Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Logical Expressivity and Explanations for
Monotonic GNNs with Scoring Functions

Matthew Morris', David J. Tena Cucala’, Bernardo Cuenca Grau

1

'Department of Compute Science, University of Oxford
2Department of Computer Science, Royal Holloway, University of London

{matthew.morris, bernardo.cuenca.grau } @cs.ox.ac.uk, david.tenacucala@rhul.ac.uk

Abstract

Graph neural networks (GNNs) are often used for the task of
link prediction: predicting missing binary facts in knowledge
graphs (KGs). To address the lack of explainability of GNNs
on KGs, recent works extract Datalog rules from GNNs with
provable correspondence guarantees. The extracted rules can
be used to explain the GNN'’s predictions; furthermore, they
can help characterise the expressive power of various GNN
models. However, these works address only a form of link
prediction based on a restricted, low-expressivity graph en-
coding/decoding method. In this paper, we consider a more
general and popular approach for link prediction where a
scoring function is used to decode the GNN output into fact
predictions. We show how GNNs and scoring functions can
be adapted to be monotonic, use the monotonicity to extract
sound rules for explaining predictions, and leverage existing
results about the kind of rules that scoring functions can cap-
ture. We also define procedures for obtaining equivalent Dat-
alog programs for certain classes of monotonic GNNs with
scoring functions. Our experiments show that, on link pre-
diction benchmarks, monotonic GNNs and scoring functions
perform well in practice and yield many sound rules.

1 Introduction

Knowledge graphs (KGs) (Hogan et al. 2022) find use in a
variety of applications (Yang and Mitchell 2017; Hamilton,
Ying, and Leskovec 2017; Wang et al. 2018) and are often
represented as sets of unary and binary facts, where vertices
correspond to constants, edges to binary facts, and vertex
labels to unary facts. However, KGs are often incomplete
— the field of KG completion aims to solve this by predict-
ing missing facts that hold in its (unknown a-priori) com-
plete version. A number of solutions have been proposed
for KG completion, including embedding-based approaches
with distance-based scoring functions (Abboud et al. 2020),
tensor product scoring functions (Yang et al. 2015), recur-
rent neural networks (Sadeghian et al. 2019), differentiable
reasoning (Rocktischel and Riedel 2017; Evans and Grefen-
stette 2018), and language models (Xie et al. 2022).

KG completion methods based on graph neural networks
(GNN5s) (Ioannidis, Marques, and Giannakis 2019; Pflueger,
Tena Cucala, and Kostylev 2022; Morris et al. 2024), in-
cluding R-GCN (Schlichtkrull et al. 2018) and its extensions
(Tian et al. 2020; Cai et al. 2019; Vashishth et al. 2019;
Yuet al. 2021; Shang et al. 2019; Liu et al. 2021), are widely

477

popular as GNNs can take advantage of the structural infor-
mation in the graph. As a result, GNN models have highly
desirable properties such as invariance under graph isomor-
phisms and the ability to be applied to graphs of any size.

A limitation of GNN models is that applying them to a KG
produces real vector embeddings for the graph’s vertices but
leaves the edges untouched. Therefore, to predict new edges
(the task known as link prediction), many approaches use a
decoder based on a scoring function (Wang et al. 2017)—a
learnable mapping of binary predicates and pairs of embed-
dings to a real-valued score—which can be easily applied to
the embeddings of each pair of vertices in the graph. The
score can then be compared against a threshold to decide
whether a link should be predicted. This is a very popular
approach for link prediction with GNNs (Zhang 2022), in-
cluding the pioneering R-GCN (Schlichtkrull et al. 2018),
which uses DistMult (Yang et al. 2015) as a decoder.

Despite their effectiveness, the predictions of models us-
ing GNNs and scoring functions cannot easily be explained,
verified, and interpreted (Garnelo and Shanahan 2019). In
contrast, logic-based and neuro-symbolic approaches to KG
completion often yield rules which can be used to explain the
model’s predictions. Such methods include RuleN (Meilicke
et al. 2018), AnyBURL (Meilicke et al. 2018), RNNLogic
(Qu et al. 2020), Neural-LP (Yang, Yang, and Cohen 2017),
and DRUM (Sadeghian et al. 2019). To ensure that the rules
truly capture the reasons why the model makes a particular
prediction, it is important to ensure that they are faithful to
the model, in the sense that applying the rules to an arbi-
trary dataset produces the same result as the model. Thus,
there is growing interest in models whose predictions can be
captured by faithful rules (Tena Cucala, Cuenca Grau, and
Motik 2022; Wang et al. 2023).

For GNNs specifically, Tena Cucala et al. (2021) con-
sider GNNs with max aggregation and non-negative weights
(along with other restrictions) and show that they can be
faithfully characterized by programs of tree-like Datalog
rules. Similarly, monotonic max-sum GNNs (Tena Cucala et
al. 2023), which encompass both max and sum aggregation,
can be faithfully characterised by means of tree-like Data-
log programs with inequalities. However, these models do
not use scoring functions; instead, they rely on an encoding-
decoding strategy that can predict new edges only between
constants already linked in the input graph.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

On the other hand, (Huang et al. 2023) characterize the
expressivity of various GNN and scoring function models
using a relational Weisfeiler-Leman algorithm. They also
extend the results of (Barcel6 et al. 2020) to GNNs that
perform link prediction relative to a fixed query relation
and source vertex, showing that they can only express log-
ical classifiers from a specific fragment of first-order logic.
However, their work does not provide a means for obtaining
faithful rules from the GNNs. Thus, given the advantages
and popularity of GNNs with scoring function decoders,
there is an important open question as to how faithful rules
may be obtained from them.

Our Contribution In this paper, we bound the logical ex-
pressivity of monotonic max-sum GNNs with monotonic
scoring functions from above using Datalog rules with in-
equality, and we provide a method to extract faithful rules
from these models to explain their predictions. In partic-
ular, we show how many popular scoring functions can be
made monotonically increasing, provide a means for check-
ing the soundness of Datalog rules that can be used to ex-
plain predictions of such models, and prove how existing
results about which rule patterns are captured by different
scoring functions affect the logical expressivity of the mod-
els. We also define procedures for obtaining finite equivalent
programs of tree-like Datalog rules for (1) any monotonic
GNN with max aggregation and monotonically increasing
scoring function, and (2) any monotonic GNN with max-
sum aggregation and a non-negative bilinear scoring func-
tion. We conduct experiments on the benchmark link predic-
tion datasets of (Teru, Denis, and Hamilton 2020) and also
use the rule-based LogInfer evaluation framework described
in (Liu et al. 2023) and (Morris et al. 2024). We find that per-
formance either drops slightly or increases when restricting
the model to be monotonic, and many sound rules can be ex-
tracted. Therefore, our models maintain performance com-
parable to standard models while offering the added benefit
of explainability.

2 Background

Datalog We fix a signature of § € N unary predicates and
a finite but arbitrary set of binary predicates (also referred
to as relations). We also consider countably infinite sets of
variables and constants, disjoint with one another and the set
of predicates. A term is a variable or a constant. An atom
is an expression of the form R(¢1, ..., ¢,), where each ¢; is a
term and R is a predicate with nonnegative integer arity n.
A literal is an atom or any inequality ¢; % to. A literal is
ground if it contains no variables. A fact is a ground atom,
and a dataset D is a finite set of facts. We denote the set of
constants of a dataset D with con(D). A (Datalog) rule is
a constant-free expression of the form

By A..AB, — H, (1

where By, ..., B, are its body literals and H is its head atom.
We do not require rules to be safe: there may be variables in
the head that do not occur in a body atom. Furthermore,
to avoid redundant rules, we require that each inequality in

478

the body of a rule mentions two different terms. A (Datalog)
program is a finite set of rules. A substitution v maps finitely
many variables to constants. For literal o and a substitution
v defined on each variable in «, av is obtained by replac-
ing each occurrence of a variable x in « with v(z). For a
dataset D and a fact B, we write D |= B if B € D; further-
more, given constants a; and as, we write D = a1 # asg
if a; # as, for uniformity. We write D |= A for a set or
conjunction of facts A if D contains each fact in A. The
immediate consequence operator 7. for a rule r of form (1)
maps a dataset D to dataset T,.(D) containing Hv for each
substitution v such that D = B;v foreachi € {1,...,n}.
For a program P, Tp(D) = |J,cp Tr(D). Notice that T,
and T’p are transformations from datasets to datasets.

