead. Both
GS align with stability in treating the weight as a “starting
point”, and from there they satisfy attacked and supported
premises, as well as weakened and strengthened premises,
due to the recursive way they handle attackers and support-
ers. Interestingly, the DC semantics, when supported by the
DF-QuAD semantics, satisfies bottom-strength premise and
top-strength premises, but it does not when supported by the
QEM semantics. This is due to the saturation effect that is
seen at the extremities of the strength scale in the DF-QuAD
semantics, giving rise to this intuitive behaviour for this spe-
cific type of SG (with conjunctions as premises). Finally,
mirroring is satisfied by both GS.
We now assess the two abstract GS, the DF-QuAD se-

mantics (ϖD) and the QEM semantics (ϖQ), as defined in
§3, along the compatible properties.
Proposition 5. ϖD and ϖQ satisfy Properties 1 and 5-10.
(They are incompatible with the other properties.)
Although both of the abstract GS satisfy all of the proper-

ties with which they are compatible, they are incompatible
with many others, showing the advantages of structured GS
in considering statements’ logical structure.
While both T-norm semantics perform well in the exist-

ing properties which require complete information, under
incomplete information, i.e., with partially-complete or in-
complete statements, where the novel properties are partic-
ularly powerful, there are clear weaknesses. This highlights
how the DC semantics, and in particular that supported by
DF-QuAD, offer clear advantages, especially given that all
of the properties cannot be satisfied by a given semantics.
Thus, in settings with varying completeness of information,
our approach fills a gap in the literature.
Finally, we give a theorem that demonstrates the condi-

tions under which a DC semantics, supported by a specific
abstract GS, aligns with the abstract GS itself, namely when
the premises of all statements consist of at most one literal
(meaning SGs effectively become QBAFs).
Theorem 1. Let X be such that ⧖ω ∈ X , ⌝Prem(ω)⌝ ≤ 1.
Then, for any given abstract GS ϖi, ϖ∧i = ϖi.

5 Conclusions and Future Work
In this paper, we introduced a novel methodology for ob-
taining GS in SGs that naturally accommodate incomplete
information. Our modular methodology dialectically eval-
uates the literals in a statement’s premise before aggregat-

ing these evaluations based on the statement’s construction.
This separation allows our semantics to handle incomplete
information by leveraging any existing GS for QBAFs to
evaluate the available evidence without requiring complete
support. We then demonstrated how our DC semantics can
effectively leverage abstract GS for structured argumenta-
tion. Furthermore, we discussed existing and novel proper-
ties for GS in SGs, revealing some incompatibilities between
existing properties, e.g., rewriting and provability, and our
novel properties, e.g., stability and top-strength premises,
showing that users must select between them given a partic-
ular contextual setting, e.g., based on the completeness no-
tions we define. Our theoretical analysis demonstrated that
the DC semantics supported by the DF-QuAD abstract GS
satisfies all of our novel properties, while existing structured
GS struggle with cases without complete information.
While this paper establishes the foundations of our novel

approach using a toy example for pedagogical reasons, we
see significant potential for real-world applications, e.g., in
the analysis of debates mapped onto SGs through argument
mining (Lawrence and Reed 2019), possibly enhanced by
large language models (Cabessa, Hernault, and Mushtaq
2025; Gorur, Rago, and Toni 2025). It is well known that
mining structured arguments is a complex problem, not least
due to the presence of enthymemes causing incompleteness
(Hunter 2022; Stahl et al. 2023). A methodology leveraging
GS that can handle incomplete information could alleviate
some of the burden that structured argumentation’s require-
ments for completeness place on these methods.
Our methodology represents an early step forward in GS

for structured argumentation, and opens various potentially
fruitful directions for future work, in particular targeting
more general settings of structured argumentation, e.g., in
ABA or ASPIC+. First, we would like to broaden our analy-
sis, both within our restricted form of SGs, exploring various
other instantiations of our DC semantics, e.g., using other
abstract GS such as the exponent-based restricted seman-
tics (Amgoud and Ben-Naim 2018), as well as extending to
different forms of SGs with more complex logical premises.
Specifically, our ability to deal with partially-complete or
incomplete statements may be related to the possibility of
deriving assumptions in non-flat ABA (Cyras et al. 2017).
We would also like to consider whether other properties
for abstract GS are desirable, e.g., open-mindedness (Po-
tyka 2019) (the satisfaction of which gives a clear advan-
tage of ϖQ over ϖD), attainability (Cocarascu, Rago, and
Toni 2019), whose suitability in our SGs was not obvious
due to the conjunctive premise. It would also be interest-
ing to formalise the interplay between properties, e.g., be-
tween provability and stability, which are incompatible with-
out restrictions. Further, it would be interesting to inves-
tigate whether our analysis could be applicable to proba-
bilistic argumentation (Kohlas 2003; Dung and Thang 2010;
Hunter and Thimm 2014; Gabbay and Rodrigues 2015b;
Fazzinga, Flesca, and Furfaro 2018). Finally, we plan to
explore how our methodology translates to real-world appli-
cations, e.g., in multi-agent model reconciliation (Vasileiou
et al. 2024) given GS’ capability for modelling human or
machine reasoning (Rago, Li, and Toni 2023).
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