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Abstract
In ontology-based data access (OBDA), multiple data sources
are integrated via mappings to an ontology. We consider an
OBDA setting based on existential rules and the certain an-
swer semantics. We address the recent issue of query abstrac-
tion, which consists of abstracting data queries by translating
them to the ontology layer. Since a perfect abstraction may
not exist, the notions of minimally complete and maximally
sound abstractions have been introduced. We study abstrac-
tions within an extension of UCQs with a limited form of in-
equality and a special predicate marking database constants.
While this extension does not lead to an increased complex-
ity of the problems of interest, it is able to express minimally
complete abstractions, hence perfect abstractions when they
exist. We also characterize maximally sound abstractions by
making a new connection with the notion of maximum recov-
ery stemming from data exchange.

1 Introduction
In ontology-based data access (OBDA), multiple data
sources are integrated via mappings to a shared ontology
(Poggi et al. 2008). This approach generalizes classical data
integration by replacing the global schema with an ontology,
enabling users to query data at a high level of abstraction
while benefiting from reasoning over domain knowledge.

A central problem in OBDA is ontological query answer-
ing. Given an OBDA specification Σ = (S,O,M,O),
where S is a data schema,O an ontology schema,M a map-
ping from S toO, andO an ontology overO, and a database
D over S, the goal is to compute the answers to an ontolog-
ical query QO over the knowledge base (KB) defined by D,
M, andO. Such KB may remain virtual: then,QO is rewrit-
ten into a data-level query QS that is a perfect translation of
QO, which means that, for any database D over S, the an-
swers to QS on D coincide with the answers to QO on the
virtual KB. WhileQS is simply evaluated onD, the answers
to QO are logically entailed by the KB—corresponding to
the standard semantics of certain answers, i.e., answers that
hold in every model of the KB.

More recently, research in OBDA has also investigated
query translation in the opposite direction, i.e., from data
queries to ontological queries—a task called query abstrac-
tion (Cima, Poggi, and Lenzerini 2023). This issue arises
in a range of relevant scenarios. First, during the (often in-
cremental) design of an OBDA system, query abstraction

can be used to verify whether the mapping provides ade-
quate coverage of important data queries (Lutz, Marti, and
Sabellek 2018). Second, query abstraction is a means to au-
tomatically characterize the semantics of data services im-
plemented at the data-source level—which can be seen as
a form of reverse engineering (Cima, Lenzerini, and Poggi
2019). This capability opens the door to promising applica-
tions, such as providing open datasets supplied by organiza-
tions with high-level semantics, or enhancing the FAIRness
of data services (Cima, Poggi, and Lenzerini 2023).

In this paper, we investigate query abstraction within an
OBDA setting based on existential rules (Baget et al. 2009;
Calı́, Gottlob, and Lukasiewicz 2009), aka TGDs in database
theory (Abiteboul, Hull, and Vianu 1995).We use existen-
tial rules for both the mapping (we obtain Global-Local-As-
View (GLAV) mappings) and the ontology. So doing, we
generalize classical OBDA frameworks based on Horn de-
scription logics (DLs), as these can be seen as specific exis-
tential rule classes. Moreover, this uniform setting allows us
to rely on the same fundamental tools to handle mappings
and ontologies, namely the chase and query rewriting. It
also helps to make connections with database theory.

Most work in OBDA has focused on ontological queries
expressed as unions of conjunctive queries (UCQs), the core
relational database queries. FO-rewritable ontologies—such
as those expressed with the main dialects of the DL-Lite
family (Calvanese et al. 2007) or certain fragments of ex-
istential rules (Baget et al. 2009; Calı̀, Gottlob, and Pieris
2010)—guarantee that every ontological UCQ admits a per-
fect rewriting as a UCQ. In the other direction, query trans-
lation appears to be much more challenging. To start with, a
perfect abstraction of a data (U)CQ may not exist at all, even
with an empty ontology. Apart from the fact that mappings
may not transfer all the answers, they may also make source
relations indistinguishable, as illustrated next.
Example 1. Let S = {s1, s2}, O = {r} and M =
{m1,m2}, withm1: s1(x)→ r(x) andm2: s2(x)→ r(x).
The query QS(u) = s1(u) has no perfect abstraction
throughM. In particular, the ontological query QO(u) =
r(u) captures all answers to QS , i.e., it is a complete ab-
straction of QS , but it is not a sound abstraction of QS , as it
also retrieves values coming from the source relation s2. In
fact, QO would be a perfect abstraction of s1(u) ∨ s2(u).

The topic began to be investigated only recently (Lutz,
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Setting Verification Existence
(U)CQ, GAV, ΠP

2 -C (*) ΠP
2 -C (*)

bounded arity
UCQ 6=,C, GLAV ΠP

2 -C ΠP
2 -C

bounded frontier
UCQ 6=,C, GLAV ΠP

2 -C in
CO-NEXPTIME

(*) from (Lutz, Marti, and Sabellek 2018)

Table 1: Complexity of problems related to perfectM-abstractions

Marti, and Sabellek 2018; Cima, Lenzerini, and Poggi 2019;
Cima et al. 2021). However, OBDA can build on a rich body
of previous work in database theory. As pointed out by Lutz
et al. (Lutz, Marti, and Sabellek 2018), when the ontology is
ignored, deciding if a source query has a perfect abstraction
as a UCQ is closely related to the long-studied problem of
query expressibility with views (Nash, Segoufin, and Vianu
2010). We will establish a new link with database theory by
considering specific inverse mappings from data exchange
(Fagin et al. 2008; Arenas, Pérez, and Riveros 2009).

Since a perfect abstraction of a UCQ QS may not exist,
Cima et al. introduced minimally complete and maximally
sound abstractions, which respectively provide a minimal
superset and a maximal subset of answers to QS (Cima,
Lenzerini, and Poggi 2019). Here, minimality and maximal-
ity are with respect to the set of queries definable in some
target query language (e.g., UCQ).

With the aim of capturing perfect abstractions of UCQs,
we consider an extension of UCQ, denoted by UCQ6=,C,
with a limited form of inequality (variables that occur in in-
equalities must be mapped to constants) and a special unary
predicate marking database constants, denoted by C—which
was introduced in (Fagin et al. 2008) to define inverse map-
pings. As a data query language, UCQ6= is of great interest
in practice, especially as inequalities are in fact not limited
when the queried databases are ground. However, the true
benefit of UCQ 6=,C is as an ontological query language. In-
deed, while a perfect abstraction of a UCQ, when it exists,
may not be expressible as a UCQ, we will show that it is
always expressible as a UCQ6=,C.