Graphs We consider real-valued vectors and matrices.
For v a vector and ¢ > 0, v[i] denotes the i-th element of
v. For A a matrix and 4, j > 0, A[i, j] denotes the element
in row ¢ and column j of A (this notation generalises to
higher-order tensors). A function o : R — R is monotoni-
cally increasing if x <y implies o(x) < o(y). We apply
univariate functions to vectors element-wise.

We fix a finite set Col of colours, with |Col| equal to the
number of binary predicates in the signature. A graph G is
atuple (V, {E}.ccol, A) where V is a finite vertex set, each
E¢ C V x V is a set of directed edges, and A assigns to
each v € V a vector of dimension ¢ (the number of unary
predicates in the signature). We assume that there is a one-
to-one correspondence between potential graph vertices and
constants in the signature; we typically represent the vertex
corresponding to constant a by v®. When A is clear from
the context, we abbreviate A\(v) as v for each v € V. Graph
G is undirected if £ is symmetric for each ¢ € Col and is
Boolean if v[i] € {0,1} foreachv € V and i € {1,...,0}.

Graph Neural Networks A graph neural network (GNN)
N with L > 1 layers is a tuple

<{A£}f7 {BZ}C,Za {bg}g, {O—f}fa {aggf}f >7 (2)

for each £ € {1,..., L} and c € Col, matrices A, and B
are of dimension §, x dy_1 with 6o = 8, by is a vector of di-
mension dg, o¢ : R — R is an activation function, and agg,
is a function mapping real-valued multisets to real values.

Applying N to a graph induces a sequence of labels
V0, V1,..., Vi, (sometimes denoted as vy,, vy, ..., vy,) for
each vertex v in the graph as follows. First, vg is the ini-
tial labelling of node v in the input graph; then, for each
1 < /¢ < L, vy is defined by the following expression:

oe(be+ Apvi_1 + Z Bf agg,({ue—1 | (v,u) € E}))
ceCol

The output of AV is a graph with the same vertices and edges
as the input graph, but where each vertex is labelled by vy.
Note that this definition is the same as that of (Tena Cucala
et al. 2023), except without the classification function.

In this paper, we consider GNNs with max-sum aggre-
gation functions, which generalise both max and sum ag-
gregation. For k& € Ny U oo, a finite real multiset S, and

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

¢ := min(k,|S|), we define max-k-sum(.S) Zle Sis
where s1, ..., s¢ are the ¢ largest numbers of S, including
repeated values. If £ = 0, the sum is defined as 0. Note that
max-1-sum is equivalent to max and max-oo-sum is equiv-
alent to sum. If a GNN has agg, = max-k¢-sum for all
¢e{l,...,L}, where ky € Ny U 0o, we refer to it as a max-
sum GNN (likewise for max GNNs, when every ky = 1).

Finally, we say that a max-sum GNN is monotonic if for
all ¢ € {1,...,L} and ¢ € Col, all elements of A,, Bf are
non-negative and oy is monotonically increasing with non-
negative range.

Scoring Functions A scoring function f with dimension
dy € N and threshold ¢; € R defines f(R,h,t) — R for
all vectors h, t € R% and relations R in our fixed signature.
For a set of constants C' and function e : C' — R% that as-
signs an embedding to each constant, we define F¢(C,e) =
{R(a,b) | a,b € C, Ris arelation, f(R,e(a),e(b)) > ts},
i.e. the set of facts over constants of C' scored as true by f.
GNN:s, as well as other methods, can be used to learn em-
bedding functions e.

Throughout this paper, we will consider families of scor-
ing functions—sets of functions sharing a common form and
parameterized by one or more values—where each family
comprises all functions generated by varying the parameter
values. For example, RESCAL is the family of scoring func-
tions of the form f(R, h,t) = h Mzt, where My, is a real
matrix of dimension df x dy.

Dataset Transformations Through GNNs and Scoring
Functions A GNN N with L layers and a scoring func-
tion f with dimension dy = J1 can be used to realise a
transformation 7}/, from datasets to datasets — going for-
ward, when we mention a GNN and scoring function to-
gether, we assume d = ¢y To perform the transformation,
the input dataset must be first encoded into a graph that can
be directly processed by the GNN. To this end, we adopt
the so-called canonical scheme (Tena Cucala et al. 2023),
which introduces a vertex for each constant in the dataset,
and no other vertices; then, colours in graphs correspond
to binary predicates and indices of feature vectors labelling
each vertex to unary predicates in the signature. More pre-
cisely, U, denotes the predicate associated to index p, for
eachp € {1,...,d}, and R denotes the predicate associ-
ated to colour c¢. Then, the canonical encoding enc(D) of
a dataset D is the Boolean graph with vertex v* for each
constant @ in D, a c-coloured edge (v®,v") for each fact
R%(a,b) € D, and a vector v labelling each vertex v®
such that vector component v®[p] is set to 1 if and only if
Up(a) € D, foreachp € {1,...,6}.

Given a scoring function f, we define the application of
the decoder decy to a labelled graph G as producing the
dataset containing R°(a,b) for each relation R¢ and pair
of constants a, b corresponding to vertices in G such that
f(R¢,v®,v®) > t;. Thus, we have dec (N (enc(D)))

{R(a,b) | a,b € con(D), f(R,vZ,vE) > t;}

479

The canonical dataset transformation induced by a GNN
N and a scoring function f is then defined as: T)s f(D) =
decs(N(enc(D))). We often abbreviate N'(enc(D)) by
N (D). The GNN and scoring function combination can be
trained end-to-end.

Soundness and Completeness A Datalog program or rule
« is sound for a combination (N, f) of a GNN A and a
scoring function f if T,, (D) C T, s (D) for each dataset D.
Conversely, « is complete for (N, f) if T (D) C T (D)
for each dataset D. Finally, we say that « is equivalent to
(N, f) if it is both sound and complete for (N, f).

3 Sound Rules

In this section, we propose adaptions to several existing fam-
ilies of scoring functions to make them amenable to rule
extraction when used with a monotonic max-sum GNN—
specifically, we make them monotonically increasing. Fur-
thermore, we provide a means for checking whether a Data-
log rule is sound for a monotonic max-sum GNN and mono-
tonically increasing scoring function. Finally, we show how
existing results about which rule patterns are captured by
various scoring function families affect the soundness of
rules when they are used with a GNN.

Monotonically Increasing Scoring Functions (Tena Cu-
cala et al. 2023) show that the ability to extract Datalog rules
from plain monotonic max-sum GNNs crucially depends on
the fact that these models are monotonic under injective ho-
momorphisms, meaning that they are agnostic to the particu-
lar constants used, and if the model is applied to an arbitrary
dataset, then the output values will never decrease as new
facts are added to the input. We identify a property of scor-
ing functions which ensures that combining such a function
with a monotonic max-sum GNN produces a transformation
that is still monotonic in the same way.

Definition 1. A scoring function f is monotonically increas-
ing if for all relations R and vectors h,h’, t,t' € R% such
that 0 < h[i] < h'[i] and 0 < t[i] < t'[i] Vi € {1,...,d;},
we have that f(R,h,t) < f(R,h’,t).

This property guarantees that a scoring function will never
decrease its output for a pair of embeddings h and t if the
values of those embeddings increase. We now consider var-
ious scoring function families from the literature and show
that some are never monotonically increasing, whereas oth-
ers can be restricted to be monotonically increasing.

There are a variety of “distance-based models” used for
scoring binary facts. For example, TransE (Bordes et al.
2013) has the scoring function f(R, h, t) = —||h+rr—t||2,
where each rp is a vector of size dy representing a fixed em-
bedding for relation R. Since this involves a sum in which
h and t have different signs, there is no collection of vec-
tors {rg, ...} such that the corresponding scoring function
is monotonically increasing. This problem occurs in all the
distance-based models, including UM (Bordes et al. 2012),
TransH (Wang et al. 2014), TransR (Lin et al. 2015), TransD
(Jiet al. 2015), TransSparse (Ji et al. 2016), TransM (Fan et

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

al. 2014), ManifoldE (Xiao, Huang, and Zhu 2016), TransF
(Feng et al. 2016), TransA (Xiao et al. 2015), RotatE (Sun et
al. 2018), and HAKE (Zhang et al. 2020). A similar issue oc-
curs with some non-distance-based models including Com-
pIEx (Trouillon et al. 2016), QuatE (Zhang et al. 2019), and
DualE (Cao et al. 2021), when the computation is considered
in terms of real vectors, and is explained in Appendix A.1.

