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Abstract

We explore the problem of explaining observations in con-
texts involving statements with truth degrees such as ‘the lift
is loaded’, ‘the symptoms are severe’, etc. To formalise these
contexts, we consider infinitely-valued Łukasiewicz fuzzy
logic Ł. We define and motivate the notions of abduction
problems and explanations in the language of Ł expanded
with ‘interval literals’ of the form p ≥ c, p ≤ c, and
their negations that express the set of values a variable can
have. We analyse the complexity of standard abductive rea-
soning tasks (solution recognition, solution existence, and re-
levance / necessity of hypotheses) in Ł for the case of the
full language and for the case of theories containing only dis-
junctive clauses and show that in contrast to classical propo-
sitional logic, the abduction in the clausal fragment has lower
complexity than in the general case.

1 Introduction
Abduction, deduction, and induction are three main forms
of reasoning (Flach and Kakas 2000). Abduction (finding
explanations) has multiple applications in artificial intelli-
gence, such as diagnosis (El Ayeb, Marquis, and Rusinow-
itch 1993; Josephson and Josephson 2009; Koitz-Hristov
and Wotawa 2018), commonsense reasoning (Paul 1993;
Bhagavatula et al. 2020), formalisation of scientific reason-
ing (Magnani 2011), and machine learning (Dai et al. 2019).
In logic-based abduction (Eiter and Gottlob 1995), the rea-
soning task is to find an explanation for an observation χ
from a theory Γ, i.e., a formula ϕ s.t. Γ, ϕ |= χ but Γ, ϕ ̸|= ⊥
(i.e., Γ and ϕ should consistently entail χ).

Observe, however, that in many applications, one needs
not only to state whether a formula is true but also to specify
to which degree it holds. E.g., a lift may be safe to use only
when loaded to at least 5% of its maximal capacity (other-
wise, its software will register it as empty) and to no more
than 90% of the capacity. Or the cruising speed of a car can
be defined as 60 . . . 90 kmh (with the maximal speed being
150 kmh). As classical logic has only two values, it is not
well-suited to reason about contexts involving truth degrees.
On the other hand, fuzzy logics evaluate formulas in the real-
valued interval [0, 1] and thus are much better suitable to for-
malising such contexts than classical logic. In particular, to
formalise the examples above, we can set v(l) ≥ 0.05 and
v(s) ∈ [0.4, 0.6] where the truth degrees of l and s denote,

respectively, the load of the lift and the speed of the car w.r.t.
its maximal speed.

Fuzzy Logic Originally (Zadeh 1965; Zadeh 1975) fuzzy
logics were introduced to reason about imprecise statements
such as ‘it is cold outside’, ‘the symptoms are severe’,
etc. The values between [0, 1] are interpreted as degrees
of truth from 0 (absolutely false) to 1 (absolutely true).
Fuzzy logic has also been applied to reasoning about un-
certainty (cf., e.g., (Hájek and Tulipani 2001) and (Baldi,
Cintula, and Noguera 2020)) and beliefs (Rodriguez et
al. 2022). In knowledge representation and reasoning,
fuzzy logics have found multiple applications in represent-
ing graded and fuzzy ontologies (Straccia 2016). In such
ontologies, concept assertions and terminological axioms
have degrees of truth. Moreover, fuzzy versions of descrip-
tion logics and their computational properties have been
extensively investigated (Borgwardt and Peñaloza 2012;
Borgwardt 2014; Borgwardt, Distel, and Peñaloza 2014;
Borgwardt and Peñaloza 2017).

In addition to that, fuzzy logic has found multiple ap-
plications in artificial intelligence. Recent work on ma-
chine learning tries to combine perception by deep learn-
ing and symbolic knowledge representation. Neurosym-
bolic frameworks such as (Diligenti, Gori, and Saccà 2017;
Badreddine et al. 2022) adopt semantics of fuzzy logic
to support learning and reasoning in real-world domains.
(Krieken, Acar, and Harmelen 2022) analyse how differ-
ent fuzzy logic semantics affect the behaviour of learn-
ing. Fuzzy logic has also been used in reasoning prob-
lems with knowledge graphs (Chen, Hu, and Sun 2022)
and MaxSAT (Haniková, Manyà, and Vidal 2023). Fur-
thermore, t-norms (functions used to interpret conjunctions
in fuzzy logic) are applied for autonomous driving with re-
quirements (Stoian, Giunchiglia, and Lukasiewicz 2023).

Abduction in Fuzzy Logic Abduction in different sys-
tems of fuzzy logic has long attracted attention. To the
best of our knowledge, it was first presented by (Yamada
and Mukaidono 1995). There, the authors formalised ab-
duction problems in the infinitely-valued Łukasiewicz fuzzy
logic Ł and proposed explanations in the form of fuzzy
sets, i.e., assignments of values from [0, 1] to propositional
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variables. This approach was further expanded by (Vo-
jtáš 1999) to Gödel and Product fuzzy logics. Solutions
to abduction problems in multiple fuzzy logics were fur-
ther systematised by (d’Allonnes, Akdag, and Bouchon-
Meunier 2007) and (Chakraborty et al. 2013). Abduction
in fuzzy logic has found multiple applications, in partic-
ular, diagnosis (Miyata, Furuhashi, and Uchikawa 1998),
machine learning (Bergadano, Cutello, and Gunetti 2000),
fuzzy logic programming (Vojtáš 2001; Ebrahim 2001),
decision-making and learning in the presence of incom-
plete information (Mellouli and Bouchon-Meunier 2003;
Tsypyschev 2017), and robot perception (Shanahan 2005).

Contributions Still, the complexity of fuzzy abduction
largely remains unexplored. To the best of our knowledge,
the only discussion is given by (Vojtáš 1999). There, the au-
thor explores fuzzy abduction in definite logic programmes
(i.e., sets of rules of the form ⟨B ← A1, . . . , An, x⟩ where
each Ai is an atom and x belongs to the real-valued inter-
val [0, 1]). In particular, the author claims (cf. (Vojtáš 1999,
§4.4) for details) that ‘[a]s linear programming is lying in
NP complexity class (even much lower) as prolog does, to
find minimal solutions for a definite [fuzzy logic program-
ming abduction problem] . . . does not increase the complex-
ity and remains in NP’. Thus, there seems to be no formal
study of the complexity of abduction in fuzzy logic.

In this paper, we make a step towards a study of the com-
plexity of abduction in fuzzy logic. We concentrate on the
Łukasiewicz logic as it is one of the most expressive ones.
In particular, it can express rational numbers and continu-
ous linear functions over [0, 1] (cf. (McNaughton 1951) for
details). In addition, it still retains many classical relations
between its conjunction, disjunction, implication, and nega-
tion. We formalise abduction in Ł and explore its compu-
tational properties. Our contribution is twofold. First, we
propose and motivate a new form of solutions — interval
terms — that allow to express intervals of values a variable
is permitted to have. Second, we establish an (almost) com-
plete characterisation of the complexity of standard reason-
ing problems (solution recognition, solution existence, rele-
vance and necessity of hypotheses) for the case of theories
containing arbitrary formulas and those comprised of dis-
junctive clauses.

Plan of the Paper The paper is structured as follows. In
Section 2, we present the Łukasiewicz logic. In Section 3,
we propose and motivate interval terms that we will use as
solutions to Łukasiewicz abduction problems. Sections 4
and 5 are dedicated to the study of the complexity of ab-
ductive reasoning in the Łukasiewicz logic and its clausal
fragment. Finally, we summarise our results and provide
a plan for future work in Section 6. The omitted proofs
can be found in the appendix of the full version (Inoue and
Kozhemiachenko 2025).

