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Abstract

Knowledge graph (KG) embedding methods learn geometric
representations of entities and relations to predict plausible
missing knowledge. These representations are typically as-
sumed to capture rule-like inference patterns. However, our
theoretical understanding of which inference patterns can be
captured remains limited. Ideally, KG embedding methods
should be expressive enough such that for any set of rules,
there exist relation embeddings that exactly capture these
rules. This principle has been studied within the framework
of region-based embeddings, but existing models are severely
limited in the kinds of rule bases that can be captured. We ar-
gue that this stems from the fact that entity embeddings are
only compared in a coordinate-wise fashion. As an alterna-
tive, we propose RESHUFFLE, a simple model based on or-
dering constraints that can faithfully capture a much larger
class of rule bases than existing approaches. Most notably,
RESHUFFLE can capture bounded inference w.r.t. arbitrary
sets of closed path rules. The entity embeddings in our frame-
work can be learned by a Graph Neural Network (GNN),
which effectively acts as a differentiable rule base.

1 Introduction
Knowledge graph (KG) embeddings (Bordes et al. 2013;
Yang et al. 2015; Trouillon et al. 2016; Sun et al. 2019)
are geometric representations of knowledge graphs. Such
representations are typically used to infer plausible knowl-
edge that is not explicitly stated in the KG. An important
research question is concerned with the kinds of regularities
that can be captured by different kinds of models. While
most standard approaches are difficult to analyse from this
perspective, region-based approaches make these regulari-
ties more explicit (Gutiérrez-Basulto and Schockaert 2018;
Abboud et al. 2020; Pavlovic and Sallinger 2023; Charpenay
and Schockaert 2024). Essentially, in such approaches, each
entity e is represented by an embedding e ∈ Rd and each re-
lation r is represented by a geometric region Zr ⊆ R2d. The
triple (e, r, f) is then captured by the embedding iff e⊕ f ∈
Zr, where ⊕ denotes vector concatenation. In this way,
we can naturally associate a KG with a given embedding.
Region-based models can also associate a rule base with the
embedding, where the rules are reflected in the spatial con-
figuration of the regions Zr. However, not all rule bases
can be captured in this way. As a simple example, models

based on TransE (Bordes et al. 2013) cannot distinguish be-
tween the rules r1(X1, X2) ∧ r2(X2, X3) → r3(X1, X3)
and r2(X1, X2) ∧ r1(X2, X3) → r3(X1, X3). This par-
ticular limitation can be avoided by using more sophisti-
cated region-based models (Pavlovic and Sallinger 2023;
Charpenay and Schockaert 2024), but even these models
can only capture particular kinds of rule bases. This ap-
pears to be related to the fact that they rely on regions which
can be characterised in terms of d two-dimensional regions
Zr
1 , ..., Z

r
d , with Zr

i ⊆ R2. To check whether (e, r, f) is
captured, we then check whether (ei, fi) ∈ Zr

i for each
i ∈ {1, ..., d}, with e = (e1, ..., ed) and f = (f1, ..., fd).
We will refer to such approaches as coordinate-wise mod-
els. Existing models primarily differ in how these two-
dimensional regions are defined, e.g. ExpressivE (Pavlovic
and Sallinger 2023) uses parallelograms for this purpose,
while Charpenay and Schockaert (2024) used octagons.

In this paper, we propose a model that goes beyond
coordinate-wise comparisons, which we term RESHUFFLE.
A key challenge in designing such a model is that more flex-
ible representations typically lead to overfitting. We avoid
this problem by otherwise keeping the model as simple as
possible, learning regions which are defined in terms of or-
dering constraints of the form ei ≤ fj . As our main contri-
bution, we show that RESHUFFLE is more expressive than
existing region-based models. Furthermore, we show how
entity embeddings can be learned using a Graph Neural Net-
work (GNN) with randomly initialised node embeddings.
This GNN effectively serves as a differentiable approxima-
tion of a rule base, acting on the initial representations of
the entities to ensure that they capture the consequences
that can be inferred from the KG. A practical consequence
is that entity embeddings can thus be efficiently updated
when new knowledge becomes available. From a theoret-
ical point of view, the GNN-based formulation allows us to
study bounded inference, where the number of layers of the
GNN can be related to the number of inference steps.1

2 Related Work
Region-based Models Our theoretical understanding of
the reasoning abilities of KG embedding models remains

1An online appendix containing all proofs and further details
about our model is available at https://arxiv.org/abs/2406.09529.
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poorly understood. This topic has primarily been stud-
ied in a line of work that uses region-based representa-
tions of relations (Gutiérrez-Basulto and Schockaert 2018;
Abboud et al. 2020; Zhang et al. 2021; Leemhuis, Özçep,
and Wolter 2022; Pavlovic and Sallinger 2023; Charpenay
and Schockaert 2024). Essentially, the region-based view
makes explicit which triples and rules are captured by a
given embedding, which allows us to formally study what
kinds of semantic dependencies a given model is capa-
ble of capturing (Gutiérrez-Basulto and Schockaert 2018;
Abboud et al. 2020; Bourgaux et al. 2024). Existing work
has uncovered various limitations of popular KG embed-
ding models. For instance, Gutiérrez-Basulto and Schock-
aert (2018) revealed that bilinear models such as RESCAL
(Nickel, Tresp, and Kriegel 2011), DistMult (Yang et al.
2015), TuckER (Balazevic, Allen, and Hospedales 2019)
and ComplEx (Trouillon et al. 2016) cannot capture rela-
tion hierarchies in a faithful way. They also studied the ex-
pressivity of models that represent relations using convex
polytopes, finding that arbitrary sets of closed path rules can
be faithfully captured by such representations (among oth-
ers). However, learning arbitrary polytopes is not feasible
for high-dimensional spaces, hence more recent works have
focused on finding regions that are easier to learn while still
retaining some of the theoretical advantages, such as Carte-
sian products of boxes (Abboud et al. 2020), cones (Zhang
et al. 2021; Leemhuis, Özçep, and Wolter 2022), parallelo-
grams (Pavlovic and Sallinger 2023) and octagons (Charp-
enay and Schockaert 2024). However, all these models are
significantly more limited in the kinds of rules that they can
capture. For instance, while parallelograms and octagons
makes it possible to capture closed path rules, in practice we
want to capture sets of such rules. This is only known to be
possible under rather restrictive conditions (see Section 3).

