Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Abstractions of Queries in Ontology-Based Data Access

Michel Leclere, Marie-Laure Mugnier, Guillaume Pérution-Kihli
LIRMM, Inria, University of Montpellier, CNRS, Montpellier, France
{michel.leclere, marie-laure.mugnier, guillaume.perution-kihli } @lirmm.fr

Abstract

In ontology-based data access (OBDA), multiple data sources
are integrated via mappings to an ontology. We consider an
OBDA setting based on existential rules and the certain an-
swer semantics. We address the recent issue of query abstrac-
tion, which consists of abstracting data queries by translating
them to the ontology layer. Since a perfect abstraction may
not exist, the notions of minimally complete and maximally
sound abstractions have been introduced. We study abstrac-
tions within an extension of UCQs with a limited form of in-
equality and a special predicate marking database constants.
While this extension does not lead to an increased complex-
ity of the problems of interest, it is able to express minimally
complete abstractions, hence perfect abstractions when they
exist. We also characterize maximally sound abstractions by
making a new connection with the notion of maximum recov-
ery stemming from data exchange.

1 Introduction

In ontology-based data access (OBDA), multiple data
sources are integrated via mappings to a shared ontology
(Poggi et al. 2008). This approach generalizes classical data
integration by replacing the global schema with an ontology,
enabling users to query data at a high level of abstraction
while benefiting from reasoning over domain knowledge.

A central problem in OBDA is ontological query answer-
ing. Given an OBDA specification ¥ = (5,0, M, Q0),
where S is a data schema, O an ontology schema, M a map-
ping from S to O, and O an ontology over O, and a database
D over S, the goal is to compute the answers to an ontolog-
ical query Qo over the knowledge base (KB) defined by D,
M, and O. Such KB may remain virtual: then, Qo is rewrit-
ten into a data-level query (g that is a perfect translation of
o, which means that, for any database D over .S, the an-
swers to (Qs on D coincide with the answers to (o on the
virtual KB. While Qg is simply evaluated on D, the answers
to Qo are logically entailed by the KB—corresponding to
the standard semantics of certain answers, i.e., answers that
hold in every model of the KB.

More recently, research in OBDA has also investigated
query translation in the opposite direction, i.e., from data
queries to ontological queries—a task called query abstrac-
tion (Cima, Poggi, and Lenzerini 2023). This issue arises
in a range of relevant scenarios. First, during the (often in-
cremental) design of an OBDA system, query abstraction

440

can be used to verify whether the mapping provides ade-
quate coverage of important data queries (Lutz, Marti, and
Sabellek 2018). Second, query abstraction is a means to au-
tomatically characterize the semantics of data services im-
plemented at the data-source level—which can be seen as
a form of reverse engineering (Cima, Lenzerini, and Poggi
2019). This capability opens the door to promising applica-
tions, such as providing open datasets supplied by organiza-
tions with high-level semantics, or enhancing the FAIRness
of data services (Cima, Poggi, and Lenzerini 2023).

In this paper, we investigate query abstraction within an
OBDA setting based on existential rules (Baget et al. 2009;
Cali, Gottlob, and Lukasiewicz 2009), aka TGDs in database
theory (Abiteboul, Hull, and Vianu 1995).We use existen-
tial rules for both the mapping (we obtain Global-Local-As-
View (GLAV) mappings) and the ontology. So doing, we
generalize classical OBDA frameworks based on Horn de-
scription logics (DLs), as these can be seen as specific exis-
tential rule classes. Moreover, this uniform setting allows us
to rely on the same fundamental tools to handle mappings
and ontologies, namely the chase and query rewriting. It
also helps to make connections with database theory.

Most work in OBDA has focused on ontological queries

expressed as unions of conjunctive queries (UCQs), the core
relational database queries. FO-rewritable ontologies—such
as those expressed with the main dialects of the DL-Lite
family (Calvanese et al. 2007) or certain fragments of ex-
istential rules (Baget et al. 2009; Cali, Gottlob, and Pieris
2010)—guarantee that every ontological UCQ admits a per-
fect rewriting as a UCQ. In the other direction, query trans-
lation appears to be much more challenging. To start with, a
perfect abstraction of a data (U)CQ may not exist at all, even
with an empty ontology. Apart from the fact that mappings
may not transfer all the answers, they may also make source
relations indistinguishable, as illustrated next.
Example 1. Let S = {s1,s2}, O {r} and M =
{my,ma}, withmy: si(x) = r(z) and ma: sa(x) — r(x).
The query Qgs(u) s1(u) has no perfect abstraction
through M. In particular, the ontological query Qo(u) =
r(u) captures all answers to Qg, i.e., it is a complete ab-
straction of Qg, but it is not a sound abstraction of Qg, as it
also retrieves values coming from the source relation so. In
fact, Qo would be a perfect abstraction of s1(u) V s2(u).

The topic began to be investigated only recently (Lutz,

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Setting Verification Existence
(U)CQ, GAV, IT5-C (%) II5-C (%)
bounded arity

UCQ” ', GLAV 5-c 5 -c

bounded frontier

UCQ” %, GLAV I5-c in
Co-NEXPTIME

(*) from (Lutz, Marti, and Sabellek 2018)

Table 1: Complexity of problems related to perfect M-abstractions

Marti, and Sabellek 2018; Cima, Lenzerini, and Poggi 2019;
Cima et al. 2021). However, OBDA can build on a rich body
of previous work in database theory. As pointed out by Lutz
et al. (Lutz, Marti, and Sabellek 2018), when the ontology is
ignored, deciding if a source query has a perfect abstraction
as a UCQ is closely related to the long-studied problem of
query expressibility with views (Nash, Segoufin, and Vianu
2010). We will establish a new link with database theory by
considering specific inverse mappings from data exchange
(Fagin et al. 2008; Arenas, Pérez, and Riveros 2009).

Since a perfect abstraction of a UCQ ()s may not exist,
Cima et al. introduced minimally complete and maximally
sound abstractions, which respectively provide a minimal
superset and a maximal subset of answers to Qg (Cima,
Lenzerini, and Poggi 2019). Here, minimality and maximal-
ity are with respect to the set of queries definable in some
target query language (e.g., UCQ).

With the aim of capturing perfect abstractions of UCQs,
we consider an extension of UCQ, denoted by UCQ’é’C,
with a limited form of inequality (variables that occur in in-
equalities must be mapped to constants) and a special unary
predicate marking database constants, denoted by C—which
was introduced in (Fagin et al. 2008) to define inverse map-
pings. As a data query language, UCQ7 is of great interest
in practice, especially as inequalities are in fact not limited
when the queried databases are ground. However, the true
benefit of UCQ7C is as an ontological query language. In-
deed, while a perfect abstraction of a UCQ, when it exists,
may not be expressible as a UCQ, we will show that it is
always expressible as a UCQ7C.

We will now detail our main contributions. To distinguish
between the settings of database integration, i.e., without on-
tology, and OBDA, we will use the terms M -abstraction and
Y -abstraction, respectively.

(1) Complexity of the problems of interest within the
UCQ7C class. In Section 3, we study the computational
impact of extending UCQ to UCQ7*C. In particular, we
show that this does not lead to increased complexity of ver-
ifying whether a candidate M-abstraction is perfect, which
is H2P -complete (see Table 1, first column). We also exhibit
an FO-rewritable rule fragment for which this problem with
a Y-abstraction remains in IT5 (this subsumes earlier results
on DL-Lite). Other complexity results are established later.