2 Łukasiewicz Logic
We begin with the language of Łukasiewicz logic (Ł). We
fix a countable set Pr of propositional variables and define

LŁ via the following grammar.

LŁ ∋ ϕ := p ∈ Pr | ¬ϕ | (ϕ⊙ ϕ) | (ϕ⊕ ϕ) | (ϕ→ϕ)

Convention 1 (Notation). We use the following shorthands:

⊤ := p⊕ ¬p ⊥ := p⊙ ¬p ϕ↔χ := (ϕ→χ)⊙(χ→ϕ)

For a set of formulas Γ and a formula ϕ, we write Pr(ϕ)
and Pr[Γ] to denote the set of all variables occurring in ϕ
and Γ, respectively.

We use R and Q to denote the sets of real and rational
numbers, respectively. When dealing with intervals, square
brackets mean that the endpoint is included in the interval,
and round brackets that it is excluded. Lower index Q means
that the interval contains rational numbers only. E.g.,

[1/2, 2/3] = {x | x ∈ R, x ≥ 1/2, x ≤ 2/3}
(1/2, 2/3]Q = {x | x ∈ Q, x > 1/2, x ≤ 2/3}

The semantics of Ł is given in the next definition.

Definition 1 (Semantics of Łukasiewicz logic). An Ł-valu-
ation is a function v : Pr → [0, 1] extended to the complex
formulas as follows:

v(¬ϕ) = 1− v(ϕ)
v(ϕ⊙ χ) = max(0, v(ϕ) + v(χ)− 1)

v(ϕ⊕ χ) = min(1, v(ϕ) + v(χ))

v(ϕ→χ) = min(1, 1− v(ϕ) + v(χ))

We say that ϕ ∈ LŁ is Ł-valid (Ł |= ϕ) if v(ϕ) = 1 for
every Ł-valuation v; ϕ is Ł-satisfiable if v(ϕ) = 1 for some
Ł-valuation v.

We define two notions of equivalence — strong equiva-
lence (ϕ ≡Ł χ) and weak equivalence (ϕ ≃Ł χ):

ϕ ≡Ł χ iff ∀v : v(ϕ) = v(χ)

ϕ ≃Ł χ iff ∀v : v(ϕ) = 1 ⇋ v(χ) = 1

Given a finite Γ⊂LŁ, Γ entails χ in Ł (Γ |=Ł χ) iff v(χ)=
1 in every v s.t. v(ϕ)=1 for all ϕ∈Γ, and that Γ consistently
entails χ in Ł (Γ |=cons

Ł χ) iff Γ ̸|=Ł ⊥ and Γ |=Ł χ.

We note some important semantical properties of Ł. First,
every connective behaves classically on {0, 1}: in particular,
⊕ behaves like disjunction and⊙ like conjunction. Thus, we
will call ⊕ strong disjunction and ⊙ strong conjunction.

Second, deduction theorem does not hold for |=Ł: indeed,
while p |=Ł p ⊙ p, it is easy to show that Ł ̸|= p → (p ⊙ p)
by setting v(p) = 1

2 . Third, ⊙ and ⊕ are not idempotent:
setting v(p)= 1

2 , we have that v(p⊙p)=0 and v(p⊕p)=1.
Still, ¬, ⊙, ⊕, and→ interact in an expected manner. In

particular, it is easy to check that v(⊤) = 1 and v(⊥) = 0
for every valuation and that the following pairs of formulas
are indeed strongly equivalent:

¬(ϕ⊙ χ) ≡Ł ¬ϕ⊕ ¬χ ¬(ϕ⊕ χ) ≡Ł ¬ϕ⊙ ¬χ
¬(ϕ→χ) ≡Ł ϕ⊙ ¬χ ¬ϕ⊕ χ ≡Ł ϕ→ χ (1)
¬¬ϕ ≡Ł ϕ (ϕ⊙ χ)→ψ ≡Ł ϕ→(χ→ψ)
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It is also important to observe that weak conjunction (∧)
and disjunction (∨) are definable as follows:

ϕ ∨ χ := (ϕ→ χ)→ χ ϕ ∧ χ := ¬(¬ϕ ∨ ¬χ) (2)

Using Definition 1, one can recover semantics of ∧ and ∨:

v(ϕ∧χ) = min(v(ϕ), v(χ)) v(ϕ∨χ) = max(v(ϕ), v(χ))

In what follows, we will write Γ, ϕ |=Ł χ as a shorthand for
Γ ∪ {ϕ} |=Ł χ. Similarly, if the set of premises is given
explicitly, we omit brackets. E.g., ϕ, χ |=Ł ψ stands for
{ϕ, χ} |=Ł ψ. Note, furthermore, that the comma in the set
of premises can be equivalently interpreted as ∧ and ⊙ as
(ϕ∧χ) ≃Ł (ϕ⊙χ). Hence, for Γ = {ϕ1, . . . , ϕn}, we have

Γ |=Ł χ iff
n⊙

i=1

ϕi |=Ł χ iff
n∧

i=1

ϕi |=Ł χ

We finish the section by recalling the complexity of Ł.
It is known (Mundici 1987, Theorem 3.4) that satisfiabil-
ity of arbitrary formulas in Ł is NP-complete while validity
and entailment are coNP-complete (Haniková 2011, Corol-
lary 4.1.3) just as in classical propositional logic (CPL).
Proposition 1.

1. Ł-satisfiability is NP-complete.
2. Entailment in Ł is coNP-complete.

3 Interval Terms
Before proceeding to the formal presentation of abduction,
let us introduce the terms that we will be using in solutions.
Traditionally, the form of solutions is restricted to conjunc-
tions of literals (terms). In this case, a solution corresponds
to a statement of facts. Moreover, in this case, the log-
ically weakest solutions are the subset-minimal ones. We
begin with Łukasiewicz counterparts of classical terms and
clauses.
Definition 2 (Simple literals, clauses, and terms).
• A simple literal is a propositonal variable or its negation.
• A simple clause is a strong disjunction of simple literals,

i.e., a formula of the form
⊕n

i=1 li for some n ∈ N.
• A simple term is a strong conjunction of simple literals,

i.e., a formula of the form
⊙n

i=1 li for some n ∈ N.
One can observe, however, that simple terms from Defini-

tion 2 are too restrictive if we want to use them as solutions
for abduction problems. Indeed, a simple term τ has value 1
iff all its literals have value 1. But in a context with fuzzy
propositions, we might need to express statements such as
‘p has value 2

3 ’ or ‘q has value at least 1
4 ’. The following

example illustrates this situation.
Example 1. Assume that we have a lift with a weight sen-
sor that controls two indicators: green and blue. The green
indicator is on when the weight sensor detects the load of at
least 1

4 of its maximal capacity. Blue light is on when the lift
is loaded to at most 2

3 of its maximal capacity. We see that
both indicators are lit.