An important practical advantage of region-based models
is that they enable a tight integration of symbolic rules and
vector space embeddings. This makes it possible to “inject”
prior knowledge in a principled way (Abboud et al. 2020)
and to inspect the kinds of rules that a given model has cap-
tured. A number of embedding based approaches have been
proposed with similar advantages. For instance, some meth-
ods leverage symbolic rules to regularise the embedding
space (Guo et al. 2016; Tang et al. 2024). Neuro-symbolic
methods which jointly learn a (differentiable approxima-
tion of) a Markov Logic Network with a KG embedding
have also been proposed (Qu and Tang 2019; Chen et al.
2023). However, note that these approaches are still limited
by the expressivity of the underlying KG embedding model.
For instance, DiffLogic (Chen et al. 2023) aligns a Proba-
blistic Soft Logic (Bach et al. 2017) theory with a RotatE
embedding (Sun et al. 2019). RotatE, like TransE, cannot
distinguish between the rules r1(X1, X2) ∧ r2(X2, X3) →
r3(X1, X3) and r2(X1, X2) ∧ r1(X2, X3) → r3(X1, X3),
hence this limitation is carried over to DiffLogic.

Inductive KG Completion Standard benchmarks for KG
completion only test the reasoning abilities of models to a
limited extent. In our experiments, we will therefore focus

on the problem of inductive KG completion (Teru, Denis,
and Hamilton 2020). In the inductive setting, we need to
predict links between entities that are different from those
that were seen during training. To perform this task, models
need to learn semantic dependencies between the relations,
and then exploit this knowledge when making predictions.
A natural strategy is to learn rules from the training KG,
either explicitly using models such as AnyBURL (Meilicke
et al. 2019) and RNNLogic (Qu et al. 2021) or implicitly
using differentiable rule learners such as Neural-LP (Yang,
Yang, and Cohen 2017), DRUM (Sadeghian et al. 2019) and
NCRL (Cheng, Ahmed, and Sun 2023).

Other approaches reduce link prediction to a graph classi-
fication problem (Teru, Denis, and Hamilton 2020). How-
ever, this requires constructing and processing a different
graph for each candidate tail entity, which is inherently in-
efficient. NBFNet (Zhu et al. 2021) alleviates this by pro-
cessing the entire graph with a single forward pass of a
GNN. RED-GNN (Zhang and Yao 2022) follows a simi-
lar approach, while A∗Net (Zhu et al. 2023) uses a learned
heuristic to avoid processing the entire graph, providing fur-
ther efficiency gains. However, in all these models, the node
embeddings are query-specific, meaning that a new forward
pass of the GNN is still needed for each query, which is less
efficient than using KG embeddings. MorsE (Chen et al.
2022a) addresses this limitation by using a GNN to compute
embeddings for previously unseen entities, and then using
the embeddings for link prediction (and other tasks). We
adopt a similar approach in this paper. However, in our case,
each layer of the GNN essentially simulates the application
of a rule base, making our method conceptually closer to dif-
ferentiable rule learning methods. ReFactor GNN (Chen et
al. 2022b) also uses a GNN to learn entity embeddings, by
simulating the training dynamic of traditional KG embed-
ding methods such as TransE (Bordes et al. 2013), although
their method has the disadvantage that all embeddings have
to be recomputed when new triples are added to the KG.
Moreover, it inherits the limitations of traditional embedding
models when it comes to faithfully modelling rules.

3 Problem Setting
The focus of this paper is on studying which kinds of rule
bases can be faithfully captured by the proposed model. In
this section, we first formally define what it means for a
region-based embedding model to capture a rule base.

Preliminaries Let R be a set of relations, E a set of enti-
ties and G ⊆ E×R×E a knowledge graph. If G contains the
triple (e, r, f) then we also say that there is an r-edge from
e to f in G. An entity embedding τ maps each entity e ∈ E
to a vector τ(e) ∈ Rd. A region-based relation embedding η
maps each relation r ∈ R to a geometric region η(r) ⊆ R2d.
Definition 1. We say that the triple (e, r, f) is captured by
the pair (τ, η), with τ an entity embedding and η a region-
based relation embedding, iff τ(e)⊕ τ(f) ∈ η(r).
We write P ∪ G |= (e, r, f) to denote that the triple (e, r, f)
can be entailed from the rule base P and the knowledge
graph G. More precisely, we have P ∪ G |= (e, r, f) iff
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either (e, r, f) ∈ G, or P contains a rule r1(X1, X2) ∧
r2(X2, X3)∧ ...∧ rp(Xp, Xp+1) → r(X1, Xp+1) such that
P ∪ G |= (e, r1, e2), P ∪ G |= (e2, r2, e3), ..., P ∪ G |=
(ep, rp, f) for some entities e2, ..., ep. We furthermore write
P |= ρ, for a rule ρ, to denote that P entails ρ w.r.t. the stan-
dard notion of entailment from first-order logic (when view-
ing rules as universally quantified material implications).

Capturing Closed Path Rules Similar to most existing
rule-based methods for KG completion (Yang, Yang, and
Cohen 2017; Meilicke et al. 2019; Sadeghian et al. 2019;
Qu et al. 2021; Cheng, Ahmed, and Sun 2023), we focus on
closed path rules, which are rules ρ of the form:

r1(X1, X2) ∧ r2(X2, X3)∧
... ∧ rp(Xp, Xp+1) → r(X1, Xp+1) (1)

We refer to r1(X1, X2) ∧ r2(X2, X3) ∧ ... ∧ rp(Xp, Xp+1)
as the body of the rule and to r(X1, Xp+1) as the head.
Definition 2. We say that a region-based relation embed-
ding η captures a rule of the form (1) if for all vectors
x1, ...,xp+1 ∈ Rd such that that (x1 ⊕ x2 ∈ η(r1))∧ ....∧
(xp ⊕ xp+1 ∈ η(rp)) we also have (x1 ⊕ xp+1 ∈ η(r)).
Apart from their practical significance, our focus on closed
path rules is also motivated by the observation that exist-
ing region-based models have particular limitations when it
comes to capturing this kind of rules. Some approaches,
such as BoxE (Abboud et al. 2020) are not capable of cap-
turing such rules at all. More recent approaches (Pavlovic
and Sallinger 2023; Charpenay and Schockaert 2024) are
capable of capturing closed path rules, but with significant
limitations when it comes to modelling sets of such rules.