(2) Capturing minimally-complete and perfect abstrac-
tions of UCQ7’5’CS. In Section 4, we first point out that a
non-Boolean query Qs may not have a complete abstrac-
tion and characterize the conditions under which it has one

441

(which only depends on the interactions between (Jg and
the mapping). For a UCQ @ that has a complete abstrac-
tion, it is known that, by applying M to Qs (i.e., “chas-
ing” Qg with M), one produces a UCQ Qo that is mini-
mally complete w.r.t. all M-abstractions definable as UCQs
(Lutz, Marti, and Sabellek 2018; Cima, Lenzerini, and Poggi
2019). However, we point out that () may have a better
M-abstraction (i.e., a complete M-abstraction with fewer
unwanted answers) in the UCQ#C class, which can be com-
puted by a modified chase. The important result here is that
UCQ7#C is in fact able to express a minimally complete
M-abstraction (and X-abstraction as well) of any source
UCQ7C, where minimality is w.r.t. all possible ontologi-
cal queries (i.e., queries on schema O expressed in any lan-
guage, provided that they are answered with the semantics
of certain answers). We take special care in exhibiting the
properties behind this result. It follows that, when a per-
fect Y-abstraction of a UCQ7'£’C exists, it can be expressed
in this class. Moreover, UCQ7'C is a minimal language
with this property, even when the source query is a plain
UCQ. Finally, we use these results to show that the com-
plexity of deciding whether a perfect M-abstraction exists
for a given UCQ7#C is I15-complete when the mapping rules
have a frontier of bounded size (the frontier being the set
of variables shared between the body and head) and in Co-
NExpTime otherwise (see Table 1, second column).

(3) Characterizing maximally sound abstractions of
UCQ7Cs. There is no known algorithm that builds a
maximally sound M-abstraction of a UCQ as a UCQ (or
UCQ’é’C), when such abstraction exists, except in a very
specific case (Cima, Lenzerini, and Poggi 2019). Whether
the associated existence problem is decidable is an open
question. In Section 5, we make a step towards better un-
derstanding by drawing a connection with the notion of a
maximum recovery investigated in a quite different context,
namely data exchange. In data exchange, mappings are used
to specify how to transfer data from a source schema to a tar-
get schema; then, a maximum recovery of a mapping M is
an inverse mapping from target to source that allows one to
recover the most answers to source queries when it is com-
posed with M (Arenas, Pérez, and Riveros 2009). To ex-
press such inverse mapping, a strictly more expressive lan-
guage than GLAV is required, as disjunction in rule heads
is needed. We show that a maximally sound M-abstraction
of a UCQ7'¢ Qg can be equivalently defined as the rewrit-
ing of Qg with a maximum recovery of M. To define such
rewriting, we rely on a rewriting operator for UCQs and dis-
junctive existential rules introduced in (Leclere, Mugnier,
and Pérution-Kihli 2023). In passing, we correct a wrong
claim from the literature, that a maximum recovery for CQs
could always be expressed by a conjunctive mapping (i.e.,
without disjunction) (Arenas et al. 2009). We then extend
the notion of a maximum recovery to an OBDA specifica-
tion (i.e., we add an ontology) and show that a maximum
recovery can still be expressed by the same form of disjunc-
tive mapping when the ontology is FO-rewritable; hence, in
this case, a maximally sound 3-abstraction of a UCQV’é’C can
also be characterized as a rewriting with a maximum recov-
ery. When this rewriting is finite, it is a UCQ7C.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

2 Preliminaries

We assume the reader has basic knowledge in database the-
ory and ontological query answering.

Database theory We consider a denumerable set of con-
stants C. A term is a constant from C or a variable. A
schema is a finite set of predicates. An atom with predicate
p is called a p-atom. Given a schema P, a P-atom is any p-
atom with p € P. A P-instance is a possibly infinite set of
P-atoms, also seen as an interpretation of (P,C), in which
constants are interpreted by themselves. A finite instance is
also seen as an existentially-closed positive conjunctive FO-
formula.! A database is a ground finite instance. Given an
instance I, we denote by vars([/), consts([/) and terms(])
its sets of variables, constants and terms, respectively. A tu-
ple & of pairwise distinct variables is sometimes seen as a
set. Given instances I; and I, a homomorphism h from I
to I5 is a substitution of vars(/;) by terms(l) such that
h(I1) C I,. We also denote it by h : I; — I and we say
that I; maps to I (by h). When convenient, we extend the
domain of a homomorphism to constants.

We define the notion of a query in an abstract way, i.e.,
independently from any syntactic form: an n-ary query Q
on schema P is any function that maps each P-instance I
to a set of n-ary tuples on consts(/). We denote by Q(I)
the set of answers to Q on I. An n-ary FO-query on P has
the form Q(&), where @ is an FO-formula on P and Z are
n free variables from @) (the answer variables). A Boolean
query is O-ary. Given an instance I, a tuple ¢ C consts([)
with |¢] = |Z] is an answer to an FO-query Q(Z) on I if 1
is a model of Q(¢), where Q(€) is obtained by substituting
each i-th variable in Z by the i-th constant in ¢. A conjunc-
tive query (CQ) has the form ¢(Z) = 3y. ¢[Z, ¢], where ¢ is
a finite conjunction of atoms and Z U § = vars(¢); to de-
note a CQ, we write ¢ rather than Q). A CQ is with join-free
existential variables (CQJFE) if each existential variable oc-
curs only once. A union of conjunctive queries (UCQ) is a
finite disjunction of CQs with the same tuple of answer vari-
ables. A UCQ may contain equalities, but to simplify tech-
nical developments we will silently assume that, before any
processing, equalities are removed by substituting variables.

Given queries 1 and 2, Q1 is contained in (5, denoted
by Q1 C Qa, if Q1(I) C Q2([) for any instance I. Given
two CQs ¢1 (Z1) and ¢o(Z2), a query homomorphism from ¢,
to ¢ is a homomorphism h from ¢; to g2 such that h(Z) =
Zo. It is well known that, given CQs ¢; and ¢o, ¢1 = g0 iff
there is a query homomorphism from g¢s to ¢;. Note that for
UCQs ()1 and @2, we have @1 T Qs iff for all ¢; € @1,
there is ¢ € ()2 such that g; C ¢o.

When information is incomplete, a set of instances is of-
ten considered instead of a single instance; then, the set
of certain answers to a query () on a set of instances Z is

certain(Q,Z) = IQIQ(I).

Rules and mappings An existential rule R (or sim-
ply rule hereafter) is a closed formula of the form
VZ. (3y. B[Z,y]) — 3Z. H[Z,Z] where B and H # ()
are finite conjunctions, respectively called the body and the

"Null values in instances are seen as existential variables.

442

head of R, also noted body(R) and head(R), and Z, ¢ and 2’
are pairwise disjoint tuples of variables and consts(H) C
consts(B). The frontier of R is fr(R) = . Note that
body(R) and head(R) can be seen as CQs with answer vari-
ables fr(R). R is Datalog if Z = {). Given schemas S and
T, called source and target respectively, with S N7 = (), an
S-to-T rule has a body made of S-atoms and a head made
of T-atoms. A GLAV mapping from S to 7T is a finite set
of §-to-7T rules. A GLAV mapping is GAV if it is a set of
Datalog rules.