In contrast, the following scoring function families rely
on combinations of multiplication, addition, and non-linear
functions; they can be modified by restricting their main
parameters—usually expressed as vectors, matrices, tensors,
or neural network weights—to contain only non-negative
values, and by making all non-linear functions in them
monotonically increasing and non-negative (e.g., ReLU).

For example, when restricting RESCAL (Nickel et al.
2011) such that each M i contains only non-negative num-
bers, f is monotonically increasing. This approach yields
monotonically increasing scoring functions for the follow-
ing other families: DistMult (Yang et al. 2015), ANALOGY
(Liu, Wu, and Yang 2017), HolE (Nickel, Rosasco, and
Poggio 2016), TATEC (Garcia-Duran, Bordes, and Usunier
2014), TuckER (Balazevic, Allen, and Hospedales 2019),
SimplE (Kazemi and Poole 2018), SME (Bordes et al.
2014), NTN (Socher et al. 2013), SLM (Socher et al. 2013),
MLP (Dong et al. 2014), NAM (Liu et al. 2016), and ConvE
(Dettmers et al. 2018). These families are fully described in
Appendix A.2 and Appendix A.3. This list is non-exhaustive
— there may be other scoring function families that can also
be modified in this way or others to yield monotonically in-
creasing scoring functions.

Checking Soundness of Rules We provide a means for
checking whether a given Datalog rule is sound for a mono-
tonic max-sum GNN and monotonically increasing scoring
function. First, we establish that using a monotonic max-
sum GNN and monotonically increasing scoring function
yields a monotonic dataset transformation.

Lemma 2. Let N be a monotonic max-sum GNN and f
a monotonically increasing scoring function. Then for all
datasets D, D’ such that D C D', Ty (D) C T s (D").

The lemma is proved in Appendix B.2 and relies on ver-
tex labels yielded by the GNN not decreasing when facts are
added to the input dataset, and outputs of f not decreasing
as its input vectors increase. In addition to this, max-sum
GNNss and the canonical encoding are agnostic to the partic-
ular constants used in the input dataset: they depend only on
the structure. These two results show that monotonic max-
sum GNNs with monotonically increasing scoring functions
are monotonic under injective homomorphisms. We now
provide the proposition that allows one to check for sound
rules, the proof of which is given in Appendix B.3 and relies
on the above results, as well the fact that any dataset satisfy-
ing the body of r contains one of the following datasets D,
(up to constant renaming).

Proposition 3. Let N be a monotonic max-sum GNN and
f a monotonically increasing scoring function. Let r be
a Datalog rule with a binary head atom H, a (possibly
empty) set A of body atoms, and a (possibly empty) set [

480

of body inequalities. For each variable x in r, let a.,b,
be distinct constants uniquely associated with x. Then, r is
sound for (N, f) if and only if Hp € Ty s(D,,) for each
substitution p mapping the variables of r to constants in
the set {a, | x is a variable of r} such that p(x) # p(y)
for each inequality x % y € I, and D, = Ap U
{R(by, pu(x)) | x is a variable occurring in H but not in A}
where R is an arbitrary but fixed binary predicate.

The inclusion of each R(b,, pt(z)) in D,, accounts for un-
safe rules. A rule can be checked for soundness by enu-
merating each above-defined substitution y and computing
Ty ,7(D,); then the rule is sound if and only if Hu €
Ty,7(D,,) for each such substitution. For example, to check
the soundness of rule 7 : Py (z,y) AUy (z) — Py(x,y), we
have four possible substitutions. The first two are:

Loy ={z— az,y—a}
DNI = {Ul(aw)apl(am7a:v)}

2. po={x— az,y > ay}
DH2 = {Ul(ax)vpl(azaay)}

and the others are symmetric to them. If Hu; €
Ty ,s(D,,) for each substitution, then the soundness of r
follows, since any dataset satisfying the body of r contains
one of the above datasets, up to constant renaming.

Leveraging Scoring Function Results In this section, we
consider GNNs (not necessarily monotonic, or even max-
sum) and exploit known results (Sun et al. 2018; Abboud et
al. 2020) about the ability of a scoring function family to
model different types of rules (referred to as “patterns”), to
bound the logical expressivity of the GNN and scoring func-
tion. (Pavlovi¢ and Sallinger 2022) formally define the cap-
turing of rule patterns. Intuitively, a scoring function family
captures a pattern exactly if there exists a scoring function
in the family such that, for all constant embeddings, if the
body of the pattern is satisfied then the head of the pattern
is satisfied. To formalise this using our definition of scoring
functions, we first define a rule pattern.

Definition 4. A rule pattern is a safe Datalog rule contain-
ing only binary predicates from a set of meta predicates
M = {My, My, ...}, disjoint from the signature. A rule r
conforms to a rule pattern p if it can be obtained from p by
replacing each distinct meta binary predicate with a differ-
ent binary predicate from the signature.

We can now formalise the capturing of rules. In addition
to defining “capturing exactly”, we define “capturing uni-
versally”, which generalises cases such as DistMult being
symmetric.

Definition 5. Let f be a scoring function, C a set of con-
stants, and e : C — R an embedding function. Then the
tuple (f,C, e) captures a rule B — H if for every substitu-
tion p such that Fy(C,e) = B, we have F¢(C,e) = Hp.

A family of scoring functions F universally captures a rule
pattern p if for all f € F, constants C, e : C — R¥, and
any rule r conforming to p, we have (f,C, e) captures r.

A family of scoring functions F' exactly captures a rule
pattern p if for any rule r conforming to p, there exists f € F

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

such that for all constants C and e : C — R, (f C,e)
captures .

We give a sample of some of the pattern capturing results
from the literature. Consider the following rule patterns:

Hierarchy: M (x,y) — Ma(z,y)

Symmetry: M (z,y) — M (y,x)

Intersection: M;(z,y) A Ma(x,y) — Ms(z,y)
Inversion: M (z,y) > Ma(y,x)

5. Composition: My (z,y) A Ma(y, z) — Ms(z, z)

For example, DistMult universally captures symmetry
and exactly captures hierarchy (Abboud et al. 2020). TransE
exactly captures inversion, composition, and intersection.

We now analyse the effect that a scoring function tuple
capturing a rule has when used with a GNN. We find that
when a rule is captured across all constants and embeddings,
certain rules being sound for the GNN and scoring function
implies that there are other rules (not necessarily logically
entailed by them) which must also be sound. This limits the
class of equivalent programs for the model, and thus its log-
ical expressivity. This is formalised in the following propo-
sition, which is proved in Appendix B.4.

el e

Proposition 6. Let f be a scoring function and B — H a
safe rule such that for all constants C and e : C — R%,
(f,C,e) captures B — H. Let N be a GNN. Assume that
for each atom B; of B, there is an inequality-free rule A; —
B; that is sound for (N, f). Then the rule \; A; — H is
sound for (N, f).

As a direct consequence of this, notice that when using a
scoring function family that universally captures a pattern,
the result applies to any rule conforming to the pattern and
scoring function in the family.

Corollary 7. Let I be a scoring function family that univer-
sally captures a rule pattern p, B — H a rule conforming
to p, N a GNN, and f € F. Assume that for each atom
B; of B, there is an inequality-free rule A; — B; sound for
(N, f). Then the rule \; A; — H is sound for (N, f).

For example, let F' be a scoring function family that uni-
versally captures symmetry. Then for any GNN N and scor-
ing function f € F, if arule A — Pj(x,y) is sound for
(N, f),sois A — Py(y,x).

A similar result applies to patterns captured exactly, ex-
cept that it shows that there exists a scoring function from the
family such that when certain rules are sound, others must
also be sound, regardless of the parameters of the GNN.

