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Abstract

With the recent interest in the reversibility of action effects,
i.e., whether the effects of the action can be undone by ap-
plying other actions, the question arose how hard it is to
reverse an action in a non-deterministic domain. With the
use of (p-reversibility, the paper investigates the computa-
tional complexity of weak and strong non-deterministic ac-
tion reversibility in fully observable non-deterministic do-
mains, showing PSPACE-completeness for all weak vari-
ants in question and EXPTIME-hardness and EXPTIME, or
NEXPTIME memberships for strong variants.

1 Introduction

In Automated Planning the central task concerns finding a
plan that transforms an initial state to some goal state (Ghal-
lab, Nau, and Traverso 2016). However, an interesting av-
enue of research is to reason about properties of actions in
order to investigate the dynamics of the system or guide the
search for such a solution. One such property is action re-
versibility, that is, whether the effects of an action can be un-
done by other actions (Daum et al. 2016; Morak et al. 2020;
Chrpa, Faber, and Morak 2021; Med et al. 2024).

Action reversibility offers several valuable advantages in
automated planning, motivating its study across various ap-
plications. Primarily, reversible actions ensure safety by
avoiding dead-end states, crucial for online planning (Cserna
et al. 2018), and suggesting applications in robotics to
verify recovery from failures. Reversibility can aid post-
planning plan optimization by identifying redundant action
cycles (Med and Chrpa 2022). In fully observable non-de-
terministic (FOND) planning, it helps assess recoverability
from undesirable effects, potentially enhancing strong cyclic
plan generation (e.g., by integration with the PRP plan-
ner (Muise, Mcllraith, and Belle 2014; Camacho, Muise,
and Mcllraith 2016)) and determining the safety of deter-
ministic replanning like FF-replan (Yoon, Fern, and Givan
2007). Furthermore, it is essential in planning with exoge-
nous events to infer the robustness of the plan (Chrpa, Pilat,
and Med 2021; Chrpa and Karpas 2024b; Chrpa and Karpas
2024a). In cybersecurity, action reversibility offers potential
as a remedy for attacks (by extending (Boddy et al. 2005)),
and allows classification of actions by risk. The utility of
reversibility for verification of security protocols has been
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demonstrated in cloud management, confirming the undoa-
bility of system operations (or informing the user about per-
manent and irreversible changes in the system) (Weber et
al. 2012; Weber et al. 2013). Further research on action re-
versibility could yield more efficient computations, increas-
ing scalability, and enabling broader practical applications.

Deciding whether a deterministic action is p-reversible is
PSPACE-complete (Morak et al. 2020). That is the same
as deciding plan existence for propositional classical plan-
ning (Bylander 1994). Morak et al. (2020) proved that the
uniform variant is PSPACE-hard, but no upper bound was
provided. They also studied classes of action ¢-reversibility
where the plans have a polynomially bounded length.

The recent work of Med et al. (2024), which introduced
weak and strong action reversibility of non-deterministic ac-
tions in fully observable settings, left the complexity ques-
tions open. Regarding non-deterministic planning in gen-
eral, Littman, Goldsmith, and Mundhenk (1998) have shown
that the probabilistic planning problem with success chance
greater than § € (0,1) is EXPTIME-complete. Rinta-
nen (2004) has given an alternative proof of EXPTIME-
completeness of FOND planning. This paper aims to
address the knowledge gap by establishing computational
complexity results for weak and strong o-reversibility by de-
riving their lower and upper bounds.