OBDA An OBDA specification is a quadruplet X
(S,0, M, R) where S is the source schema, O the ontology
schema, M a (GLAV) mapping from S to O and R a finite
set of rules over O. An OBDA system is a pair (D, X) with
3} an OBDA specification and D an S-database. A source
query, usually denoted by (g, is defined on .S and an onto-
logical query, usually denoted by QQo, is defined on O. The
answers to an ontological query Qo on an OBDA system
(D, X), denoted by Q&**(D, X), are its certain answers on
the models of the OBDA system, denoted by Modx,(D):
Modx (D) = {O-instance I | DUI = MandI = R}
57D, X) = certain(Qo,Modx (D))

When we want to ignore the set of rules R of an OBDA
system, we use notations with M instead of X. Query con-
tainment is extended to ontological queries: @1 Cyx Qo if
Q5 (D, X) C Q5°**(D, X) for every S-database D.
Query abstraction For an OBDA specification ¥, a query
Qo on O is a complete (resp. sound) X-abstraction
of a query Qs on S if Qg(D) C QF**(D,X) (resp.
Q™ (D,X) C Qg(D)) for all D; Qo is a perfect 3-
abstraction if it is both sound and complete. We also con-
sider “best” approximations of perfect abstractions within a
target query class: Given a query class Q, an ontological
query Qo € Q is a Q-minimally complete L-abstraction of
Qs if Qo is a complete Y-abstraction of Qg and Qo Cx
Qp, forany Qf, € Q that is a complete X-abstraction of Qs;
similarly, Qo is a Q-maximally sound Y-abstraction of Qg
if Qo is a sound X-abstraction of Qs and Q) Cs; Qo for
any Qp € Q that is a sound -abstraction of QQg. When
we do not specify Q, we consider any query, as abstractly
defined above. Finally, when R is ignored, we speak of
M-abstraction instead of Y-abstraction.

Let X € {M,X} and Q be a class of queries. We study
three kinds of problems:

* Verifying if an abstraction is perfect: the Q X'-perfectness
verification problem takes as input X', Q-queries () s and
Qo, and asks if Qo is a perfect X'-abstraction of Q) 5. This
problem is decomposed into verifying X'-soundness and
X-completeness.

* Deciding the existence of a perfect abstraction: the Q X’-
expressibility problem takes as input X and Qg € Q, and
asks if a perfect X'-abstraction of Qg is expressible in Q.

e Computing abstractions satisfying property P €
{perfectness, maximal soundness, minimal completeness};
Given X and a Q-query QQg, the task is to compute a
Q-query Qo that is an X'-abstraction of Qg with property
P, when such an abstraction exists.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Reasoning tools Let R be a set of rules. Given an instance
I, the chase with 'R exhaustively applies rules from R to I,
towards a fixpoint. > We denote by chase(I,R) the (pos-
sibly infinite) resulting instance. Crucially, chase(I,R) is
a universal model of I and R, i.e., it maps to any model of
I and R. Given a UCQ Q, query rewriting with R starts
from () seen as a set of CQs; it iteratively rewrites a CQ
from the set with a rule from R and adds the resulting CQ
to the set, while keeping a minimal set w.r.t. query con-
tainment, towards a fixpoint. We consider here the rewrit-
ing algorithm from (Konig et al. 2015), based on so-called
piece-unifiers, and denote by rew(Q,R) the possibly infi-
nite set (i.e., union) of CQs it produces. Each rewriting step
is based on a piece-unifier, which unifies a subset ¢’ of a CQ
q with a subset of a rule head A’ while satisfying the follow-
ing piece condition: an existential variable from ' can only
be unified with variables from ¢’, which furthermore do not
occur in q \ ¢’. A fundamental property holds: For any in-
stance I, set of rules R and Boolean UCQ @, I U R entails
Q iff chase(I,R) E Qiff I = rew(Q,R). A pair (Q,R)
where Q is a UCQ, is FO-rewritable if there is a UCQ Q’
such that Q'(I) = certain(Q), chase(I,R)) for any in-
stance I. Note that (@, R) is FO-rewritable iff rew(Q,R)
is finite. A rule set R is FO-rewritable, or fus, if (Q,R) is
FO-rewritable for any UCQ Q.

When mappings (from S to 7") are considered instead of
rules on a single schema, the result of the chase or of query
rewriting is restricted to the relevant schema (7 or S). Given
a mapping M from S to 7 and a (finite) S-instance I, the
chase of I with M yields the T-instance M(I) = {A €
chase(I, M) | Aisa T-atom}. Given a CQ g, the chase
of g5 with M is defined similarly, on the atoms of g5 seen
as an instance, provided that each answer variable from g;
occurs in a T -atom of M (gs); hence, M(qg,) can be seen as
a CQ with the same arity as g. The chase is further extended
to a UCQ: given an S-UCQ @5, M(Q;) is defined only if
M(gs,) is defined for each g5, € Q,; then M(Q5) is the T-
UCQ obtained by making the disjunction of the M(gs,), for
all g5, € Q5. Query rewriting with a mapping M takes as
input a 7-UCQ Q; and produces the S-UCQ M~ (Q;)
{q € rew(Q¢, M) | qis aquery on S}. Note that M(Q;)
and M~ (Q;) are always finite.

It is convenient to use the same notations for mappings
and general rule sets; so we also note R(I) = chase(I,R)
and R~ (Q) = rew(Q, R). For an OBDA specification ¥ =
(S,0,M,R), we note £(I) = R(M(I)) and ¥ (Q)
M= (R=(Q)). When R~(Q) is not finite, it is seen as an
infinitary query, as in (Lutz, Marti, and Sabellek 2018).

Properties of OBDA systems We finally list some funda-
mental properties of OBDA systems, which are explicit or
implicit in previous work, except that we consider existen-
tial rules instead of specific Horn description logics.

Proposition 2. For any OBDA specification X
(S,0, M, R), S-database D, S-UCQ Qg and O-UCQ Qo
the following holds:

1. Q8™ (D,M) CQ¥™(D,x)

This formulation corresponds to the simplest chase variant,
called oblivious (Cali, Gottlob, and Kifer 2008).

443

2. Q5™ (D,%) = Qo(R(M(D)))

3. If Qs E Q' then M(Qs) Ex M(Q%)
4. Qo Em Qp iff M™(Qo) E M™(Qp)
5. Qo Ex Qo iffR™(Qo) Em R™(Q0)

When a perfect M-abstraction of a UCQ ()g is express-
ible as a UCQ, M (Qg) is such an abstraction (this follows,
e.g., from (Nash, Segoufin, and Vianu 2010)). Moreover,
when (g has a complete M-abstraction, M(Qg) is such an
abstraction, which is even UCQ-minimally complete (Cima,
Lenzerini, and Poggi 2019). Hence, a UCQ Q) s has a perfect
M -abstraction expressible as a UCQ iff M(Qg) is sound,
which can be checked by verifying if M~ (M(Qs)) C Qs.
This result has been extended to a X-abstraction in some
specific OBDA settings.?

Next, we use the following notations: 3 is an OBDA
specification defined by (S, 0, M, R), D is an S-database,
and Q)s, Qo are queries over S and O respectively.

3 From UCQ to UCQ# €

The class UCQ7C extends UCQ with two special predi-
cates: a restricted form of inequality () and a unary predi-
cate C stating that its argument is a constant.* In the context
of query abstraction, C is used to mark variables in onto-
logical queries that must be mapped to values coming from
the database, whereas = allows one to distinguish between
different ways of matching query variables.

Definition 3 (UCQ7*C). A UCQ#C Q is a UCQ extended
with atoms on special predicates # (binary) and C (unary),
such that: (1) All the variables of @ occur in standard
atoms, and (2) The terms of any #-atom are constants, an-
swer variables, or variables that occur in a C-atom. We
denote by std(Q) the restriction of Q to standard atoms.

The C-atoms on answer variables and constants, as well
as #-atoms over constants, can be made explicit or not.
Also, C is useless in source queries since databases are
ground, but for simplicity we keep the same query class at
the data and the ontology levels. A UCQ7C Q is consistent
if there exists a database D such that Q(D) # (), which can
be checked in polynomial time. Next, we implicitly assume
that queries are consistent.