Corollary 8. Let F' be a scoring function family that exactly
captures a rule pattern p, and B — H a rule conforming to
p. Then there exists f € F such that: for each GNN N and
inequality-free rules A; — B; sound for (N, f) for each B;
in B, the rule)\; A; — H is sound for (N, f).

Note that the above f € F'is the same that witnesses the
capturing of the rule in the definition of capturing exactly.
For example, let F' be a scoring function family that exactly
captures intersection. Then, there exists f € F' such that for
any GNN \V, if rules A1 — Py(z,y) and Ay — Pa(z,y)
are sound for (N, f), then sois A; A Ay — P3(z,y).

481

As an application of the results in this section, Corollar-
ies 7 and 8 allow one to use rules already known to be sound
to derive new sound rules. This avoids both searching for the
new rules and using Proposition 3 to verify their soundness.

4 Equivalent Programs

In this section, we provide a means to obtain finite equivalent
Datalog programs from GNNs and scoring functions: we do
this for arbitrary monotonic max GNNs with monotonically
increasing scoring functions, and for monotonic max-sum
GNNs with a particular subclass of monotonically increas-
ing scoring functions. This provides an upper bound on the
expressive power of such models. To define the rule space,
we first provide the definition of a (p, 0)-tree-like formula
, for variable x.

Definition 9. For each root variable x:

1. T is tree-like for x;

2. for each unary predicate U, U(x) is tree-like for x;

3. for all formulas @1, 2 that share no variables and are
tree-like for x, ©1 A s is tree-like for x;

4. for each variable x, binary predicate R, and tree-like
formulas 1, ..., o, for distinct variables yi,...,Yyn
where no p; contains x and no @; and p; with i # j
share a variable, the following is tree-like for x:

/”\ (R(ﬂ%yi) /\%) A /"\ Yi % Yj

i=1 1<i<j<n

3)

Let ¢ be a tree-like formula and let x be a variable in
. The fan-out of x in is the number of distinct variables
yi for which R(x,y;) is a conjunct of ¢. The depth of x is
the maximal n for which there exist variables xy, ..., T, and
predicates Ry, ..., R, such that x,, = x and R(x;_1,x;) is
a conjunct of ¢ for each 1 < 1 < n. The depth of ¢ is the
maximum depth of a variable in .

For p and o natural numbers, a tree-like formula o is
(p, 0)-tree-like if, for each variable x in @, the depth i of
x is at most p and the fan-out of x is at most o(p — 1).

Using this, we define a tree-like rule.

Definition 10. A Datalog rule is (p, o)-tree-like if it is of the
form oz N\ @y — R(x,y), where @, @, share no variables,
g is (p, 0)-tree-like for x, and v, is (p, 0)-tree-like for y.

Monotonic Max GNNs We now provide a theorem de-
scribing a Datalog program equivalent to a given monotonic
max GNNs and monotonically increasing scoring function.

Theorem 11. Let N' be a monotonic max GNN and f
a monotonically increasing scoring function. Let Ppr be
the Datalog program containing, up to variable renaming,
each (L, |Col|-xr)-tree-like rule without inequalities that is
sound for (N, f), where v = max(0, ..., 0r,). Then Ty s
and Py are equivalent.

The full proof is given in Appendix B.7. Although the
form of the rules extracted is similar to that for plain mono-
tonic max-sum GNNs, the proof of the theorem differs sub-
stantially from that of (Tena Cucala et al. 2023, Theorem

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

13) due to (1) the inclusion of two variables x, y (with cor-
responding vertices and constants) in the base case and (2)
the use of the monotonicity of the scoring function.

Proof sketch. We show that Tr r(D) = Tp, (D) holds for
every dataset D. Tp, (D) C T, (D) is trivial. So let « be
an arbitrary binary fact in Ty (D). Observe that o can be
of the form R(s, t), for distinct constants s, ¢, or of the form
R(s, s), for a constant s. In this sketch, we will consider
only the R(s,t) case — the other is similar. We construct a
(L, |Col| - dn)-tree-like rule without inequalities 7, such that
a € T,.(D) and r is sound for (N, f). Together, these will
imply that o € T'p,, (D), as required for the proof.

Let G = (V, E, \) be the canonical encoding of D and
let g, ..., A, the vertex labelling functions arising from the
application of N to G. We inductively construct T, a con-
junction of two formulas, one of which is tree-like for « and
the other for y. During the inductive construction, we also
define a substitution v from the variables of I' to the set of
constants in D, and a graph U (without vertex labels) where
each vertex in U is of the form u” for z a variable and each
edge has a colour in Col. We assign to each vertex in U a
level between 0 and L.

For the base case, we introduce fresh variables z, y, de-
fine v(z) = s,v(y) = t, introduce vertices v” and wu,,, and
extend I" with U (x) for each U(s) € D (likewise for y for
t). For the induction step, consider 1 < ¢ < L and assume
that all vertices of level greater than or equal to £ have been
already defined. We then consider each vertex of the form
u® of level £. Let ¢t = v(x). For each colour ¢ € Col, each
layer 1 < ¢/ < ¢, and each dimension j € {1,...,0p 1} for
which there exists some (v!, w) € E°, let w be a maximum
c-coloured neighbour of v? in feature vector index j at layer
¢’ (when applying NV to G). Note that w must be of the form
v*® for some constant s in D.

We then introduce a fresh variable y and define v(y)
s. We introduce a vertex u? of level £ — 1 and an edge
E¢(u®,u¥) to U. Finally, we append to I' the conjunction
E¢(x,y) N Ap(s)ep U(y), where U stands in for arbitrary
unary predicates. This completes the inductive construction.
We then let H = R(z,y), and define our tree-like rule to be
I' — H. The construction of v means D |= I'v. So we have
Hv € T,.(D), with Hv = a, so a € T,.(D), as required.

We now show that r is sound for (A, f). Let D’ be an
arbitrary dataset and ' an arbitrary ground atom such that
o/ € T,(D’). Then there exists a substitution 2’ such that
D’ = TV'. Let the graph G = (V', E’, \') be the canoni-
cal encoding of D’ and A, ..., A, the functions labelling the
vertices of G’ when N is applied to it.

The following statement is proved by induction, which
relies on the monotonicity of A for each 0 < ¢ < L
and each vertex u” of U whose level is at least ¢, we have
v [i] < pay[i] for each i € {1,...,0,}, where v = v (@)

and p = o' (@)

Note o' has the form R(s',t') with & = v/(x) and
' =1/ (y). Now letv = v*, w = v',p = v*', ¢ = v". Then
R(s,t) € Tw (D) implies f(R,vx,,W»x,) > ty. The
above property ensures that v, [i] < py [i] and wy, [i] <

482

ay, [i] foralli € {1,...,r}. Thus, since f is monotonically
increasing, we have f(R,vy,,wx,) < f(R,pa,,qy,)
So f(R,px,dx,) > ty, which implies that R(s',t') €
Ty s (D). O

The program Py is computable in principle by enumerat-
ing all rules in the finite class of tree-like rules mentioned in
the theorem, and then filtering out rules that do not pass the
soundness check in Proposition 3. This brute-force proce-
dure can be optimised in practice: for example, by exclud-
ing all rules that subsume a known sound rule, since they are
redundant; or by exploiting results about the expressiveness
of scoring functions to avoid unnecessary soundness checks,
as discussed at the end of Section 3.

Note that as a consequence of this theorem, rules con-
forming to common rule patterns (e.g. symmetry, inver-
sion, hierarchy, composition, intersection, triangle, diamond
(Liu et al. 2023), fork, and cup (Morris et al. 2024)) can
only be sound if they are subsumed by a sound tree-like
rule. For example, if a composition rule of the form
Ri(x,2) A Ro(z,y) — Rs(x,y) is sound for a monotonic
max GNN and a monotonic scoring function, there must
exist another sound tree-like rule that subsumes it, such as
Rl(l‘7 Zl) A RQ(Z27 y) — Rg(ﬂf, y)

Monotonic Max-Sum GNNs When seeking to obtain
equivalent programs for the larger class of monotonic max-
sum GNNs instead of max GNNs, we can no longer con-
sider all monotonically increasing scoring functions. This is
because there are a potentially unbounded number of neigh-
bours that contribute to the computation during the execu-
tion of the max-sum GNN, so if we tried to follow the same
approach as for monotonic max GNNs, we would have to
consider an infinite number of tree-like rules. To address
this, we prove that an argument of the same type as that of
(Tena Cucala et al. 2023) for max-sum GNNs can also be
made when a scoring function is considered. We show that
the number of neighbours considered in each max-sum ag-
gregation step can be restricted to a finite number without
changing the output of the GNN and scoring function on
any dataset. This requires, however, an additional restriction
on the scoring function: namely, it must be non-negative bi-
linear. This property ensures that there is a scalar value «
such that once a vertex feature output by a GNN is greater
than it, increasing any input to the scoring function will not
result in a change of the output of T) ¢.

