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Abstract

Epistemic logic and the theory of argumentation have only
very recently started to interact, despite the central role that
the epistemic view of argument plays in contemporary episte-
mology. In this paper, we present a novel epistemic language
for reasoning about three types of beliefs of agents: explicit
belief, plain implicit belief, and focused implicit belief. We
use it to represent the concept of deductive argument and to
elucidate its connection with the concept of belief. Our lan-
guage is interpreted through a formal semantics that relies on
belief bases. This semantics allows us to naturally represent
the reasons an agent has for believing something, which we
show to be closely related to the notion of argument. We
provide results on expressiveness, axiomatization and decid-
ability for the language.

1 Introduction

Epistemic logic and formal argumentation are two promi-
nent areas of research in artificial intelligence that have tra-
ditionally developed in relative isolation from each other.
Epistemic logic focuses on the formal representation of
agents’ epistemic states, particularly knowledge and be-
lief (Hintikka 1962; Meyer and van der Hoek 1995; Fa-
gin et al. 1995), while argumentation theory investigates
the structure and dynamics of arguments, both in terms
of logical inference and dialogical interaction (Dung 1995;
Walton and Krabbe 1995; Bench-Capon and Dunne 2007).
Despite their separate trajectories, a growing body of work
in philosophy and cognitive science has emphasized a fun-
damental link between beliefs and arguments. For in-
stance, Mercier & Sperber (Mercier and Sperber 2017;
Mercier and Sperber 2011) propose that the formation of ar-
guments originates at the cognitive level, grounded in the
agent’s pre-existing beliefs and inferential capabilities. In
informal logic (Groarke 2017), the notion of argument has
been shown to be intimately connected with the notions of
evidence and reason that have an explicit epistemic connota-
tion: an argument can be seen as a kind of reason in support
of a conclusion or a claim.

In recent times, there have been several attempts to inte-
grate epistemic logic with formal argumentation. Two tra-
ditions can be distinguished. The first includes works that
focus on the formal representation of agents’ beliefs and un-
certainty about argumentation frameworks, e.g., belief and
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uncertainty about the attack relations between arguments.
The second tradition aims to use concepts from argumen-
tation theory to develop natural notions of justified belief,
in line with research in formal epistemology on justification
logic (Artemov 2008) and the logic of evidence-based be-
liefs (van Benthem and Pacuit 2011; van Benthem, Duque,
and Pacuit 2014). We will discuss related works in the two
traditions in more detail in Section 2.

In this paper, we follow the second tradition by propos-
ing an integration of epistemic logic with Besnard &
Hunter (B&H)’s deductive theory of arguments (Besnard
and Hunter 2001; Besnard and Hunter 2008). This the-
ory offers a key advantage over abstract argumentation by
making the internal logical structure of arguments explicit,
allowing for more fine-grained reasoning about how con-
clusions follow from premises, whereas abstract argumen-
tation treats arguments as atomic entities without analyz-
ing their content. It is also well-suited for integration with
epistemic logic, as it defines arguments from propositional
belief bases. This aligns naturally with epistemic logic,
which—being a branch of modal logic—extends proposi-
tional logic. At the conceptual level, our integration con-
sists in “internalizing” the notion of deductive argument at
the agent’s epistemic level. We assume that each agent has
their own private belief base, and that an argument is simply
some information in the agent’s belief base that supports a
certain conclusion.

To achieve this integration formally, we rely on the be-
lief base semantics for epistemic logic presented in (Lorini
2018; Lorini 2020). In this semantics, the states (or worlds)
in a model are not treated as primitive entities, as in stan-
dard epistemic logic semantics, but are instead decomposed
into two components: the belief bases of the agents and a
propositional valuation. Moreover, the agents’ doxastic ac-
cessibility relations between possible states are not given
as primitives but are computed from their belief bases. In
line with (Konolige 1986), this semantics distinguishes an
agent’s explicit beliefs (i.e., the information in the agent’s
belief base) from implicit ones (i.e., the information that is
deducible from the agent’s belief base). The possibility of
using a semantics for epistemic logic in which agents’ belief
bases are represented is key to capturing B&H’s notion of
deductive argument, which requires modeling the informa-
tion in a belief base that supports a given conclusion.
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We will leverage this semantics to interpret a novel epis-
temic language for reasoning about three types of belief: ex-
plicit belief, plain implicit belief, and focused implicit be-
lief. While plain implicit belief captures what an agent can
deduce from their belief base, focused implicit belief cap-
tures what an agent can deduce when focusing on a part of
their belief base. We will provide results on expressiveness,
axiomatization, and decidability for the language. We will
express the concept of deductive argument in the epistemic
language and study its connection with the concept of belief.
Furthermore, we will use the semantics to establish the for-
mal connection between the notion of deductive argument
and a notion of substantive reason coming from the logical
theory of evidence-based beliefs.

Our contribution can also be seen as a generalization
of B&H’s theory to both higher-order information and the
multi-agent setting. In fact, our semantics allows for the
representation of arguments from different agents, as well as
arguments that involve, in both their premises and supported
conclusions, information about the beliefs of other agents.
The following example clarifies this point.

Example 1. An argument for Ann to conclude that her hus-
band Bob is going to fix her bike tire—so that she can use the
bike to go to work—may consist in Ann explicitly believing
that Bob explicitly believes the tire is flat, and Ann explicitly
believing that if Bob explicitly believes the tire is flat, he will
fix it. This argument could be counterbalanced by an argu-
ment supporting the opposite conclusion: that Bob will not
fix the tire. This counterargument may consist in Ann explic-
itly believing that Bob explicitly believes she does not intend
to use the bike to go to work, and Ann explicitly believing
that if Bob explicitly believes this, he will not fix the tire.

The paper is organized as follows. In Section 2, we dis-
cuss related work. In Section 3, we present the belief base
semantics. Then, in Section 4, we introduce the language
for explicit belief, plain implicit belief, and focused implicit
belief. In Section 5, we use the language to formalize the
concept of deductive argument. In Section 6, we provide a
semantic analysis of the relationship between deductive ar-
gument and substantive reason. Section 7 is devoted to the
proof-theoretic aspects and decidability of the language. In
Section 8, we discuss some perspectives for future work.