2 Preliminaries

Formalism. In order to align with the literature, we adopt
notation from Med et al. (2024), that is, a combination of
SAS™ formalism (Backstrom and Nebel 1995) and of FOND
planning used by Cimatti et al. (2003), as well as standard
computational complexity notation (Papadimitriou 1994).
Let v be a variable (or a state variable) and dom(v) be
its domain. A fact (v, x) is a pair of a variable v and its
value € dom(v). Let F(V) be the set of all facts over
the set of variables V. A set ¥ C F (V) is called a variable
assignment over V if and only if for all (v,z) € ¥ noy €
dom(v) exists such that y # x and (v,y) € X. Let vars(X)
be the set of all variables in %, ie., {v | (v,2) € Z}. A
variable assignment X over V is called complete if and only
if vars(¥) = V. Otherwise, it is partial. The set of all
complete variable assignments over V is denoted as S(V).
An action a over a set of variables V is a pair (pre(a),
eff (a)), where pre(a) is a variable assignment over V rep-
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resenting the precondition of the action a, and eff(a) is a
non-empty set of variable assignments over V representing
the set of possible effects of a. The action a is called de-
terministic if and only if |eff(a)] = 1. A determiniza-
tion of a with respect to the effect ¢ € eff(a), denoted
as a, is an action al = (pre(a),{e}). An action a
is applicable in a variable assignment X if and only if
pre(a) C X. The application of a deterministic action
a = (pre(a), {e}) in a variable assignment ¥ is the variable
assignment v(X,a) = {(v,z) € £ | v ¢ vars(e)} Ue if
a is applicable in ¥ (undefined otherwise). The application
of a (non-deterministic) action ¢ in a variable assignment
Yis the set §(2, a) = {7(Z,ad) | e € eff(a)}.

A FOND planning domain D is a pair (V, A), where
A is a set of actions over V. A state s of the domain D is
a complete variable assignment over the set V. A FOND
planning task 7 is a triple (D, s;, G), where D = (V, A)
is a FOND planning domain, s; € S(V) is an initial state
and G C F(V) is a variable assignment representing a goal.

A policy' II for the domain D = (V, A) is a binary rela-
tion such that II C {(s,a) | s € S(V),a € A, pre(a) C s}.
Note it may relate only pairs in which the action is applica-
ble. The set of all states related in IT is the set o (II) =
{s| (s,a) € II}. The n-step application of IT in a state s,
is the set 6™ (s, IT) = Uy egn—1(s,m Ugsr ayen 0(s', ) for
n > 1, and §°(s,IT) = {s}. We say that s is reachable
from s with a policy IT if and only if s’ € §%(s,II) for some
i > 0. We say that s’ is a terminal state for IT w.r.t. a state
s if and only if s’ is reachable from s with IT and s’ ¢ o (II).
The set of all such terminal states is denoted (11, s).

A policy II is called a weak goal policy for 7 if and only
if 7(IL, sp) N {sq € S(V) | G C sg} # 0. A policy II is
called a strong goal policy for 7 if and only if 7(II, s;) C
{s¢ € S(V) | G C s} and for each s € o(II) at least one
state that satisfies the goal G is reachable by II.

Reversibility. Med et al. (2024) defined weak and strong
non-deterministic action S-reversibility as follows. The def-
initions are inspired by the weak and strong solution con-
cepts of FOND planning tasks (Cimatti et al. 2003), i.e.,
weak reversibility refers to the possibility of undoing ac-
tion effects, whilst strong reversibility guarantees undoing
effects of the non-deterministic action.

Definition 1. Let D = (V, A) be a planning domain, a be
an action over the set of variables V, S C S(V) be a set of
states of D, 11 be the policy for D and  be a propositional
Sformula over F(V). The action a is called:

* weakly (resp. strongly) S-reversible in D if and only if
for each state s € S, pre(a) C s, there exists a policy
I, (called weak (resp. strong) {s}-reverse policy) for D
such that for each s' € 6(s,a) holds s € T(Il, s') (resp.
{s} = 7(l,, s") and for each state s" that is reachable
by I, from s’ it holds that s is reachable by 11, from s”);

* weakly (resp. strongly) uniformly S-reversible in the do-
main D by the policy 11 if and only if 11 is weak (resp.

'A policy specifies which actions are applied in which states.
Intuitively, it represents a “non-deterministic plan”.
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strong) {s}-reverse policy for each s € S, pre(a) C s;

e weakly (resp. strongly) (uniformly) universally reversible
if and only if the action a is weakly (resp. strongly) (uni-
formly) S-reversible and S = S(V);

* weakly (resp. strongly) (uniformly) @-reversible if and
only if the action a is weakly, (resp. strongly) (uniformly)
S-reversible such that S = {s | s € S(V), s = ¢}

Informally speaking, S-reversibility is the notion that re-
stricts the investigation of the action reversibility to the set
of states S in which the action in question is applied. Uni-
form reversibility requires that there is a common policy that
works in each state of the set .S in which the action in ques-
tion can be applied. Intuitively, it is a stronger notion than
the non-uniform variant, where there might be a specialized
policy for each state from .S. Universal reversibility is a spe-
cial case where the set .S contains all possible states in the
domain. -reversibility allows a compact representation of
states instead of a possibly exponentially large set S. For
further discussion on the differences between the classes of
action reversibility, see Med et al. (2024, Examples 1-4).

