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Abstract
The evaluation of argument strength lies at the core of any
argumentation system. Numerous semantics have been pro-
posed for this purpose, along with a variety of principles (or
axioms) that such semantics are expected to satisfy. Most
existing semantics in the literature have been analyzed and
compared in light of these principles. While this body of
work marks a significant step toward establishing the theoret-
ical foundations of argumentation semantics, it remains in-
complete. In particular, characterizations of entire classes of
semantics that uniquely satisfy specific subsets of axioms are
still lacking, leaving open questions on the kind of semantics
that can still be defined and their added values.
This paper addresses this gap by establishing representation
theorems that explicitly relate subsets of principles to corre-
sponding classes of semantics. These semantics are defined
through two mathematical functions: an impact function and
an aggregation operator, each satisfying specific structural
properties. We demonstrate how these principles offer a uni-
form and concise explanatory framework for the identified
semantics. Finally, we show that classical extension-based
semantics do not belong to these classes.

1 Introduction
Argumentation is a reasoning paradigm that justifies claims
through supporting arguments. Over the past few decades,
it has become a key approach in artificial intelligence, en-
abling solutions to tasks such as non-monotonic reason-
ing (Dung 1995), decision making under uncertainty (Am-
goud and Prade 2009), and negotiation (Dimopoulos,
Mailly, and Moraitis 2019) (see (Baroni et al. 2018; Simari
et al. 2021) for further applications).

An argumentation-based system is typically defined as a
set of arguments, each assigned an initial weight and poten-
tially involved in attacks against, or being attacked by, other
arguments. A central question in such systems is how to
evaluate the strength of an argument—that is, the degree of
support it provides to its associated claim. Accurately eval-
uating argument strength is crucial, as it directly impacts the
system’s outcomes. For instance, a reasoning engine might
infer the conclusions that are supported by the strongest ar-
guments. As a result, a substantial body of research has
been devoted to formalizing evaluation methods, commonly
referred to as semantics. Two main families of semantics
can be distinguished: extension-based semantics, initiated

in (Dung 1995), and gradual semantics, introduced in (Cay-
rol and Lagasquie 2005). Instances of the former can be
found in (Dung 1995; Baroni, Giacomin, and Guida 2005;
Caminada 2006; Dung, Mancarella, and Toni 2007), while
examples of the latter are defined in (Leite and Martins 2011;
da Costa Pereira, Tettamanzi, and Villata 2011; Rago et al.
2016; Amgoud et al. 2017; Potyka 2019; Amgoud and Do-
der 2019; Libman, Oren, and Yun 2024).

The large number of proposed semantics has prompted
the need for a deeper understanding of their foundational
assumptions and for principled methods to compare them.
This has led to the emergence of an axiomatic approach, ini-
tiated in (Amgoud and Ben-Naim 2013; Amgoud and Ben-
Naim 2016), in which semantics are modeled as abstract
functions expected to satisfy a set of axioms (also referred to
as principles). Some of these axioms capture desirable prop-
erties that any reasonable semantics should uphold, while
others formalize strategic choices that may vary depending
on the nature of the arguments. For example, considering
the number of attackers may be essential for analogical ar-
guments, but not for deductive ones. Most existing seman-
tics have been evaluated against these axioms and additional
ones proposed in (Bonzon et al. 2016; Amgoud et al. 2017;
Baroni, Rago, and Toni 2018).

Although the axiomatic approach is a powerful tool for
establishing the theoretical foundations of semantics, it re-
mains relatively underexplored in the literature. In partic-
ular, representation theorems—one-to-one correspondences
between specific subsets of axioms and the classes of seman-
tics that satisfy them—are still lacking. Likewise, impossi-
bility results, which demonstrate that no semantics can sat-
isfy certain combinations of axioms, are also lacking. Such
results would offer a more comprehensive understanding of
the landscape of definable semantics.

This paper complements the existing literature by provid-
ing formal results that establish the missing connections, and
thus bridges the existing gap. We consider an axiomatic
framework grounded on the set of principles proposed in
(Amgoud et al. 2017) and a new principle, called Locality.
We characterize the classes of semantics that satisfy subsets
of the principles and analyse their explainability. More pre-
cisely the contributions of the paper are fivefold:

• We consider an existing set of principles, introduce a new
principle, analyze their interrelationships, and demon-

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
KR Main Track

36



strate the existence of at least one semantics that satisfies
all of them.