2 Related Work

As pointed out in the introduction, two traditions in the inte-
gration of epistemic logic and formal argumentation can be
identified: the representation of agents’ knowledge and un-
certainty about argumentation frameworks, and logical the-
ories of the connection between beliefs and arguments. One
of the first works in the first tradition is Schwarzentruber et
al. (Schwarzentruber, Vesic, and Rienstra 2012). They ex-
tend possible worlds models of multi-agent epistemic logic
with argumentation frameworks—associating one argumen-
tation framework with each world—and interpret a variety
of epistemic languages over this class of models. Sakama
& Son (Sakama and Son 2019; Sakama and Son 2020) in-
troduce the notion of an epistemic argumentation frame-
work (EAF), which extends a basic argumentation frame-
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work with the reasoner’s view, represented by an epistemic
formula. Herzig & Yuste-Ginel (Herzig and Yuste-Ginel
2021a) formalize the notion of a higher-order view on an ar-
gumentation framework, that is, what an agent knows about
what another agent knows about an argumentation frame-
work. In another work (Herzig and Yuste-Ginel 2021b), they
show that incomplete argumentation frameworks (IAFs), as
defined in (Baumeister et al. 2018), can be naturally rep-
resented within the epistemic logic of visibility (Herzig,
Lorini, and Maffre 2018).!

A notable work in the second tradition is Grossi & van
der Hoek’s (Grossi and van der Hoek 2014) on a two-
dimensional semantics for argument-based beliefs. They in-
troduce a new class of structures, called doxo-argumentative
structures, defined as the modal product of doxastic struc-
tures and argumentative structures, and use it to define a
variety of notions of argument-based belief. Shi et al.
(Shi, Smets, and Veldzquez-Quesada 2017; Shi, Smets, and
Velazquez-Quesada 2023) extend topological models for
epistemic logic (Baltag et al. 2016) with an argumentation
component, namely, an attack relation between the elements
of the topological space, capturing the evidences that sup-
port beliefs. They use the resulting structures, called topo-
logical argumentation models, to define argument-based
notions of belief, including grounded beliefs and fully
grounded beliefs. For instance, grounded belief is the belief
supported by at least one argument in the grounded exten-
sion computed from the topological argumentation model.
Finally, the work by Wang & Li (Wang and Li 2021) is in
line with the so-called justified true belief (JTB) theory of
knowledge. They extend relational doxastic models of epis-
temic logic with an argumentation function that associates a
set of arguments to each world in the model, where an ar-
gument is seen as a set of sets of worlds. They use their
semantics to define a modal operator for “true belief sup-
ported by an argument”. The last work to be mentioned is
Amgoud & Demolombe’s (Amgoud and Demolombe 2014).
They combine epistemic logic and abstract argumentation
to formalize how different arguments interact in assessing
trustworthiness of information sources.

Our work falls within the second tradition by proposing
an integration of epistemic logic and the theory of deductive
arguments, one of the main theories in formal argumenta-
tion. As far as we know, such an integration has not been
proposed before.

3 Belief Base Semantics

Following (Lorini 2020), in this section we present a seman-
tics for epistemic logic exploiting the notion of belief base.
Unlike the standard Kripke semantics for epistemic logic in
which possible states and epistemic alternatives are primi-
tive, in the belief base semantics they are defined from the
primitive concept of belief base.

Assume a countably infinite set of atomic propositions
Atm = {p,q,...} and a finite set of agents Agt

!The relation between IAFs and the possible world semantics of
epistemic logic is also explored in (Proietti and Yuste-Ginel 2021).
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{1,...,n}. We define the language L, for talking agents’
explicit beliefs by the following grammar:

Lo

where p ranges over Atm and i ranges over Agt. The for-
mula A;« is read “agent ¢ has the explicit belief that .

The following notion of state is needed to provide a se-
mantic interpretation of the formulas in the language £y. A
state has two components: a propositional valuation repre-
senting the atomic facts that are true (resp. false) in the envi-
ronment and one belief base for every agent in Agt made of
formulas from L. Thus, an agent’s belief base can contain
not only propositional information (i.e., information about
the environment) but also higher-order information regard-
ing the explicit beliefs of other agents.

Definition 1 (State). A state is a tuple S = ((B;)icagt, V)
where:

def
= [e%

p|_\OZ|Oé/\Oé|AiO[,

* B, is a finite set of formulas from L representing agent
1’s belief base,

* V is a set of atomic propositions from Atm representing
the actual environment.

The set of all states is denoted by S.

The following definition specifies the truth conditions for
the formulas in the base language £ relative to a state.

Definition 2 (Satisfaction relation). Let S —
((Bi)icagt, V) €S. Then,
SEp < peV,
Sk-o = Sia
SEFaNay <= SkEayand$ | a,
SEAia < acB.

According to the previous semantic interpretation, p is ac-
tually true (i.e., S |= p) if p is a property of the actual envi-
ronment (i.e., p € V). Pay special attention to the interpre-
tation of the explicit belief operators in the previous defini-
tion: agent ¢ has the explicit belief that « (i.e., S = A;) if
« is included in its belief base (i.e., « € B;). The following
definition introduces the notion of doxastic alternative.

Definition 3 (Doxastic alternatives). Let i € Agt. Then, R;
is the binary relation on the set S such that, for all S =

((Bi)iGAgt7 V)a S, = ((Bi/)iGAgta V,) e S:
SR;S" ifand only if Vo € B;, S’ | .

SR;S’ means that S’ is a doxastic alternative for agent ¢
at S, that is to say, S’ is a state that at S agent i considers
possible. The idea of the previous definition is that S” is a
doxastic alternative for agent ¢ at S if and only if, S’ satisfies
all facts that agent ¢ explicitly believes at S.

Let us introduce the the notion of focus-based doxastic
alternative into the following definition: an alternative that
an agent considers possible when focusing its attention on a
restricted set of formulas from L.

Definition 4 (Focus-based doxastic alternatives). Let i €
Agt and X C Lo Then, RX is the binary relation on
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the set S such that, for all S = ((Bi)ieAgt7 V), S’
((BZ‘/)iEAgh V’) €S:

SRS ifand only ifVa € (BiN X), 8" = a.

SR:XS" means that S’ is a doxastic alternative for agent
i at S under focus X, that is to say, S’ is a state that at .S
1 considers possible, when focusing on the formulas in X.
According to Definition 4, the latter means that S’ satisfies
all facts in the restriction of i’s belief base at S to X.