Eq-complete Knowledge Graphs Throughout this paper,
we will assume that all knowledge graphs G contain the
triple (e, eq, e) for every entity e. We will refer to such
knowledge graphs as eq-complete. This assumption is sim-
ilar to the common practice of adding self-loops in GNN
models. In our setting, it will mean that instead of di-
rectly capturing a rule like r1(X1, X2) ∧ r2(X2, X3) →
r(X1, X3) we might instead capture a rule like r1(X1, X2)∧
eq(X2, X3) ∧ r2(X3, X4) → r(X1, X4). This latter rule is
equivalent, in the sense that any triple that can be inferred
from an eq-complete KG with the former rule, can also be
inferred with the latter rule. This offers some modelling flex-
ibility which will be important in our approach.

Faithfully Capturing Rule Bases Definition 2 specifies
what it means for a closed path rule to be captured. Our
main research question is whether it is possible to faithfully
capture a set of closed path rules P . In other words, can
parameters be found for the matrices Br such that all rules
entailed by P are captured, and only those rules. This is
made precise in the following definition.2

2Our notion of faithfully capturing rule bases is closely related
to the notion of exactly and exclusively capturing a language of
patterns, from Abboud et al. (2020), and the notion of strong TBox-
faithfulness from Bourgaux et al. (2024). It is, however, slightly
weaker due to restriction to eq-complete knowledge graphs.

Definition 3. We say that a region-based relation embed-
ding η faithfully captures the rule base P if for every eq-
complete knowledge graph G, the following conditions hold:

1. Suppose that P ∪ G |= (a, r, b) and let τ be an entity em-
bedding such that (τ, η) captures every triple in G. Then
(τ, η) captures the triple (a, r, b) as well.

2. Suppose that P ∪ G ̸|= (a, r, b). There exists an entity
embedding τ such that (τ, η) captures every triple in G
but not the triple (a, r, b).

Existing models are only able to faithfully capture sets of
closed path rules in specific cases. For instance, Charpenay
and Schockaert (2024) showed this to be possible when ev-
ery non-trivial rule entailed from P is a closed path rule of
the form (1) in which r1, ..., rp, r are all distinct relations.
For instance, rules of the form r1(X1, X2)∧ r1(X2, X3) →
r(X1, X3) are not covered by their result. Similarly, they
cannot capture rule bases with cyclic dependencies such as:

P = {r1(X1, X2) ∧ r2(X2, X3) → r3(X1, X3),

r3(X1, X2) ∧ r4(X2, X3) → r1(X1, X3)}

Note that while we focus our theoretical analysis on whether
a given rule base P can be captured, in practice we normally
do not have access to such a rule base. We study whether
our model is capable of capturing rule bases because this is
a necessary condition to allow it to learn semantic depen-
dencies in the form of rules.

4 Model Formulation
Our aim is to introduce a knowledge graph embedding
model which goes beyond coordinate-wise models, but
which otherwise remains as simple as possible. The cen-
tral idea is to define the regions η(r) using coordinate-wise
ordering constraints between reshuffled entity embeddings:

η(r) = {(e1, ..., ed, f1, ..., fd) | ∀i ∈ Ir . eσr(i) ≤ fi} (2)

where the representation of a region r is parameterised by a
set of coordinates Ir ⊆ {1, ..., d} and a mapping σr : Ir →
{1, ..., d}. We thus need a maximum of 2d parameters to
completely specify the embedding of a given relation. Note
that in the special case where Ir = ∅, we have η(r) = R2d.
Example 1. Let e = (0, 0, 0), f = (0, 0, 1) and g =
(2, 2, 0) be the embeddings of entities e, f, g. Let the re-
lations r1, r2, r3 be represented as follows: Ir1 = {3},
Ir2 = {1, 2}, Ir3 = {1}, σr1(3) = 2, σr2(1) = σr2(2) = 3
and σr3(1) = 2. Then we find that e ⊕ f ∈ η(r1),
meaning that the triple (e, r1, f) is captured. Indeed, for
e ⊕ f ∈ η(r1) to hold, we need eσr1

(3) = e2 ≤ f3, which
is satisfied. We similarly find that (f, r2, g) is captured, be-
cause fσr2 (1)

= f3 ≤ g1 and fσr2 (2)
= f3 ≤ g2.

The following example illustrates how the use of ordering
constraints allows us to capture rules.
Example 2. Consider a rule r1(X,Y ) ∧ r2(Y, Z) →
r3(X,Z). This rule is captured by an embedding of the
form (2) if for each i ∈ Ir3 we have that i ∈ Ir2 ,
σr2(i) ∈ Ir1 and σr1(σr2(i)) = σr3(i). For instance, the
relations r1, r2, r3 from Example 1 satisfy these conditions.
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In general, if these conditions are satisfied and the triples
(e, r1, f) and (f, r2, g) are captured, then for each i ∈ Ir3
we have: eσr1

(σr2
(i)) ≤ fσr2

(i) ≤ gi. Since we assumed
σr1(σr2(i)) = σr3(i) it follows that eσr3

(i) ≤ gi for every
i ∈ Ir and thus that the triple (e, r3, f) is also captured.

Characterising Ordering Constraints We now turn our
focus to how the proposed model can be represented in a
way that enables efficient GPU computations. Note that we
can characterise η(r) as follows:

η(r) = {e⊕ f | max(Are, f) = f} (3)

where the maximum is applied component-wise and the ma-
trix Ar ∈ Rd×d is constrained such that (i) all components
are either 0 or 1 and (ii) at most one component in each row
is non-zero. As we explain below, the entity embeddings
will be constructed using a GNN, starting from randomly
initialised embeddings. For this approach to be effective,
the dimensionality of the entity embeddings needs to be suf-
ficiently high, to prevent randomly initialised embeddings
from capturing KG triples by chance. At the same time, the
number of parameters should remain sufficiently low to pre-
vent overfitting. For this reason, we decouple the number of
parameters from the dimensionality of the embeddings. To
this end, we learn matrices Ar of the following form:

Ar = Br ⊗ Ik (4)

where we write ⊗ for the Kronecker product, Ik is the k-
dimensional identity matrix and Br is an ℓ× ℓ matrix, with
d = kℓ. The rows of Br are constrained similarly as those
of Ar, i.e. each row is either a one-hot vector or a 0-vector.
To make the computations more efficient, we represent each
entity using a matrix Ze ∈ Rℓ×k, rather than a vector, and
define the region-based embeddings as follows:

η(r) = {flatten(Ze)⊕ flatten(Zf ) | max(BrZe,Zf ) = Zf}
(5)

where we write flatten(Ze) for the vector that is obtained by
concatenating the rows of Ze. We will refer to the region-
based embedding model defined in (5) as RESHUFFLE. Note
that a triple (e, r, f) is captured if BrZe ⪯ Zf , where X ⪯
Y iff max(X,Y) = Y. It is furthermore easy to verify that
a rule of the form (1) is satisfied if Br ⪯ BrpBrp−1 · · ·Br1 .