All the technical tools for CQs are extended to CQ#°C in
the natural way. A homomorphism h : ¢ — I is a homo-
morphism from std(q) to I such that (i) for all C(t) € g,
h(t) is a constant, and (ii) for all t; # to, h(t1) # h(ta).
A query homomorphism h : g1 — g2 is a homomorphism
from std(q1) to std(qz) such that (i) for all C(t) € g,
h(C(t)) € g¢o or h(t) is a constant or h(t) is an answer
variable, and (ii) for all t1 # to € q1, h(t; # t2) € Q2
or h(t1) and h(ty) are distinct constants. The chase of ¢
with M, ie., M(q), is obtained from M(std(q)) by (1)
adding the atoms (¢; # to) from g if ¢; and ¢ are both
in M(std(q)), and (2) adding C(x) on the variables from

3GAV mappings (Lutz, Marti, and Sabellek 2018) or ontology
in DL-Liter (Cima, Lenzerini, and Poggi 2019).

*Formally: for any FO-interpretation Z = (A, .%) it holds that
CT = consts(Z) and #% = {(d1,d2) € A% | dy # da}.

(M™(R™(Q0)))(D)

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

vars(q) N vars(M(std(q))). Hence, if the C-atoms in
q are made explicit, M(q) is defined as for a plain (U)CQ
w.r.t. target predicates 7 U {C, #}. Similarly, the rewriting
of g with M, i.e., M~ (q), is defined w.r.t. source predicates
SU{C, #}; inconsistent CQs can be removed from M~ (q)
and the C-atoms can be made implicit. Note that, by defi-
nition of a piece-unifier, an existential variable from a rule
head cannot be unified with a variable that occurs in a C- or
Z#-atom. These notions are illustrated in Ex. 4. They are ex-
tended to UCQ7C as expected. Note that the fundamental
properties from Prop. 2 still hold.

Example 4. Let M be the following mapping:
my :si(z,y) = p(z,y) mg:sa(z) — p(z, z)
my zsi(w,x) = r(x) mass(x) = y.p(z,y)

Let the source CQ7 q(u) = 3v. s1(u,v) A u # v. Then,
M(q(u)) = p(u,v) A u # v A C(v) (with C(u) left implicit
as u is an answer variable) and M~ (M(q(u)) = q(u).
Let us detail the rewriting of M(q(u)): p(u,v) can be
unified with head(m,), which yields q(u), as well as with
head(ms), which yields the inconsistent CQ sa(u) A u # u
(discarded); p(u,v) cannot be unified with head(my) be-
cause v would be unified with the existential variable vy,
while it also occurs in C(v) and in u # v.

The next example shows that a UCQ may have no perfect
abstraction in UCQ but one in UCQ#C.

Example 5 (Perfect abstraction within UCQ#*C). Con-
sider again M from Ex. 4. The CQ qs(u)
Fv.s1(u,v) has no perfect M-abstraction in UCQ. In-
deed, M(qs) = Fv.p(u,v), and Qs = M~ (M(gs))
Fv.s1(u,v) V so(u) V s3(u) strictly contains qs. Hence,
M(qs) is not a sound abstraction. However, the follow-
ing UCQ7C is a perfect abstraction of qs: Qo(u) =
a5 () V g} (w), with g5 (u) = Fv. p(u,v) AC(v) Au # v
and q%(u) = r(u) A p(u,u). Such query Qo is the out-
put of the algorithm given in Section 4. Intuitively, Qo is a
sound abstraction because it does not retrieve the p-atoms
produced by ms and my. Indeed, qlo only retrieves p-atoms
produced by my, thanks to u # v and C(v). However, q})
is not a complete abstraction as it avoids atoms of the form
p(a, a) that can be produced by my. Subquery q%, compen-
sates for this elimination. Note that the atom p(u,u) in g3
is actually not needed: indeed, when an atom r(a) is pro-
duced (by ms), the atom p(a, a) is necessarily produced (by
m1). More formally, let us check that M~ (Qo) = qs. The
rewriting of qf, yields the CQ Jv. s1(u,v) A u # v, see
Ex. 4. The rewriting of g% yields two CQs: 1. s1(u,u),
obtained by unifying r(u) with head(msz) and p(u,u) with
head(my); and 2. (s1(u,u) A s3(u)), obtained by unifying
r(u) with head(ms) and p(u, u) with head(mg). The latter
query is contained in the former, hence can be ignored. We
obtain M~ (Qo) = (Fv. s1(u,v) Au # v) Vs1(u,u) = gs.

A natural question is whether this extension increases the
complexities of the problems we are interested in. First note
that 2 homomorphism from a CQ7°C ¢ to an instance I nec-
essarily maps terms from a #-atom to terms known to be
constants. It follows that, for ¢ Boolean, if I entails ¢ then
q maps to I (and reciprocally); hence, query answering can
still rely on homomorphism. This is different for query con-

444

tainment: given CQs7'C ¢; and ¢y, the existence of a query
homomorphism from ¢ to g; is no longer a necessary con-
dition for ¢; C ¢, even when considering only databases.
Let UCQ7C containment be the problem that takes as in-
put two queries Q; and Q, in UCQ#C, and asks if Q; T
Q2. This problem is known to be IT5-complete, already
when both queries are in CQ7C (van der Meyden 1997;
Kolaitis, Martin, and Thakur 1998). As a complementary
result, we prove that I15-hardness already holds when Q) is
a very simple kind of CQ.

Theorem 6 (Complexity of UCQ7C containment). The
UCQ#C containment problem is H; -hard when Q1 is a
Boolean CQJFE and Q- is a Boolean CQ7% .

Proof sketch. By a reduction from V33CNF adapted from
(Abiteboul, Kanellakis, and Grahne 1991). O

We now study the complexity of M-perfectness verifi-
cation, by decomposing that problem into M-completeness
and M-soundness verifications. The M-completeness
(resp. M-soundness) verification problem can be recast as
verifying if Qs = M~ (Qo) (resp. M~(Qo) C Qs).
There is an immediate reduction from UCQ7C containment
to verification, taking a trivial mapping M that bijectively
translates n-ary predicates in .S into n-ary predicates in O.

Theorem 7 (Complexity of M-completeness). The
UCQ#€ M-completeness verification problem is TI5-
complete, even if Qg is a CQJFE and Qo is a CQ7.

Proof. To verify that Qs C M~ (Qo), we can check if, for
every ground instantiation D of a CQ7 from g, there is a
CQ7 ¢; € M~(Qo) that maps to D (with answer variables
mapped correctly). We can universally choose a D in poly-
nomial time as it is given by a substitution of the variables
of a g; € Qg by fresh constants and we can guess ¢; and a
homomorphism from g; to D in polynomial time. Indeed, to
obtain a g;, we guess a CQ” ¢; € Qo, a subset of M with
at most |g;| rules and associated piece-unifiers. Hence, M-
completeness is in IT5. Hardness follows from Th. 6. O

Theorem 8 (Complexity of M-soundness). The UCQ#€
M -soundness verification problem is 115 -complete, even if
Qs is a Boolean CQ7 and Qo is a is a Boolean CQJFE.

Proof. Similar to that of Th. 7. O

Since Q1 C Q- iff Q1 = Q1A Q2, query equivalence is as
hard as query containment, hence:

Corollary 9. The UCQ7C M-perfectness verification
problem is 115 -complete.

It is known that M-perfectness verification is II5-hard
already for Qs and Qo CQs and M a GAV mapping in
a DL setting, i.e., with mapping heads restricted to unary
and binary predicates (Lutz, Marti, and Sabellek 2018;
Cima, Lenzerini, and Poggi 2019). Hence, considering
(U)CQ7€ (and GLAV mappings) does not lead to increased
complexity of verification.