The last notion we consider is that of model. A model is
a state supplemented with a set of states, called context or
universe, that captures the agents’ common ground, namely,
the body of information of which the agents have common
knowledge (Stalnaker 2002). The context is not necessarily
equal to the set of all states S, since there could be states in
S which are incompatible with the agents’ common knowl-
edge of the “laws of the domain”. For example, we might
want to exclude from the context all states in which the
propositions “Ann is in Paris” and “Ann is in Rome” are
true at the same time, under the assumption that the agents
have common knowledge of the basic principles of physics,
according to which a person or object cannot be in two dif-
ferent places simultaneously.

Definition 5 (Model). A multi-agent belief base model (or
simply model) is a pair (S,U) where S € U C S. The class
of models is denoted by M.

Definition 5 requires S € U since we conceive the agents’
common ground as their common knowledge and not as
their common belief. By definition, the agents’ common
knowledge is correct (i.e., the actual state is included in it).
Note that the model (S, S) is a model with maximal un-
certainty since it includes all possible states. This means
that in this model the agents have no shared information in
their common ground. For notational convenience, we write
S = g instead of (5, S) = ¢. Let us go back to the Exam-
ple 1 given in Section 1 to illustrate the semantics.

Example 2. We consider the model (S,U) where the state
S = ((BA,m, Bgob), V) represents the explicit beliefs of
Ann and Bob as well as the actual environment:

Bann :{ﬂ7 ABob.ﬂ7 ABob.ﬂ — .ﬁa
Apoy—ab, Apoy—ab — —fi},

Bpob :{ﬂ7ﬁ7 AATLTLABObﬂ? AA'an(ABobﬂ — ﬁ)}a
V :{ﬂ,ﬁ7 ab}.

The atomic propositions fl, fi, and ab denote, respectively,
“the bike tire is flat”, “Bob fixes the bike tire”, and “Ann
wants to use the bike to go to work”. Thus, Ann explic-
itly believes i) that the bike tire is flat (i.e., fl € Bann);
ii) that Bob explicitly believes that the bike tire is flat (i.e.,
ABopfl € Bann); 1ii) that if Bob explicitly believes that the
bike tire is flat then he will fix it (i.e., Apopfl = fi € Bann);
iv) that Bob explicitly believes that Ann does not wish to use
the bike to go to work (i.e., Apopy—ab € Bapy); and v) that
if Bob explicitly believes that Ann does not wish to use the
bike to go to work, then he will not fix the bike tire (i.e.,
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Apop—ab — —ft € Bann). Moreover, Bob explicitly be-
lieves i) that the bike tire is flat (i.e., fl € Bpoy), ii) that
he is going to fix it (i.e., fi € Bpop), iii) that Ann explicitly
believes that Bob explicitly believes that the bike tire is flat
(i.e., DN annDBobfl € Bpop); iv) that Ann explicitly believes
that if Bob explicitly believes that the bike tire is flat, then he
will fix it (i.e., A pnn(Dpovfl = fi) € Bpop). Finally, the
bike tire is flat, Bob is going to fix it, and Ann wishes to use
the bike to go to work (i.e., fl, fi,ab € V).

The context U consists of all states in which Bob will fix
the bike tire only if it is flat. Indeed, by definition, an object is
‘fixed’ only when it is damaged, broken, or not functioning
properly, and this is common knowledge between Ann and
Bob. Thatis, U ={S"€S: 5 = fi— fi}.

4 Epistemic Language
We extend the language L of explicit beliefs defined in the
previous section with modal operators for plain implicit be-
lief and focused implicit belief. We call £ the resulting lan-
guage and define it by the following grammar:

LE o al-plene|Dip| OFe,
where a ranges over Lo, i ranges over Agt and X is a finite
subset of £, which we note X Cfin 2.

The other Boolean constructions T, L, V, — and < are
defined from «, — and A in the standard way. The formula
U;¢ has to be read “agent ¢ implicitly believes that ¢ or
“agent ¢ can deduce that ( from their explicit beliefs”, while
the formula [J:X ¢ has to be read “agent i implicitly believes
that ¢, when focusing on the formulas in X or “agent ¢ can
deduce that ¢ from their explicit beliefs, when focusing on
the formulas in X”".

The duals of the modal operators [J; and (12X are defined

£

in the usual way: O;¢0 = ;- and 0Xp <

The following definition extends the definition of the
satisfaction relation (Definition 2) to the full language L.
In particular, formulas of the language £ are interpreted
with respect to a model (S, U), as defined in Definition 5.

(Boolean cases are omitted since they are defined as usual.)

Definition 6 (Satisfaction relation (cont.)). Let (S,U) € M.
Then:

S, U)Ea <<= SEaq,
(S,U)EDip < VS €U, if SRS’ then
(8.U) E ¢,
(S, U)EO e <= VS cU, if SRS then
(S.U) E .

According to the previous definition, agent ¢ implicitly
believes that ¢ if ¢ is true at all states in the actual context
that 4 considers possible. Moreover, agent ¢ implicitly be-
lieves that ¢ when focusing on X if ¢ is true at all states in
the actual context that ¢ considers possible when focusing on
X.

Let ¢ € L. We say that ¢ is valid for the class M, denoted
by [= o, if for every (S,U) € M we have (S,U) = ¢. We
say that ¢ is satisfiable for the class M if - is not valid for
the class M.
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We conclude this section with an expressiveness result for
the language L: plain implicit belief and focused implicit
belief are not reducible to each other.

Theorem 1. The operators O;p and (X ¢ are not interde-
finable.

Proof. We first prove that [J:X ¢ is not expressible in the [J;-
fragment.
Toward a contradiction, we suppose that there is a formula

 of the [J;-fragment which is equivalent to qu}q. We con-
sider a proposition p which does not occur in ¢. We have:

i) (({p.p — ¢.4},0)) = 0!,
(({p,p = a},0)) k= O,

iii) (({p.p = 4,9}, 0)) E o,

) (({p,p = q}.0)) [~ ¢.

By induction on the structure of ¢, it is routine to show that
if p does not occur in ¢ then:

({p,p = 4,4}, 0)) = @iff ({p,p = 4},0)) E .

Thus, iii) implies (({p,p — ¢},0)) = ¢ which contradicts
iv).