Definition 12. A bilinear scoring function f is one such
that for all relations R and vectors h,t € R%, we have
f(R,h,t) = hTMgt, where Mp € R¥ >4 is a matrix
conditioned on R. We say that f is non-negative if each M p
contains only non-negative entries.

Notice that RESCAL, DistMult, and ANALOGY are bi-
linear scoring functions. Also, TuckER can be rewritten as
one, as shown in Appendix A.2. In addition to restricting the
scoring function, we also add the restriction that the activa-
tions functions {0 }1< ¢<z, of N must be unbounded.

The essence of our approach is to compute, for each layer
¢ of the GNN, a non-negative integer Cy, called a capacity,

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

such that replacing the number k, in the aggregation func-
tion by C, does not change the output of the model on any
dataset. We compute the capacities C; using a more complex
variant of the algorithm of (Tena Cucala et al. 2023, Algo-
rithm 1), where the role of their GNN classification thresh-
old is replaced by «, defined as follows. In the following,
the set &7 ; consists of all real numbers that can occur in la-
bel vector index 4 at layer £, when a max-sum GNN N is
applied to a dataset; these sets can be computed as shown in
(Tena Cucala et al. 2023, Definition 7).

Definition 13. Consider a monotonic max-sum GNN N
and a non-negative bilinear scoring function f. For each
binary relation R in the signature, where Mp is its re-
lation matrix in f, we define: ar = 1 if all elements
of Mg are 0 or |J, X1, = {0}. Otherwise, we define
ag := the least natural number such that ag - w - € > ty,
where w is the least non-zero element of Mg and € is the
least non-zero element of | J; X1, ;. Then, we define o =
max{«ap | for each binary relation R in the signature}.

The following theorem then establishes that replacing the
aggregation number ky by the capacity C, leaves the output
of the GNN and scoring function unchanged on any dataset.

Theorem 14. Let N be a monotonic max-sum GNN with un-
bounded activation functions and f a non-negative bilinear
scoring function. Let N” be the GNN obtained from N by re-
placing kg with the capacity Cy for each ¢ € {1, ..., L}. Then
for each dataset D, it holds that T ;(D) = Ty (D).

The proof is given in Appendix B.9 and depends on the
structure of non-negative bilinear scoring functions. Using
this, we prove the main result of this section, which is analo-
gous to Theorem 11. The theorem shows that an equivalent
program can be constructed for any monotonic max-sum
GNN N and non-negative bilinear scoring function f using
rules taken from the finite space of all (L, |Col|-dxr-Car 5)-
tree-like rules, where Cpr,; = max{Ci, ...,Cr,}. The proof is
given in Appendix B.10.

Theorem 15. Let N be a monotonic max-sum GNN with
unbounded activation functions and f a non-negative bi-
linear scoring function. Let Py be the Datalog program
containing, up to variable renaming, each (L,|Col| - é -
Cn,)-tree-like rule that is sound for (N, f), where O =
max(0g, ...,0r). Then Tyr § and Py are equivalent.

S Experiments

We train monotonic max-sum GNNs with monotonically
increasing scoring functions across several link prediction
datasets, showing that sound rules can be extracted in prac-
tice and that the restriction to monotonicity does not signifi-
cantly decrease performance. For the model architecture, we
fix a hidden dimension of 50, 2 layers, and ReLU activation
functions. The GNN definition given in Section 2, chosen to
correspond to that of (Tena Cucala et al. 2023) and for ease
of presentation, describes aggregation in the reverse direc-
tion of the edges. In our experiments, we use the standard
approach and aggregate in the direction of the edges.

We use GNNs with max aggregation, and GNNs with
sum aggregation, as well as experimenting with 4 different

483

varieties of scoring function families: RESCAL, DistMult,
TuckER, and NAM. We train each model for 8000 epochs,
except for ones that use TuckER, which we train for 4000,
given our computational constraints and how much slower
the TuckER models are. For all trained models, we compute
standard classification metrics, such as precision, recall, ac-
curacy, F1 score, and area under the precision-recall curve
(AUPRC). To select the scoring function threshold, we eval-
uate the model on the validation set across candidate thresh-
olds and select the one which maximises accuracy. The can-
didate thresholds are the set of all scores produced on the
validation input set.

Each training epoch, for each positive target fact, 10 neg-
ative facts are generated by randomly corrupting the binary
predicate. These facts are filtered to ensure they do not con-
tain any false negatives (i.e. facts that appear in the train-
ing set). We originally corrupted the constants in the posi-
tive fact, but found that predicate corruption leads to signif-
icantly better performance by the baseline models on stan-
dard benchmarks (Teru, Denis, and Hamilton 2020). We
train all our models using binary cross entropy with logits
(BCE) loss and the Adam optimizer with a standard learn-
ing rate of 0.001 and weight decay of 5.

‘We train models without restrictions as baselines (denoted
by “Standard”), as well as restricting the models to having
non-negative weights (denoted by “Monotonic”), by clamp-
ing negative weights to 0 after each optimizer step, as in the
approach of (Tena Cucala et al. 2021; Morris et al. 2024).
When clamping weights, we multiply by 50 the term in the
BCE loss function corresponding to the positive examples:
without this, we found there to be insufficient positive sig-
nal for the training, leading to consistently positive gradi-
ents and thus weights that only tended to O as training pro-
gressed; the value of 50 was arrived at by hyperparameter
tuning on standard benchmark datasets. We run each ex-
periment across 5 different random seeds and present the
aggregated metrics. Experiments are run using PyTorch Ge-
ometric, with a CPU on a Linux server.

Datasets We use 3 standard benchmarks: WNI18RRvI,
fb237v1, and nellvl (Teru, Denis, and Hamilton 2020), each
of which provides datasets for training, validation, and test-
ing, as well as negative examples and positive targets. Im-
portantly, these benchmarks are also inductive, meaning that
the validation and testing sets contain constants not seen dur-
ing training, so approaches where embeddings are learned
for each constant do not work for them.

We also utilize Loglnfer (Liu et al. 2023), a framework
which augments a dataset by considering Datalog rules
conforming to a particular pattern and adding the conse-
quences of the rules to the dataset (we call these injected
rules). We use the datasets LogInfer-WN-hier (WN-hier)
and LogInfer-WN-sym (WN-sym) (Liu et al. 2023), which
are enriched with the hierarchy and symmetry patterns, re-
spectively. We also use LogInfer-WN-cup_nmhier (Morris
et al. 2024), which was created using a mixture of monotonic
and non-monotonic rules: rules from the “cup” (R(x,y) A
S(y,z) NT(w,z) — P(z,y)) and “non-monotonic hierar-

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning

Main Track

Dataset Decoder Model | %Acc %Prec %Rec %F1 AUPRC Loss | %SO | #1B #2B
WN-hier DistMult Standard 89.87 89.1 90.86 89.97 0.9423 0.11 - - -
Monotonic | 85.05 79.18 95.52 8643 0.809 141 52 171 26532

RESCAL Standard 92.69 90.79 95.02 92.86 0.9597 0.09 - - -

Monotonic | 88.59 85.3 93.26 89.1 0.863 1.23 60 104 17212

NAM Standard 92.1 90.22 9446 9228 0.9481 0.09 - - -

Monotonic | 67.87 68.33 65 64.77 0.6577 1.64 48 141 19244

TuckER Standard 93 90.51 96.08 93.21 0.9542 0.09 - - -

Monotonic 87.5 82.91 94.88 88.39 0.8206 1.36 56 89 14498

WN-sym DistMult Standard 96.6 95.79 97.5 96.63 0.9929 0.09 - - -
Monotonic | 92.34 86.92 99.68 92.86 0.9561 1.32 88 81 12845