Learning Entity Embeddings with GNNs The format of
(5) suggests how entity embeddings in our framework can
be learned using a GNN. A practical advantage of using a
GNN for this purpose is that we can use our model for in-
ductive KG completion. As we will see in Section 6.2, the
use of a GNN also has an important theoretical advantage,
as it allows us to capture bounded reasoning.

Let us write Z
(l)
e ∈ Rℓ×k for the representation of entity

e in layer l of the GNN. Starting from (5), we naturally end
up with the following message-passing GNN:

Z
(l+1)
f = max

(
{Z(l)

f } ∪ {BrZ
(l)
e | (e, r, f) ∈ G}

)
(6)

The embeddings Z(0)
e are initialised randomly, such that (i)

all coordinates are non-negative, (ii) the coordinates of dif-
ferent entity embeddings are sampled independently, and
(iii) there are at least two distinct values that have a non-
negative probability of being sampled for each coordinate.
In this way, the probability of a constraint BrZ

(0)
e ⪯ Z

(0)
f

being satisfied by chance can be made arbitrarily small,
without increasing the number of parameters of the model,
by choosing the value of k to be sufficiently high.

5 Constructing Models from Rule Graphs
For any knowledge graph G, the GNN defined in (6) can be
used to construct an entity embedding τ such that (τ, η) cap-
tures every triple from G. To see this, first note that because
of the use of the maximum, the GNN always converges after
a finite number of iterations. Upon convergence, it is clear
that every triple of G must indeed be satisfied. However, the
resulting entity embeddings may also capture triples which
are not in G. Our central research question is whether we can
always choose the matrices Br such that a triple is captured
by these entity embeddings iff the triple can be inferred from
G ∪P , for a given rule base P . In other words, given a set of
closed path rules P , can we always construct a RESHUFFLE
model that faithfully captures it? Rather than constructing
the matrices Br directly, we first introduce the notion of a
rule graph, which will serve as a convenient abstraction.

Rule Graphs Let P be a set of closed path rules. We as-
sociate with P a labelled multi-graph H, i.e. a set of triples
(n1, r, n2). Note that this graph is formally equivalent to a
knowledge graph, but the nodes in this case do not corre-
spond to entities. Rather, as we will see, they correspond
to the different rows/columns of the matrices Br. A path
in H from n1 to np+1 is a sequence of triples of the form
(n1, r1, n2), (n2, r2, n3), ..., (np, rp, np+1). The type of this
path is given by the sequence of relations r1; r2; ...; rp. The
eq-reduced type of the path is obtained by removing all oc-
currences eq in r1; r2; ...; rp. For instance, for a path of type
r1; eq; eq; r2; eq, the eq-reduced type is r1; r2.
Definition 4. Let R be a set of relations, and let P be a set
of rules defined over these relations. A rule graph H for P
and R is a labelled multi-graph, where the labels are taken
from R, such that the following properties are satisfied:

(R1) For every relation r ∈ R, there is some edge in H
labelled with r.

(R2) For every node n in H and every r ∈ R, it holds that
n has at most one incoming r-edge.

(R3) Suppose there is an r-edge in H from node n1 to
node n2. Suppose furthermore that P |= r1(X1, X2) ∧
r2(X2, X3) ∧ ... ∧ rp(Xp, Xp+1) → r(X1, Xp+1). Then
there is a path in H from n1 to n2 whose eq-reduced type
is r1; ...; rp.

(R4) Suppose that for every r-edge, there is a path con-
necting the same nodes whose eq-reduced type belongs
to {(r11; ...; r1p1

), ..., (rq1; ...; rqpq
)}. Then there is some

i ∈ {1, ..., q} such that that P |= ri1(X1, X2) ∧ ... ∧
ripi(Xpi , Xpi+1) → r(X1, Xpi+1).
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n1

n2

n3

n4

n5

r3

r1

r2 r4

r5

eq

Figure 1: Rule graph for P1.

When R is clear from the context, we will simply refer to
H as a rule graph for P . The definition reflects the fact
that a rule is captured when the ordering constraints associ-
ated with its body entail the ordering constraints associated
with its head, as was illustrated in Example 2. Specifically,
this is encoded by condition (R3). Condition (R4) is needed
to ensure that only the rules in P are captured. Note that
we require (R4) to be satisfied for every set of path types
{(r11; ...; r1p1), ..., (rq1; ...; rqpq )} that satisfy the condition.
The following example illustrates why (R4) is needed.

Example 3. Suppose there are two r-edges in the rule
graph, namely between n1 and n2 and between n3 and
n4. Suppose furthermore that there is an r1; r2 path con-
necting n1 and n2, and an r3; r4 path connecting n3 and
n4. Suppose that the knowledge graph G contains the
triples (a, r1, b), (b, r2, c), (a, r3, d), (d, r4, c). Then, as we
will see, the corresponding model would capture the triple
(a, r, c). In other words, the model would capture the rule
r1(X1, X2) ∧ r2(X2, X3) ∧ r3(X1, X4) ∧ r4(X4, X3) →
r(X1, X3), but such a rule can never be entailed from P ,
since the latter only contains closed path rules. We can thus
only allow such rule graphs if r1(X1, X2) ∧ r2(X2, X3) →
r(X1, X3) or r3(X1, X4) ∧ r4(X4, X3) → r(X1, X3) is
entailed from P , which is what (R4) ensures.

Conditions (R1) and (R2) are needed because, in the con-
struction we consider below, the nodes of the rule graph will
correspond to the rows/columns of the matrices Br. Con-
dition (R1) ensures that Br contains at least one non-zero
component for each relation r, while (R2) ensures that each
row of Br has at most one non-zero component.

Example 4. Let P1 consist of the following rules:

r1(X,Y ) ∧ r2(Y,Z) → r3(X,Z)

r4(X,Y ) ∧ r5(Y,Z) → r2(X,Z)

A corresponding rule graph is shown in Figure 1. As an
example with cyclic dependencies, let P2 consist of:

r2(X,Y ) ∧ r3(Y,Z) → r1(Y, Z)

r1(X,Y ) ∧ r4(Y,Z) → r2(X,Z)

A corresponding rule graph is shown in Figure 2.