Now we are going to prove that [];¢ is not expressible in
the ;X -fragment. Toward a contradiction, we suppose that
there is a formula ¢ of the [JX -fragment which is equivalent
to [J;q. We consider a proposition p which does not occur in
. We have:

)
i1)
)

) (({p,p = ¢3,0)) = Dig,
i) (({p = 4}, 0)) ¥ Oig,
iit) (({p.p = a},0)) = o,
) ({p = q},0)) ¥

By induction on the structure of ¢, it is routine to show that
if p does not occur in ¢ then:

(({p,p = 4},0)) E @iff ({p— q},0)) = o

Thus, iii) implies (({p — ¢},0)) | ¢. It contradicts iv).
O

]

S The Concept of Deductive Argument

Having introduced the belief base semantics and the epis-
temic language in the previous two sections, we can now
define the notion of a deductive argument, according to
Besnard and Hunter’s deductive theory (Besnard and Hunter
2001; Besnard and Hunter 2008). We define it as an abbrevi-
ation within the epistemic language. Conceptually, it can be
viewed as a ternary predicate involving three components:
an agent ¢ € Agt, the holder of the argument (i.e., the agent
who forms the argument); a non-empty, finite set of formu-
las X Cfin £, representing the support or content of the
argument; and a formula ¢ € L representing the supported
conclusion:

Arg(X.0) = N Do nD¥en-OF LA A -OX

acX X'cX
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The abbreviation Arg, (X ,p) stands for “the information in
X is, for agent ¢, an argument supporting the conclusion that
.” This means that: i) every fact in X is explicitly believed
to be true by agent i (i.e., A\ ¢ x Ai); ii) agent ¢ implicitly
believes that ¢ when focusing on the information in X (i.e.,
O ); iii) agent i does not believe a contradiction when
focusing on X (i.e., 700X 1); and iv) agent i can no longer
implicitly believe that ¢ when neglecting some information
in X (ie., /\X/CX:|X’\:|X\—1 05 ).

Let us go back to Ann and Bob’s example to illustrate
the previous definition of deductive argument. The exam-
ple shows that our approach generalizes B&H’s theory to
arguments whose premises may contain information about
agents’ explicit beliefs and whose conclusions may be about
agents’ implicit beliefs. Indeed, in B&H’s theory, both
premises and conclusion of an argument are propositional.

Example 3. It is straightforward to verify that the following
holds, where (S,U) is the model given in Example 2:

(Sa U) ): ArgAnn({ABobﬂv ABob.ﬂ — .ﬁ}7.ﬁ)/\
ArgAnn({ABObﬁab, Apop—ab — ﬁﬁ},ﬁﬁ)/\
ArgBob({AAnnABobﬂv AA’rm(ABob.ﬂ — .ﬁ)}aDAnnﬁ)

This means that at the model (S,U) Ann holds both an ar-
gument supporting the conclusion that Bob is going to fix
the bike tire and a counter-argument supporting the conclu-
sion that Bob is not going to fix the bike tire. Moreover, Bob
holds an argument supporting the conclusion that Ann im-
plicitly believes that Bob is going to fix the bike tire.

We are now going to show the correspondence between
the previous definition of deductive argument and that of
B&H. To illustrate this correspondence, some preliminar-
ies are necessary. First, we treat the language Ly as a
propositional language built from the set of atomic formu-
las Atm™ = Atm U {A;a : i € Agt and o € Ly }. Second,
we consider the classical deductive closure operator Cn on
sets of propositional-like formulas from £y, where explicit
belief formulas “/\;«” are regarded as atomic formulas.

As the following proposition highlights, in a model with
maximal uncertainty and when the supported formula be-
longs to Ly, the previous notion of deductive argument has
a deductive characterization that corresponds to B&H’s def-
inition (Besnard and Hunter 2001, Definition 3.1).

Proposition 1. Let o € Ly, S = ((Bi)ieAgt, V) € S and
X cfin L. Then,

i) a € Cn(B;NX),

1) L & Cn(B; N X),

) VX' C X,a & On(B;NX').
Proof. The proposition is a direct consequence of the fol-
lowing property:

i) S | O aiffa € On(B; N X),

together with the semantic interpretation of the formu-
las of the language £ (Definition 6) and the definition of
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Arg;(X,a). We are goint to prove property i). Let Q
be the set of propositional interpretations for the language
Ly, when formulas “/\;a” are regarded as atomic formu-
las It is straightforward to verify that there exists a bijection
f:Q — Ssuchthat f(w),S E aiffw = o, forallw € Q
and o € L.

We are going to prove the equivalent statement “S |
OX-aiffa g Cn(B;NX)".

Suppose that ¢ Cn(B;NX). This means that (B;NX)U
{—a} is propositionally consistent. Hence, by the strong
completeness of propositional logic, there exists w € {2 such
that w |= f for all 5 € (B; N X) U {—a}. Thus, there exists
S’ € Ssuchthat f(w) = $"and §’ = B forall 8 € (B; N
X)U{—a}. Consequently, by the semantic interpretation of
the modality <>;»X ,(59,8) E ()Z-X —«. The other direction is
proved in an analogous way. O

According to the previous proposition, the information in
X is, for agent ¢, an argument supporting the conclusion that
« if 1) all information in X is part of ¢’s belief base, ii) ¢ can
deduce « from the information in X, iii) the information in
X is not inconsistent, iv) ¢ can no longer deduce o when
neglecting some information in X. In this sense, X is a
minimal set of consistent information in ¢’s belief base that
enables 7 to deduce «.

We conclude this section by listing some notable prop-
erties of the previous notion of argument, presented in the
form of validities. Proving them is routine, using the seman-
tic interpretation of formulas given in Definition 6 and the
definition of Arg;(X ), so we omit their proofs:

= —Arg, (X,T) )]
= —Arg; (X, 1) (2)
= (Arg,(X,0) A Arg;(X 1)) = Argi (X0 AY)  (3)
= Arg;(X,p) = Arg;(X o V) )

According to the validity (1), an agent cannot have an argu-
ment in support of a tautology, while according to the valid-
ity (2), it cannot have an argument in support of a contra-
diction. According to the validity (3), arguments aggregate
under conjunction: if X is an argument in support of ¢ and
X is an argument in support of ¢, then X is an argument in
support of ¢ A 1. Validity (4) is a form of weakening: if X
is an argument in support of ¢ then it is also an argument
in support of ¢ V 1. Note that weakening for conjunction,
ie., Arg,(X,o A1) — Arg,(X ), does not hold due to
the negative condition A v,y ~0F " in the definition of
deductive argument. Moreover, we have:

= Arg; (X, 0) = Oip (5)
= (Arg;(X,0) AO;T) = —Arg,(X',=¢)  (6)

According to the validity (5), if an agent has an argument
supporting ¢, then it implicitly believes that . Notice,
however, that the agent might have an inconsistent belief
base that leads it to believe everything. Indeed, the formula
Arg,(X,p) A O; L is satisfiable. According to the validity
(6), if an agent has an argument supporting ¢ and its be-
lief base is consistent, then it cannot have another argument
supporting —¢.
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6 Argument and Substantive Reason

In this section, we are going to show that the notion of
deductive argument defined in the previous section is inti-
mately related to a notion of substantive reason that can be
expressed using the following notion of plausibility ordering
over states induced by a belief base.