Decision Problems. Throughout this work, we only con-
sider decision problems in which the set .S is represented as
a formula ¢. Next, we define the two most general of the
studied decision problems, weak and strong -reversibility.
WEAK-@-R (resp. STRONG-p-R)
Instance: A domain D = (V, A), an actiona € A, a
formula ¢ over (V).
Question: Is the action a weakly (resp. strongly) -
reversible in the domain D?

Decision problems corresponding to universal variants,
uniform variants, and their combinations are defined anal-
ogously. Notice that universal variants are special cases of
the general p-reversibility problems where ¢ = T.

3 Complexity Results

Weak Reversibility. We start with the hardness of weak
universal uniform reversibility, as it builds upon the knowl-
edge acquired by a study on deterministic action reversibil-
ity. It shows how deterministic universal uniform reversibil-
ity generalizes to weak universal uniform reversibility, thus
proving hardness.

Proposition 2. WEAK-UNIVERSAL-UNIFORM-R s
PSPACE-hard, which implies the same for WEAK-UNIFO-
RM-p-R, WEAK-UNIVERSAL-R, and WEAK-@-R.

Proof. Consider a planning domain that only consists of de-
terministic actions (i.e. where all actions have only one set
of effects). In this case, the universal uniform reversibility
for STRIPS studied by Morak et al. (2020) is a special case
of our WEAK-UNIVERSAL-UNIFORM-R problem. Thus,
we inherit its PSPACE-hardness. Moreover, since universal
reversibility is a special case of y-reversibility, hardness is
immediately inherited by WEAK-UNIFORM-¢-R. As hard-
ness for deterministic reversibility already holds for an ac-
tion applicable in a single state only, and since then, the no-
tions of uniform and non-uniform reversibility coincide, the
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Figure 1: Sketch of construction of 75 in proof of Theorem 6.

same hardness also follows for WEAK-UNIVERSAL-R and
WEAK-p-R. 0

Hence, hardness for all considered variants of weak
reversibility follows easily from reversibility in STRIPS.
However, notice that while weak reversibility generalizes
reversibility in the deterministic case, there is no one-to-
one correspondence between reverse plans (as defined for
the deterministic setting) and reverse policies as defined in
this paper. For example, a uniform reverse plan allows us to
immediately construct an equivalent uniform reverse policy.
However, the converse is in general not true, since a policy
may apply a different set of actions in each state.

The lemma below is related to this particular observation.
It can be viewed as a blueprint for combining several poli-
cies together to achieve uniformity. On the other hand, it
also claims that once there is some weak uniform reverse
policy for at least two states, it can be decomposed into two
separate policies for each one. The lemma is derivable by
using Theorem 7 of Med et al. (2024).

Lemma 3. Let D = (V, A) be a planning domain, S1, Sy C
S(V) be a set of states, a € A be an action, I1; be a weak
Si-reverse policy for a and 1y be a weak Sa-reverse policy
Sor a. The policy I1; UIly is a weak (S1 U Sa)-reverse policy
for the action a if and only if {s | s € Si,pre(a) C s} N
o(Ily) =0 and {s | s € Sz, pre(a) C s} No(Il;) = 0.

Lemma 3 will allow us to prove PSPACE-membership of
weak uniform -reversibility by constructing individual re-
verse policies for each relevant starting state and merging
them to form a uniform reverse policy.

Theorem 4. WEAK-UNIFORM-p-R is in PSPACE, which
implies the same for WEAK-UNIVERSAL-UNIFORM-TR,
WEAK-¢-R, and WEAK-UNIVERSAL-R.