• We provide representation theorems that connect subsets
of principles to the corresponding classes of semantics
that satisfy them. In particular, we characterize the class
of semantics that satisfy the Equivalence principle, de-
fined in (Amgoud and Ben-Naim 2016) and which states
that an argument’s strength should depend only on its ini-
tial weight and the strengths of its direct attackers. We
show that any semantics satisfying this principle must be
defined by an evaluation method—a pair of mathemati-
cal functions: an influence function and an aggregation
operator, each meeting specific structural conditions.

• We additionally identify and characterize subclasses of
the aforementioned semantics that adhere to further prin-
ciples, and identify conditions under which certain prin-
ciples are satisfied.

• We provide an impossibility result showing that the classi-
cal extension semantics from (Dung 1995) cannot be rep-
resented by evaluation methods. More precisely, no se-
mantics based on an evaluation method can produce the
acceptability statuses of arguments provided by those ex-
tension semantics.

• We propose a novel approach for explaining semantics of
the identified classes. Unlike existing explanation models
that are semantics-dependent, our approach is based on
principles satisfied by semantics, making it more general
and effective for explaining the logic behind semantics.

The paper is structured as follows: Section 2 introduces
the formal setting, Section 3 recalls existing principles,
defines a new one and studies their properties, Section 4
presents the characterizations, Section 5 provides additional
properties, Section 6 studies the case of extension semantics,
Section 7 addresses the explainability issue, and Section 8 is
devoted to concluding remarks and perspectives.

2 Background
In the paper, we consider weighted argumentation graphs
(wAGs) whose nodes are arguments, each of which has an
initial weight, which may represent different notions (eg.,
votes given by users or certainty degrees), and edges repre-
sent attacks (or conflicts) between pairs of arguments. We
denote by args the set of all possible arguments.
Definition 1 (wAG). A weighted argumentation graph is a
tuple G = ⟨A,w,R⟩, where A ⊆ args is non-empty and
finite, w : A → [0, 1], R ⊆ A×A. Let wAG be the set of all
wAGs that can be built from args.
Notations: For G = ⟨A,w,R⟩ ∈ wAG and a ∈ A,
attG(a) = {b ∈ A | (b, a) ∈ R}, i.e., the direct attack-
ers of a in G. For X ⊆ A, we denote by G↓X the wAG
that is reduced to arguments of X , i.e., G↓X = ⟨A′,w′,R′⟩
such that A′ = X , R′ = R ∩ (X × X) and ∀a ∈ X ,
w′(a) = w(a). Let now G′ = ⟨A′,w′,R′⟩ ∈ wAG be such
that A ∩ A′ = ∅. We define G ⊕G′ = ⟨A ∪ A′,w′′,R ∪
R′⟩ ∈ wAG such that ∀a ∈ A (resp. a ∈ A′), w′′(a) = w(a)
(resp. w′′(a) = w′(a)).

Property 1. Let {G,G′} ⊆ wAG be such that G =
⟨A,w,R⟩, G′ = ⟨A′,w′,R′⟩ and A ∩ A′ = ∅. For any
a ∈ A (resp. a ∈ A′), attG⊕G′(a) = attG(a) (resp.
attG⊕G′(a) = attG′(a)).

We recall the notion of path in a graph and the useful idea
of attack structure from (Amgoud, Doder, and Vesic 2022).
Definition 2 (Path - Attack Structure). Let G =
⟨A,w,R⟩ ∈ wAG and a ∈ A.

• A path from b ∈ A to a is a finite non-empty sequence
⟨x1, . . . , xn⟩ of arguments in A such that x1 = b, xn = a,
and ∀1 ≤ i < n, (xi, xi+1) ∈ R.

• The attack structure of a in G is StrG(a) = {a} ∪ {b ∈
A | there is a path from b to a in G}.

Example 1. The attack structures of a and c in the wAG
depicted below are {a, b} and {b, c, e}, respectively.

e c b a

Property 2. Let G = ⟨A,w,R⟩ ∈ wAG and a ∈ A. For
any x ∈ StrG(a), attG(x) ⊆ StrG(a).