Definition 7 (Plausibility ordering). Let i € Agt and

S,8' 8" €S. Then,
S" <is S"iff Sat;(S,S") C Sat;(S,S8"),

where for all S = ((B;)icagt, V), S = ((B
S, Sat;(S,58")={a e B;: 5 = a}.

According to the previous definition, at state S agent ¢
considers state S” at least as plausible as state S’ if all ex-
plicit beliefs of agent 7 at state .S that are satisfied by state
S’ are also satisfied by state S”'.

It is easy to verify that <; g is a partial preorder over the
set of states S. From this partial preorder we can define
the corresponding strict ordering <; g, indifference relation
~;.s and incomparability relation ||; s:

S" <5 S"AfFS" =55 S and §” Zig S';
SNssl/lffS/ SS”andS” 155
S/||i7SSN iff S’ ﬁiﬂg S" and S” ﬁi,S S’

Nicagt, V') €

Some preliminary notions are needed to formally define
the notion of substantive reason. First of all, we need to
introduce the following notion of epistemic core.

Definition 8 (Epistemic core). Let i € Agt and (S,U) €
M. Then, agent i’s epistemic core at model (S,U) is:

Core(i, S,U) ={S" €U :¥S" €U, 5" =i 8" or

S//”i’ssl}.

Core(i, S,U), includes all states in context U that, ac-
cording to agent i, have no strictly more plausible state in
U. The following proposition is a consequence of the fact
that, according to Definition 1, belief bases are finite.

Proposition 2. Ler (S,U) € M. Then, Core(i,S,U) # 0.

Proof. Towards a contradiction suppose Core(i,S,U) = 0.
This means that there is no S’ € U such that VS” €
US" <5 S orS”|; ¢5. The latter is equivalent to
the fact that there is no S’ € U such that VS” €
U, Sat;(S,S8") ¢ Sat;(S,S"”). The latter is equivalent
to the fact that for all S’ € U, 35" € U such that
Sat;(S,8") C Sat;(S,S"”). The latter is equivalent to the
fact that for all S" € U, 35" € U such that {ae € B; : 5’ |=
a} C{a € B; : 8" = a}. The latter contradicts the fact
that, by Definition 1, B; should be finite. O

From the notion of epistemic core, we define the notion
of epistemic support set. We use the term ‘epistemic sup-
port set’ instead of ‘evidence set’, as used in (van Benthem
and Pacuit 2011), because it is broader and better aligned
with our semantics. While ‘evidence set’ typically implies
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empirical or observational data, ‘epistemic support set’ en-
compasses not only explicit beliefs based on observable ev-
idence but also explicit beliefs formed through inference.?

Definition 9 (Epistemic support set). Let i € Agt and
(S,U) € M. Then, agent i’s epistemic support set at state
S relative to the context U, denoted by Supp(i, S,U), is
the partition of Core(i, S,U) induced by the indifference
relation ~; g. Elements of Supp(i, S,U) are denoted by
0,0',.

Elements of Supp(i, S,U) are agent i’s epistemic sup-
ports at state S, relative to context U.

The following two propositions are direct consequences
of Proposition 2 and the fact that Supp(i, S, U) is a partition
of Core(i, S,U).

Proposition 3. Let (S,U) € M. Then, Supp(i, S,U) # 0.

Proposition 4. Ler (S,U) € M and © € Supp(i,S,U).
Then, © # .

We are going to show next that an agent’s epistemic sup-
ports have a syntactic counterpart in the form of maximally
consistent subsets (MCS) of the agent’s belief base, which
are defined next.

Definition 10 (MCS). Ler (S,U) € M. We define
MCS (i, S,U) C 2%° such that, for every X C Lo, X €
MCS(i, S,U) if and only if

i) X C B,
i) R (S)NU # 0,
iii) VX' C B, if X C X' then R (S)NU = 0.

MCS(i, S,U) is agent i’s set of maximally consistent sub-
sets of its belief base at state S, relative to context U. As
the following theorem highlights, © is an epistemic support
of agent ¢ if and only if there exists an MCS X of ¢’s belief
base such that the set of states satisfying all formulas in X
coincides with ©.

Theorem 2. Let (S,U) € M. Then,
© € Supp(i,S,U) iff 3X € MCS (i, S,U) such that
RX(S)NU = 6.

Proof. (=) Suppose © € Supp(i, S,U). By Proposition 4,
we have © # (. Thanks to © € Supp( S,U), we have
that 3X C B; suchthat © = {S' € U : Sat (S S =X}
and VX' C B;,if X C X' then {S’ € U : Sat;(S,S5') =
X'} = (. The latter together with the fact that © # () imply
that 3X C B; such that RX (S)NU =0, RX(S)NU # 0
and VX' C B;,if X C X' then R;-X/(S)QU = (). The latter
means that 3X € MCS(i, S,U) such that RX (S)NU = ©.

(<=) Suppose 3X € MCS(i,S,U) such that RX(S) N
U = ©. The latter implies that 3X C B; such that R:X(S)N
U=0andVX’' C B;,if X € X' then RX'(S)NU = 0.
The latter implies that © € Supp(i, S, U). O

2The representation of inference-based explicit belief within the
belief base semantics is discussed in (Lorini 2020, Section 7.2).
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The previous Theorem 2 highlights the connection be-
tween the notion of epistemic support and the notion of
maximal body of evidence, as defined in van Benthem &
Pacuit’s semantics for evidence-based beliefs (van Benthem
and Pacuit 2011), namely, a maximal collection of evidence
pieces that have the finite intersection property (see also
(Ozgiin 2017, Chapter 5) for a discussion of this notion).
Nonetheless, there is a difference between our semantics and
that of van Benthem & Pacuit that should be noted: while
they model evidence through an extensional neighbourhood
semantics, we treat evidence as explicit beliefs and model
them as syntactic entities in an agent’s belief base. How-
ever, it is straightforward to see that our belief base model
induces an evidence model in Benthem & Pacuit’s sense. A
further difference is that we assume the explicit beliefs in an
agent’s belief base to be finite, whereas in their semantics
an agent’s set of evidence can be infinite. For this reason,
they consider the ‘finite’ intersection property, which corre-
sponds to condition ii) in Definition 10.