Let us now formalise this problem in Ł. We interpret the
value of c as the percentage of capacity to which the lift is
loaded and translate the condition ‘the lift is loaded to at

least 1/4 of its capacity’ as c ⊕ c ⊕ c ⊕ c. Observe that
v(c ⊕ c ⊕ c ⊕ c) = 1 iff v(c) ≥ 1/4. To represent the other
condition ‘the lift is loaded to at most 2/3 of its capacity’, we
write ¬c ⊕ ¬c ⊕ ¬c. We have that v(¬c ⊕ ¬c ⊕ ¬c) = 1
iff v(¬c) ≥ 1/3, i.e., iff v(c) ≤ 2/3. Finally, we use g and b
to represent that the green and blue lights are on. We obtain
the following theory Γlift and observation χlift:

Γlift = {(c⊕ c⊕ c⊕ c)↔ g, (¬c⊕ ¬c⊕ ¬c)↔ b}
χlift = g ⊙ b

To explain why both indicators are on, we need to present
a formula ϕ s.t. Γlift, ϕ |=cons

Ł g ⊙ b. For this, we need that
v(¬c⊕¬c⊕¬c) = 1 and v(c⊕c⊕c⊕c) = 1 in every valu-
ation that makes Γlift true. As we noted above, this requires
that v(c) ∈ [ 14 ,

2
3 ]. On the other hand, a simple term τ has

value 1 iff all its literals have value 1 (i.e., all variables in
τ should have value 0 or 1). Thus, there is no simple term
τ containing c or ¬c s.t. Γlift,τ |=cons

Ł χ. Hence ϕ cannot be
a simple term.

One way to circumvent this problem is to adopt the pro-
posal of (Yamada and Mukaidono 1995) and (Vojtáš 1999)
and define solutions to fuzzy abduction problems as sets of
assignments of values to propositional variables. This ap-
proach, however, has a drawback. In this setting, one can
only express exact values of variables but not intervals of
their values. Now, observe from Example 1 that any assign-
ment of a value from [ 14 ,

2
3 ] to c solves ⟨Γlift, χlift⟩. Thus, in

the general case, it is impossible to generate the set of all
solutions as there are infinitely many of them. Moreover, it
may be problematic to choose between different values.

In this section, we propose an alternative. For that, we
define terms that allow us to express both exact values of
variables and their intervals and compare different solutions
w.r.t. entailment in Ł. Moreover, as we will see in Section 4,
every abduction problem will have only finitely many solu-
tions in our setting.
Definition 3 (Rational interval literals, terms, and clauses).
Let p∈Pr, ♢∈{≤,≥, <,>}, and c ∈ [0, 1]Q.
• A rational interval literal has the form p♢c or ¬(p♢c).

The semantics of rational interval literals is as follows:

v(p♢c) =

{
1 if v(p)♢c
0 otherwise

v(¬(p♢c)) = 1− v(p♢c)

For a rational interval literal p♢c, we call c its boundary
value and call the set {v(p) | v(p♢c) = 1} its permitted
values.

• A rational interval term has the form
⊙n

i=1 λi with each
λi being an interval literal.

• A rational interval clause has the form
⊕n

i=1 λi with each
λi being an interval literal.

Convention 2. We use LQ
Ł to denote the language obtained

from LŁ by expanding it with rational interval literals. We
will mostly write ‘interval literals (terms, clauses)’ instead
of ‘rational interval literals (terms, clauses)’. The notions of
Ł-validity, satisfiability and entailment are preserved from
Definition 1. We will also utilise notation from Convention 1
for LQ

Ł . Additionally, given an interval literal p♢c, we use
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p♦c to denote ¬(p♢c). Finally, given a literal λ and a term
or clause ϱ, we write λ ∈ ϱ to designate that λ occurs in ϱ.

We observe that it follows from (1) that interval clauses
and terms are dual in the following sense:

¬
n⊙

i=1

(pi♢ci)≡Ł

n⊕
i=1

(pi♦ci) ¬
n⊕

i=1

(pi♢ci)≡Ł

n⊙
i=1

(pi♦ci)

(3)

Remark 1. From Definition 3, it is clear that interval terms
generalise simple terms in the following sense: for every
simple term τ , there is an interval term τ♢ s.t. τ ≃Ł τ♢.
Indeed, given τ =

⊙m
i=1 pi ⊙

⊙n
j=1 ¬qj , we can define

τ♢=
⊙m

i=1(pi≥1)⊙
⊙n

j=1(qj≤0). Moreover,

p ≤ c |=Ł p ≤ c′ iff c ≤ c′ p ≥ c |=Ł p ≥ c′ iff c ≥ c′

and similarly for the literals of the form p < c and p > c.
The idea of interval terms comes from a logic first intro-

duced by (Pavelka 1979a; Pavelka 1979b; Pavelka 1979c) as
an extension of Ł with constants for every real number. It
turns out, however, (cf. (Hájek 1998, §3.3) for details) that if
one adds constants only for rational numbers, the resulting
logic (‘Rational Pavelka logic’ or RPL) will have the same
expressivity as the original one. To simulate the two-valued
behaviour of interval terms, one also needs to introduce the
‘Delta operator’ △ proposed by (Baaz 1996) with the fol-
lowing semantics: v(△ϕ) = 1 if v(ϕ) = 1 and v(△ϕ) = 0,
otherwise. Now, using the following equivalences

p ≤ c ≡Ł △(p→ c) p ≥ c ≡Ł △(c→ p)

p < c ≡Ł ¬△(c→ p) p > c ≡Ł ¬△(p→ c)

and expanding the constraint tableaux calculus of (Hähnle
1999) with rules for △ and rational constants, we have that
the satisfiability and validity of LQ

Ł -formulas have the same
complexity as those of Ł.

Proposition 2.
1. Ł-satisfiability of LQ

Ł -formulas is NP-complete.
2. Entailment in Ł of LQ

Ł -formulas is coNP-complete.

We note briefly that interval terms allow us to express not
only the values of variables but also of arbitrary formulas
(cf. (Flaminio 2007) for an alternative approach). For ϕ∈LŁ
and p∈Pr s.t. p /∈Pr(ϕ), c∈ [0, 1]Q, and ♢∈{≤, <,≥, >},
we have v(ϕ)♢c iff v((ϕ↔ p)⊙ p♢c) = 1.

We finish the section by establishing the complexity of the
entailment of interval terms.

Proposition 3. Let Γ ∪ {χ} ⊆ LQ
Ł be finite and τ and τ ′ be

interval terms. Then the following statements hold.
1. It takes polynomial time to decide whether τ |=Ł τ

′.
2. It is coNP-complete to decide whether τ |=Ł χ.
3. It is coNP-complete to decide Γ, τ |=Ł τ

′.

4 Abduction in Łukasiewicz Logic
Let us now present abduction in Ł. Our idea is to use interval
terms as solutions to problems P = ⟨Γ, χ,H⟩. Here, H is
the set of hypotheses (interval literals) that one can use to

build solutions. One can restrict it in two ways. First, one
may allow arbitrary interval literals over a given finite set
of variables. Second, one can explicitly define a finite set
of interval literals. We choose the second option, as the first
one leads to infinite sets of solutions (cf. Example 1).
Definition 4 (Ł-abduction problems and solutions).
• An Ł-abduction problem is a tuple P = ⟨Γ, χ,H⟩ with
Γ ∪ {χ} a finite set of LQ

Ł -formulas, and H a finite set of
interval literals. We call Γ a theory, χ an observation, and
members of H hypotheses.

• An Ł-solution of P is an interval term τ composed of hy-
potheses s.t. Γ, τ |=cons

Ł χ.
• A solution is proper if τ ̸|=Ł χ.
• A proper solution τ is |=Ł-minimal (entailment-minimal)

if there is no proper solution σ s.t. τ |=Ł σ and σ ̸≃Ł τ .
• A proper solution τ is theory-minimal if there is no proper

solution σ s.t. Γ, σ ̸|=Ł τ and Γ, τ |=Ł σ.
Convention 3. Given an abduction problem P, we will use
S(P), Sp(P), Smin(P), and STh(P) to denote the sets of
all solutions, all proper solutions, all |=Ł-minimal solutions,
and all theory-minimal solutions of P, respectively.