When it comes to taking an ontology into account, most
previous works have considered lightweight DLs that are

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

fus.> The key point is that, for any fus rule set R and Qo
in UCQ7C, R~ (Qo) is also in UCQ7*C; hence the tech-
niques designed for M-abstractions can be extended, how-
ever at the risk of increased complexity. Next, we show that
perfectness verification remains in IT5 when R is a set of
linear rules—i.e., existential rules whose body has a single
atom—over predicates with bounded arity. This rule class
generalizes several dialects of the DL-Lite family, in partic-
ular DL-Lite (Cali, Gottlob, and Lukasiewicz 2009).

Theorem 10. The UCQ7C S-perfectness verification prob-
lem is in 115 when R is linear with bounded-arity predicates.

Proof sketch. W.l.o.g. assume Qo is a CQ7C. We show we
can guess a CQ7”'C ¢’ from R~ (Qo) in polynomial time.
Since R is linear, any such ¢’ has at most |Q | atoms, which
only share terms from Q. Hence, the length of a rewriting
sequence to ¢’ can be bounded by |Qo| x A, where A is an
upper-bound on the number of “non-isomorphic” atoms—
with isomorphism being the identity on terms(Qo)— i.e.,
A =|P| x (|terms(Qo)| + a)®, where P is the set of pred-
icates and a is the maximal arity of a predicate in P. O

This result subsumes previous results establishing IT5-
membership of X-perfectness verification with UCQs and
DL-Liter (Lutz, Marti, and Sabellek 2018; Cima, Lenzerini,
and Poggi 2019). ¢ The theorem actually applies to any FO-
rewritable pair (Qo,R) such that all the CQs in R~ (Qo)
can be generated in a polynomial number of rewriting steps.

4 Computing Minimally Complete and
Perfect Abstractions

Let us first point out that a complete abstraction of a non-
Boolean query (Js may not exist, simply because M may
not transfer all the constants that occur in the answers to Qg.
This is independent from any target query language. E.g., let
M = {s(z,y) — r(y)} and the CQ gs(u) = Fv.s(u,v):
¢s has no complete X-abstraction, for any > with M. Let us
characterize when a UCQ7C has a complete ¥-abstraction:

Proposition 11 (Existence of a complete abstraction). A
CQ7C qs(%) has a complete Z-abstraction iff for all x € T
there are m € M and a homomorphism h : body(m) —
qs(Z) s.t. © € h(fr(m)). A UCQ7C Qs(&) has a complete
Y-abstraction iff each q;(Z) € Qs has one.

Hence, deciding if a non-Boolean UCQ7C has a com-
plete -abstraction is NP-complete, while it is trivial for a
Boolean UCQ#C.

UCQ#C captures perfect Y-abstractions of UCQ#(C)
source queries. As already mentioned, chasing a (relevant)
UCQ with M yields a UCQ that is minimally complete
within this class. However, as illustrated by Ex. 5, the class
UCQ7 ¢ may provide a more faithful translation: the UCQ
M(Qg) is minimally complete within UCQs but not sound,

>An exception is (Lutz, Marti, and Sabellek 2018) considering
also non-fus DLs from the ££ family.

We can ignore the disjointness axioms from DL-Liter, as they
have no impact on the complexity results.

445

while the UCQ7'C Qo is a perfect abstraction. We now state
the main result of this section: the class UCQ7C captures
minimally complete abstractions of source UCQs? €, where
minimality is w.r.t. any ontological query class (still with
certain answer semantics)’.

Theorem 12 (Minimal completeness). For any mapping M
and any UCQ7C Qg that has a complete M-abstraction,
there is a UCQ#C Qo such that, for any . with mapping
M, Qo is a minimally complete Y-abstraction of Q.

Note that Qo is also a minimally complete M-abstraction
(we take ¥ with R = (). However, a minimally complete
M-abstraction is generally not a minimally complete >-
abstraction, and vice-versa; to obtain Th. 12, we will rely on
the specific abstraction computed by the M-chase. More-
over, if there is a perfect 3-abstraction of () g, any minimally
complete Y-abstraction of Qg is perfect, hence UCQ7C
also captures perfect abstractions:

Corollary 13 (Perfectness). For any ¥ and any UCQ#€
Qs, if there is a perfect X-abstraction of Qg, then it can be
expressed as a UCQ7C.

Furthermore, it is easy to find examples in which C or the
limited # is required to express a perfect abstraction of a
UCQ, hence one can argue that UCQ#°C is a minimal class
to express perfect abstractions of UCQs and UCQ7C.

To prove Th. 12, we first state a fundamental semantic
property of OBDA systems.

Proposition 14. For any databases D and D' on S, if
Y(D) &= M(D"), then: 3

1. MOdE(D) g MOdM (D/)
2. Hence: forany Qo on O, Q5™ (D', M) C QE**(D,).

We now explain how to build the desired abstraction.
Only M is required (not R), the resulting query being min-
imally complete for any 3 with mapping M. In a nutshell,
before chasing () 5, we first split each ¢; € Qg into an equiv-
alent UCQ7C, whose CQs encode all the ways of mapping
q; to a database: terms substituted identically are merged,
remaining terms are declared distinct (%) and marked by C.
We will show that chasing the output with M yields the de-
sired minimally complete Y-abstraction.

Note that a similar split operation is presented in (Cima et
al. 2022) to compute minimally complete abstractions ex-
pressed in a more complex target language. Such opera-
tion is also commonly used to build inverse mappings, see
e.g. Ex. 19. For the sake of self-containedness, and to in-
clude the processing of constants, we detail our split oper-
ation next. Given a CQ7C ¢, a partition of terms(q) is
said admissible if none of its classes contains two constants
nor both terms of a #-atom from ¢. Informally, each class
of the partition gathers the terms of ¢ mapped to the same
database constant. To each admissible partition P, can be

"See the discussion at the end of this section.

8As regards the formulation of the proposition, note that
(D) E M(D') is stronger than (D) | X(D’): indeed,
3(D) M(D') implies R(X(D)) E R(M(D')), with
R(Z(D)) = %(D) and R(M(D")) = %(D")

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

assigned a substitution o, which is obtained by (1) select-
ing one term ¢; in each class C; € P,, with priority given
to constants, then to answer variables if any, and (2) set-
ting o(t;) = t; for each t; € Cjsit. t; # t;. Eg., to
P, = {{z,u},{v,w,a}}, with x an answer variable and a
a constant, is assigned 0 = {u — x,v — a,w — a}. Given
aUCQ7C Qs(7), split(Qg) is a UCQ7C built as follows:

Let split(Qs) = 0
For each ¢; € Qg
For each admissible P, on terms(g;) U consts(M)
Let¢ =o(q;) /¢ is consistent
For any v € vars(q’)
If v ¢ & then add C(v) to ¢’
For any ¢ € terms(¢’) U consts(M) withv # ¢
Addv £ttoq
Add ¢’ to split(Qs)

Note that ¢’ may include atoms of the form v # ¢, where
¢ is a constant from M that does not occur in std(q’): this
is necessary to ensure the desired behavior of split(Qg) (see
Lemma 16). It is easy to check that for any database D,

Qs(D) = Split(Qs)(D).
Example 15. (Minimally complete abstraction) Consider
again Example 5 with qs(u) = Jv.s1(u,v).

split(qs(u)) = (Fv.s1(u,v) AC(W) Au # v) V s1(u,u)
M (split(qs(u))) = Qo(u)

The following lemma states the crucial property of
split(Qs). We call grounding of a CQ7C gg a substitution
o of each variable in gg by a constant s.t. o(gs) is consis-
tent. The key point is that any grounding of a ¢% € split(Qs)
is injective. It follows that any rule body maps “in the same
way” to ¢’ and to any of its groundings:

Lemma 16. Let _ag be a grounding of ¢¢ € split(Qs). Then:
M(oi(q5)) = o5 (M(gs))-

Proof of Th. 12 (Sketch). Let Qo(Z) = M(split(Qs)).
We show that Qo is a minimally complete X-abstraction
of (g, for any ¥ with mapping M. Completeness follows
from the properties of the M-chase. To prove that Qo is
minimally complete, we consider any D and ¢ € Qo (X(D))
and show that ¢ is a certain answer to any complete -
abstraction of Qg. Let g5, € Qo that maps by h; to (D)
with h;(Z) = €. Let ¢ € split(Qg) such that ¢, = M(q%).
Let D; be obtained by a grounding of h;(g%). Since h; (%)
¢, ¢ € q4(D;). Since g}, is a complete X-abstraction of
g, @ € ab(S(D:). We have M(hi(gy)) = M(D,),
hence, from Lemma 16, M(D;) maps to h;(g). Since
hi(¢h) € B(D), M(D;) maps to 3(D). So, by Prop. 14,
for all ontological query @, Q°°**(D;,¥) C Q°**(D,Y),
hence if () is 2-complete then ¢’ € Q°°**(D, X). O

Complexity of expressibility With these results in hand,
we can now study the complexity of determining whether a
UCQ7¢ Qs has a perfect M-abstraction. Let us say that M
is frontier-bounded if the frontier of all its rules is bounded
by a constant. From (Lutz, Marti, and Sabellek 2018) we

446

know that UCQ M-expressibility is IT5-complete in a GAV
setting with bounded predicates (in rule heads). We observe
that TI5-membership can be extended to GLAV mappings
with unbounded predicate arity provided that M is frontier-
bounded. Indeed, for a CQ ¢, € Qg, M(qgs,) is built
from rule heads whose frontier is substituted by terms(qs,);
hence, for each m € M, the number of substitutions that
need to be considered is bounded by terms(g,)f*(")!,
Therefore, when M is frontier-bounded, we can build each
M(gs,) by making a polynomial number of calls to an NP
oracle, asking for each m € M with fr(m) = (x1,...,zx)
(according to an arbitrary total ordering of the frontier vari-
ables) and tuple t = (y1,...,ys) € terms(qs,)¥ if thereis a
homomorphism A : body(m) — ¢, such that h(fr(m))
t. When M is not frontier-bounded, M(Qs) can be com-
puted in ExpTime, which yields a Co-NExpTime upper
bound. These arguments can be generalized to (unrestricted)
M-expressibility of UCQ7C queries, as shown next.

Theorem 17. (Complexity of M-expressibility) UCQ7€
M-expressiblity is T15-complete when M s frontier-
bounded, otherwise it is in Co-NExpTime.

Proof sketch. To check that Q4 is not M-expressible, one
can guess a CQ” from @, and a partition on its terms, which
yields a CQ7 ¢, from split(Q,), compute q,, = M(qs,)
and guess a rewriting ¢; of g, (of polynomial size in g,,)
such that ¢ Z Q (test in X3). If M is frontier-bounded,
do, = M(qs,) can be built by making a polynomial num-
ber of calls to an NP oracle, otherwise, it can be com-
puted in ExpTime. Hence, the (co-)problem is in 3% if M
is frontier-bounded, otherwise in NExpTime. II-hardness
follows from (Lutz, Marti, and Sabellek 2018).]

Discussion on related frameworks We will now discuss
our framework further in relationship with previous work.

As shown above, one can decide if a UCQ#C Qg has
a perfect M-abstraction by simply checking if Qo
M(split(Qs)) is a sound M-abstraction, i.e., M~ (Qp) C
Q@ s. This may seem contradictory with other results from the
literature. In particular, it is shown in (Cima et al. 2021) that
determining if a CQ has a perfect M-abstraction is undecid-
able. In fact, the crucial point is the semantics of ontological
queries. We consider the widely adopted semantics of cer-
tain answers. As a consequence, ontological queries are nec-
essarily monotone, in the following sense: Qo is monotone
if for all D17 D2 on S, if Modyx, (Dg) - M0d2<D1) then any
answer to Qo on (D1,Y) is an answer to Qo on (D3,).
This is a corollary of our Prop. 14. A more general notion
of ontological query is investigated in the above-mentionned
paper, which allows for non-monotone queries. Note that a
source query may have no perfect monotone abstraction but
a perfect abstraction in this more general setting, which is
studied in (Cima, Lenzerini, and Poggi 2020).

The C predicate was introduced in (Fagin et al. 2008),
under the name is-constant, to define specific kinds of in-
verses of GLAV mappings, which are disjunctive” ¢ map-
pings (Definition 18). It has been commonly used since then
in the data exchange litterature, not only in inverse mappings
but also in queries, see e.g., (Arenas, Pérez, and Riveros

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

2008). Similar notions have also been studied in KR, as
closed-world variables (Amendola et al. 2018), or nomi-
nal variables in description logics (Krotzsch and Rudolph
2014). We think that C yields a very simple and effec-
tive way of dealing with unknown values introduced by
mappings (and ontologies). First, it is easy to understand
for a user and its introduction has no impact on compu-
tational complexity. Second, it can be handled using off-
the-shelf tools. Indeed, one can slighly modify the map-
ping by adding a head atom C(t) for each frontier vari-
able or constant ¢: then, C-atoms in ontological queries can
be processed just like the standard atoms. A more gen-
eral way of introducing some closed world reasoning would
have been to extend queries with the epistemic operator
K (“is known”), as in (Cima, Lenzerini, and Poggi 2020;
Cima et al. 2022). However, this operator does not have
the simplicity of C, which seems a better choice to us in
the context of abstractions under standard certain answer se-
mantics. On the other hand, K comes into its own in the con-
text of non-monotone ontological queries, which inherently
requires a more general semantics than certain answers.

5 Computing Maximally Sound Abstractions

A (U)CQWP) always has a sound abstraction (the empty
UCQ, which has no answer) but may not have a maximally
sound abstraction expressible as a UCQ(#:©). Finding a suit-
able language for such abstractions remains open. In this
section, we make progress by providing a characterization
of maximally sound M-abstractions of UCQ(# s, which we
further extend to X-abstractions with fus rules. For that, we
rely on specific inverse mappings from O to .S, which, as ex-
plained later, correspond to so-called maximum recoveries.
Such mappings have disjunctive heads, as defined next.

Definition 18 (Disjunctive”*C mapping). A disjunctive
(resp. disjunctive” *) mapping from a source schema S to
a target schema T is a set of S-to-T disjunctive existen-

tial rules of the form VZ.(3y.B[Z,¢]) — \/ 3z H;|Z, z;],
where B is a CQ (resp. a CQ7€) and each H isa CQ, all
with answer variables T.

Given a (GLAV) mapping M from S to O, we will con-
sider a disjunctive” € mapping M., from O to S, which has
the property of being a maximum recovery of M (Arenas,
Pérez, and Riveros 2009; Arenas et al. 2009). Before enter-
ing into the formal framework of maximum recoveries, we
first explain how M., is built. Briefly, each rule of M, is
obtained by rewriting a rule head from M against M. Pre-
cisely, for each m € M with head 37.H[Z, §] (seen as a
CQ), My, has the following disjunctive rule:

VZ.(35.H[Z, §] A C[F]) = M~ (37.H[Z, 7))

This is illustrated in Ex. 19. As shown in the example,
the head of the obtained rule may contain equalities; these
equalities can be turned into inequalities in the rule body, by
a split operation similar in spirit to that described in Sect. 4,
which yields a rule complying with Def. 18; see (Arenas et
al. 2009) for details.