We have now all the necessary elements to define the no-
tion of substantive reason and to establish its formal connec-
tion with the notion of deductive argument defined in Sec-
tion 5. The definition of MCS and Theorem 2 will turn out
to be crucial for this latter point.

We say that agent ¢ has a substantive reason to believe ¢
at a model (S, U), abbreviated by SReas(i,p,5,U), if and
only if i) there exists a support © in the epistemic support
set Supp (i, S,U) such every state in O satisfies ¢, and ii) ¢
is not universally true. The condition i) corresponds to the
concept of reason, while condition ii) indicates that for a rea-
son to be substantive it has to be meaningful and contribute
real weight. Indeed, if condition ii) were not met, the agent
would have no way of imagining the possibility that ¢ might
be false. In that case, the reason supporting ¢ would not be
substantive, as it would lack epistemic value. Note that, in
virtue of Theorem 2, condition i) is analogous to the notion
of a maximal body of evidence supporting a proposition in
van Benthem & Pacuit’s theory.

Definition 11 (Substantive reason). Let (S,U) € M. We
say that agent i has a substantive (or non-trivial) reason to
believe that ¢ at model (S, U), denoted by SReas(i,p,S,U),
if and only if

i) 30 € Supp(i, S,U) such thatVS' € ©,(S",U) = ¢, and

i1) 35" € U such that (S",U) = —.

The following Theorem 3 is the central result of this sec-
tion. It shows that the notion of substantive reason is re-
ducible to the notion of argument. Specifically, an agent has
a substantive reason to believe ¢ iff there exists an argument
X for the agent that supports ¢.

Theorem 3. Let (S,U) € M. Then,

SReas(i,p,9,U) iff 3 non-empty X € L
such that (S,U) = Arg, (X ,p).
Proof. (=) We first prove the left-to-right direction of the
theorem. We are going to prove two lemmas (Lemma 1 and

Lemma 2) in succession, as they are useful for proving this
direction of the proof.
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Lemma 1. Let X C Ly and © C S such that © #
Then, if (© NR;*(S)) = 0 then 3X’ C X such that (©

RX'(S)) = 0 and VX" C X', (©NRX"(8)) #0.

0.
N

Proof. We prove the lemma by induction on the size of X.
It is easy to verify that R?(S) = S. Thus, we only need to
prove for | X| > 0. Suppose © # @) and (© N R;X(5)) = 0.

Base case: |X| = 1. By RY(S) = Sand © # 0, we
have (© N RY(S)) # 0. Thus, thanks to |X| = 1, © #
0 and (6 N RY(S)) # 0, we have that 3X’' C X (viz.
X' = X) such that (6 N R;X'(S)) = 0 and VX" C X/,
(ONR"(5)) # 0.

Inductive case: | X| = k + 1 with k > 0. We distinguish
two cases.

Case I: VX' C X, if|X'| = |X|— Lthen(© N
RX'(S)) # 0. It follows that VX" C X, (ONRY"(S)) #
0, since if X” C X’ and (© N RX'(S)) # 0 then
(©NRX"(S)) # 0. Thus, by (6 N'RX(S)) = 0, we have
that 3X’ C X (viz. X’ = X) such that (O N RX'(S)) =0
and VX" C X', (O NRX"(S)) #0.

Case 2: 3X’ C X suchthat |[X'| = |X|— land (6N
R;X,(S)) = (). By induction hypothesis, it follows that
3X’ C X,3X” C X’ such that |[X'| = |X| -1, (6N
RX'(S)) = 0, (©NRX"(S)) = 0 and VX" C X",
(en RZXW(S’)) # (. Hence, 3X” C X such that (© N
RX"(5)) =0and VX" C X", (ONRX"(9)) #0. O

(2

Lemma 2. Let © €  Supp(i,S,U) with S
((Bi)ieAgh V). Then, 3X C B; such that RX (S)NU = ©.

Proof. Suppose © € Supp(i, S,U). Thus, X’ C B; such
that ©® = {S’ € U : Sat;(S,S’) = X'}. Hence, 3X C B;
such that RX (S)NU = ©. O

Suppose SReas(i,p,9,U) with S ((B;)icag, V).
Thus, i) 30 € Supp(i, S,U) such that VS’ € ©,(5",U) |
o, and ii) 35" € U such that (S”,U) & -, that is,
I=ello # 0 with [|-g|lo = {S" € U= (5", U) |~}

By item i), Lemma 2 and Proposition 4, we have that iii)
SX C B; such that RX (S)N||—¢p||v = 0 and R;X (S)NU #

By item ii), item iii), Lemma 1 and the fact thatif X’ C X
and RX(S)NU # 0 then RX'(S)NU # (), we have that iv)
3X’ C By such that ||-¢||g NRX'(8) = 0, RX'(S)NU #
Pand VX" C X', ||-|lo NRX"(S) # 0.

By item iv) and the fact that, according to Definition 1,
every belief base in a state S is finite, we have that 3X’ Cfin
Lo such that (S,U) = A, cx Dia A OX o A-0X1LA
Axrcx ~0X" . The latter means that 3X’ Cfi" £ such
that (S,U) = Arg,;(X’,p).

(<) Let us now prove the right-to-left direction of the
theorem. The following fact is useful for our proof.

It is straightforward to prove it from the definition of
MCS(i, S,U).
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Fact 1. If(Rf((S) ﬂU) # () then 3X' € MCS(i,S,U)
such that X C X'.

Suppose (S,U) = Arg,(X,p) for some non-empty
X Cfin £,. The latter implies that i) 3X Cfi" £y such
that (R;*(S)NU) # 0 and (R (S)NU) C ||¢||u, and
ii) 35" € U suchthat (S”,U) = —¢ (since X is non-
empty). By item i), Fact 1 and the fact that if X C X’
and (R¥(5) NU) € lglly then (R (S)NU) C lollo-.
the latter implies that iii) 3X’ € MCS(i,S,U) such that
(R¥(5)nU) C [lellv-

By item iii) and the right-to-left direction of Theorem 2,
we have that iv) © € Supp(i, S,U) such that © C ||¢||v.
By item ii) and item iv), we have that SReas(¢,p,5,U). O

In the next section, we will move from the conceptual
analysis to the study of the proof-theoretic and decidability
aspects of our framework.