In the definition above, it is evident that there are finitely
many (at most exponentially many in the size of H) so-
lutions for each abduction problem. We also present two
notions of minimal solutions. Entailment-minimality cor-
responds to subset-minimality by (Eiter and Gottlob 1995)
in the setting of Łukasiewicz logic. Theory-minimal solu-
tions correspond to least specific solutions in the terminol-
ogy of (Stickel 1990; Sakama and Inoue 1995) and least
presumptive solutions in the terminology of (Poole 1989).
Theory-minimal solutions can also be seen as duals of the-
ory prime implicates by (Marquis 1995).

In addition, it is easy to see that even though a theory-
minimal solution is entailment-minimal, the converse is not
always the case. Indeed, let P = ⟨{p∨ q, r}, q∧ r⟩. One can
see that there are two entailment-minimal solutions: p ≤ 0
and q ≥ 1. Note, however, that p ∨ q, r, p ≤ 0 |=Ł q ≥ 1.
Thus, p ≤ 0 is not theory-minimal.

Let us now see how we can solve abduction problems us-
ing interval terms. Recall Example 1.
Example 2. We continue Example 1. We need to formulate
an abduction problem Plift = ⟨Γlift, χlift,Hlift⟩. Γlift and χlift

are already given in Example 1. It remains to form the set of
hypotheses we are allowed to use. Assume for simplicity that
we can measure the load of our lift in twelfths of its capacity.
Thus, we can set

Hlift = {c♢ i
12 | ♢ ∈ {≤,≥, <,>} and i ∈ {0, . . . , 12}}

It is now easy to check that (c ≥ 3
12 ) ⊙ (c ≤ 8

12 ) is indeed
the theory-minimal solution of Plift. Moreover, as expected,

S(Plift) =

{
(c▷ i

12 )⊙(c◁
i′

12 )

∣∣∣∣ ◁∈{≤, <}, ▷∈{≥, >},i≥3, i′≤8, i< i′

}
∪

{(c ≤ i
12 )⊙ (c ≥ i

12 ) | 3 ≤ i ≤ 8}

That is, given any intervalD ⊆
[
1
4 ,

2
3

]
, every interval term τ

s.t. v(τ) = 1 iff v(c) ∈ D is a solution to Plift.
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It is also important to observe that the set of solutions de-
pends not only on the variables in H but on their permitted
values as well. Indeed, if in Example 2, we supposed that we
can measure the load in tenths of the maximal capacity (i.e.,
if H = {c♢ i

10 | ♢ ∈ {≤,≥, <,>} and i ∈ {0, . . . , 10}}),
the theory-minimal solution would be (c≥ 3

10 )⊙(c≤
6
10 ).

Hence, to test a solution τ for minimality, we need to calcu-
late the nearest permitted value from the boundary value for
every interval literal in τ .

Let us now establish the complexity of abductive reason-
ing. We will consider three standard tasks:
• solution recognition — given a problem P and an inter-

val term τ , determine whether τ is a (proper, entailment-
minimal, or theory-minimal) solution;

• solution existence — given a problem P, determine
whether S(P) = ∅;

• relevance and necessity of hypotheses — given a problem
P and a hypothesis λ, determine whether there is a solu-
tion where it occurs and whether it occurs in all solutions.
In our proofs, we will use reductions from the classi-

cal abductive reasoning. In the following definition, we
recall the notion of classical abduction problem and solu-
tions. We adapt the definitions from (Eiter and Gottlob
1995) and (Creignou and Zanuttini 2006) for our notation.
We use terminology and notation for CPL analogous to ones
introduced for Ł, e.g., speaking about CPL-validity and us-
ing |=CPL for the classical entailment relation.
Definition 5. Let LCPL be the propositional language over
{¬,∧,∨}. A classical abduction problem is a tuple P =
⟨Γ, χ,H⟩ s.t. Γ∪{χ}⊆LCPL and H is a set of simple literals.
• A solution of P is a weak conjunction τ of literals from H

such that Γ, τ |=cons
CPL ψ.

• A solution τ is proper if τ ̸|=CPL ψ.
• A proper solution τ is |=CPL-minimal if there is no proper

solution ϕ s.t. τ |=CPLϕ and ϕ ̸|=CPL τ .
• A proper solution τ is theory-minimal if there is no proper

solution ϕ s.t. Γ, τ |=CPL ϕ and Γ, ϕ ̸|=CPL τ .

We will also need the following technical statement.
Definition 6. Let ϕ ∈ LCPL. We define ϕŁ as follows:

pŁ = p (¬ϕ)Ł = ¬ϕŁ

(ϕ ∧ χ)Ł = ϕŁ ⊙ χŁ (ϕ ∨ χ)Ł = ϕŁ ⊕ χŁ

Given Γ ⊆ LCPL, we set ΓŁ = {ϕŁ | ϕ ∈ Γ}.

Proposition 4. Let Γ ∪ {χ} ⊆ LCPL. Then

Γ |=CPL χ iff ΓŁ, {p ∨ ¬p | p ∈ Pr[Γ ∪ {χ}]} |=Ł χ
Ł

The complexity results from this section are in Table 1.

4.1 Solution Recognition
We begin with solution recognition. First, we show that
recognition of arbitrary, proper, and entailment-minimal so-
lutions is DP-complete.
Theorem 1. Let P = ⟨Γ, χ,H⟩ be an Ł-abduction problem
and τ an interval term. Then, it is DP-complete to decide
whether τ ∈ S(P).

Recognition and existence Ł CPL

τ ∈S(P)? / τ ∈Sp(P)? / τ ∈Smin(P)? DP DP

τ ∈ STh(P)? in ΠP
2 in ΠP

2

S(P) ̸= ∅? / Sp(P) ̸= ∅? ΣP
2 ΣP

2

Relevance Ł CPL

w.r.t. S(P), Sp(P), Smin(P) ΣP
2 ΣP

2

w.r.t. STh(P) in ΣP
3 in ΣP

3

Necessity Ł CPL

w.r.t. S(P), Sp(P), Smin(P) ΠP
2 ΠP

2

w.r.t. STh(P) in ΠP
3 in ΠP

3

Table 1: Complexity of abductive reasoning problems. Unless
specified otherwise, all results are completeness results.

Proof. The membership follows immediately from Proposi-
tion 2 and the fact that τ ∈ S(P) iff Γ, τ |=cons

Ł χ. For the
hardness, we provide a reduction from the classical solution
recognition which is DP-complete (Eiter and Gottlob 1995,
§4). Let now Pcl = ⟨∆, ψ,Hcl⟩ be a classical abduction
problem. Define PŁ = ⟨∆♯, ψŁ,H♯⟩ as follows:

∆♯ = ∆Ł ∪ {p ∨ ¬p | p ∈ Pr[∆ ∪ {ψ}]}
H♯ = {p ≥ 1 | p ∈ Hcl} ∪ {q ≤ 0 | q ∈ Hcl}

Furthermore, for a term τ =
∧m

i=1 pi ∧
∧n

j=1 ¬qj , we de-
fine τ⊙ =

⊙m
i=1(pi ≥ 1)⊙

⊙n
j=1(qj ≤ 0) and show that

τ ∈ S(Pcl) iff τ⊙ ∈ S(PŁ).
Assume that τ ∈ S(Pcl), i.e., ∆, τ |=cons

CPL ψ and let v be
a classical valuation s.t. v(ϕ) = 1 for every ϕ ∈ ∆ and
v(τ) = 1. Since ⊙ and ⊕ behave on {0, 1} the same as
∧ and ∨, it is clear that v(χ) = 1 for every χ ∈ ∆♯ and
v(τ⊙) = 1 as well. Now assume further for the sake of con-
tradiction that there is some Ł-valuation vŁ s.t. vŁ(χ) = 1
for every χ ∈ ∆♯, vŁ(τ⊙) = 1, but v(ψŁ) ̸= 1. But vŁ

must be classical, i.e., assign only values from {0, 1} to all
p ∈ Pr[∆∪{ψ}] because p∨¬p ∈ ∆♯ and vŁ(p∨¬p) = 1
iff v(p) ∈ {0, 1}. This would mean that vŁ witnesses
∆, τ ̸|=CPL ψ, contrary to the assumption.