447

Example 19. Let M =
{ml =s1(z) = Jy.p(z,y) ms = ss(z,y) = r(z,y)

me = sa(z,y) = pla,y) mg = s4(x) = r(z,)
By rewriting the CQs head(m;)(fr(m;)), one gets M’=
= p(z,y) A C(x) — s1(z) V 3z.82(x, 2)

my = p(x,y) ANC(x) AC(y) = s2(,y)

ms =r(z,y) AC(x) ANC(y) — s3(z,y) V

(s1(e) A = 1)

mly =r(x,z) AC(x) — s3(z,z) V sq(x)
Moreover, Rule mY with equality can be replaced by two
rules obtained by considering that, in body(m}), either
=1y (which yields m}, already present) or x # vy, which
yields: m% = r(x,y) NC(x) NC(y) Nz # y — s3(x,y)
Finally, My = {m/, mb, m¥4,m}}.

i
my =

We furthermore consider the rewriting operator for UCQs
against disjunctive mappings introduced in (Leclere, Mug-
nier, and Pérution-Kihli 2023). This operator is sound and
complete and yields a possibly infinite disjunction of CQs.
Its extension to UCQ7Cs and disjunctive” ¢ mappings is
straightforward. We can now outline our characterization of
maximal sound M-abstractions: For any mapping M (from
Sto O) and UCQ7€ Qg on S, let M., be the disjunctive-€
mapping from O to S built as above; then, M, (Qg), i.e
the rewriting of Qg against M, is a maximally sound ab-
straction of (Qg. This result relies on the fact that M., is a
maximum recovery of M and is proven in Th. 21.

Maximum recoveries The following definitions and results
come from (Arenas, Pérez, and Riveros 2009; Arenas et al.
2009). The notion of a maximum recovery is defined on
abstract mappings, which may then be specified by con-
crete mappings, i.e., provided with a specific syntax (e.g.,
GLAV). An abstract mapping M 4 from a schema S to a
schema 7 is any relation from the S-instances to the 7 -
instances.’ Let Q7 be a query on 7. Given an S-instance I,
we denote by certainpyg, (Qr,I) = ﬂ(LJ)eMA Qr(J)
the certain answers to Q7 through I and M 4. A query
Qs on S such that Qs(I) = certainpg, (Q7,I) for
all instance I on S, is called a perfect rewriting of Qr
through M 4 (such Qs may not exist). The composition
of two abstract mappings M4 and M/, is denoted by
M4 o M’,.10 Given an abstract mapping M 4 from S to
T, the abstract mapping M, from 7 to S is a recovery
of M 4 if for any query Qs on S and instance I on S,
certainner, (@s, 1) € Qs(I); and MA is a maxi-
mum recovery if, moreover, for any recovery M’j of M 4,
certainpg er (QS, I C certainpg en, (QS, I).

An abstract mapping M 4 from S to T is specified by
a (GLAV) mapping M from S to T if: for every pair of
(S, T)-instances (I,J), (I,J) € MAiff ITUJ = M. In
this case, certainn, (Q7,1) = QF(I, M) holds for
any query Q7 and, when Q- is a UCQ7C, M~ (Q7) is a
perfect rewriting of ()7 through M 4. Not all abstract map-

°In the cited work, instances are finite, but the definitions work
in the infinite case.

%We use o to avoid confusion with the classical o: M_4 ® M/,
can be read M’y o M 4.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

pings have a maximum recovery. However, when the source
instances are ground, a GLAV mapping always has one, tak-
ing the form of a disjunctive” ¢ mapping (Def. 18).!!

Maximally sound M-abstractions Let M 4 be an abstract
mapping specified by a GLAV mapping M. The following
lemma shows that a perfect rewriting of a source query Qs
through a maximum recovery of M 4 behaves similarly to a
maximally sound S-to-7 translation of s through M (i.e.,
an M-abstraction of Qs when S = S and 7 = O). Indeed,
Point (1) corresponds to the soundness of an M-abstraction
and Point (2) to its maximality.

Lemma 20. Let Qs be a query on S, M 4 be an abstract

mapping from S to T that has a maximum recovery M',.

Let Q7 be a perfect rewriting of Qs through M',. Then,

for any S-instance I: (1) certainpy , (Qr,I) C Qs(I),

and (2) certainpg, (Q%,I) C certainng,(Q7,I) for

any query Q' such that certainn, (Q%, I) C Qs(I).
Finally, Th. 21 directly relies on Lemma 20:

Theorem 21. Let M be a (GLAV) mapping from S to O,
M., be a disjunctive”€ mapping that is a (concrete) max-
imum recovery of M, and Qg be a UCQ7€ on S. Then
M\ (Qg) is a maximally sound M-abstraction of Q.

In general, M, (Qg) is a possibly infinite disjunction
of UCQ7C. Yet, the next proposition gives cases where it
is a UCQ7C. In such cases, the rewriting algorithm from
(Leclere, Mugnier, and Pérution-Kihli 2023) can be used to
effectively output a maximally sound M-abstraction.

Proposition 22. The maximally sound M-abstraction of a

UCQ#C Q is a UCQ#€ when:

1. M~ (head(m)) is a CQ7*€ for allm € M;

2. Q contains only full CQs*C (i.e., without existential vari-
ables) and M is GAV:;

3. Q contains only atomic CQs™*C (i.e., with at most one
standard atom).

Proof. Let M, be a maximum recovery of M. (1) M,
is a conjunctive mapping. (2) All rules in M., are loss-
less (all body variables are frontier) which guarantees to
get a UCQ7C-rewriting from any full CQ7-C. (3) Disjunc-
tive source-to-target rule sets guarantee to get a UCQ7C-
rewriting from any atomic CQ#C. Points (2) and (3) fol-
low from the rewriting algorithm in (Leclere, Mugnier, and
Pérution-Kihli 2023). O

Note. We remark that Th. 21 contradicts a result from
(Arenas et al. 2009) (see Th. 4.4). This result states that
a recovery that maximally recovers answers to CQs (not
UCQs), called a CQ-maximum recovery, can be specified
by a conjunctive mapping (i.e., without disjunctive heads).
But then, the rewriting of a CQ through a CQ-maximum re-
covery would always be finite (this is a property of conjunc-
tive mappings), hence a CQ would always have a maximally
sound M-abstraction as a UCQ#*C, which is false.

""More precisely: For every GLAV mapping M, which specifies
an abstract mapping M 4, there is a concrete mapping M., that
specifies a maximum recovery of M 4 and can be expressed as a
disjunctive mapping”€. For the sake of simplicity, we say that
M, is a (concrete) maximum recovery of M.

448

Maximally sound X-abstractions We now extend previous
results to an OBDA specification with a fus ontology R.
A suitable disjunctive”*¢ mapping from O to S, say M2,
is obtained by rewriting each rule head of M U R against
M U R. For a rule head 37.H[Z,y], this yields the dis-
junctive rule VZ.(3y. H[Z, y] A C[Z]) — £~ (Iy.H[Z, 7).
To bring OBDA specifications into the maximum recovery
framework, we say that an abstract mapping M 4 from S to
O is specified by ¥ = (S,0, M, R) if, for all S-database
D and O-instance J, (D,J) € M4 iff DUJ = M and
J = R both hold.