7 Axiomatization and Decidability

In this section we focus on the axiomatization of the lan-
guage L and prove decidability of the satisfiability checking
problem. We first present an alternative semantics for the
language £, which serves as a technical device. Then, after
having introduced the logic for the language £, we state its
soundness and completeness with respect to the model class
M.

7.1 Alternative Semantics

The alternative semantics for the language relies on Kripke
structures with belief bases (KB) of the form M
(W,B,C,~,V) where:

e W is a set of worlds;

e B: Agt x W — 2% is a belief base function such
B(i,w) is finite for all ¢ € Agt and for all w € W,

o C: Agt x W — 2" is a base-compatibility function;
* ~ is an equivalence relation;
s V: Atm — 2% is a valuation function.

For every agent ¢ € Agt and for every world w € W,
B(i,w) denotes agent i’s set of explicit beliefs at world w,
while C(i,w) denotes the set of worlds that are compatible
with agent i’s explicit beliefs at w. The equivalence relation
~ capures context-equivalence: if w ~ v then worlds w and
v belong to the same context.

We use such structures to interpret formulas of the lan-
guage L. In particular, given ¢ € £, we interpret it relative
to a pair (M, w) with M a KB and w € W, as follows. (We
omit the Boolean cases — and A, since they are defined as
usual.)

(M,w)Ep < weV(p),
(M,w) E Nja <= «a € B(@i,w),
(M,w) EOe <= YveC(i,w), (M,v) E ¢,
(M,w) | OF¢ <= Yove F(i,w,X),(M,v) E o,
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with
F(i,w,X) =

M

ae (B(i,w)ﬂX)

||a|\(M,w)

and ||a||(pr,w) = {v € W : w ~vand (M,v) = a}. The
set F (i, w, X') denotes the set of worlds in the actual context
that are compatible with agent i’s explicit beliefs when the
agent focuses on the information in X.

In a KB there is no connection between the function B
and the function C. The following definition introduces the
notion of proper Kripke structure with belief bases (PKB) in
which the connection is given.

Definition 12 (Proper Kripke structure with belief bases). A
proper Kripke structure with belief bases (PKB) is a Kripke
structure with belief bases M = (VV, B,C,~, V) that satis-
fies the following condition, for all X C Lo, for all i € Agt
and for allw € W:

N

a€B(i,w)
The class of PKBs is denoted by PKB.

Condition C1 in the previous definition simply states that,
for a KB to be proper, the set of belief-compatible worlds for
an agent must coincide with the set of worlds in the actual
context that satisfy all the formulas in the agent’s actual be-
lief base. We are going to show that the epistemic language
L is not expressive enough to capture the class of PKBs,
but can only capture the strictly more general class in which
condition C1 is weakened.

In particular, we define a quasi proper Kripke structure
with belief bases (quasi-PKB) to be like a proper Kripke
structure with belief bases, as in Definition 12, except that
condition C1 is replaced by the following two weaker con-
ditions, C1* and C1**:

M

aeB(i,w)
(C1™) C(i,w) C ~(w),

(C1) Cli,w) = el (a1,0)-

(C1*) C(i,w) C llexl[ar,

with ~(w) = {v € W : w ~ v}. The class of quasi-PKBs
is denoted by QPKB.

A PKB (resp. quasi-PKB) M = (W, B,C, N,V) is said
to be finite if and only if W and V< (w) = {p € Atm :
w € V(p)} are finite sets. The class of finite PKBs (resp.
finite quasi-PKBs) is denoted by finite-PKB (resp. finite-
QPKB). The following theorem highlights that the five
semantics for the language L, the four ones introduced in
this section and belief base semantics relying on the model
class M defined in Section 3, are all equivalent.

Theorem 4. Let o € L. Then, the following five statements
are equivalent.

1. @ is satisfiable relative to class QPKB,

2. s satisfiable relative to class finite-QPKB,

3.  is satisfiable relative to class finite-PKB,

4. o is satisfiable relative to class PKB,
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5. s satisfiable relative to class M.

SKETCH OF PROOF. We use a filtration-like method to
prove that (1) implies (2). In particular, starting from a possi-
bly infinite quasi-PKB, we can construct a finite quasi-PKB
whose size is exponential in the size of . To show that (2)
implies (3), we employ a technique that involves expand-
ing an agent’s belief base so that the set of worlds that are
compatible with the agent’s belief base is reduced to, and ex-
actly matches, the set of worlds in which all formulas in the
agent’s belief base hold true, as required by Condition C1 in
Definition 12. Finally, we prove that (4) and (5) are equiv-
alent. The right-to-left direction is straightforward: from a
multi-agent belief base model, we can easily construct the
corresponding PKB. The left-to-right direction is less direct.
A PKB can be redundant, meaning it may contain two dis-
tinct worlds with the same valuation of propositional atoms
and identical belief bases for the agents. We therefore need
to transform a possibly redundant PKB into a non-redundant
one. From such a non-redundant PKB, we can construct the
corresponding multi-agent belief base model that satisfies
the same formulas. |

The following complexity upper bound for satisfiability
checking is a direct consequence of the previous theorem
4 whose proof shows that a formula ¢ is satisfiable for the
class M iff it satisfied by a finite quasi-PKB of exponential
size.

Theorem 5. Checking satisfiability of formulas in L relative
to the class M is in NExpTime.

7.2 Logic

The following definition introduces the Logic of explicit,
plain implicit and focused implicit Belief (LB) that we will
show to be sound and complete for the model class M.