We will now detail our main contributions. To distinguish
between the settings of database integration, i.e., without on-
tology, and OBDA, we will use the termsM-abstraction and
Σ-abstraction, respectively.
(1) Complexity of the problems of interest within the
UCQ6=,C class. In Section 3, we study the computational
impact of extending UCQ to UCQ6=,C. In particular, we
show that this does not lead to increased complexity of ver-
ifying whether a candidateM-abstraction is perfect, which
is ΠP

2 -complete (see Table 1, first column). We also exhibit
an FO-rewritable rule fragment for which this problem with
a Σ-abstraction remains in ΠP

2 (this subsumes earlier results
on DL-Lite). Other complexity results are established later.
(2) Capturing minimally-complete and perfect abstrac-
tions of UCQ6=,Cs. In Section 4, we first point out that a
non-Boolean query QS may not have a complete abstrac-
tion and characterize the conditions under which it has one

(which only depends on the interactions between QS and
the mapping). For a UCQ QS that has a complete abstrac-
tion, it is known that, by applying M to QS (i.e., “chas-
ing” QS with M), one produces a UCQ QO that is mini-
mally complete w.r.t. allM-abstractions definable as UCQs
(Lutz, Marti, and Sabellek 2018; Cima, Lenzerini, and Poggi
2019). However, we point out that QS may have a better
M-abstraction (i.e., a complete M-abstraction with fewer
unwanted answers) in the UCQ6=,C class, which can be com-
puted by a modified chase. The important result here is that
UCQ6=,C is in fact able to express a minimally complete
M-abstraction (and Σ-abstraction as well) of any source
UCQ6=,C, where minimality is w.r.t. all possible ontologi-
cal queries (i.e., queries on schema O expressed in any lan-
guage, provided that they are answered with the semantics
of certain answers). We take special care in exhibiting the
properties behind this result. It follows that, when a per-
fect Σ-abstraction of a UCQ 6=,C exists, it can be expressed
in this class. Moreover, UCQ6=,C is a minimal language
with this property, even when the source query is a plain
UCQ. Finally, we use these results to show that the com-
plexity of deciding whether a perfect M-abstraction exists
for a given UCQ6=,C is ΠP

2 -complete when the mapping rules
have a frontier of bounded size (the frontier being the set
of variables shared between the body and head) and in Co-
NExpTime otherwise (see Table 1, second column).
(3) Characterizing maximally sound abstractions of
UCQ6=,Cs. There is no known algorithm that builds a
maximally sound M-abstraction of a UCQ as a UCQ (or
UCQ6=,C), when such abstraction exists, except in a very
specific case (Cima, Lenzerini, and Poggi 2019). Whether
the associated existence problem is decidable is an open
question. In Section 5, we make a step towards better un-
derstanding by drawing a connection with the notion of a
maximum recovery investigated in a quite different context,
namely data exchange. In data exchange, mappings are used
to specify how to transfer data from a source schema to a tar-
get schema; then, a maximum recovery of a mappingM is
an inverse mapping from target to source that allows one to
recover the most answers to source queries when it is com-
posed with M (Arenas, Pérez, and Riveros 2009). To ex-
press such inverse mapping, a strictly more expressive lan-
guage than GLAV is required, as disjunction in rule heads
is needed. We show that a maximally soundM-abstraction
of a UCQ6=,C QS can be equivalently defined as the rewrit-
ing of QS with a maximum recovery ofM. To define such
rewriting, we rely on a rewriting operator for UCQs and dis-
junctive existential rules introduced in (Leclère, Mugnier,
and Pérution-Kihli 2023). In passing, we correct a wrong
claim from the literature, that a maximum recovery for CQs
could always be expressed by a conjunctive mapping (i.e.,
without disjunction) (Arenas et al. 2009). We then extend
the notion of a maximum recovery to an OBDA specifica-
tion (i.e., we add an ontology) and show that a maximum
recovery can still be expressed by the same form of disjunc-
tive mapping when the ontology is FO-rewritable; hence, in
this case, a maximally sound Σ-abstraction of a UCQ6=,C can
also be characterized as a rewriting with a maximum recov-
ery. When this rewriting is finite, it is a UCQ6=,C.
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2 Preliminaries
We assume the reader has basic knowledge in database the-
ory and ontological query answering.
Database theory We consider a denumerable set of con-
stants C. A term is a constant from C or a variable. A
schema is a finite set of predicates. An atom with predicate
p is called a p-atom. Given a schema P , a P -atom is any p-
atom with p ∈ P . A P -instance is a possibly infinite set of
P -atoms, also seen as an interpretation of (P, C), in which
constants are interpreted by themselves. A finite instance is
also seen as an existentially-closed positive conjunctive FO-
formula.1 A database is a ground finite instance. Given an
instance I , we denote by vars(I), consts(I) and terms(I)
its sets of variables, constants and terms, respectively. A tu-
ple ~x of pairwise distinct variables is sometimes seen as a
set. Given instances I1 and I2, a homomorphism h from I1
to I2 is a substitution of vars(I1) by terms(I2) such that
h(I1) ⊆ I2. We also denote it by h : I1 → I2 and we say
that I1 maps to I2 (by h). When convenient, we extend the
domain of a homomorphism to constants.

We define the notion of a query in an abstract way, i.e.,
independently from any syntactic form: an n-ary query Q
on schema P is any function that maps each P -instance I
to a set of n-ary tuples on consts(I). We denote by Q(I)
the set of answers to Q on I . An n-ary FO-query on P has
the form Q(~x), where Q is an FO-formula on P and ~x are
n free variables from Q (the answer variables). A Boolean
query is 0-ary. Given an instance I , a tuple ~c ⊆ consts(I)
with |~c| = |~x| is an answer to an FO-query Q(~x) on I if I
is a model of Q(~c), where Q(~c) is obtained by substituting
each i-th variable in ~x by the i-th constant in ~c. A conjunc-
tive query (CQ) has the form q(~x) = ∃~y. φ[~x, ~y], where φ is
a finite conjunction of atoms and ~x ∪ ~y = vars(φ); to de-
note a CQ, we write q rather than Q. A CQ is with join-free
existential variables (CQJFE) if each existential variable oc-
curs only once. A union of conjunctive queries (UCQ) is a
finite disjunction of CQs with the same tuple of answer vari-
ables. A UCQ may contain equalities, but to simplify tech-
nical developments we will silently assume that, before any
processing, equalities are removed by substituting variables.

Given queriesQ1 andQ2,Q1 is contained inQ2, denoted
by Q1 v Q2, if Q1(I) ⊆ Q2(I) for any instance I . Given
two CQs q1(~x1) and q2(~x2), a query homomorphism from q1

to q2 is a homomorphism h from q1 to q2 such that h(~x1) =
~x2. It is well known that, given CQs q1 and q2, q1 v q2 iff
there is a query homomorphism from q2 to q1. Note that for
UCQs Q1 and Q2, we have Q1 v Q2 iff for all q1 ∈ Q1,
there is q2 ∈ Q2 such that q1 v q2.

When information is incomplete, a set of instances is of-
ten considered instead of a single instance; then, the set
of certain answers to a query Q on a set of instances I is
certain(Q, I) =

⋂
I∈I

Q(I).