For the converse direction, given an interval term τ , define
τcl =

∧
p≥1∈τp ∧

∧
q≤0∈τ¬q. One can check that τ ∈ S(PŁ)

iff τcl∈S(P).

Theorem 2. Let P = ⟨Γ, χ,H⟩ be an Ł-abduction problem
and τ an interval term. Then, it is DP-complete to decide
whether τ ∈ Sp(P).

Proof. First, we obtain the hardness via a reduction from the
arbitrary solution recognition in Łukasiewicz logic. Namely,
let P = ⟨Γ, χ,H⟩ be an Ł-abduction problem. We show that
τ ∈ S(P) iff τ is a proper solution of Pp = ⟨Γ ∪ {p}, χ ⊙
p,H⟩ with p /∈ Pr[Γ ∪ {χ}]. Assume that τ ∈ S(P). As
p /∈ Pr(χ) and τ is Ł-satisfiable, it is clear that τ ̸|=Ł χ⊙ p.
It is also clear that Γ, p, τ |=Ł ⊥ iff Γ, τ |=Ł ⊥ and
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Γ, p, τ |=Ł χ⊙ p iff Γ, τ |=Ł χ. Conversely, let τ ∈ Sp(Pp).
As Γ, p, τ |=cons

Ł χ, it is clear that Γ, τ |=cons
Ł χ.

For the membership, given τ and P, we (i) use an NP
oracle to guess two Ł-valuations vsat and vprp and check that
they witness Γ, τ ̸|=Ł ⊥ and τ ̸|=Ł χ. At the same time, we
(ii) conduct a coNP check that Γ, τ |=Ł χ. Note that this is
possible because we do not need the result of (i) to do (ii). It
follows that τ ∈ Sp(P) iff both checks succeed.

Theorem 3. Let P = ⟨Γ, χ,H⟩ be an Ł-abduction problem
and τ an interval term. Then, it is DP-complete to decide
whether τ ∈ Smin(P).

Proof sketch. We begin with the hardness. We will provide
a reduction from the prime implicant recognition in clas-
sical logic which is DP-complete (Marquis 2000, Proposi-
tion 111). Let w.l.o.g. χ be classically satisfiable. We can
prove that τ is a prime implicant of χ iff τ⊙ is an |=Ł-
minimal solution to P=

〈
Γ, χŁ⊙q,H

〉
with q /∈Pr(χ) and

Γ = {p ∨ ¬p | p ∈ Pr(χ ∧ q)} ∪ {q}
H = {p ≥ 1 | p ∈ Pr(χ)} ∪ {p ≤ 0 | p ∈ Pr(χ)}

To show this, we use that v(p∨¬p) = 1 iff v(p) ∈ {0, 1},
v(τ) ∈ {0, 1} for every interval term τ and Ł-valuation v,
and ¬, ⊙, and ⊕ behave classically on {0, 1}. Conversely,
given τ ∈ Smin(P), we can define a prime implicant τcl by
replacing ⊙ with ∧, r ≥ 1 with r, and s ≤ 0 with ¬s. The
reasoning is similar.

The proof of the membership utilises the fact that given
an interval term τ = λ ⊙ τ ′ with λ = p♢c and a set of
hypotheses H, there are O(|H|) interval terms σ for which
we need to check that τ |=Ł σ and σ ̸|=Ł τ hold. Namely,
we can either replace λ with the ‘next weakest’ literal λ♭H or
(if λ is itself the weakest in H) remove λ altogether. For ex-
ample, if H = {p♢i/4 | ♢ ∈ {≤, <,≥, >}, i ∈ {0, . . . ,4}}
and λ = p ≤ 1/4, then λ♭H = p ≤ 2/4. Let us now use τ ♭λ to
denote the term obtained from τ by replacing λ with λ♭H or
removing λ when λ♭H /∈ H. As τ |=Ł τ

♭
λ, Γ, τ ̸|=Ł ⊥ entails

Γ, τ ♭λ ̸|=Ł ⊥ and τ ̸|=Ł χ entails τ ♭λ ̸|=Ł χ.
Now, we use an NP-oracle that guesses linearly many

w.r.t. |H| Ł-valuations vsat, vprp, and vλ (for each λ ∈ τ ) and
verifies whether they witness (i) Γ, τ ̸|=Ł ⊥, (ii) τ ̸|=Ł χ,
and (iii) Γ, τ ♭λ ̸|=Ł χ. Parallel to that (as we do not need
the results of (i)–(iii)), we conduct a coNP check that (iv)
Γ, τ |=Ł χ. It follows from the definition of |=Ł-minimal so-
lutions that τ is a |=Ł-minimal solution iff the NP and coNP
checks succeed.

In the case of theory-minimal solutions, we establish
membership in ΠP

2 . We expect that this case is indeed harder
than entailment-minimality, intuitively because the presence
of the theory means we cannot readily identify a polynomial
number of candidates for better solutions to check. We leave
the search for a matching lower bound for future work and
remark that, to the best of our knowledge, the complexity of
the analogous problem in CPL is also unknown.
Theorem 4. It is in ΠP

2 to decide, given an Ł-abduction
problem P and an interval term τ , whether τ is a theory-
minimal solution of P.

4.2 Solution Existence
We now turn to establishing the complexity of the solution
existence in Ł-abduction problems. Note that a problem may
have solutions but no proper solutions. On the other hand, if
a problem has proper solutions, it will have entailment- and
theory-minimal solutions as well. Thus, we will consider the
complexity of arbitrary and proper solution existence.
Theorem 5. It is ΣP

2 -complete to decide whether an Ł-ab-
duction problem has a (proper) solution.

Proof. Membership follows immediately from Theorem 1.
For hardness, we provide a reduction from the solution exis-
tence for classical abduction problems Pcl = ⟨Γcl, χcl,H⟩ of
the following form (below ϕ ∈ LCPL):1

Γcl = {¬ϕ∨(p∧τ),¬p∨τ}∪{¬r⇔r′ |r∈Pr(ϕ)\Pr(p∧τ)}
(p /∈ Pr(ϕ ∧ τ), τ is a weak conjunction of literals)

χcl = p ∧ τ
H = {r | r∈Pr(ϕ)\Pr(p∧τ)}∪{r′ | ¬r⇔r′∈Γcl} (4)

By (Eiter and Gottlob 1995, Theorem 4.2), determining the
existence of classical solutions for these problems is ΣP

2 -
hard. We reduce Pcl to PŁ = ⟨Γ♯, χŁ

cl,H
♯⟩ as was done in

Theorem 1 (recall Definition 6 for ΓŁ and χŁ) with

Γ♯ = ΓŁ∪{p∨¬p | p∈Pr[Γcl∪{χcl}]}

H♯ = {s ≥ 1 | s ∈ H} χŁ
cl = p⊙

⊙
l∈τ

l (5)

First let σ be a solution of Pcl. It is immediate from (4)
that σ is a proper solution because we cannot use variables
occurring in χcl. It now follows from Proposition 4 that
Γ♯, σŁ |=cons

Ł χŁ
cl. Furthermore, as σ ̸|=CPL χcl, it is clear

that σŁ ̸|=Ł χ
Ł
cl. We can now define σ⊙ =

⊙
s∈Pr(σ)(s ≥ 1).