Proof. We want to decide uniform -reversibility for action
a in planning domain D = (V, A). Let e be an effect of a.
Existence of an {s}-reverse policy for a¢ that does not visit
any states satisfying ¢ and pre(a) can be decided using the
following NPSPACE procedure: Let s’ be the current state.
Guess an action ¢’ and an effect e’ of a’. Verify that applying
a!¢ does not lead to a state s” with s” |= ¢ and pre(a) C s".
If so, answer no. If s = s, answer yes. Otherwise, repeat
with s’ = s”. The procedure starts with s’ = s, and the
first chosen action and effect is forced to be a and e. This
decides {s}-reversibility of aZ with a policy as in Lemma 3.
But then there is an NPSPACE procedure that establishes -
reversibility of a: Simply decide the above for all effects e
of a and states s where s |= . If and only if all answers are
yes, then, per Lemma 3, there must be a (-reverse policy for
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Qend

Figure 2: Sketch of construction of D’ in the proof of Theorem 5.

a combining all these individual {s}-reverse policies. Via
Savitch’s theorem (which implies PSPACE = NPSPACE)
(1970) the desired result follows. Since universal reversibil-
ity is a special case of (-reversibility, and since uniform
reversibility implies (non-uniform) reversibility, the upper
bound also holds for these variants of reversibility. [

With all upper bounds addressed, we have proved
PSPACE-completeness of all variants of weak reversibil-
ity. Similarly to weak planning, weak reversibility revolves
around whether the state in which the action has been ap-
plied can possibly be reached from the resulting states.
However, this reachability is checked for many different
states at once, either via separate policies for each state (non-
uniformity) or by a shared multifunctional policy (unifor-
mity). Yet, our results show that this does not cause a differ-
ence from a computational complexity perspective.

Strong Reversibility. Also for strong reversibility, at the
heart of the problem lie several planning tasks, one for each
potential starting state. However, these tasks now need to
check for strong solutions, that is, whether the goal state is
reached no matter which action effects occur.

We again start with hardness for the universal uniform
case. The idea of the proof is an adaptation of the proof
provided by Morak et al. (2020) in the deterministic setting.

Theorem 5. STRONG-UNIVERSAL-UNIFORM-R s
EXPTIME-hard. This implies the same for STRONG-UNI-
FORM-p-R, STRONG-UNIVERSAL-R, and STRONG-p-R.

Proof Sketch. The proof is via reduction from the existence
of a strong cyclic solution. The idea is sketched in Figure
2. Given a planning task 7 = (D, s7,G) we need to check
whether there is a strong goal policy for 7. In order to con-
vert this into a reversibility task, we introduce a fresh, spe-
cial value “undefined” for each variable. An action agg
is added, which is only applicable wFhen all variables are
undefined and it sets their values to the starting state sj.
An action aeyq is added, which is only applicable in states
where G holds, and which again sets all variables to unde-
fined. The original actions remain the same. Clearly, the
procedure runs in polynomial time.

In order to decide the existence of a strong goal policy for
T via strong universal uniform reversibility, we simply ask
whether the action ag,y is strongly reversible. Since agg 1S
only applicable in single state 6, where all variables are un-
defined, it is strongly universally uniformly reversible if and
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only if there is a strong goal policy for 7", which leads from
sy the goal G. Hence, EXPTIME-hardness is inherited from
the existence of a strong cyclic solution (Rintanen 2004).
For p-reversibility and the non-uniform versions, recall
that the above hardness result already holds for a single start-
ing state . But in this case, the hardness is immediately
inherited by these variants, proving the desired result. O

Since solving multiple planning tasks lies at the heart of
reversibility, it is clear that the relevant lower bounds will be
inherited from the corresponding planning problems. How-
ever, up to exponentially many planning tasks need to be
solved within a single reversibility task. For non-uniform
reversibility, we can solve these tasks separately, resulting
in exponential time overall.

Theorem 6. STRONG-¢-R is in EXPTIME.

Proof Sketch. Given a planning domain D = (), A) where
strong (p-reversibility of action a should be tested, we con-
struct, for each starting state s € S(V) such that pre(a) C s
and s = ¢, a planning task 7 in the following way: (1) in
Ts we require that the first action that is applied is a; and
(2) where the goal is s. Condition (1) is achieved by adding
a fresh variable v, with possible values T and | and aug-
menting action a by adding as a precondition that v, must
be L, modifying all its effects so that v, is set to T, and aug-
menting all other actions to require v, to be T. We establish
(2) by adding that v, must be T to our goal; see Figure 1.
In this way, strong {s}-reversibility can be checked by
solving the non-deterministic planning task 7, where strong
{s}-reversibility holds if and only if a strong goal pol-
icy exists for 7, proving EXPTIME-membership for {s}-
reversibility by inheriting the upper bound from strong plan-
ning (Rintanen 2004). Since S(V) is of exponential size, we
can solve strong {s}-reversibility for each state s € S(V) in
turn, taking exponential time overall. O

When ¢ = T, we immediately obtain the following:
Corollary 7. STRONG-UNIVERSAL-R is in EXPTIME.