Rules and mappings An existential rule R (or sim-
ply rule hereafter) is a closed formula of the form
∀~x. (∃~y. B[~x, ~y]) → ∃~z. H[~x, ~z] where B and H 6= ∅
are finite conjunctions, respectively called the body and the

1Null values in instances are seen as existential variables.

head ofR, also noted body(R) and head(R), and ~x, ~y and ~z
are pairwise disjoint tuples of variables and consts(H) ⊆
consts(B). The frontier of R is fr(R) = ~x. Note that
body(R) and head(R) can be seen as CQs with answer vari-
ables fr(R). R is Datalog if ~z = ∅. Given schemas S and
T , called source and target respectively, with S ∩ T = ∅, an
S-to-T rule has a body made of S-atoms and a head made
of T -atoms. A GLAV mapping from S to T is a finite set
of S-to-T rules. A GLAV mapping is GAV if it is a set of
Datalog rules.
OBDA An OBDA specification is a quadruplet Σ =
(S,O,M,R) where S is the source schema,O the ontology
schema,M a (GLAV) mapping from S to O and R a finite
set of rules over O. An OBDA system is a pair (D,Σ) with
Σ an OBDA specification and D an S-database. A source
query, usually denoted by QS , is defined on S and an onto-
logical query, usually denoted by QO, is defined on O. The
answers to an ontological query QO on an OBDA system
(D,Σ), denoted by Qcert

O (D,Σ), are its certain answers on
the models of the OBDA system, denoted by ModΣ(D):
ModΣ(D) = {O-instance I | D ∪ I |=M and I |= R}

Qcert
O (D,Σ) = certain(QO, ModΣ(D))

When we want to ignore the set of rules R of an OBDA
system, we use notations withM instead of Σ. Query con-
tainment is extended to ontological queries: Q1 vΣ Q2 if
Qcert

1 (D,Σ) ⊆ Qcert
2 (D,Σ) for every S-database D.

Query abstraction For an OBDA specification Σ, a query
QO on O is a complete (resp. sound) Σ-abstraction
of a query QS on S if QS(D) ⊆ Qcert

O (D,Σ) (resp.
Qcert
O (D,Σ) ⊆ QS(D)) for all D; QO is a perfect Σ-

abstraction if it is both sound and complete. We also con-
sider “best” approximations of perfect abstractions within a
target query class: Given a query class Q, an ontological
query QO ∈ Q is a Q-minimally complete Σ-abstraction of
QS if QO is a complete Σ-abstraction of QS and QO vΣ

Q′O for anyQ′O ∈ Q that is a complete Σ-abstraction ofQS ;
similarly, QO is a Q-maximally sound Σ-abstraction of QS
if QO is a sound Σ-abstraction of QS and Q′O vΣ QO for
any Q′O ∈ Q that is a sound Σ-abstraction of QS . When
we do not specify Q, we consider any query, as abstractly
defined above. Finally, when R is ignored, we speak of
M-abstraction instead of Σ-abstraction.

Let X ∈ {M,Σ} and Q be a class of queries. We study
three kinds of problems:
• Verifying if an abstraction is perfect: the Q X -perfectness

verification problem takes as input X , Q-queries QS and
QO, and asks ifQO is a perfectX -abstraction ofQS . This
problem is decomposed into verifying X -soundness and
X -completeness.

• Deciding the existence of a perfect abstraction: the Q X -
expressibility problem takes as input X and QS ∈ Q, and
asks if a perfect X -abstraction of QS is expressible in Q.

• Computing abstractions satisfying property P ∈
{perfectness, maximal soundness, minimal completeness};
Given X and a Q-query QS , the task is to compute a
Q-queryQO that is an X -abstraction ofQS with property
P , when such an abstraction exists.
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Reasoning tools Let R be a set of rules. Given an instance
I , the chase with R exhaustively applies rules from R to I ,
towards a fixpoint. 2 We denote by chase(I,R) the (pos-
sibly infinite) resulting instance. Crucially, chase(I,R) is
a universal model of I and R, i.e., it maps to any model of
I and R. Given a UCQ Q, query rewriting with R starts
from Q seen as a set of CQs; it iteratively rewrites a CQ
from the set with a rule from R and adds the resulting CQ
to the set, while keeping a minimal set w.r.t. query con-
tainment, towards a fixpoint. We consider here the rewrit-
ing algorithm from (König et al. 2015), based on so-called
piece-unifiers, and denote by rew(Q,R) the possibly infi-
nite set (i.e., union) of CQs it produces. Each rewriting step
is based on a piece-unifier, which unifies a subset q′ of a CQ
q with a subset of a rule head h′ while satisfying the follow-
ing piece condition: an existential variable from h′ can only
be unified with variables from q′, which furthermore do not
occur in q \ q′. A fundamental property holds: For any in-
stance I , set of rules R and Boolean UCQ Q, I ∪ R entails
Q iff chase(I,R) |= Q iff I |= rew(Q,R). A pair (Q,R)
where Q is a UCQ, is FO-rewritable if there is a UCQ Q′

such that Q′(I) = certain(Q, chase(I,R)) for any in-
stance I . Note that (Q,R) is FO-rewritable iff rew(Q,R)
is finite. A rule set R is FO-rewritable, or fus, if (Q,R) is
FO-rewritable for any UCQ Q.

When mappings (from S to T ) are considered instead of
rules on a single schema, the result of the chase or of query
rewriting is restricted to the relevant schema (T or S). Given
a mappingM from S to T and a (finite) S-instance I , the
chase of I with M yields the T -instance M(I) = {A ∈
chase(I,M) | A is a T -atom}. Given a CQ qs, the chase
of qs with M is defined similarly, on the atoms of qs seen
as an instance, provided that each answer variable from qs
occurs in a T -atom ofM(qs); hence,M(qs) can be seen as
a CQ with the same arity as qs. The chase is further extended
to a UCQ: given an S-UCQ Qs, M(Qs) is defined only if
M(qsi) is defined for each qsi ∈ Qs; thenM(Qs) is the T -
UCQ obtained by making the disjunction of theM(qsi), for
all qsi ∈ Qs. Query rewriting with a mappingM takes as
input a T -UCQ Qt and produces the S-UCQ M−(Qt) =
{q ∈ rew(Qt,M) | q is a query on S}. Note that M(Qs)
andM−(Qt) are always finite.

It is convenient to use the same notations for mappings
and general rule sets; so we also note R(I) = chase(I,R)
andR−(Q) = rew(Q,R). For an OBDA specification Σ =
(S,O,M,R), we note Σ(I) = R(M(I)) and Σ−(Q) =
M−(R−(Q)). When R−(Q) is not finite, it is seen as an
infinitary query, as in (Lutz, Marti, and Sabellek 2018).
Properties of OBDA systems We finally list some funda-
mental properties of OBDA systems, which are explicit or
implicit in previous work, except that we consider existen-
tial rules instead of specific Horn description logics.
Proposition 2. For any OBDA specification Σ =
(S,O,M,R), S-database D, S-UCQ QS and O-UCQ QO
the following holds:

1. Qcert
O (D,M) ⊆ Qcert

O (D,Σ)

2This formulation corresponds to the simplest chase variant,
called oblivious (Calı̀, Gottlob, and Kifer 2008).

2. Qcert
O (D,Σ) = QO(R(M(D))) = (M−(R−(QO)))(D)

3. If QS v Q′S thenM(QS) vMM(Q′S)

4. QO vM Q′O iffM−(QO) vM−(Q′O)

5. QO vΣ Q′O iffR−(QO) vM R−(Q′O)

When a perfectM-abstraction of a UCQ QS is express-
ible as a UCQ,M(QS) is such an abstraction (this follows,
e.g., from (Nash, Segoufin, and Vianu 2010)). Moreover,
whenQS has a completeM-abstraction,M(QS) is such an
abstraction, which is even UCQ-minimally complete (Cima,
Lenzerini, and Poggi 2019). Hence, a UCQQS has a perfect
M-abstraction expressible as a UCQ iff M(QS) is sound,
which can be checked by verifying ifM−(M(QS)) v QS .
This result has been extended to a Σ-abstraction in some
specific OBDA settings.3

Next, we use the following notations: Σ is an OBDA
specification defined by (S,O,M,R), D is an S-database,
and QS , QO are queries over S and O respectively.