Using Remark 1, one sees that σ⊙ ≃Ł σŁ. Thus, σ⊙ is
a (proper) solution of PŁ.

Conversely, let σ′ be a solution of PŁ. It is clear that
σ′ ̸|=Ł χŁ

cl because Pr(χŁ
cl) ∩ Pr[H♯] = ∅, and χŁ

cl is not
Ł-valid. Hence, σ′ is a proper solution. Define σ′cl =∧

s∈Pr(σ′)s. We show that σ′cl is a proper solution of Pcl.
Since σ′ is a solution, we have Γ♯, σ′ |=Ł χŁ

cl. Using Re-
mark 1, we have σ′ ≃Ł

⊙
s∈Pr(σ′)s, whence, it is clear

that Γ♯,
⊙

s∈Pr(σ′)s |=cons
Ł χŁ

cl, whence, by Proposition 4,
Γ, σ′cl |=cons

CPL χcl, as required.

4.3 Relevance and Necessity of Hypotheses
Let us now consider the complexity of determining the rel-
evance and necessity of hypotheses w.r.t. solutions to Ł-
abduction problems. Namely, given an Ł-abduction problem
P = ⟨Γ, χ,H⟩, we will consider the complexity of determin-
ing whether an interval literal λ ∈ H is relevant (necessary)
w.r.t. S(P), Sp(P), Smin(P), and STh(P).

We begin with the complexity of relevance and necessity
w.r.t. arbitrary, proper, and |=Ł-minimal solutions. The clas-
sical counterparts of these decision problems were consid-
ered by (Eiter and Gottlob 1995). We show that the com-
plexity of relevance and necessity w.r.t. (proper) solutions

1We write ¬r ⇔ r′ as a shorthand for (r ∧ ¬r′) ∨ (¬r ∧ r′).
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and |=Ł-minimal solutions coincides with the complexity of
the analogous problems for (⊆-minimal) solutions in CPL.
Theorem 6. It is ΣP

2 -complete (resp. ΠP
2 -complete) to de-

cide, given a Ł-abduction problem P = ⟨Γ, χ,H⟩ and λ ∈ H,
whether λ is relevant (resp. necessary) w.r.t. S(P). The same
holds for relevance and necessity w.r.t. Sp(P) and Smin(P).

Proof. The membership is evident from Theorems 1 and 3
as we can just guess a (proper or Ł-minimal) solution τ
which can be verified in DP time and then check in lin-
ear time whether λ ∈ τ . For the hardness, we adapt the
proof by (Eiter and Gottlob 1995) and establish a reduction
from the solution existence in Łukasiewicz logic. Now let
P = ⟨Γ, χ,H⟩, pick three fresh variables t, t′, and t′′, and
Pr = ⟨Γr, χr,Hr⟩ be as follows:

Γr = {t→ψ | ψ∈Γ}∪{t′→χ, t→¬t′, t→ t′′, t′→ t′′}
χr = t′′ ⊙ χ Hr = H ∪ {t ≥ 1, t′ ≥ 1} (6)

Now let Sp(P) be the set of all proper solutions of P. It is
clear that Sp(Pr) = S(Pr) (because t′′ /∈ Hr) and

S(Pr) =
{
ϱ⊙(t≥1) |ϱ∈S(PŁ)

}
∪{

ϱ′⊙(t′ ≥ 1) |∃H′⊆H :ϱ′=
⊙
l∈H′

l

}
and that PŁ has solutions iff t ≥ 1 is relevant and t′ ≥ 1 is
not necessary w.r.t. S(Pr).

For hardness w.r.t. Smin(P), observe that t ≥ 1 is relevant
to Pr iff it is relevant w.r.t. |=Ł-minimal solutions. Similarly,
t′ ≥ 1 is (not) necessary in Pr iff it is (not) necessary w.r.t.
|=Ł-minimal solutions.

We finish the section by presenting the membership re-
sults on the complexity of the recognition of relevant and
necessary hypotheses w.r.t. theory-minimal solutions. The
next statement is an easy consequence of Theorem 4. To
the best of our knowledge, no tight complexity bounds have
been established for this problem in the CPL-abduction.
Theorem 7. It is in ΣP

3 (resp. ΠP
3 ) to decide, given an Ł-

abduction problem P = ⟨Γ, χ,H⟩ and λ ∈ H, whether λ is
relevant (resp. necessary) w.r.t. STh(P).

5 Abduction in Clause Fragments
Recall from Proposition 1 that the complexity of
Łukasiewicz logic coincides with the complexity of CPL.
On the other hand, while every classical formula can be
equivalently represented as a set of ∨-clauses, LŁ-formulas
cannot be transformed into sets of simple clauses. In fact,
the simple clause fragment of LŁ is decidable in linear
time (Bofill et al. 2019, Lemma 2).
Proposition 5. Let Γ = {κ1, . . . , κn} be a finite set of sim-
ple clauses. It takes linear time to decide whether there is
an Ł-valuation v s.t. v(κi) = 1 for every i ∈ {1, . . . , n}.

We note briefly that due to (1), the following formulas are
pairwise strongly equivalent for any n ∈ N and k < n:

n⊕
i=1

li ¬l1→
n⊕

i=2

li

n−1⊙
i=1

¬li→ ln

k⊙
i=1

¬li→
n⊕

j=n−k

lj (7)

SC IC CF Horn

τ ∈ X(P)? P DP P P

τ ∈STh(P)? in coNP in ΠP
2 in coNP in coNP

X(P) ̸= ∅? NP ΣP
2 NP NP

rel. w.r.t.X(P) NP ΣP
2 NP NP

Table 2: Abduction in clause fragments. Unless specified other-
wise, all results are completeness results. SC — simple clause the-
ories; CF — cover-free theories; IC — theories with arbitrary inter-
val clauses; Horn — classical Horn theories. X ∈ {S,Sp,Smin}.

Proposition 5 together with (7) means, in particular, that the
satisfiability of logic programming under Łukasiewicz se-
mantics is polynomial independent of whether it contains
negation. In classical logic, the complexity of abduction
in polynomial fragments is expectedly lower than in gen-
eral (cf. (Creignou and Zanuttini 2006) for details). Hence,
it is instructive to establish whether the complexity of Ł-
abduction will also be lower in a polynomial fragment.

In this section, we will consider the complexity of Ł-
abduction when the theory is a set of ⊕-clauses. Namely,
we will be dealing with two cases: when all clauses in Γ are
simple and when clauses can contain interval literals. The
results are shown in Table 2.

5.1 Simple Clause Fragment
Let us now consider the complexity of abductive reasoning
for the simple clause fragment of Ł. We begin with the defi-
nition of simple clause abduction problems.

Definition 7 (Simple clause abduction). A simple clause ab-
duction problem (SCA problem) is an Ł-abduction problem
P = ⟨Γ, χ,H⟩ s.t. Γ is a set of simple clauses and interval
terms and χ is an interval clause, simple clause, interval
term, or a simple term.

In the definition above, note that Γ can contain interval
terms. This makes it possible to express constraints on the
values of variables. Similarly, different observations corre-
spond to constraints that we explain based on the theory.