Constructing Models Given a rule graph H, we define the
corresponding parameters of a RESHUFFLE model (i.e. the
matrices Br) as follows. Each node from the rule graph is
associated with one row/column of Br. Let n1, ..., nℓ be an
enumeration of the nodes in the rule graph. The correspond-

n1 n2

n3

n4
r1

r2
r3

r4
eq

Figure 2: Rule graph for P2.

ing matrix Br = (bij) is defined as:

bij =

{
1 if H has an r-edge from nj to ni

0 otherwise
(7)

Note that because of condition (R2), there will be at most
one non-zero element in each row of Br, in accordance with
the assumptions that we made in Section 4.

If a set of closed path rules P has a rule graph H then the
corresponding RESHUFFLE model, defined as in (7), faith-
fully captures P . To prove this, we need to show that the
two conditions from Definition 3 are satisfied. The follow-
ing proposition shows that the first condition is satisfied.
Proposition 1. Let P be a set of closed path rules and G an
eq-complete knowledge graph. Suppose P ∪ G |= (a, r, b).
Let H be a rule graph for P and let η be the corresponding
RESHUFFLE model. Let τ be an entity embedding such that
(τ, η) captures every triple in G. It holds that (τ, η) captures
the triple (a, r, b).
To show that the second condition of Definition 3 is also sat-
isfied, we need to show the existence of a particular entity
embedding. We show that the embedding constructed by the
GNN in (6) satisfies this condition with a probability that can
be made arbitrarily high. The reason why this embedding is
not guaranteed to satisfy the condition is because, for any
triple (e, r, f), there is always a chance that it is captured
by the model, even if P ∪ G ̸|= (e, r, f), due to the fact that
the entity embeddings are initialised randomly. However, by
choosing the dimensionality of the entity embeddings to be
sufficiently large, we can make the probability of this hap-
pening arbitrarily small. As before, we write ℓ to denote
the number of rows in Ze and k for the number of columns.
Note that the value of k does not affect the number of param-
eters, since the size of the matrices Br only depends on ℓ and
the entity embeddings are randomly initialised. In practice,
we can thus simply choose k to be sufficiently large.
Proposition 2. Let P be a set of closed path rules and G an
eq-complete knowledge graph. Let H be a rule graph for P
and let Z(l)

e be the entity representations learned using the
GNN (6) for the corresponding RESHUFFLE model. For any
ε > 0, there exists some k0 ∈ N such that, when k ≥ k0, for
any m ∈ N and (a, r, b) ∈ E × R × E such that P ∪ G ̸|=
(a, r, b), we have

Pr[BrZ
(m)
a ⪯ Z

(m)
b ] ≤ ε

Finally, there always exists an initialisation of the entity em-
beddings for which the embeddings learned by the GNN sat-
isfy the second condition of Definition 3, even when k = 1.
In particular, we have the following result
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Proposition 3. Let P be a set of closed path rules. Let H be
a rule graph for P and let η be the corresponding RESHUF-
FLE model. It holds that η faithfully captures P .

6 Constructing Rule Graphs
We now return to the central question of this paper: given
a set of closed path rules P , is it possible to construct a
RESHUFFLE model which faithfully captures P? Thanks
to Proposition 3 we know that this is the case when a rule
graph for P exists. The key question thus becomes whether
it is always possible to construct such a rule graph. As the
following result shows, if there are no cyclic dependencies
in P , a rule graph always exists.
Proposition 4. Let P be a rule base. Assume that we can
rank the relations in R as r1, ..., r|R|, such that for every
rule in P with ri in the body and rj in the head, it holds that
i < j. There exists a rule graph for P .
It follows that the class of rule bases that can be captured by
RESHUFFLE models is strictly larger than the class that has
been considered in previous work (Charpenay and Schock-
aert 2024). Unfortunately, there exist rule bases with cyclic
dependencies for which no valid rule graph can be found.
Example 5. Let P contain the following rule:

r1(X,Y ) ∧ r2(Y,Z) ∧ r1(Z,U) → r2(X,U)

To see why there is no rule graph for P , consider the follow-
ing knowledge graph G:

G={(x1, r1, x2), (x2, r1, x3), ..., (xl−1, r1, rl),

(xl, r2, xl+1), (xl+1, r1, xl+2), ..., (xk, r1, xk+1)}

We have that P ∪ G |= (x1, r2, xk+1) only if the number
of repetitions of r1 at the start of the sequence matches the
number at the end, but rule graphs cannot encode this.
The argument from the previous example can be formalised
as follows. Let P be a set of closed path rules. Let R1 be
the set of relations from R that appear in the head of some
rule in P . For any r ∈ R1, we can consider a context-free
grammar with two types of production rules:
• For each rule r1(X1, X2) ∧ ... ∧ rp(Xp, Xp+1) →
r(X1, Xp+1), there is a production rule r ⇒ r1r2...rp.

• For each r ∈ R1, there is a production rule r ⇒ r.
The elements of (R\R1) ∪ {r | r∈R1} are terminal sym-
bols, those in R1 are non-terminal symbols, and r is the start
symbol. We write Lr for the corresponding language.
Proposition 5. Let P be a set of closed path rules and sup-
pose that there exists a rule graph H for P . Let R1 be the
set of relations that appear in the head of some rule in P . It
holds that the language Lr is regular for every r ∈ R1.
This shows that we cannot capture arbitrary rule bases using
rule graphs. For instance, for the rule base from Example 5,
we have Lr2 = {rl1r2rl1 | l ∈ N\{0}}, where we write xl for
the string that consists of l repetitions of x. It is well-known
that this language is not regular.

Following this negative result, we now establish two im-
portant positive results. First, in Section 6.1, inspired by

regular grammars, we introduce a special class of rule bases
with cyclic dependencies for which a rule graph is guaran-
teed to exist. Second, in Section 6.2, we focus on the prac-
tically important setting of bounded inference: since GNNs
use a fixed number of layers in practice, what mostly mat-
ters is what can be derived in a bounded number of steps. It
turns out that if we only care about such inferences, we can
capture arbitrary sets of closed path rules.

6.1 Left-Regular Rule Bases
To show that many rule bases with cyclic dependencies can
still be captured, we consider the following notion of a left-
regular rule base, inspired by left-regular grammars.

Definition 5. Let P be a rule base. Let R1 be the set of
relations that appear in the head of a rule from P . We call
P left-regular if every rule is of the following form:

r1(X,Y ) ∧ r2(Y,Z) → r3(X,Z) (8)

such that r2 /∈ R1.

While Definition 5 only considers rules with two relations
in the body, rules with more than two atoms can straightfor-
wardly be simulated by introducing fresh relations. The fol-
lowing result shows that left-regular rule bases can always
be faithfully captured by a RESHUFFLE model.