RESCAL Standard 96.1 9471 97.66 96.16 0.9889 0.07 - - -

Monotonic | 94.27 89.72 100 94.58 0.9355 1.12 92 42 7537

NAM Standard 95.72 9458 97.02 95.78 0.9897 0.06 - - -

Monotonic | 72.16 76.71 673 68.82 0.6775 1.79 40 88 12457

TuckER Standard 96.24 95.03 97.58 96.29 0.9888 0.07 - - -

Monotonic | 91.31 85.97 98.84 91.95 0.8892 1.27 80 81 12825

WN-cup_nmhier DistMult Standard 74.98 78.44 68.88 73.35 0.8139 0.17 - - -
Monotonic | 69.69 71.21 6645 68.61 0.6953 1.77 40 143 21366

RESCAL Standard 7798 77.38 79.1 78.22 0.8152 0.15 - - -

Monotonic | 73.21 7591 6799 71.72 0.7058 1.61 40 31 5006

NAM Standard 76.72 7456 8134 77.72 0.833 0.14 - - -
Monotonic | 59.74 59.04 63.1 5747 05697 241 45 354 50014
TuckER Standard 7746 7761 77.17 7738 0.8144 0.15 - - -
Monotonic | 71.51 80.15 57.27 66.78 0.664 1.68 40 22 3772

5237v1 DistMult Standard 55.55 53.08 97.1 68.62 09611 0.02 - - -
Monotonic | 81.85 79.48 86 8259 0.6884 0.80 - | 35366 -

RESCAL Standard 58.8 55.38 96.5 7023 09625 0.01 - - -

Monotonic 91 96.72 849 9041 0.6114 0.70 - 4797 -

NAM Standard 60.5 56.44 96.8 71.17 09552 0.01 - - -

Monotonic 64 58.66 97 73.03 09557 0.07 - | 155348 -

TuckER Standard 5435 5231 98.9 6842 09597 0.01 - - -

Monotonic 90.5 92.07 88.7 90.34 0.6305 - - 8511 -

WNI8RRvV1 DistMult Standard 89.76 83.13 100 90.75 09337 0.02 - - -
Monotonic | 91.52 85.49 100 92.18 0.7922 0.79 - 97 11995

RESCAL Standard 9152 8561 99.88 92.19 0.9306 0.01 - - -

Monotonic | 95.82 9238 99.88 9598 0.7878 0.77 - 52 6488

NAM Standard 78.61 70.96 100 8275 09287 0.01 - - -

Monotonic | 74.73 66.51 99.88 79.83 09251 0.10 - 202 20874

TuckER Standard 91.76 85.94 100 92.41 0.9402 0.01 - - -

Monotonic | 92.73 88.3 9891 9323 0.7787 0.81 - 65 8134

nellvl DistMult Standard 57.65 5451 9271 6856 09271 0.09 - - -
Monotonic | 65.53 59.24 100 7439 09081 1.35 - 631 125094

RESCAL Standard 5894 5501 99.06 70.72 0.9076 0.04 - - -

Monotonic | 70.59 7223 6659 69.05 0.5372 1.05 - 144 30154

NAM Standard 65.53 61.05 86.82 71.15 09127 0.03 - - -

Monotonic | 53.24 51.69 100 68.15 0.929 044 - 970 176836

TuckER Standard 55.53 53.04 99.06 69.06 0.9103 0.04 - - -

Monotonic | 76.82 6857 9929 81.1 0.6893 1.21 - 265 53418

Table 1: Results for max GNNs. Loss is from the final epoch on the training set. AUPRC is from the validation set. Other metrics are
computed on the test set. %SO is the percentage of LoglInfer rules that are sound for the model. #1B and #2B are the number of sound rules
with one and two body atoms respectively.

484

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

chy” (R(z,y) A =S(y, z) — T(z,y)) patterns, in this case.
We use the dataset to test whether the monotonic models
can recover the monotonic rules in the dataset, despite the
presence of non-monotonic rules. For the LoglInfer datasets,
each training epoch, 10% of the input facts are randomly set
aside and used as ground truth positive targets, whilst the
rest of the facts are used as input to the model.

Given that the datasets have no unary predicates, we intro-
duce a dummy unary predicate that holds for every constant
in the dataset, yielding the same initial embedding for ev-
ery node in the encoding. More details on this and other
approaches to initial node features in the absence of unary
predicates can be found in Appendix A.4.

Rule Extraction On all datasets, we iterate over each Dat-
alog rule in the signature with up to two body atoms and a
binary head predicate, and count the number of sound rules,
using Proposition 3 to check soundness. On the fb237vl
dataset, we only check rules with one body atom, since the
large number of predicates means that searching the space of
rules with two body atoms intractable. For datasets created
with LogInfer (Liu et al. 2023), which are obtained by ap-
pending the consequences of a known set of Datalog rules to
a pre-existing dataset, we also check if these rules are sound.

Results The experimental results for max GNNs are pro-
vided in Table 1. For each dataset and metric, we highlight
in bold the best value achieved by a model variant for that
metric. Our findings definitively show that restricting GNNs
and scoring functions to be monotonic does not adversely
affect model performance in most cases (with the excep-
tion of models that use NAM). In fact, in some scenarios,
the restrictions cause a significant increase in performance.
Similar conclusions can be drawn from our results for sum
GNNs as for max GNNs; for completeness, full results for
monotonic sum GNNs are given in Table 2, of Appendix C.

Some general patterns emerge. Firstly, loss is always
lower for the standard model than its monotonic counter-
part. This is due to the restriction on model weights prevent-
ing gradient descent from optimising the parameters to the
same extent. On the other hand, the monotonicity may help
to prevent overfitting on the training set. Likewise, AUPRC
is consistently higher on the standard model than the mono-
tonic version. Used as an indication for model performance
on the validation set, this suggests that the standard models
may be overfitting on the validation facts and struggling to
generalise to the test set, in comparison to the monotonic
models. Finally, we see that models using NAM as a scor-
ing function consistently struggled when restricted to being
monotonic: other scoring functions are thus more suitable
when monotonicity is desired.

We obtained a number of sound rules for every monotonic
model (columns #1B and #2B in Table 1), showing the effi-
cacy of our rule-checking methodology. On the LoglInfer-
WN datasets, there are 605 possible rules with one body
atom and 90508 with two. On fb237v1, there are 162000
possible rules with one body atom. On WN18RRv1, there
are 405 possible rules with one body atom and 49572 with

485

two. On nellvl, there are 980 possible rules with one body
atom and 186592 with two. Notice that, for example, nearly
all possible rules are sound when using monotonic NAM on
nellvl, which corresponds to the perfect model recall and
poor precision. We show some randomly sampled sound
rules in Table 3 of Appendix C.

On the LoglInfer datasets, we find consistently small drops
in performance (= 5% less accuracy) when monotonic mod-
els are used. However, the restriction enables us to check
sound rules for the model: we find many sound rules with
one or two body atoms, and also that around half (or some-
times more) of the injected LogInfer rules are sound for the
model. On WN-cup_nmbhier, the monotonic models showed
their ability to still learn and recover some of the injected
monotonic rules, even in the presence of some injected rules
that are explicitly non-monotonic.

On fb237v1, we see significantly better performance by
monotonic models over their standard counterparts. The
same is seen on nellvl. On WNI18RRvI1, the monotonic
models again outperform the standard ones, but by smaller
margins. These results are somewhat surprising, but encour-
aging, since one would expect monotonic models to have a
greater advantage on the LogInfer datasets, where the un-
derlying patterns in the data are explicitly monotonic. Fi-
nally, we note that the monotonic model performance on
fb237v1 and WN18RRv1 is significantly better than those
of MGNNSs (Tena Cucala et al. 2021), highlighting the ben-
efits of using a scoring function as a decoder instead of their
dataset encoding-decoding scheme, since the recall of their
models is upper-bounded by the number of positive test pairs
of constants that also appear in the input dataset.