3 From UCQ to UCQ 6=,C

The class UCQ6=,C extends UCQ with two special predi-
cates: a restricted form of inequality (6=) and a unary predi-
cate C stating that its argument is a constant.4 In the context
of query abstraction, C is used to mark variables in onto-
logical queries that must be mapped to values coming from
the database, whereas 6= allows one to distinguish between
different ways of matching query variables.

Definition 3 (UCQ6=,C). A UCQ6=,C Q is a UCQ extended
with atoms on special predicates 6= (binary) and C (unary),
such that: (1) All the variables of Q occur in standard
atoms, and (2) The terms of any 6=-atom are constants, an-
swer variables, or variables that occur in a C-atom. We
denote by std(Q) the restriction of Q to standard atoms.

The C-atoms on answer variables and constants, as well
as 6=-atoms over constants, can be made explicit or not.
Also, C is useless in source queries since databases are
ground, but for simplicity we keep the same query class at
the data and the ontology levels. A UCQ6=,C Q is consistent
if there exists a database D such that Q(D) 6= ∅, which can
be checked in polynomial time. Next, we implicitly assume
that queries are consistent.

All the technical tools for CQs are extended to CQ6=,C in
the natural way. A homomorphism h : q → I is a homo-
morphism from std(q) to I such that (i) for all C(t) ∈ q,
h(t) is a constant, and (ii) for all t1 6= t2, h(t1) 6= h(t2).
A query homomorphism h : q1 → q2 is a homomorphism
from std(q1) to std(q2) such that (i) for all C(t) ∈ q1,
h(C(t)) ∈ q2 or h(t) is a constant or h(t) is an answer
variable, and (ii) for all t1 6= t2 ∈ q1, h(t1 6= t2) ∈ Q2

or h(t1) and h(t2) are distinct constants. The chase of q
with M, i.e., M(q), is obtained from M(std(q)) by (1)
adding the atoms (t1 6= t2) from q if t1 and t2 are both
in M(std(q)), and (2) adding C(x) on the variables from

3GAV mappings (Lutz, Marti, and Sabellek 2018) or ontology
in DL-LiteR (Cima, Lenzerini, and Poggi 2019).

4Formally: for any FO-interpretation I = (∆, .I) it holds that
CI = consts(I) and 6=I = {(d1, d2) ∈ ∆2 | d1 6= d2}.
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vars(q) ∩ vars(M(std(q))). Hence, if the C-atoms in
q are made explicit, M(q) is defined as for a plain (U)CQ
w.r.t. target predicates T ∪ {C, 6=}. Similarly, the rewriting
of q withM, i.e.,M−(q), is defined w.r.t. source predicates
S ∪{C, 6=}; inconsistent CQs can be removed fromM−(q)
and the C-atoms can be made implicit. Note that, by defi-
nition of a piece-unifier, an existential variable from a rule
head cannot be unified with a variable that occurs in a C- or
6=-atom. These notions are illustrated in Ex. 4. They are ex-
tended to UCQ6=,C as expected. Note that the fundamental
properties from Prop. 2 still hold.
Example 4. LetM be the following mapping:
m1 : s1(x, y)→ p(x, y) m3 : s2(x)→ p(x, x)
m2 : s1(x, x)→ r(x) m4 : s3(x)→ ∃y.p(x, y)

Let the source CQ6= q(u) = ∃v. s1(u, v) ∧ u 6= v. Then,
M(q(u)) = p(u, v)∧ u 6= v ∧ C(v) (with C(u) left implicit
as u is an answer variable) and M−(M(q(u)) ≡ q(u).
Let us detail the rewriting of M(q(u)): p(u, v) can be
unified with head(m1), which yields q(u), as well as with
head(m3), which yields the inconsistent CQ s2(u) ∧ u 6= u
(discarded); p(u, v) cannot be unified with head(m4) be-
cause v would be unified with the existential variable y,
while it also occurs in C(v) and in u 6= v.

The next example shows that a UCQ may have no perfect
abstraction in UCQ but one in UCQ6=,C.
Example 5 (Perfect abstraction within UCQ6=,C). Con-
sider again M from Ex. 4. The CQ qS(u) =
∃v.s1(u, v) has no perfect M-abstraction in UCQ. In-
deed, M(qS) = ∃v.p(u, v), and Q′S = M−(M(qS)) =
∃v.s1(u, v) ∨ s2(u) ∨ s3(u) strictly contains qS . Hence,
M(qS) is not a sound abstraction. However, the follow-
ing UCQ6=,C is a perfect abstraction of qS: QO(u) =
q1
O(u) ∨ q2

O(u), with q1
O(u) = ∃v. p(u, v) ∧ C(v) ∧ u 6= v

and q2
O(u) = r(u) ∧ p(u, u). Such query QO is the out-

put of the algorithm given in Section 4. Intuitively, QO is a
sound abstraction because it does not retrieve the p-atoms
produced by m3 and m4. Indeed, q1

O only retrieves p-atoms
produced by m1, thanks to u 6= v and C(v). However, q1

O
is not a complete abstraction as it avoids atoms of the form
p(a, a) that can be produced by m1. Subquery q2

O compen-
sates for this elimination. Note that the atom p(u, u) in q2

O
is actually not needed: indeed, when an atom r(a) is pro-
duced (by m2), the atom p(a, a) is necessarily produced (by
m1). More formally, let us check thatM−(QO) ≡ qS . The
rewriting of q1

O yields the CQ ∃v. s1(u, v) ∧ u 6= v, see
Ex. 4. The rewriting of q2

O yields two CQs: 1. s1(u, u),
obtained by unifying r(u) with head(m2) and p(u, u) with
head(m1); and 2. (s1(u, u) ∧ s2(u)), obtained by unifying
r(u) with head(m2) and p(u, u) with head(m3). The latter
query is contained in the former, hence can be ignored. We
obtainM−(QO) = (∃v. s1(u, v)∧u 6= v)∨s1(u, u) ≡ qS .

A natural question is whether this extension increases the
complexities of the problems we are interested in. First note
that a homomorphism from a CQ6=,C q to an instance I nec-
essarily maps terms from a 6=-atom to terms known to be
constants. It follows that, for q Boolean, if I entails q then
q maps to I (and reciprocally); hence, query answering can
still rely on homomorphism. This is different for query con-

tainment: given CQs6=,C q1 and q2, the existence of a query
homomorphism from q2 to q1 is no longer a necessary con-
dition for q1 v q2, even when considering only databases.
Let UCQ6=,C containment be the problem that takes as in-
put two queries Q1 and Q2 in UCQ6=,C, and asks if Q1 v
Q2. This problem is known to be ΠP

2 -complete, already
when both queries are in CQ6=,C (van der Meyden 1997;
Kolaitis, Martin, and Thakur 1998). As a complementary
result, we prove that ΠP

2 -hardness already holds when Q1 is
a very simple kind of CQ.