Proposition 6. For any left-regular set of closed path rules
P , there exists a rule graph for P .

Proof. (Sketch) Given a left-regular rule base P , we con-
struct the corresponding rule graph H as follows.

1. We add the node n0.
2. For each relation r ∈ R, we add a node nr, and we con-

nect n0 to nr with an r-edge.
3. For each rule of the form (8), we add an r2-edge from nr1

to nr3 .
4. For each node n with multiple incoming r-edges for some

r ∈ R, we do the following. Let ♯(r, n) be the number of
incoming r-edges for node n. Let p = maxr∈R ♯(r, n).
We create fresh nodes n1, ..., np−1 and add eq-edges from
ni to ni−1 (i ∈ {1, ..., p − 1}), where we define n0 = n.
Let r ∈ R be such that ♯(r, n) > 1. Let n′

0, ..., n
′
q be the

nodes with an r-link to n; then we have q ≤ p − 1. For
each i ∈ {1, ..., q} we replace the edge from n′

i to n by an
edge from n′

i to ni.

The correctness of this process is shown in the online ap-
pendix.

6.2 Bounded Inference
In practice, the GNN can only carry out a finite number of
inference steps. Rather than requiring that the resulting em-
beddings capture all triples that can be inferred from P ∪ G,
it is thus natural to merely require that the embeddings cap-
ture all triples that can be inferred using a bounded number
of inference steps. We know from Proposition 5 that it is
not always possible to construct a rule graph for a given rule
base P . To address this, we now weaken the notion of a rule
graph, aiming to capture reasoning up to a fixed number of
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inference steps. In the following, we will assume that P only
contains rules with two relations in the body. Note that we
can assume this w.l.o.g. as any set of closed path rules can be
converted into such a format by introducing fresh relations.

Let us write P∪G |=m (e, r, f) to denote that (e, r, f) can
be derived from P ∪ G in m steps. More precisely, we have
P ∪ G |=0 (e, r, f) iff (e, r, f) ∈ G. Furthermore, we have
P ∪ G |=m (e, r, f), for m > 0, iff P ∪ G |=m−1 (e, r, f)
or there is a rule r1(X1, X2)∧ r2(X2, X3) → r(X1, X3) in
P and an entity g ∈ E such that P ∪ G |=m1

(e, r1, g) and
P ∪ G |=m2 (g, r2, f), with m = m1 +m2 + 1.

Definition 6. Let m ∈ N. We call H an m-bounded rule
graph for P if H satisfies conditions (R1)–(R3) as well as
the following weakening of (R4):

(R4m) Suppose that for every r-edge, there is a path con-
necting the same nodes whose eq-reduced type belongs to
{(r11; ...; r1p1

), ..., (rq1; ...; rqpq
)}, with p1, ..., pq ≤ m+

1. Then there is some i ∈ {1, ..., q} such that that P |=m

ri1(X1, X2) ∧ ... ∧ ripi
(Xpi

, Xpi+1
) → r(X1, Xpi+1

).

Given an m-bounded rule graph, we can again construct
a corresponding RESHUFFLE model using (7). Moreover,
Proposition 1 remains valid for m-bounded rule graphs.
Proposition 2 can be weakened as follows.

Proposition 7. Let P be a set of closed path rules G an eq-
complete knowledge graph. Let H be an m-bounded rule
graph for P and let Z(l)

e be the entity representations that
are learned by the GNN, for the corresponding RESHUFFLE
model. For any ε > 0, there exists some k0 ∈ N such that,
when k ≥ k0, for any i ≤ m+ 1 and (a, r, b) ∈ E ×R× E
such that P ∪ G ̸|=m (a, r, b), we have

Pr[BrZ
(i)
a ⪯ Z

(i)
b ] ≤ ε

We can again show that there always exists an initialisa-
tion of the entity embeddings such that the triple (a, r, b)
is not captured by the resulting entity embeddings; we omit
the details. Crucially, we have the following result, show-
ing that m-bounded rule graphs always exist, and hence that
RESHUFFLE models can correctly capture bounded reason-
ing for arbitrary sets of closed path rules.

Proposition 8. For any set of closed path rules P , there
exists an m-bounded rule graph for P .

Proof. (Sketch) Given a set of closed path rules P we can
construct an m-bounded rule graph as follows.

1. We add the node n0.
2. For each relation r ∈ R, we add a node nr, and we con-

nect n0 to nr with an r-edge.
3. We repeat the following until convergence. Let r ∈ R and

assume there is an r-edge from n to n′. Let r1(X,Y ) ∧
r2(Y,Z) → r(X,Z) be a rule from P and suppose that
there is no r1; r2 path connecting n and n′. Suppose fur-
thermore that the edge (n, n′) is on some path from n0 to
a node nr′ , with r′ ∈ R, whose length is at most m. We
add a fresh node n′′ to the rule graph, an r1-edge from n
to n′′, and an r2-edge from n′′ to n′.

4. For each r ∈ R and r-edge (n, n′) such that for some rule
r1(X,Y )∧r2(Y, Z) → r(X,Z) from P there is no r1; r2
path connecting n and n′, we do the following:

(a) We add a fresh node n′′, an r1-edge from n to n′′ and
an r2-edge from n′′ to n′.

(b) We repeat the following until convergence. For each r′-
edge from n to n′′ and each rule r′1(X,Y )∧r′2(Y, Z) →
r′(X,Z) from P , we add an r′1 edge from n to n′′ and
an r′2-loop to n′′ (if no such edges/loops exist yet).

(c) We repeat the following until convergence. For each
r′-edge from n′′ to n′ and each rule r′1(X,Y ) ∧
r′2(Y,Z) → r′(X,Z) from P , we add an r′1-loop to n′′

and an r′2-edge from n′′ to n′ (if no such edges/loops
exist yet).

(d) We repeat the following until convergence. For each
r′-loop at n′′, and each rule r′1(X,Y ) ∧ r′2(Y,Z) →
r′(X,Z) from P , we add an r′1-loop and an r′2-loop to
n′′ (if no such loops exist yet).

5. For each node n with multiple incoming r-edges for one
or more relations from R, we do the following. Let ♯(r, n)
be the number of incoming r-edges for node n. Let p =
maxr∈R ♯(r, n). We create fresh nodes n1, ..., np−1 and
add eq-edges from ni to ni−1 (i ∈ {1, ..., p − 1}), where
we define n0 = n. Let r ∈ R be such that ♯(r, n) > 1.
Let n′

0, ..., n
′
q be the nodes with an r-link to n; then we

have q ≤ p − 1. For each i ∈ {1, ..., q} we replace the
edge from n′

i to n by an edge from n′
i to ni.