The above establishes EXPTIME-completeness for the
non-uniform versions of strong reversibility. We will now
turn our attention to the uniform variants. The following up-
per bound can be obtained straightforwardly.

Theorem 8. STRONG-UNIFORM-¢-R and STRONG-UNI-
VERSAL-UNIFORM-R are in NEXPTIME.

Proof. A non-deterministic exponential time procedure for
deciding the above problems works as follows: First, guess
a strong reverse policy II for action a (which is of exponen-
tial size w.r.t. the input planning domain). For each state s,
check in exponential time whether II reverts action a and
whether s |= ¢ in case of ¢-reversibility. If all checks suc-
ceed, answer yes, otherwise no. Since there are exponen-
tially many states s, overall, these checks take exponential
time. This establishes NEXPTIME-membership. O

Unfortunately, this leaves a gap in our complexity investi-
gation. However, from our investigation, it seems non-trivial
to close, as both a membership proof for EXPTIME and a
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[ Problem

Weak reversibility
Weak uniform reversibility

| Complexity
PSPACE-complete
PSPACE-complete

EXPTIME-complete
EXPTIME-hard, in NEXPTIME

Strong reversibility
Strong uniform reversibility

Table 1: Summary of computational complexity results. All
bounds hold for all types of reversibility: S-reversibility, ¢-
reversibility, and universal reversibility, respectively.

hardness proof for NEXPTIME seem to run into structural
issues w.r.t. how strong uniform reversibility works.

Notice that in the strong reversibility setting, it might
be the case that a (uniform) reverse policy for two starting
states, say s; and so, exists, but then, after applying some
actions, it may end up in a single state s for both, from
which there are then several paths leading back to s; and ss.
While this is not a problem for weak reversibility, it renders
the policy invalid for the purposes of strong reversibility. In
the latter case, the policy must guarantee that state s; is al-
ways reverted back to s; and the same for so. But a shared
state s renders this impossible: the policy cannot distinguish
whether it should now return to sy or sy from s (cf. Med et al.
(2024, Theorem 8)). This is because the policy decides the
next action based on the current state only. Hence, strong
uniform reversibility offers not only the guarantee that the
initial state is restored in all cases, but also that individual
parts of the policy do not interfere with each other.

Hence, we can verify in EXPTIME that a given policy
works, but it seems more difficult to establish the existence
of such a policy, since there are superexponentially many
candidate policies for a given reversibility task. Attempt-
ing to construct non-interfering partial policies for each state
that can later be combined to form a single strong reverse
policy seems to require more effort than can be spent in
EXPTIME. On the other hand, this clear separation and
a complete independence of partial policies for each state
also seem to prevent NEXPTIME-hardness from being es-
tablished. This mirrors a complexity-theoretic gap which
exists already for deterministic STRIPS planning tasks:
namely, that uniform reversibility of STRIPS actions with
polynomial-length plans is harder than NP (in fact it is hard
for the complexity class of UNIQUES AT), but seemingly not
hard for 2123 (Morak et al. 2020). From our investigation, it
seems difficult to establish completeness for one of the stan-
dard complexity classes for strong uniform reversibility.

4 Conclusions

We established PSPACE-completeness of weak reversibility
for FOND planning, as well as the EXPTIME-completeness
for strong reversibility in general (i.e. its non-uniform vari-
ant). In the uniform case, strong reversibility seems to fall
between EXPTIME and NEXPTIME, where we established
a lower and an upper bound, respectively (see Table 1).

In the future, we plan to investigate refined notions of re-
versibility, e.g. polynomial-size or acyclic policies. If possi-
ble, we plan to further narrow down the complexity of strong
uniform reversibility.
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