First, we show that recognition of arbitrary, proper, and
|=Ł-minimal solutions is P-complete.

Theorem 8. Let P = ⟨Γ, χ,H⟩ be an SCA problem, and σ
an interval term. Then it is P-complete to decide whether σ
is an arbitrary, proper, or |=Ł-minimal solution.

Proof sketch. For the membership, we provide a sketch of
the proof for the case of χ being an interval literal. Other
cases can be dealt with in a similar manner. Observe from
Definitions 1 and 3 that if κ =

⊕m
i=1 pi ⊕

⊕n
j=1¬qj is an

interval clause and τ =
⊙r

i=1(si♢ci) an interval term, then
v(κ) = 1 iff

∑m
i=1 v(pi)+

∑n
j=1(1−v(qj))≥1 and v(τ)=1

iff v(si)♢ci for each i ∈ {1, . . . , r}. It can now be easily
shown that the satisfiability of sets of clauses and interval
terms can be reduced to solving systems of linear inequal-
ities over [0, 1]. Similarly, entailment of an interval literal
from a set Γ containing simple clauses and interval terms
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can be reduced to verifying that a system of linear inequal-
ities does not have a solution over [0, 1]. As both tasks can
be done in polynomial time, arbitrary and proper solutions
can be recognised in polynomial time. Finally, consider de-
termining whether σ ∈ Smin(P). From Theorem 3, we have
that given σ, we only need to check polynomially many so-
lution candidates, each of which requires polynomial time.

Let us now tackle the hardness. We provide a logspace
reduction from (proper, entailment-minimal) solution recog-
nition for classical Horn theories, which is P-complete. Let
P = ⟨Γ, p,H⟩ be a classical Horn abduction problem and
p /∈ H, clauses in Γ be finite sets of literals, and τ ∈ S(P).
I.e., Γ∪{τ} is CPL-satisfiable, and there is a unit resolution
inference of {p} from Γ ∪ {τ} (i.e., in each application of
the resolution rule, at least one premise is a unit clause). Let
Γ⊕ be the result of replacing each clause {l1, . . . , lk} in Γ
with l1 ⊕ . . . ⊕ lk; τ⊙ be the result of replacing ∧ with ⊙,
positive literals r in τ with r ≥ 1, and negative literals ¬q
with q ≤ 0; and HŁ be the result of replacing r in H with
r ≥ 1, and ¬q with q ≤ 0. The size of P⊕ = ⟨Γ⊕, p,HŁ⟩
is linear in the size of P, and Γ⊕ ∪ {τ⊙} is Ł-satisfiable
because Γ ∪ {τ} is CPL-satisfiable. Furthermore, unit res-
olution is Ł-sound: if v(l1 ⊕ . . . ⊕ lk) = 1 and v(l1) = 0,
then v(l2⊕ . . .⊕ lk) = 1. Hence, reusing the inference in Ł,
we have Γ⊕ ∪ {τ⊙} |=Ł p. Thus, τ⊙ ∈ S(P⊕). Conversely,
let τ solve P⊕, i.e., Γ⊕ ∪ {τ⊙} |=cons

Ł p. Let τcl be obtained
from τ by replacing ⊙ with ∧, r≥1 with r, and q≤0 with
¬q. Clearly, Γ, τcl |=CPL p. Assume for contradiction that
Γ, τcl |=CPL ⊥. Then there is a classical unit resolution in-
ference of the empty clause from Γ ∪ {τcl}. As it is sound
in Ł, Γ, τcl |=Ł ⊥. Contradiction.

Observe that all solutions of P and P⊕ are proper be-
cause p does not occur in them. Thus, our reduction can
be used to show that determining the existence of proper so-
lutions is P-hard as well. For the P-hardness of |=Ł-minimal
solution recognition, one can check that if τ ∈ Smin(P),
then τ⊙ ∈ Smin(P⊕). Conversely, if σ ∈ Smin(P⊕), then
σcl ∈ Smin(P).

For the recognition of theory-minimal solutions, we pro-
vide a coNP membership result.

Theorem 9. It is in coNP to decide, given an SCA prob-
lem P and an interval term τ , whether τ is a theory-minimal
solution of P.

As expected, solution existence for simple clause abduc-
tion problems is NP-complete.

Theorem 10. Given a simple clause abduction problem P, it
is NP-complete to decide whether it has (proper) solutions.

Proof. The membership is immediate from Theorem 8. For
the hardness, we can reuse the reduction from classical Horn
abduction given in Theorem 8.

The NP-completeness of relevance of hypotheses can be
obtained using the reduction shown in (6), setting χ = p
and assuming that Γ is a set of simple clauses. Indeed, if ψ
is a simple clause, then t→ ψ can be represented as a simple
clause (recall (7)).

Theorem 11. It is NP-complete (resp. coNP-complete) to
decide, given an SCA problem P = ⟨Γ, χ,H⟩ and λ ∈ H,
whether λ is relevant (resp. necessary) w.r.t. S(P). The same
holds for relevance and necessity w.r.t. Sp(P) and Smin(P).

We finish the section with two remarks. First, the com-
plexity of simple clause abduction coincides with that of
classical Horn abduction (Eiter and Gottlob 1995; Creignou
and Zanuttini 2006). Thus, Łukasiewicz abduction with
clausal theories is simpler than classical abduction over
clausal theories. Second, one can easily see that simple
clause abduction problems can be straightforwardly gen-
eralised to problems whose theories are Łukasiewicz fuzzy
logic programmes as presented by (Vojtáš 1999; Vojtáš
2001) while preserving the complexity.

Definition 8. A Łukasiewicz fuzzy logic programme (Ł-
FLP) is a finite set ΓP = {⟨κi, xi⟩ | 1≤ i≤n, xi ∈ (0, 1]Q}
with κi’s being simple clauses written as

⊙m
i=1 li → l. Pairs

⟨κi, xi⟩ are called fuzzy rules. An Ł-valuation v satisfies ΓP

if v(κi) = xi for every ⟨κi, xi⟩ ∈ ΓP.
An Ł-FLP abduction problem is a tuple P = ⟨ΓP, χ,H⟩

with ΓP being an Ł-FLP, χ a fuzzy rule or interval term, and
H a set of interval literals. A solution to P is defined as in
Definition 4.

One can observe from Definition 7 that simple clause ab-
duction problems are a particular case of Ł-FLP abduction
problems (namely, when xi = 1 for every i). Thus, the hard-
ness results are preserved. For the membership, note that
Ł-FLP abduction problems can be reduced to solving sys-
tems of linear inequalities in the same way as simple clause
abduction problems.

5.2 Interval Clause Fragment
Results in Section 4 show that the complexity of Ł-abduction
in the general case was not affected by whether we allow
the use of interval literals in theories or observations (recall
from Definition 4 that theories and observations are defined
over LQ

Ł ). Interval literals can also reduce the size and facil-
itate the understanding (for a human) of an abduction prob-
lem while preserving its solutions. E.g., the theory Γlift of
the problem Plift from Examples 1 and 2 can be reformulated
as follows: ΓQ

lift = {(c ≥
1
4 ) ↔ g, (c ≤ 2

3 ) ↔ b}. Observe
that (c≥ 1

4 )↔ g is weakly equivalent to (c⊕c⊕c⊕c)↔ g

and (c ≤ 2
3 ) ↔ b to (¬c⊕¬c⊕¬c) ↔ b. So, for PQ

lift =

⟨ΓQ
lift, g ⊙ b,Hlift⟩, we have S(Plift) = S(PQ

lift) (and likewise
for other types of solutions). Moreover, using interval liter-
als in ⊕-clauses simplifies the presentation of relations be-
tween values. E.g., ‘if v(p) ≥ 1

2 , then v(q)≤ 3
4 ’ can be put

as (p≥ 1
2 )→(q≤ 3

4 ).
Thus, one might wonder whether we can permit theories

built from interval clauses (recall Definition 3) and preserve
the complexity bounds from Section 5.1. As the next state-
ments show, this is not generally the case.