Theorem 6 (Complexity of UCQ 6=,C containment). The
UCQ6=,C containment problem is ΠP

2 -hard when Q1 is a
Boolean CQJFE and Q2 is a Boolean CQ6=,C.

Proof sketch. By a reduction from ∀∃3CNF adapted from
(Abiteboul, Kanellakis, and Grahne 1991).

We now study the complexity of M-perfectness verifi-
cation, by decomposing that problem intoM-completeness
and M-soundness verifications. The M-completeness
(resp. M-soundness) verification problem can be recast as
verifying if QS v M−(QO) (resp. M−(QO) v QS).
There is an immediate reduction from UCQ6=,C containment
to verification, taking a trivial mapping M that bijectively
translates n-ary predicates in S into n-ary predicates in O.

Theorem 7 (Complexity of M-completeness). The
UCQ6=,C M-completeness verification problem is ΠP

2 -
complete, even if QS is a CQJFE and QO is a CQ6=.

Proof. To verify that QS vM−(QO), we can check if, for
every ground instantiation D of a CQ6= from QS , there is a
CQ6= qi ∈M−(QO) that maps to D (with answer variables
mapped correctly). We can universally choose a D in poly-
nomial time as it is given by a substitution of the variables
of a qs ∈ QS by fresh constants and we can guess qi and a
homomorphism from qi to D in polynomial time. Indeed, to
obtain a qi, we guess a CQ6= qj ∈ QO, a subset ofM with
at most |qj | rules and associated piece-unifiers. Hence,M-
completeness is in ΠP

2 . Hardness follows from Th. 6.

Theorem 8 (Complexity of M-soundness). The UCQ 6=,C
M-soundness verification problem is ΠP

2 -complete, even if
QS is a Boolean CQ6= and QO is a is a Boolean CQJFE.

Proof. Similar to that of Th. 7.

Since Q1vQ2 iff Q1 ≡ Q1∧Q2, query equivalence is as
hard as query containment, hence:

Corollary 9. The UCQ6=,C M-perfectness verification
problem is ΠP

2 -complete.

It is known that M-perfectness verification is ΠP
2 -hard

already for QS and QO CQs and M a GAV mapping in
a DL setting, i.e., with mapping heads restricted to unary
and binary predicates (Lutz, Marti, and Sabellek 2018;
Cima, Lenzerini, and Poggi 2019). Hence, considering
(U)CQ6=,C (and GLAV mappings) does not lead to increased
complexity of verification.

When it comes to taking an ontology into account, most
previous works have considered lightweight DLs that are
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fus.5 The key point is that, for any fus rule set R and QO
in UCQ 6=,C, R−(QO) is also in UCQ6=,C; hence the tech-
niques designed forM-abstractions can be extended, how-
ever at the risk of increased complexity. Next, we show that
perfectness verification remains in ΠP

2 when R is a set of
linear rules—i.e., existential rules whose body has a single
atom—over predicates with bounded arity. This rule class
generalizes several dialects of the DL-Lite family, in partic-
ular DL-LiteR (Calı́, Gottlob, and Lukasiewicz 2009).
Theorem 10. The UCQ6=,C Σ-perfectness verification prob-
lem is in ΠP

2 whenR is linear with bounded-arity predicates.

Proof sketch. W.l.o.g. assume QO is a CQ 6=,C. We show we
can guess a CQ 6=,C q′ from R−(QO) in polynomial time.
SinceR is linear, any such q′ has at most |QO| atoms, which
only share terms from QO. Hence, the length of a rewriting
sequence to q′ can be bounded by |QO| × A, where A is an
upper-bound on the number of “non-isomorphic” atoms—
with isomorphism being the identity on terms(QO)— i.e.,
A = |P | × (|terms(QO)|+ a)a, where P is the set of pred-
icates and a is the maximal arity of a predicate in P .

This result subsumes previous results establishing ΠP
2 -

membership of Σ-perfectness verification with UCQs and
DL-LiteR (Lutz, Marti, and Sabellek 2018; Cima, Lenzerini,
and Poggi 2019). 6 The theorem actually applies to any FO-
rewritable pair (QO,R) such that all the CQs in R−(QO)
can be generated in a polynomial number of rewriting steps.

4 Computing Minimally Complete and
Perfect Abstractions

Let us first point out that a complete abstraction of a non-
Boolean query QS may not exist, simply because M may
not transfer all the constants that occur in the answers toQS .
This is independent from any target query language. E.g., let
M = {s(x, y) → r(y)} and the CQ qS(u) = ∃v.s(u, v):
qS has no complete Σ-abstraction, for any Σ withM. Let us
characterize when a UCQ6=,C has a complete Σ-abstraction:
Proposition 11 (Existence of a complete abstraction). A
CQ6=,C qS(~x) has a complete Σ-abstraction iff for all x ∈ ~x
there are m ∈ M and a homomorphism h : body(m) →
qS(~x) s.t. x ∈ h(fr(m)). A UCQ6=,C QS(~x) has a complete
Σ-abstraction iff each qi(~x) ∈ QS has one.

Hence, deciding if a non-Boolean UCQ6=,C has a com-
plete Σ-abstraction is NP-complete, while it is trivial for a
Boolean UCQ6=,C.

UCQ6=,C captures perfect Σ-abstractions of UCQ 6=(,C)

source queries. As already mentioned, chasing a (relevant)
UCQ with M yields a UCQ that is minimally complete
within this class. However, as illustrated by Ex. 5, the class
UCQ6=,C may provide a more faithful translation: the UCQ
M(QS) is minimally complete within UCQs but not sound,

5An exception is (Lutz, Marti, and Sabellek 2018) considering
also non-fus DLs from the EL family.

6We can ignore the disjointness axioms from DL-LiteR, as they
have no impact on the complexity results.

while the UCQ6=,C QO is a perfect abstraction. We now state
the main result of this section: the class UCQ6=,C captures
minimally complete abstractions of source UCQs6=,C, where
minimality is w.r.t. any ontological query class (still with
certain answer semantics)7.

Theorem 12 (Minimal completeness). For any mappingM
and any UCQ6=,C QS that has a complete M-abstraction,
there is a UCQ6=,C QO such that, for any Σ with mapping
M, QO is a minimally complete Σ-abstraction of QS .

Note thatQO is also a minimally completeM-abstraction
(we take Σ with R = ∅). However, a minimally complete
M-abstraction is generally not a minimally complete Σ-
abstraction, and vice-versa; to obtain Th. 12, we will rely on
the specific abstraction computed by the M-chase. More-
over, if there is a perfect Σ-abstraction ofQS , any minimally
complete Σ-abstraction of QS is perfect, hence UCQ6=,C
also captures perfect abstractions:

Corollary 13 (Perfectness). For any Σ and any UCQ6=,C
QS , if there is a perfect Σ-abstraction of QS , then it can be
expressed as a UCQ6=,C.

Furthermore, it is easy to find examples in which C or the
limited 6= is required to express a perfect abstraction of a
UCQ, hence one can argue that UCQ6=,C is a minimal class
to express perfect abstractions of UCQs and UCQ6=,C.

To prove Th. 12, we first state a fundamental semantic
property of OBDA systems.