Theorem 23. Let 3 be an OBDA specification with FO-
rewritable R. Then:

1. MZ is a (concrete) maximum recovery of X.

2. For any UCQ7C Qs on S, M3 (Qs) is a maximally
sound Y-abstraction of Qs.

Proof (sketch). (1) Since M U R is fus, M is well de-
fined. We first prove that M2 specifies a recovery ¥/, of
the abstract mapping X 4 specified by >. To do that, we
prove that for all S-databases D, there is an O-instance J s.t.
(D,J) € ¥4 and (J,D) € ¥'. Such J always exists, f.i.
J = X(D). Then, we prove that X', is a maximum recov-
ery of X 4, using Prop. 3.8 from (Arenas, Pérez, and Riveros
2009), which follows that E;‘ is a maximum recovery of X 4
iff ¥/ is arecovery and for every (D, D2) € ¥ 40X/, itis
the case that () # Modyx, , (D2) C Mods;, (D). ¥/, has this
property by construction of M3 . (2) The proof is similar to
the proof of Th. 21, using Point (1) and Lemma 20. O

Prop. 22 can be extended to -abstractions as follows: (1)
taking M U R instead of M; (2) and (3): taking rule classes
ensuring that R~ (Q) has the desired property, in particular
lossless rules for (2) and linear rules for (3).

6 Conclusion

We have investigated the properties of the query class
UCQ7C for capturing abstractions in an OBDA setting un-
der certain answer semantics. We found that this class en-
joys nice computational behavior in this context. We proved
that it is able to express any minimally complete—and there-
fore any perfect—abstraction of a source UCQ7"C, when
such an abstraction exists. Although a maximally sound ab-
straction of a UCQ always exists, it may not be expressible
in UCQ’é’C. However, we identified an interesting connec-
tion with the notion of maximum recovery from data ex-
change, and showed that a maximally sound M-abstraction
of a source UCQ7C is precisely its rewriting with a maxi-
mum recovery of M. While the ontology plays no role in
minimal completeness, it does in maximal soundness. Ac-
cordingly, we extended the preceding result to OBDA spec-
ifications with fus ontologies.

Among the open questions, it remains unknown whether
the problem of determining if a (U)CQ admits a maximally
sound abstraction in UCQ7’£’C is decidable. Moreover, no
known algorithm is guaranteed to terminate whenever such
a finite abstraction exists.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Acknowledgements
We thank the reviewers for their helpful comments.

References

Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.

Abiteboul, S.; Kanellakis, P. C.; and Grahne, G. 1991. On
the representation and querying of sets of possible worlds.
Theor. Comput. Sci. 78(1):158-187.

Amendola, G.; Leone, N.; Manna, M.; and Veltri, P. 2018.
Enhancing existential rules by closed-world variables. In
Lang, J., ed., Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, 1JCAI
2018, July 13-19, 2018, Stockholm, Sweden, 1676—-1682. ij-
cai.org.

Arenas, M.; Pérez, J.; Reutter, J. L.; and Riveros, C. 2009.
Inverting schema mappings: Bridging the gap between the-
ory and practice. Proc. VLDB Endow. 2:1018-1029.

Arenas, M.; Pérez, J.; and Riveros, C. 2008. The recovery
of a schema mapping: bringing exchanged data back. In
ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems.

Arenas, M.; Pérez, J.; and Riveros, C. 2009. The recovery
of a schema mapping: Bringing exchanged data back. ACM
Trans. Database Syst. 34:22:1-22:48.

Baget, J.-F.; Leclere, M.; Mugnier, M.-L.; and Salvat, E.
2009. Extending Decidable Cases for Rules with Existential
Variables. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence, IJCAI 2009, 677-682.

Cali, A.; Gottlob, G.; and Kifer, M. 2008. Taming the in-
finite chase: Query answering under expressive relational
constraints. In Brewka, G., and Lang, J., eds., Principles
of Knowledge Representation and Reasoning: Proceedings
of the Eleventh International Conference, KR 2008, Sydney,
Australia, September 16-19, 2008, 70-80. AAAI Press.

Cali, A.; Gottlob, G.; and Lukasiewicz, T. 2009. A general
datalog-based framework for tractable query answering over
ontologies. In ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems.

Cali, A.; Gottlob, G.; and Pieris, A. 2010. Advanced
processing for ontological queries. Proc. VLDB Endow.
3(1):554-565.

Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. Au-
tom. Reason. 39(3):385-429.

Cima, G.; Console, M.; Lenzerini, M.; and Poggi, A. 2021.
Abstraction in data integration. In 36th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2021,
Rome, Italy, June 29 - July 2, 2021, 1-11. 1IEEE.

Cima, G.; Console, M.; Lenzerini, M.; and Poggi, A. 2022.
Monotone Abstractions in Ontology-Based Data Manage-
ment. In AAAI Conference on Artificial Intelligence.

Cima, G.; Lenzerini, M.; and Poggi, A. 2019. Semantic
characterization of data services through ontologies. In In-
ternational Joint Conference on Artificial Intelligence.

449

Cima, G.; Lenzerini, M.; and Poggi, A. 2020. Non-
monotonic ontology-based abstractions of data services. In
International Conference on Principles of Knowledge Rep-
resentation and Reasoning.

Cima, G.; Poggi, A.; and Lenzerini, M. 2023. The notion
of abstraction in ontology-based data management. Artif.
Intell. 323:103976.

Fagin, R.; Kolaitis, P. G.; Popa, L.; and Tan, W.-C. 2008.
Quasi-inverses of schema mappings. ACM Transactions on
Database Systems (TODS) 33(2):1-52.

Kolaitis, P. G.; Martin, D. L.; and Thakur, M. N. 1998.
On the complexity of the containment problem for conjunc-
tive queries with built-in predicates. In Mendelzon, A. O.,
and Paredaens, J., eds., Proceedings of the Seventeenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 1-3, 1998, Seattle, Washington,
USA, 197-204. ACM Press.

Konig, M.; Leclere, M.; Mugnier, M.; and Thomazo, M.
2015. Sound, complete and minimal ucq-rewriting for exis-
tential rules. Semantic Web 6(5):451-475.

Krotzsch, M., and Rudolph, S. 2014. Nominal schemas in
description logics: Complexities clarified. In Baral, C.; Gia-
como, G. D.; and Eiter, T., eds., Principles of Knowledge
Representation and Reasoning: Proceedings of the Four-
teenth International Conference, KR 2014, Vienna, Austria,

July 20-24, 2014. AAAI Press.

Leclere, M.; Mugnier, M.; and Pérution-Kihli, G. 2023.
Query rewriting with disjunctive existential rules and map-
pings. In Proceedings of the 20th International Conference
on Principles of Knowledge Representation and Reasoning,
KR 2023, Rhodes, Greece, September 2-8, 2023, 429-439.

Lutz, C.; Marti, J.; and Sabellek, L. 2018. Query expressibil-
ity and verification in ontology-based data access. In Inter-
national Conference on Principles of Knowledge Represen-
tation and Reasoning. Erratum at https://www.informatik.
uni-leipzig.de/kr/research/papers.html.

Nash, A.; Segoufin, L.; and Vianu, V. 2010. Views and
queries: Determinacy and rewriting. ACM Trans. Database
Syst. 35(3):21:1-21:41.

Poggi, A.; Lembo, D.; Calvanese, D.; Giacomo, G. D.;
Lenzerini, M.; and Rosati, R. 2008. Linking data to on-
tologies. J. Data Semant. 10:133-173.

van der Meyden, R. 1997. The complexity of querying in-

definite data about linearly ordered domains. J. Comput.
Syst. Sci. 54(1):113-135.

https://www.informatik.uni-leipzig.de/kr/research/papers.html
https://www.informatik.uni-leipzig.de/kr/research/papers.html

	Introduction
	Preliminaries
	From UCQ to UCQ=,C
	Computing Minimally Complete and Perfect Abstractions
	Computing Maximally Sound Abstractions
	Conclusion