The correctness of this process is shown in the online ap-
pendix.

7 Beyond Closed Path Rules
Thus far we have only focused on sets of closed path rules,
motivated by their importance for KG completion, and the
known limitations of existing region-based models when it
comes to capturing such rules. Two other important types of
rules are hierarchy and intersection rules, which are respec-
tively of the following form:

r1(X,Y ) → r2(X,Y )

r1(X,Y ) ∧ r2(X,Y ) → r3(X,Y )

Existing models (Abboud et al. 2020; Pavlovic and Sallinger
2023; Charpenay and Schockaert 2024) are capable of cap-
turing arbitrary sets of such rules. We now show that the
same is true for RESHUFFLE (with high probability).
Proposition 9. Let P be a set of hierarchy and intersection
rules. There exists a RESHUFFLE model such that for every
knowledge graph G the following conditions are satisfied:

1. Suppose that P ∪ G |= (a, r, b) and let τ be an entity
embedding such that (τ, η) captures every triple in G. It
holds that (τ, η) captures (a, r, b).

2. For any ε > 0 there is a k0 ∈ N such that, when k ≥ k0,
for any m ∈ N and (a, r, b) ∈ E × R × E such that
P ∪ G ̸|= (a, r, b), we have Pr[BrZ

(m)
a ⪯ Z

(m)
b ] ≤ ε,

where Z(m)
e are the entity representations that are learned

by the GNN (6).
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FB15k-237 WN18RR NELL-995

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

G
N

N

CoMPILE 0.676 0.829 0.846 0.874 0.836 0.798 0.606 0.754 0.583 0.938 0.927 0.751
GraIL 0.642 0.818 0.828 0.893 0.825 0.787 0.584 0.734 0.595 0.933 0.914 0.732
NBFNet 0.845 0.949 0.946 0.947 0.946 0.897 0.904 0.889 0.644 0.953 0.967 0.928
MorsE (RotatE) 0.832 0.957 0.957 0.959 0.841 0.815 0.709 0.796 0.652 0.807 0.877 0.534

R
ul

e RuleN 0.498 0.778 0.877 0.856 0.809 0.782 0.534 0.716 0.535 0.818 0.773 0.614
AnyBURL 0.604 0.823 0.847 0.849 0.867 0.828 0.656 0.796 0.683 0.835 0.798 0.652

D
iff

-R DRUM 0.529 0.587 0.529 0.559 0.744 0.689 0.462 0.671 0.194 0.786 0.827 0.806
Neural-LP 0.529 0.589 0.529 0.559 0.744 0.689 0.462 0.671 0.408 0.787 0.827 0.806
RESHUFFLE 0.747 0.885 0.903 0.918 0.710 0.729 0.602 0.694 0.638 0.861 0.882 0.812

Table 1: Hits@10 for 50 negative samples on inductive KGC split by method type (GNN-based vs. rule-based vs. differentiable rule-based).
AnyBURL and NBFNet results were obtained from Anil et al. (2024); Neural-LP, DRUM, RuleN, and GraIL results are from Teru, Denis,
and Hamilton (2020); CoMPILE results are from Mai et al. (2021); and MorsE results are from Chen et al. (2022a).

FB15k-237 WN18RR NELL-995

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

RESHUFFLE2 0.304 0.569 0.385 0.916 0.293 0.309 0.155 0.270 0.488 0.558 0.334 0.370
RESHUFFLEnL 0.744 0.890 0.903 0.917 0.698 0.685 0.618 0.682 0.627 0.738 0.886 0.815
RESHUFFLE 0.747 0.885 0.903 0.918 0.710 0.729 0.602 0.694 0.638 0.861 0.882 0.812

Table 2: Hits@10 for 50 negative samples on inductive KGC for each ablation of RESHUFFLE.

Whether it is possible to capture bounded inference for ar-
bitrary sets of closed path rules, intersection rules, and hi-
erarchy rules remains an open question for future work. In
the basic formulation of RESHUFFLE, we cannot model in-
verse relations, which also means that we cannot constrain
relations to be symmetric. However, in practice, for each
triple (e, r, f) in the KG, we add an inverse triple (f, rinv, e).
Each triple thus induces two constraints BrZe ⪯ Zf and
BrinvZf ⪯ Ze. The fact that r is a symmetric relation can
then be straightforwardly captured by requiring Br = Brinv .
Disjointness constraints of the form r1(X,Y )∧r2(X,Y ) →
⊥, indicating that r1 and r2 can never hold together, have
also been studied in the context of region-based embeddings.
RESHUFFLE does not have a mechanism to capture such
constraints, but this can be addressed by adding a bias term,
associating each triple (e, r, f) with constraints of the form
BrZe + cr ⪯ Zf and BrinvZf + cinv

r ⪯ Ze.

8 Empirical Evaluation

We complement our theoretical results with an empirical
evaluation, focused on showing that suitable model param-
eters can be effectively learned. In particular, we want to
assess whether the model is simple enough to avoid overfit-
ting, and whether it can compete with other (differentiable)
rule learning methods. We focus on inductive KG comple-
tion, as the need to capture reasoning patterns is intuitively
more important for this setting compared to the traditional
(i.e. transductive) setting.3

3The code for replicating our experiments is available at:
https://github.com/AleksVap/RESHUFFLE.

Model Details We learn a soft approximation of the matri-
ces Br. Specifically, we learn each row i of Br by selecting
the first ℓ coordinates of a vector softmax(bri,1, ..., b

r
i,ℓ+1),

with bri,1, ..., b
r
i,ℓ+1 learnable parameters. Note that we need

ℓ + 1 parameters to allow some rows to be all 0s, which we
empirically found to be important. The number of parame-
ters per relation is thus quadratic in ℓ. However, due to the
use of the softmax operation, these representations can still
be learned effectively (Lavoie et al. 2023).4

To initialise the entity embeddings, we set each coordinate
to 0 or 1, with 50% probability. To train the model, we use
the following scoring function for a given triple (e, r, f):

s(e, r, f) = −∥ReLU(Br Z
(m)
e − Z

(m)
f )∥2

where m denotes the number of GNN layers. Note that
s(e, r, f) = 0 reaches its maximal value of 0 iff BrZ