Proposition 14. For any databases D and D′ on S, if
Σ(D) |=M(D′), then: 8

1. ModΣ(D) ⊆ ModM(D′).
2. Hence: for anyQO onO,Qcert

O (D′,M) ⊆ Qcert
O (D,Σ).

We now explain how to build the desired abstraction.
OnlyM is required (not R), the resulting query being min-
imally complete for any Σ with mappingM. In a nutshell,
before chasingQS , we first split each qi ∈ QS into an equiv-
alent UCQ6=,C, whose CQs encode all the ways of mapping
qi to a database: terms substituted identically are merged,
remaining terms are declared distinct (6=) and marked by C.
We will show that chasing the output withM yields the de-
sired minimally complete Σ-abstraction.

Note that a similar split operation is presented in (Cima et
al. 2022) to compute minimally complete abstractions ex-
pressed in a more complex target language. Such opera-
tion is also commonly used to build inverse mappings, see
e.g. Ex. 19. For the sake of self-containedness, and to in-
clude the processing of constants, we detail our split oper-
ation next. Given a CQ6=,C q, a partition of terms(q) is
said admissible if none of its classes contains two constants
nor both terms of a 6=-atom from q. Informally, each class
of the partition gathers the terms of q mapped to the same
database constant. To each admissible partition Pσ can be

7See the discussion at the end of this section.
8As regards the formulation of the proposition, note that

Σ(D) |= M(D′) is stronger than Σ(D) |= Σ(D′): indeed,
Σ(D) |= M(D′) implies R(Σ(D)) |= R(M(D′)), with
R(Σ(D)) ≡ Σ(D) andR(M(D′)) ≡ Σ(D′)
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assigned a substitution σ, which is obtained by (1) select-
ing one term ti in each class Ci ∈ Pσ , with priority given
to constants, then to answer variables if any, and (2) set-
ting σ(tj) = ti for each tj ∈ Ci s.t. tj 6= ti. E.g., to
Pσ = {{x, u}, {v, w, a}}, with x an answer variable and a
a constant, is assigned σ = {u 7→ x, v 7→ a,w 7→ a}. Given
a UCQ6=,C QS(~x), split(QS) is a UCQ6=,C built as follows:

Let split(QS) = ∅
For each qi ∈ QS

For each admissible Pσ on terms(qi) ∪ consts(M)
Let q′ = σ(qi) // q′ is consistent
For any v ∈ vars(q′)

If v 6∈ ~x then add C(v) to q′
For any t ∈ terms(q′) ∪ consts(M) with v 6= t

Add v 6= t to q′
Add q′ to split(QS)

Note that q′ may include atoms of the form v 6= c, where
c is a constant fromM that does not occur in std(q′): this
is necessary to ensure the desired behavior of split(QS) (see
Lemma 16). It is easy to check that for any database D,
QS(D) = split(QS)(D).

Example 15. (Minimally complete abstraction) Consider
again Example 5 with qs(u) = ∃v.s1(u, v).

split(qs(u)) = (∃v.s1(u, v) ∧ C(v) ∧ u 6= v) ∨ s1(u, u)

M(split(qs(u))) = QO(u)

The following lemma states the crucial property of
split(QS). We call grounding of a CQ 6=,C qS a substitution
σ of each variable in qS by a constant s.t. σ(qS) is consis-
tent. The key point is that any grounding of a qis ∈ split(QS)
is injective. It follows that any rule body maps “in the same
way” to qis and to any of its groundings:

Lemma 16. Let σis be a grounding of qis ∈ split(QS). Then:
M(σis(q

i
s)) ≡ σis(M(qis)).

Proof of Th. 12 (Sketch). Let QO(~x) = M(split(QS)).
We show that QO is a minimally complete Σ-abstraction
of QS , for any Σ with mappingM. Completeness follows
from the properties of the M-chase. To prove that QO is
minimally complete, we consider anyD and~c ∈ QO(Σ(D))
and show that ~c is a certain answer to any complete Σ-
abstraction of QS . Let qiO ∈ QO that maps by hi to Σ(D)
with hi(~x) = ~c. Let qiS ∈ split(QS) such that qiO =M(qiS).
LetDi be obtained by a grounding of hi(qiS). Since hi(~x) =
~c, ~c ∈ qiS(Di). Since qiO is a complete Σ-abstraction of
qiS , ~c ∈ qiO(Σ(Di)). We have M(hi(q

i
S)) ≡ M(Di),

hence, from Lemma 16, M(Di) maps to hi(q
i
O). Since

hi(q
i
O) ⊆ Σ(D),M(Di) maps to Σ(D). So, by Prop. 14,

for all ontological query Q, Qcert(Di,Σ) ⊆ Qcert(D,Σ),
hence if Q is Σ-complete then ~c ∈ Qcert(D,Σ).

Complexity of expressibility With these results in hand,
we can now study the complexity of determining whether a
UCQ6=,C QS has a perfectM-abstraction. Let us say thatM
is frontier-bounded if the frontier of all its rules is bounded
by a constant. From (Lutz, Marti, and Sabellek 2018) we

know that UCQM-expressibility is ΠP
2 -complete in a GAV

setting with bounded predicates (in rule heads). We observe
that ΠP

2 -membership can be extended to GLAV mappings
with unbounded predicate arity provided thatM is frontier-
bounded. Indeed, for a CQ qsi ∈ QS , M(qsi) is built
from rule heads whose frontier is substituted by terms(qsi);
hence, for each m ∈ M, the number of substitutions that
need to be considered is bounded by terms(qsi)

|fr(m)|.
Therefore, whenM is frontier-bounded, we can build each
M(qsi) by making a polynomial number of calls to an NP
oracle, asking for each m ∈M with fr(m) = (x1, . . . , xk)
(according to an arbitrary total ordering of the frontier vari-
ables) and tuple t = (y1, . . . , yk) ∈ terms(qsi)

k if there is a
homomorphism h : body(m) → qsi such that h(fr(m)) =
t. When M is not frontier-bounded, M(QS) can be com-
puted in ExpTime, which yields a Co-NExpTime upper
bound. These arguments can be generalized to (unrestricted)
M-expressibility of UCQ6=,C queries, as shown next.

Theorem 17. (Complexity of M-expressibility) UCQ6=,C
M-expressiblity is ΠP

2 -complete when M is frontier-
bounded, otherwise it is in Co-NExpTime.

Proof sketch. To check that Qs is not M-expressible, one
can guess a CQ6= fromQs and a partition on its terms, which
yields a CQ 6= qsi from split(Qs), compute qoi = M(qsi)
and guess a rewriting q′si of qoi (of polynomial size in qoi )
such that q′si 6v Qs (test in ΣP2 ). IfM is frontier-bounded,
qoi = M(qsi) can be built by making a polynomial num-
ber of calls to an NP oracle, otherwise, it can be com-
puted in ExpTime. Hence, the (co-)problem is in ΣP2 ifM
is frontier-bounded, otherwise in NExpTime. ΠP

2 -hardness
follows from (Lutz, Marti, and Sabellek 2018).

Discussion on related frameworks We will now discuss
our framework further in relationship with previous work.