Definition 13 (Logic LB). LB is the extension of classical
propositional logic by the following axioms and inference
rule:

(Oip AOi(p — ¥)) = Oip (Kg,)
(e nD(p = 9) - O (Krp0)
Ofe = ¢ (Try0)
Do — 000 (40)
D0 — 000 (50)
0% < O% (Equivio o)
N — O« (Intp, 0,)
D?(p — O (Intg@ﬂi)
Df(p(—) /\ (cnbax,x/ —>|:|?( /\ oz—><p))
X'CX aEX’
(Redx)
o

— (Necyo)
mH :

458

where for every X, X' Cfi" Lo such that X' C X:

/\ YAVTo WA /\ VAo

aeX’ aEX\ X'

def
cnbi}X,X/ =

The plain implicit belief modality [J; is a normal modal
operator, satisfying the basic principles of modal logic K,
including Axiom Kp,. The modality D? is an S5 modal-
ity, satisfying Axioms Ko, Te, 4¢, and 50, as well as
inference rule NecD?. Inlfact, it cofresponds to a univer-

sal modality. Axiom Inta, o, expresses the interaction be-
tween explicit belief and plain implicit belief: if something
is explicitly believed, then it is also implicitly believed. Ax-
iom Int o captures the interaction between the universal
modality ‘and plain implicit belief: if something is univer-
sally true, then it is implicitly believed. Axiom Reduf isa
reduction axiom for focused implicit belief, reducing it to a
formula involving only the universal modality. However, the
formula on the right-hand side can be exponentially larger
(in modal depth) than the one on the left. Finally, Axiom
EquiVD?,D? expresses the agent-independence of the uni-

versal modality. It is also worth noting that the necessitation
rule for plain implicit belief (i.e., %) does not need to be
included in the axiomatization, since it can be derived from
inference rule Necjo and Axiom Intqo . .

The following is the central result about the proof-
theoretic aspects of our framework.

Theorem 6. The logic LB is sound and complete for the
class M.

SKETCH OF PROOF. Soundness is straightforward. By com-
bining a canonical model argument with the fact that every
formula of the £ can be tranformed in a provably equivalent
formula containing only modalities of the form [J; or EI?,
we show that the logic LB is complete for the class QPKB.
Then, by Theorem 4, we conclude that LB is also complete
for the class M. n

8 Perspectives

In this paper, we have laid out the conceptual and logical
foundations for an epistemic notion of deductive argument.
On the logical side, the novel contribution is the extension
of the logic of explicit belief and plain implicit belief with
focused implicit belief. This extension is necessary to repre-
sent deductive argument in the language. The notion of fo-
cused implicit belief has not been studied before in the epis-
temic logic literature. In this concluding section, we discuss
two directions for future research.

Complexity analysis We have only provided a NExpTime
upper bound for the satisfiability checking problem for the
language L relative to the model class M (Theorem 5). Fu-
ture work will be devoted to obtaining a tight complexity
result. As for hardness, it is easy to show that there ex-
ists a poly-time reduction of the satisfiability checking prob-
lem for the multimodal logic K™, extended with the univer-
sal modality, into our satisfiability checking problem. It is
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known that the former problem is EXPTIME-hard (Hemas-
paandra 1996; Hemaspaandra 1993). Consequently, our
problem is also EXPTIME-hard. We conjecture that our
problem is in EXPTIME and thus EXPTIME-complete. Un-
fortunately, the reduction axiom Redgzx of the logic LB can-
not be used to obtain an efficient procedure, as it leads to an
exponential blowup. Future work will be devoted to explor-
ing alternative methods for proving this conjecture, includ-
ing Hintikka set elimination.

Extension with non-normal modalities for reason In
Section 6, we have provided a semantic analysis of the re-
lation between deductive argument and substantive reason.
However, the notion of substantive reason has only been de-
fined at the semantic level. Future work will be devoted to
extending our framework with a new family of non-normal
modalities of the form ([¢]), in order to express the notion of
substantive reason in the language. The semantic interpreta-
tion of these modalities relative to a model is:

(S,U) E (il)p <= 3O € Supp(i, S,U) such that
VS e ©,(5,U) E o,

where the formula ([¢])¢ is read as “agent ¢ has a reason to
believe that ¢”. This modality, together with the universal
modality of the language £, allows us to express the notion
of substantive reason as defined in Definition 11, namely:
([i))p A OPp. Ttis easy to check that the following formulas
are valid with respect to the class M:

(N 2anOXT) = (I N\ o) @
0; T = (i < ([i)y) ®)
(LHT ©)
—([i]) L (10)
O (e = ¥) = ([ — (i) (1)
and that the following inference rule preserves validity:
=Y
e = @0 42

Future work will be devoted to proving the conjecture that
the validities and inference rule above, together with the
principles of the logic LB given in Definition 13, provide
a complete axiomatization of the language £ extended with
the reason modalities ([¢]).

Dialogical argumentation In this paper, we have estab-
lished the relationship between our epistemic logic frame-
work and Besnard and Hunter’s (B&H) notion of deduc-
tive argument. By linking our framework to B&H’s notion,
we can represent and infer the different types of attack de-
scribed in their theory, including defeaters, undercuts, and
rebuttals. A defeater occurs when the conclusion of one ar-
gument contradicts a premise of another. An undercut oc-
curs when the conclusion of one argument directly negates a
premise of another. A rebuttal occurs when two arguments
have opposing conclusions. Once B&H’s notion of attack
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is expressed within our framework, it can be applied to di-
alogical argumentation in a multi-agent setting, where each
agent infers arguments from its private belief base. For ex-
ample, it can model a dialogue between two agents defend-
ing opposing views about a given fact, each producing ar-
guments and counterarguments in support of their position
and against that of their opponent. The framework can also
be used in multi-agent negotiation, where arguments are em-
ployed to persuade, justify positions, resolve conflicts, and
reach agreements, as well as in persuasive human—machine
dialogue, where a conversational agent must attribute beliefs
to the human in order to persuade them by presenting argu-
ments for a given claim. The formalization of the different
notions of attack in line with B&H’s theory, along with the
extension of our analysis to dialogical argumentation, will
be the subject of future work. This extension will allow us
to fully address the criticism raised in (Betz 2016) of the so-
called knowledge base interpretation of abstract argumenta-
tion, namely its focus on the arguments of a single partici-
pant and its inability to account for how arguments from oth-
ers can influence that participant’s beliefs. Our multi-agent
belief base approach overcomes this limitation by modelling
multiple agents who construct arguments privately but can
also exchange, receive, and incorporate arguments from oth-
ers into their own belief bases.

Collective arguments In the paper, we have not ad-
dressed doxastic group notions such as (explicit and im-
plicit) distributed and common belief. These notions have
been studied in previous work within the belief base frame-
work (Lorini and Rapion 2022; Herzig et al. 2020). Extend-
ing our framework to include doxastic group attitudes would
be an interesting direction for studying a notion of collective
argument, that is, the idea that a group of agents collectively
holds an argument supporting a certain conclusion.
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