(m)
e ⪯

Z
(m)
f . For each triple (e, r, f) in the given KG G, we add

an inverse triple (f, rinv, e) to G. For each entity e, we also
add the triple (e, eq, e) to G. Following the literature (Teru,
Denis, and Hamilton 2020; Zhu et al. 2021), RESHUFFLE’s
training process uses negative sampling under the partial
completeness assumption (PCA) (Galárraga et al. 2013), i.e.,
for each training triple (e, r, f) ∈ G, N triples (negative
samples) are created by replacing e or f in (e, r, f) by ran-
domly sampled entities e′, f ′ ∈ E . To train RESHUFFLE, we
minimise the margin ranking loss, defined as follows:

L(e, r, f) =
N∑
i=1

max(0, s(e′i, r, f
′
i)− s(e, r, f) + λ) (9)

4We experimented with a number of strategies for imposing
sparsity, but were not able to outperform the softmax formulation.
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where (e′i, r, f
′
i) is the ith negative sample and λ > 0 is a

hyperparameter, called the margin. Intuitively, the margin
ranking loss pushes scores of true triples (i.e., those within
the training graph) to be larger by at least λ than the scores
of triples that are likely false (i.e., negative samples).

Experimental Setup We evaluate RESHUFFLE on the in-
ductive knowledge graph completion (KGC) benchmark that
was derived by Teru, Denis, and Hamilton (2020) from
FB15k-237, WN18RR, and NELL-995. For each of these
KGs, four different datasets were obtained, named v1 to v4,
leading to a total of twelve datasets. Each dataset consists
of two disjoint graphs, a training graph GTrain and a testing
graph GTest. Both of these graphs are split into a train set
(80%), validation set (10%), and test set (10%), leading to a
total of six graphs per dataset. Following Teru, Denis, and
Hamilton (2020), we train RESHUFFLE on the train split of
GTrain, tune our model’s hyperparameters on the validation
split of GTrain, and finally evaluate the best model on the test
split of GTest. To account for small performance fluctuations,
we repeat our experiments three times and report RESHUF-
FLE’s average performance.5 We select the hyperparameter
configuration with the highest Hits@10 score on the valida-
tion split of GTrain. Further details on hyperparameter tuning
can be found in the online appendix. In accordance with
Teru, Denis, and Hamilton (2020), we evaluate RESHUF-
FLE’s test performance on 50 negatively sampled entities per
triple of the test split of GTest and report the Hits@10 scores.
We list further details about the experimental setup in the
online appendix.

Our GNN model acts as a kind of differentiable rule base.
We therefore compare RESHUFFLE to standard approaches
for differentiable rule learning: Neural-LP (Yang, Yang, and
Cohen 2017) and DRUM (Sadeghian et al. 2019). We also
compare our method to two classical rule learning methods:
RuleN (Meilicke et al. 2018) and AnyBURL (Meilicke et al.
2019). Finally, we include a comparison with GNN-based
approaches: CoMPILE (Mai et al. 2021), GraIL (Teru, De-
nis, and Hamilton 2020), NBFNet (Zhu et al. 2021), and
MorsE (Chen et al. 2022a).

Results The results in Table 1 reveal that RESHUFFLE
consistently outperforms the differentiable rule learners
DRUM and Neural-LP, often by a significant margin (with
WN18RR-v1 as the only exception). Compared to the tra-
ditional rule learners, RESHUFFLE performs clearly better
on FB15k-237 and NELL-995 (apart from v1) but under-
performs on the WN18RR benchmarks. Anil et al. (2024)
found that the kinds of rules which are needed for WN18RR
are much noisier compared to those than those which are
needed for FB15k-237 and NELL-995. Our use of ordering
constraints may be less suitable for such cases. Finally, com-
pared to the GNN-based methods, RESHUFFLE outperforms
CoMPILE and GraIL on FB15k-237 and NELL-995 v1 and
v4 while again (mostly) underperforming on WN18RR. De-
spite the promising results compared to (differentiable) rule

5Results for all seeds and the resulting standard deviations are
provided in the online appendix.

learners, RESHUFFLE is not competitive against state-of-
the-art models such as NBFNet and MorsE. This finding is
compatible with the analysis from Anil et al. (2024), which
suggests that achieving state-of-the-art performance requires
going beyond rule-based reasoning.

Ablation Analysis We consider two variants of our model:
(i) RESHUFFLEnL, which does not add a self-loop relation to
the KG (i.e. triples of the form (e, eq, e)); and (ii) RESHUF-
FLE2, which allows for more general Br matrices. Differ-
ent from RESHUFFLE, which uses the softmax function to
learn the rows of Br, RESHUFFLE2 squares the Br ma-
trices component-wise, thereby allowing arbitrary positive
values. For a fair comparison, we train each variant with the
same hyperparameter values, experimental setup, and evalu-
ation protocol. The results in Table 2 show that RESHUFFLE
performs comparable to or better than RESHUFFLEnL and
dramatically outperforms RESHUFFLE2 on all benchmarks.
The similar performance of RESHUFFLE and RESHUFFLEnL

on most datasets suggests that the self-loop relation only
matters in specific cases, which may not occur frequently
in some datasets. The poor performance of RESHUFFLE2

is as expected, since allowing arbitrary positive parameters
makes overfitting the training data more likely.

9 Conclusions

The region-based view of KG embeddings makes it possible
to formally analyse which inference patterns are captured
by a given embedding. An important question, which was
left unanswered by previous work, is whether a region-based
embedding model can be found which is capable of captur-
ing arbitrary sets of closed path rules, while still ensuring
that embeddings can be learned effectively in practice. In
this context, we proposed a novel approach based on order-
ing constraints between reshuffled entity embeddings. This
model, called RESHUFFLE, was chosen because it allows
us to escape the limitations of coordinate-wise approaches
while otherwise remaining as simple as possible. We found
that RESHUFFLE has several interesting properties. Most
significantly, we showed that bounded reasoning with arbi-
trary sets of closed path rules can be faithfully captured. We
also revealed special cases where exact reasoning is possi-
ble, which go significantly beyond what is (known to be)
possible with existing region based models.

Empirically, we found our approach to be competitive
with (differentiable) rule learners, while underperforming
the state-of-the-art more generally. This latter finding re-
flects the fact that (differentiable) rule based methods are
less suitable when we need to weigh different pieces of weak
evidence. In such cases, when further evidence becomes
available, we may want to revise earlier assumptions, which
is not possible with RESHUFFLE. Developing effective mod-
els that can provably simulate non-monotonic (or probabilis-
tic) reasoning thus remains as an important open challenge.
Another interesting direction for future work would be to
extend our model to relations of higher arity.
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