As shown above, one can decide if a UCQ6=,C QS has
a perfect M-abstraction by simply checking if QO =
M(split(QS)) is a soundM-abstraction, i.e.,M−(QO) v
QS . This may seem contradictory with other results from the
literature. In particular, it is shown in (Cima et al. 2021) that
determining if a CQ has a perfectM-abstraction is undecid-
able. In fact, the crucial point is the semantics of ontological
queries. We consider the widely adopted semantics of cer-
tain answers. As a consequence, ontological queries are nec-
essarily monotone, in the following sense: QO is monotone
if for all D1, D2 on S, if ModΣ(D2) ⊆ ModΣ(D1) then any
answer to QO on (D1,Σ) is an answer to QO on (D2,Σ).
This is a corollary of our Prop. 14. A more general notion
of ontological query is investigated in the above-mentionned
paper, which allows for non-monotone queries. Note that a
source query may have no perfect monotone abstraction but
a perfect abstraction in this more general setting, which is
studied in (Cima, Lenzerini, and Poggi 2020).

The C predicate was introduced in (Fagin et al. 2008),
under the name is-constant, to define specific kinds of in-
verses of GLAV mappings, which are disjunctive6=,C map-
pings (Definition 18). It has been commonly used since then
in the data exchange litterature, not only in inverse mappings
but also in queries, see e.g., (Arenas, Pérez, and Riveros
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2008). Similar notions have also been studied in KR, as
closed-world variables (Amendola et al. 2018), or nomi-
nal variables in description logics (Krötzsch and Rudolph
2014). We think that C yields a very simple and effec-
tive way of dealing with unknown values introduced by
mappings (and ontologies). First, it is easy to understand
for a user and its introduction has no impact on compu-
tational complexity. Second, it can be handled using off-
the-shelf tools. Indeed, one can slighly modify the map-
ping by adding a head atom C(t) for each frontier vari-
able or constant t: then, C-atoms in ontological queries can
be processed just like the standard atoms. A more gen-
eral way of introducing some closed world reasoning would
have been to extend queries with the epistemic operator
K (“is known”), as in (Cima, Lenzerini, and Poggi 2020;
Cima et al. 2022). However, this operator does not have
the simplicity of C, which seems a better choice to us in
the context of abstractions under standard certain answer se-
mantics. On the other hand, K comes into its own in the con-
text of non-monotone ontological queries, which inherently
requires a more general semantics than certain answers.

5 Computing Maximally Sound Abstractions
A (U)CQ(6=) always has a sound abstraction (the empty
UCQ, which has no answer) but may not have a maximally
sound abstraction expressible as a UCQ(6=,C). Finding a suit-
able language for such abstractions remains open. In this
section, we make progress by providing a characterization
of maximally soundM-abstractions of UCQ(6=)s, which we
further extend to Σ-abstractions with fus rules. For that, we
rely on specific inverse mappings fromO to S, which, as ex-
plained later, correspond to so-called maximum recoveries.
Such mappings have disjunctive heads, as defined next.

Definition 18 (Disjunctive6=,C mapping). A disjunctive
(resp. disjunctive6=,C) mapping from a source schema S to
a target schema T is a set of S-to-T disjunctive existen-

tial rules of the form ∀~x.(∃~y.B[~x, ~y]) →
n∨
i=1

∃~zi.Hi[~x, ~zi],

where B is a CQ (resp. a CQ 6=,C) and each Hi is a CQ, all
with answer variables ~x.

Given a (GLAV) mappingM from S to O, we will con-
sider a disjunctive6=,C mappingM∨ from O to S, which has
the property of being a maximum recovery of M (Arenas,
Pérez, and Riveros 2009; Arenas et al. 2009). Before enter-
ing into the formal framework of maximum recoveries, we
first explain howM∨ is built. Briefly, each rule ofM∨ is
obtained by rewriting a rule head fromM againstM. Pre-
cisely, for each m ∈ M with head ∃~y.H[~x, ~y] (seen as a
CQ),M∨ has the following disjunctive rule:

∀~x.(∃~y.H[~x, ~y] ∧ C[~x])→M−(∃~y.H[~x, ~y])

This is illustrated in Ex. 19. As shown in the example,
the head of the obtained rule may contain equalities; these
equalities can be turned into inequalities in the rule body, by
a split operation similar in spirit to that described in Sect. 4,
which yields a rule complying with Def. 18; see (Arenas et
al. 2009) for details.

Example 19. LetM ={
m1 = s1(x)→ ∃y.p(x, y) m3 = s3(x, y)→ r(x, y)

m2 = s2(x, y)→ p(x, y) m4 = s4(x)→ r(x, x)
By rewriting the CQs head(mi)(fr(mi)), one getsM′=

m′1 = p(x, y) ∧ C(x) → s1(x) ∨ ∃z.s2(x, z)

m′2 = p(x, y) ∧ C(x) ∧ C(y) → s2(x, y)

m′3 = r(x, y) ∧ C(x) ∧ C(y) → s3(x, y) ∨
(s4(x) ∧ x = y)

m′4 = r(x, x) ∧ C(x) → s3(x, x) ∨ s4(x)
Moreover, Rule m′3 with equality can be replaced by two
rules obtained by considering that, in body(m′3), either
x = y (which yields m′4, already present) or x 6= y, which
yields: m′′3 = r(x, y) ∧ C(x) ∧ C(y) ∧ x 6= y → s3(x, y)
Finally,M∨ = {m′1,m′2,m′′3 ,m′4}.

We furthermore consider the rewriting operator for UCQs
against disjunctive mappings introduced in (Leclère, Mug-
nier, and Pérution-Kihli 2023). This operator is sound and
complete and yields a possibly infinite disjunction of CQs.
Its extension to UCQ6=,Cs and disjunctive6=,C mappings is
straightforward. We can now outline our characterization of
maximal soundM-abstractions: For any mappingM (from
S toO) and UCQ6=,C QS on S, letM∨ be the disjunctive6=,C
mapping from O to S built as above; then, M−∨ (QS), i.e.,
the rewriting of QS againstM∨, is a maximally sound ab-
straction of QS . This result relies on the fact thatM∨ is a
maximum recovery ofM and is proven in Th. 21.
Maximum recoveries The following definitions and results
come from (Arenas, Pérez, and Riveros 2009; Arenas et al.
2009). The notion of a maximum recovery is defined on
abstract mappings, which may then be specified by con-
crete mappings, i.e., provided with a specific syntax (e.g.,
GLAV). An abstract mapping MA from a schema S to a
schema T is any relation from the S-instances to the T -
instances.9 Let QT be a query on T . Given an S-instance I ,
we denote by certainMA(QT , I) =

⋂
(I,J)∈MA

QT (J)

the certain answers to QT through I and MA. A query
QS on S such that QS(I) = certainMA(QT , I) for
all instance I on S , is called a perfect rewriting of QT
through MA (such QS may not exist). The composition
of two abstract mappings MA and M′A is denoted by
MA • M′A.10 Given an abstract mapping MA from S to
T , the abstract mapping M′A from T to S is a recovery
of MA if for any query QS on S and instance I on S ,
certainMA•M′

A
(QS , I) ⊆ QS(I); and M′A is a maxi-

mum recovery if, moreover, for any recoveryM′′A ofMA,
certainMA•M′′

A
(QS , I) ⊆ certainMA•M′

A
(QS , I).