6 Conclusion

In this paper, we showed how scoring functions can be made
monotonically increasing, how sound Datalog rules can be
found for monotonic GNNs with monotonic scoring func-
tions, and showed how existing results about scoring func-
tions capturing rule patterns impact the expressivity of GNN
models that use those scoring functions. We also provided
ways to obtain an equivalent program for any monotonic
GNN with max aggregation and monotonically increasing
scoring function, and any monotonic GNN with max-sum
aggregation and a scoring function that is non-negative bi-
linear. We showed through our experiments that, in practice,
the performance of GNNs with scoring functions does not
drop substantially when applying the restrictions that make
them monotonic, and in some cases increase the model per-
formance. We also showed that, in practice, many sound
rules can be recovered from these monotonic models, which
can be used to explain their predictions.

A limitation of this work is that we only consider non-
negative bilinear scoring functions when obtaining equiv-
alent programs for max-sum GNNs: the approach we de-
scribe may also work for other classes of monotonically in-
creasing scoring functions, such as SimplE. For future work,
we aim to consider more advanced training paradigms for
the monotonic models.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Acknowledgments

Matthew Morris is funded by an EPSRC scholarship
(CS2122_EPSRC_1339049). This work was also supported
by Samsung Research UK, the EPSRC projects UKFIRES
(EP/S019111/1) and ConCur (EP/V050869/1). The authors
would like to acknowledge the use of the University of Ox-
ford Advanced Research Computing (ARC) facility in car-
rying out this work http://dx.doi.org/10.5281/zenodo.22558.
For the purpose of Open Access, the authors have applied
a CC BY public copyright licence to any Author Accepted
Manuscript (AAM) version arising from this submission.

References

Abboud, R.; Ceylan, I.; Lukasiewicz, T.; and Salvatori, T.
2020. Boxe: A box embedding model for knowledge base
completion. Advances in Neural Information Processing
Systems 33:9649-9661.

Balazevic, I.; Allen, C.; and Hospedales, T. 2019. Tucker:
Tensor factorization for knowledge graph completion. In
Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing
(EMNLP-1JCNLP). Association for Computational Linguis-
tics.

Barceld, P.; Kostylev, E. V.; Monet, M.; Pérez, J.; Reutter,
J.; and Silva, J.-P. 2020. The logical expressiveness of graph
neural networks. In 8th International Conference on Learn-
ing Representations (ICLR 2020).

Berg, R. v. d.; Kipf, T. N.; and Welling, M. 2017.
Graph convolutional matrix completion. arXiv preprint
arXiv:1706.02263.

Bordes, A.; Glorot, X.; Weston, J.; and Bengio, Y. 2012.
Joint learning of words and meaning representations for
open-text semantic parsing. In Artificial intelligence and
statistics, 127-135. PMLR.

Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for model-
ing multi-relational data. Advances in neural information
processing systems 26.

Bordes, A.; Glorot, X.; Weston, J.; and Bengio, Y. 2014. A
semantic matching energy function for learning with multi-
relational data: Application to word-sense disambiguation.
Machine Learning 94:233-259.

Cai, L.; Yan, B.; Mai, G.; Janowicz, K.; and Zhu, R. 2019.
Transgen: Coupling transformation assumptions with graph
convolutional networks for link prediction. In Proceedings
of the 10th international conference on knowledge capture,

131-138.

Cao, Z.; Xu, Q.; Yang, Z.; Cao, X.; and Huang, Q. 2021.
Dual quaternion knowledge graph embeddings. In Proceed-
ings of the AAAI conference on artificial intelligence, vol-
ume 35, 6894—6902.

Dettmers, T.; Minervini, P.; Stenetorp, P.; and Riedel, S.
2018. Convolutional 2d knowledge graph embeddings. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 32.

486

Dong, X.; Gabrilovich, E.; Heitz, G.; Horn, W.; Lao,
N.; Murphy, K.; Strohmann, T.; Sun, S.; and Zhang, W.
2014. Knowledge vault: A web-scale approach to proba-
bilistic knowledge fusion. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery
and data mining, 601-610.

Evans, R., and Grefenstette, E. 2018. Learning explana-
tory rules from noisy data. Journal of Artificial Intelligence
Research 61:1-64.

Fan, M.; Zhou, Q.; Chang, E.; and Zheng, F. 2014.
Transition-based knowledge graph embedding with rela-
tional mapping properties. In Proceedings of the 28th Pacific
Asia conference on language, information and computing,
328-337.

Feng, J.; Huang, M.; Wang, M.; Zhou, M.; Hao, Y.; and Zhu,
X. 2016. Knowledge graph embedding by flexible transla-
tion. In Fifteenth International Conference on the Principles
of Knowledge Representation and Reasoning.

Garcia-Duran, A.; Bordes, A.; and Usunier, N. 2014. Effec-
tive blending of two and three-way interactions for model-
ing multi-relational data. In Machine Learning and Knowl-
edge Discovery in Databases: European Conference, ECML
PKDD 2014, Nancy, France, September 15-19, 2014. Pro-
ceedings, Part I 14, 434-449. Springer.

Garnelo, M., and Shanahan, M. 2019. Reconciling deep
learning with symbolic artificial intelligence: representing
objects and relations. Current Opinion in Behavioral Sci-
ences 29:17-23.

Hamaguchi, T.; Oiwa, H.; Shimbo, M.; and Matsumoto, Y.
2017. Knowledge transfer for out-of-knowledge-base enti-
ties: a graph neural network approach. In Proceedings of
the 26th International Joint Conference on Artificial Intelli-
gence, 1802—-1808.

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. Advances in neural
information processing systems 30.

Hogan, A.; Blomgqvist, E.; Cochez, M.; d’Amato, C.;
de Melo, G.; Gutierrez, C.; Kirrane, S.; Gayo, J. E. L.; Nav-
igli, R.; Neumaier, S.; Ngomo, A. N.; Polleres, A.; Rashid,
S. M.; Rula, A.; Schmelzeisen, L.; Sequeda, J. F.; Staab,
S.; and Zimmermann, A. 2022. Knowledge graphs. ACM
Comput. Surv. 54(4):71:1-71:37.

Huang, X.; Romero, M.; Ceylan, L.; and Barceld, P. 2023.
A theory of link prediction via relational weisfeiler-leman
on knowledge graphs. Advances in Neural Information Pro-
cessing Systems 36:19714-19748.

Toannidis, V. N.; Marques, A. G.; and Giannakis, G. B.
2019. A recurrent graph neural network for multi-relational
data. In ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
8157-8161. IEEE.

Ji, G.; He, S.; Xu, L.; Liu, K.; and Zhao, J. 2015. Knowl-
edge graph embedding via dynamic mapping matrix. In
Proceedings of the 53rd annual meeting of the association
for computational linguistics and the 7th international joint

http://dx.doi.org/10.5281/zenodo.22558

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

conference on natural language processing (volume 1: Long
papers), 687-696.

Ji, G.; Liu, K.; He, S.; and Zhao, J. 2016. Knowledge graph
completion with adaptive sparse transfer matrix. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 30.

Kazemi, S. M., and Poole, D. 2018. Simple embedding
for link prediction in knowledge graphs. Advances in neural
information processing systems 31.

Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; and Zhu, X. 2015. Learn-
ing entity and relation embeddings for knowledge graph
completion. In Proceedings of the AAAI conference on arti-
ficial intelligence, volume 29.

Liu, Q.; Jiang, H.; Evdokimov, A.; Ling, Z.-H.; Zhu, X.;
Wei, S.; and Hu, Y. 2016. Probabilistic reasoning via
deep learning: Neural association models. arXiv preprint
arXiv:1603.07704.

Liu, S.; Grau, B.; Horrocks, I.; and Kostylev, E. 2021.
Indigo: Gnn-based inductive knowledge graph completion
using pair-wise encoding. Advances in Neural Information
Processing Systems 34:2034-2045.

Liu, S.; Cuenca Grau, B.; Horrocks, I.; and Kostylev,
E. V. 2023. Revisiting inferential benchmarks for knowl-
edge graph completion. In Proceedings of the International
Conference on Principles of Knowledge Representation and
Reasoning, volume 19, 461-471.

Liu, H.; Wu, Y.; and Yang, Y. 2017. Analogical inference for
multi-relational embeddings. In International conference on
machine learning, 2168-2178. PMLR.