Theorem 12. Let P= ⟨Γ, p,H⟩ be an Ł-abduction problem
s.t. Γ is a set of interval clauses and p∈Pr. Then, for an in-
terval term τ , it is DP-complete to decide whether τ ∈ S(P).
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Proof sketch. Membership follows from Theorem 1. Hard-
ness can be shown via a reduction from solution recognition.
in CPL. Let P = ⟨Γ, p,H⟩ be a classical abduction problem
with Γ a set of ∨-clauses. We replace all positive literals r
occurring in P with r ≥ 1 and all negative literals ¬s with
s < 1. Given τ ∈ S(P), we produce an Ł-solution by a sim-
ilar replacement of literals and changing ∧ to⊙. Conversely,
a classical solution for P can be obtained from a solution for
the Ł-abduction problem by a reverse replacement.

The ΣP
2 -hardness of solution existence for Ł-abduction in

the interval clause fragment can be obtained by a reduction
used in Theorem 12.
Theorem 13. Let P = ⟨Γ, l,H⟩ be an Ł-abduction problem
s.t. Γ is a set of interval clauses. Then it is ΣP

2 -complete to
decide whether there is a (proper) solution to P.

As expected, determining the relevance of λ ∈ H is ΣP
2 -

hard. The next statement can be obtained by a reduction
shown in (6). The only difference is that instead of variables
t, t′, t′′, we take interval literals t ≥ 1, t′ ≥ 1, and t′′ ≥ 1.
Theorem 14. It is ΣP

2 -complete (resp. ΠP
2 -complete) to de-

cide, given a Ł-abduction problem P = ⟨Γ, χ,H⟩ s.t. Γ is
a set of interval clauses and λ ∈ H, whether λ is relevant
(resp. necessary) w.r.t. S(P). The same holds for relevance
and necessity w.r.t. Sp(P) and Smin(P).

Still, we can restrict interval clause theories so that abduc-
tion becomes NP-complete. Namely, we prohibit interval
literals ‘covering’ the entire [0, 1] interval (e.g., p ≤ 2

3 and
p≥ 1

4 ) in the implicative representation of interval clauses.
Definition 9. Let Γ be a set of interval clauses represented
as

⊙m
i=1(pi♢ci) → (q♢d) and

⊙m
i=1(pi♢ci) → ⊥. Γ is

cover-free (CF) if no pair of interval literals λ and λ′ over
the same variable occurs in Γ s.t. Ł |= λ⊕ λ′.

The following theorems can be shown by reductions be-
tween Horn abduction problems and Ł-abduction problems
with CF theories.
Theorem 15. Let P = ⟨Γ, τ,H⟩ be an Ł-abduction problem
with Γ a CF set of interval clauses and τ an interval term.
Then it is P-complete to check whether an interval term σ is
a (proper, minimal) solution to P.

Theorem 16. Let P = ⟨Γ, τ,H⟩ be an Ł-abduction problem
with Γ a CF set of interval clauses. Then it is NP-complete
to decide whether P has (proper) solutions.

Determining the relevance of hypotheses in CF theories is
NP-complete. The proof is the same as for Theorem 14 (but
we reduce from hypotheses relevance for Horn theories).
Theorem 17. It is NP-complete (resp. coNP-complete) to
decide, given an Ł-abduction problem P = ⟨Γ, χ,H⟩ with
Γ being a CF set of interval clauses and λ ∈ H, whether λ
is relevant (resp. necessary) w.r.t. S(P). The same holds for
relevance and necessity w.r.t. Sp(P) and Smin(P).

The next statement follows from Theorem 15 as for inter-
val terms σ and τ and a CF theory Γ, it takes polynomial
time to check whether Γ, σ |=Ł τ .
Theorem 18. Let P = ⟨Γ, τ,H⟩ be an Ł-abduction problem
with Γ a CF theory and τ an interval term. Then given an
interval term σ, it is in coNP to decide whether σ ∈ STh(P).

6 Conclusion and Discussion
We studied abduction in Łukasiewicz logic and its clausal
fragments. Our analysis gives an almost complete outline
of the complexity of the main decision problems related
to abduction (Tables 1 and 2). We established that the
complexity of abductive reasoning is never higher than that
in CPL (Eiter and Gottlob 1995), (Creignou and Zanuttini
2006), (Pichler and Woltran 2010), (Pfandler, Pichler, and
Woltran 2015). Moreover, the complexity of Ł-abduction in
clausal fragment is lower than that of the classical abductive
reasoning as long as clauses do not contain interval literals.

Several questions remain open. First, we do not know
the exact complexity of theory-minimal solution recognition
and relevance in the full language nor its clausal fragments.
One way to approach this would be to establish the complex-
ity of the closely related notion of theory prime implicants
in CPL and its fragments (Marquis 1995).

It would also be instructive to consider abductive reason-
ing in fuzzy logics when the entailment is defined via the
preservation of the truth degree from the premise to the con-
clusion as proposed by (Bou et al. 2009; Ertola et al. 2015).
Indeed, one might not be guaranteed that the statements in
the theory are absolutely true. Still, in this case, it is reason-
able to expect that the observation should be at least as true
as the theory and the explanation.

Furthermore, (Dubois and Prade 1992), (Poole 1993),
(Dubois, Gilio, and Kern-Isberner 2008), and (Sato, Ishi-
hata, and Inoue 2011) have considered abduction in possi-
bilistic and probabilistic contexts. It is also known from (Há-
jek and Tulipani 2001; Baldi, Cintula, and Noguera 2020)
that so-called ‘two-layered’ fuzzy logics can be adapted to
reasoning about uncertainty. Thus, it makes sense to explore
probabilistic abduction using two-layered logics.

We also note that the context from Example 1 can be rep-
resented in abductive constraint logic programming (ACLP)
studied by (Kakas, Michael, and Mourlas 2000). It thus
makes sense to explore the connection between abduction
in fuzzy logic and ACLP.

It is also known that machine learning for visual per-
ception problems is related to abduction (Shanahan 2005;
Liang et al. 2022). As fuzzy logic has also found numerous
applications in visual perception, it makes sense to explore
the applications of abduction in fuzzy logic in this field.

Finally, recall that there are algorithms for solving fuzzy
logic abduction problems with fuzzy sets. In our framework,
however, a solution corresponds to a set of intervals of per-
mitted values of hypotheses. As Ł-entailment is reducible
to finite-valued Łukasiewicz logics (Aguzzoli and Ciabat-
toni 2000), we might hope that it is possible to compute
the ‘minimally sufficient’ set of permitted values from the
shape of the theory. Thus, it would be instructive to de-
vise algorithms for the generation of solutions in the form
of interval terms. As satisfiability and validity in Ł are re-
ducible to mixed-integer programming (MIP) (Hähnle 1992;
Hähnle 1994), it would make sense to apply MIP solvers.
Moreover, since the semantics of Ł can be given over ra-
tional numbers (Esteva et al. 2002), one may try to apply
rational MIP solvers such as the one by (Cook et al. 2013)
as they produce exact solutions to mixed-integer problems.
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