An abstract mapping MA from S to T is specified by
a (GLAV) mapping M from S to T if: for every pair of
(S, T )-instances (I, J), (I, J) ∈ MA iff I ∪ J |= M. In
this case, certainMA(QT , I) = Qcert

T (I,M) holds for
any query QT and, when QT is a UCQ 6=,C ,M−(QT ) is a
perfect rewriting of QT throughMA. Not all abstract map-

9In the cited work, instances are finite, but the definitions work
in the infinite case.

10We use • to avoid confusion with the classical ◦: MA •M′
A

can be readM′
A ◦MA.
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pings have a maximum recovery. However, when the source
instances are ground, a GLAV mapping always has one, tak-
ing the form of a disjunctive6=,C mapping (Def. 18).11

Maximally soundM-abstractions LetMA be an abstract
mapping specified by a GLAV mappingM. The following
lemma shows that a perfect rewriting of a source query QS
through a maximum recovery ofMA behaves similarly to a
maximally sound S-to-T translation ofQS throughM (i.e.,
anM-abstraction of QS when S = S and T = O). Indeed,
Point (1) corresponds to the soundness of anM-abstraction
and Point (2) to its maximality.
Lemma 20. Let QS be a query on S , MA be an abstract
mapping from S to T that has a maximum recovery M′A.
Let QT be a perfect rewriting of QS through M′A. Then,
for any S-instance I: (1) certainMA(QT , I) ⊆ QS(I),
and (2) certainMA(Q′T , I) ⊆ certainMA(QT , I) for
any query Q′T such that certainMA(Q′T , I) ⊆ QS(I).

Finally, Th. 21 directly relies on Lemma 20:
Theorem 21. Let M be a (GLAV) mapping from S to O,
M∨ be a disjunctive 6=,C mapping that is a (concrete) max-
imum recovery of M, and QS be a UCQ 6=,C on S. Then
M∨−(QS) is a maximally soundM-abstraction of QS .

In general, M∨−(QS) is a possibly infinite disjunction
of UCQ 6=,C. Yet, the next proposition gives cases where it
is a UCQ6=,C. In such cases, the rewriting algorithm from
(Leclère, Mugnier, and Pérution-Kihli 2023) can be used to
effectively output a maximally soundM-abstraction.
Proposition 22. The maximally soundM-abstraction of a
UCQ6=,C Q is a UCQ6=,C when:

1. M−(head(m)) is a CQ6=,C for all m ∈M;
2. Q contains only full CQs6=,C (i.e., without existential vari-

ables) andM is GAV;
3. Q contains only atomic CQs6=,C (i.e., with at most one

standard atom).
Proof. Let M∨ be a maximum recovery of M. (1) M∨
is a conjunctive mapping. (2) All rules in M∨ are loss-
less (all body variables are frontier) which guarantees to
get a UCQ6=,C-rewriting from any full CQ6=,C. (3) Disjunc-
tive source-to-target rule sets guarantee to get a UCQ6=,C-
rewriting from any atomic CQ6=,C. Points (2) and (3) fol-
low from the rewriting algorithm in (Leclère, Mugnier, and
Pérution-Kihli 2023).

Note. We remark that Th. 21 contradicts a result from
(Arenas et al. 2009) (see Th. 4.4). This result states that
a recovery that maximally recovers answers to CQs (not
UCQs), called a CQ-maximum recovery, can be specified
by a conjunctive mapping (i.e., without disjunctive heads).
But then, the rewriting of a CQ through a CQ-maximum re-
covery would always be finite (this is a property of conjunc-
tive mappings), hence a CQ would always have a maximally
soundM-abstraction as a UCQ6=,C, which is false.

11More precisely: For every GLAV mappingM, which specifies
an abstract mapping MA, there is a concrete mapping M∨ that
specifies a maximum recovery ofMA and can be expressed as a
disjunctive mapping 6=,C. For the sake of simplicity, we say that
M∨ is a (concrete) maximum recovery ofM.

Maximally sound Σ-abstractions We now extend previous
results to an OBDA specification with a fus ontology R.
A suitable disjunctive6=,C mapping from O to S, say MΣ

∨ ,
is obtained by rewriting each rule head of M ∪ R against
M ∪ R. For a rule head ∃~y.H[~x, ~y], this yields the dis-
junctive rule ∀~x.(∃~y.H[~x, ~y] ∧ C[~x]) → Σ−(∃~y.H[~x, ~y]).
To bring OBDA specifications into the maximum recovery
framework, we say that an abstract mappingMA from S to
O is specified by Σ = (S,O,M,R) if, for all S-database
D and O-instance J , (D, J) ∈ MA iff D ∪ J |= M and
J |= R both hold.

Theorem 23. Let Σ be an OBDA specification with FO-
rewritableR. Then:

1. MΣ
∨ is a (concrete) maximum recovery of Σ.

2. For any UCQ6=,C QS on S, MΣ
∨
−

(QS) is a maximally
sound Σ-abstraction of QS .

Proof (sketch). (1) Since M ∪ R is fus, MΣ
∨ is well de-

fined. We first prove that MΣ
∨ specifies a recovery Σ′A of

the abstract mapping ΣA specified by Σ. To do that, we
prove that for all S-databasesD, there is anO-instance J s.t.
(D, J) ∈ ΣA and (J,D) ∈ Σ′A. Such J always exists, f.i.
J = Σ(D). Then, we prove that Σ′A is a maximum recov-
ery of ΣA, using Prop. 3.8 from (Arenas, Pérez, and Riveros
2009), which follows that Σ′A is a maximum recovery of ΣA
iff Σ′A is a recovery and for every (D1, D2) ∈ ΣA •Σ′A, it is
the case that ∅ 6= ModΣA(D2) ⊆ ModΣA(D1). Σ′A has this
property by construction ofMΣ

∨ . (2) The proof is similar to
the proof of Th. 21, using Point (1) and Lemma 20.

Prop. 22 can be extended to Σ-abstractions as follows: (1)
takingM∪R instead ofM; (2) and (3): taking rule classes
ensuring that R−(Q) has the desired property, in particular
lossless rules for (2) and linear rules for (3).

6 Conclusion
We have investigated the properties of the query class
UCQ6=,C for capturing abstractions in an OBDA setting un-
der certain answer semantics. We found that this class en-
joys nice computational behavior in this context. We proved
that it is able to express any minimally complete—and there-
fore any perfect—abstraction of a source UCQ6=,C, when
such an abstraction exists. Although a maximally sound ab-
straction of a UCQ always exists, it may not be expressible
in UCQ6=,C. However, we identified an interesting connec-
tion with the notion of maximum recovery from data ex-
change, and showed that a maximally soundM-abstraction
of a source UCQ6=,C is precisely its rewriting with a maxi-
mum recovery of M. While the ontology plays no role in
minimal completeness, it does in maximal soundness. Ac-
cordingly, we extended the preceding result to OBDA spec-
ifications with fus ontologies.

Among the open questions, it remains unknown whether
the problem of determining if a (U)CQ admits a maximally
sound abstraction in UCQ6=,C is decidable. Moreover, no
known algorithm is guaranteed to terminate whenever such
a finite abstraction exists.
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Arenas, M.; Pérez, J.; Reutter, J. L.; and Riveros, C. 2009.
Inverting schema mappings: Bridging the gap between the-
ory and practice. Proc. VLDB Endow. 2:1018–1029.
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