Meilicke, C.; Fink, M.; Wang, Y.; Ruffinelli, D.; Gemulla,
R.; and Stuckenschmidt, H. 2018. Fine-grained evaluation
of rule-and embedding-based systems for knowledge graph
completion. In The Semantic Web—ISWC 2018: 17th In-
ternational Semantic Web Conference, Monterey, CA, USA,
October 812, 2018, Proceedings, Part I 17,3-20. Springer.

Morris, M.; Tena Cucala, D.; Cuenca Grau, B.; and Hor-
rocks, I. 2024. Relational graph convolutional networks do
not learn sound rules. In Proceedings of the International
Conference on Principles of Knowledge Representation and
Reasoning, volume 21, 897-908.

Nickel, M.; Tresp, V.; Kriegel, H.-P.; et al. 2011. A three-
way model for collective learning on multi-relational data.
In Ieml, volume 11, 3104482-3104584.

Nickel, M.; Rosasco, L.; and Poggio, T. 2016. Holographic
embeddings of knowledge graphs. In Proceedings of the
AAAI conference on artificial intelligence, volume 30.

Pavlovi¢, A., and Sallinger, E. 2022. Expressive: A spatio-
functional embedding for knowledge graph completion. In
The Eleventh International Conference on Learning Repre-
sentations.

Pflueger, M.; Tena Cucala, D. J.; and Kostylev, E. V. 2022.
Gnng: A neuro-symbolic approach to query answering over
incomplete knowledge graphs. In International Semantic
Web Conference, 481-497. Springer.

Qu, M.; Chen, J.; Xhonneux, L.-P.; Bengio, Y.; and Tang,
J. 2020. Rnnlogic: Learning logic rules for reasoning on

487

knowledge graphs. In International Conference on Learning
Representations.

Rocktischel, T., and Riedel, S. 2017. End-to-end differen-
tiable proving. Advances in neural information processing
systems 30.

Sadeghian, A.; Armandpour, M.; Ding, P.; and Wang, D. Z.
2019. Drum: End-to-end differentiable rule mining on
knowledge graphs. Advances in Neural Information Pro-
cessing Systems 32.

Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; Van Den Berg,
R.; Titov, I.; and Welling, M. 2018. Modeling relational
data with graph convolutional networks. In The semantic
web: 15th international conference, ESWC 2018, Herak-
lion, Crete, Greece, June 3-7, 2018, proceedings 15, 593—
607. Springer.

Shang, C.; Tang, Y.; Huang, J.; Bi, J.; He, X.; and Zhou, B.
2019. End-to-end structure-aware convolutional networks
for knowledge base completion. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, 3060-3067.

Socher, R.; Chen, D.; Manning, C. D.; and Ng, A. 2013.
Reasoning with neural tensor networks for knowledge base
completion. Advances in neural information processing sys-
tems 26.

Sun, Z.; Deng, Z.-H.; Nie, J.-Y.; and Tang, J. 2018. Ro-
tate: Knowledge graph embedding by relational rotation in
complex space. In International Conference on Learning
Representations.

Tena Cucala, D.; Cuenca Grau, B.; Kostylev, E. V.; and
Motik, B. 2021. Explainable gnn-based models over knowl-
edge graphs. In International Conference on Learning Rep-
resentations.

Tena Cucala, D.; Cuenca Grau, B.; Motik, B.; and Kostylev,
E. V. 2023. On the correspondence between monotonic max-
sum gnns and datalog. In Proceedings of the International
Conference on Principles of Knowledge Representation and
Reasoning, volume 19, 658-667.

Tena Cucala, D. J.; Cuenca Grau, B.; Motik, B.; and
Kostylev, E. V. 2025. From monotonic graph neural net-
works to datalog and back: Expressive power and practical
applications. Under review: not yet published.

Tena Cucala, D.; Cuenca Grau, B.; and Motik, B. 2022.
Faithful approaches to rule learning. In Proceedings of the
International Conference on Principles of Knowledge Rep-
resentation and Reasoning, volume 19, 484493,

Teru, K.; Denis, E.; and Hamilton, W. 2020. Inductive
relation prediction by subgraph reasoning. In International
Conference on Machine Learning, 9448-9457. PMLR.
Tian, A.; Zhang, C.; Rang, M.; Yang, X.; and Zhan, Z.
2020. Ra-gcn: Relational aggregation graph convolutional
network for knowledge graph completion. In Proceedings of
the 2020 12th international conference on machine learning
and computing, 580-586.

Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, E.; and
Bouchard, G. 2016. Complex embeddings for simple link

prediction. In International conference on machine learn-
ing, 2071-2080. PMLR.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Vashishth, S.; Sanyal, S.; Nitin, V.; and Talukdar, P.
2019. Composition-based multi-relational graph convolu-
tional networks. In International Conference on Learning
Representations.

Wang, Z.; Zhang, J.; Feng, J.; and Chen, Z. 2014. Knowl-
edge graph embedding by translating on hyperplanes. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 28.

Wang, Q.; Mao, Z.; Wang, B.; and Guo, L. 2017. Knowl-
edge graph embedding: A survey of approaches and appli-
cations. IEEE Transactions on Knowledge and Data Engi-
neering 29(12):2724-2743.

Wang, H.; Zhang, F.; Wang, J.; Zhao, M.; Li, W.; Xie, X.;
and Guo, M. 2018. Ripplenet: Propagating user prefer-
ences on the knowledge graph for recommender systems. In
Proceedings of the 27th ACM international conference on
information and knowledge management, 417-426.

Wang, X.; Tena Cucala, D.; Cuenca Grau, B.; and Horrocks,
1. 2023. Faithful rule extraction for differentiable rule learn-
ing models. In The Twelfth International Conference on
Learning Representations.

Xiao, H.; Huang, M.; Hao, Y.; and Zhu, X. 2015. Transa: An
adaptive approach for knowledge graph embedding. arXiv
preprint arXiv:1509.05490.

Xiao, H.; Huang, M.; and Zhu, X. 2016. From one point
to a manifold: knowledge graph embedding for precise link
prediction. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, 1315-1321.

Xie, X.; Zhang, N.; Li, Z.; Deng, S.; Chen, H.; Xiong, F,;
Chen, M.; and Chen, H. 2022. From discrimination to gen-
eration: Knowledge graph completion with generative trans-

former. In Companion Proceedings of the Web Conference
2022, 162-165.

Yang, B., and Mitchell, T. 2017. Leveraging knowledge
bases in Istms for improving machine reading. In Pro-
ceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 1436—
1446.

Yang, B.; Yih, S. W.-t.; He, X.; Gao, J.; and Deng, L. 2015.
Embedding entities and relations for learning and inference
in knowledge bases. In Proceedings of the International
Conference on Learning Representations (ICLR) 2015.
Yang, F.; Yang, Z.; and Cohen, W. W. 2017. Differentiable
learning of logical rules for knowledge base reasoning. Ad-
vances in neural information processing systems 30.

Yu, D.; Yang, Y.; Zhang, R.; and Wu, Y. 2021. Knowledge
embedding based graph convolutional network. In Proceed-
ings of the Web Conference 2021, 1619-1628.

Zhang, M., and Chen, Y. 2018. Link prediction based on
graph neural networks. Advances in neural information pro-
cessing systems 31.

Zhang, S.; Tay, Y.; Yao, L.; and Liu, Q. 2019. Quaternion
knowledge graph embeddings. Advances in neural informa-
tion processing systems 32.

Zhang, Z.; Cai, J.; Zhang, Y.; and Wang, J. 2020. Learning
hierarchy-aware knowledge graph embeddings for link pre-

488

diction. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, 3065-3072.

Zhang, M. 2022. Graph neural networks: link prediction.

Graph Neural Networks: Foundations, Frontiers, and Appli-
cations 195-223.

	Introduction
	Background
	Sound Rules
	Equivalent Programs
	Experiments
	Conclusion
	Theory
	Non Monotonically Increasing Scoring Functions
	Monotonically Increasing Semantic Matching Models
	Monotonically Increasing Neural Network Models
	Initial Node Features in the Absence of Unary Predicates

	Full Proofs
	Lemma 17
	Lemma 2
	Proposition 3
	Proposition 6
	Corollary 7
	Corollary 8
	Theorem 11
	Capacity Setup
	Theorem 14
	Theorem 15

	Full Experiment Results