The following definition recalls the notion of isomor-
phism between weighted graphs.
Definition 3 (Isomorphism). Let G,G′ ∈ wAG such that
G = ⟨A,w,R⟩ and G′ = ⟨A′,w′,R′⟩. An isomorphism
from G to G′ is a bijective function h : A → A′ such that:

• ∀ a ∈ A, w(a) = w′(h(a)),
• ∀ a, b ∈ A, (a, b) ∈ R iff (h(a), h(b)) ∈ R′.

Let us now recall the notion of preordered set. It is a
pair (X,⪰) consisting of a set X of objects and a preorder
(reflexive and transitive binary relation) on X . For x, y ∈ X ,
x ⪰ y stands for “x is at least as strong as y”. The symbol ≻
stands for the strict version of ⪰, that is, x ≻ y iff x ⪰ y and
y ̸⪰ x. The pair (X,⪰) is totally preordered iff ∀x, y ∈ X ,
x ⪰ y or y ⪰ x (all elements of X are comparable).

The next concept is of crucial importance for the pur-
pose of this paper. It concerns the notion of evalua-
tion method, which has been discussed in several works
on gradual semantics (e.g., (Cayrol and Lagasquie 2005;
Leite and Martins 2011; Egilmez, Martins, and Leite 2013;
Amgoud and Doder 2019)). In the following, we consider
its most basic form—namely, a pair of functions—without
imposing any constraints on them.
Definition 4 (Evaluation Method). An evaluation method is
a pair (f ,g) such that:

• g :
+∞⋃
n=0

[0, 1]n → I where:

– (I,⪰) is a totally preordered set such that e ∈ I and
∀x ∈ I, x ≻ e (i.e., e is the weakest element in I).

– g() = e

• f : [0, 1]× I → [0, 1].

The codomain I of the function g is an ordered set that
contains a weakest element. It may be the interval [0,+∞)
(as in (Amgoud and Doder 2019)), the unit interval [0, 1], or
any other numerical or quantitative scale.
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f-Invariance ∀x ∈ [0, 1], f(x, e) = x
Robustness ∀x, y ∈ [0, 1], if x > 0, then f(x, y) > 0
Increasing-F ∀x, x′ ∈ [0, 1], ∀y ∈ I, if x > x′, then f(x, y) > f(x′, y)
Decreasing-S ∀y ∈ [0, 1], ∀x, x′ ∈ I, if x ≻ x′, then f(y, x) < f(y, x′)

g
Identity ∀x ∈ [0, 1],g(x) = x
Commutativity If µ is a permutation on {1, . . . , n}, then g(x1, . . . , xn) = g(xµ(1), . . . , xµ(n))
g-Invariance g(x1, . . . , xn, 0) = g(x1, . . . , xn)
Monotonicity If y ≥ z, then g(x1, . . . , xn, y) ⪰ g(x1, . . . , xn, z)
Strict Monotonicity If y > z, then g(x1, . . . , xn, y) ≻ g(x1, . . . , xn, z)

Table 1: Properties of f and g.

Table 1 lists properties that the two functions defining an
evaluation method may satisfy. The f-invariance property
states that the weakest element e of the set I serves as a
neutral element for the function f . The robustness property
ensures that f returns a positive value whenever its first ar-
gument is positive. The remaining two properties specify
that f is increasing in its first variable and decreasing in its
second. The function g returns its input when given a sin-
gleton, is insensitive to the order of its arguments, and has 0
as its neutral element. The last two properties state that g is
(strictly) increasing. We will show in the next sections that
these properties are crucial for defining semantics that have
a specific behaviour.

Property 3. Let g :
+∞⋃
n=0

[0, 1]n → I.

• ∀(x1, . . . , xn) ∈ [0, 1]n, g(x1, . . . , xn) ⪰ e.
• If g satisfies g-Invariance, then the following hold:

– g(0) = g(0, . . . , 0).
– If g satisfies monotonicity, then:
a) g(x1, . . . , xn, y1, . . . , yk) ⪰ g(x1, . . . , xn).
b) g(x1, . . . , xn) ⪰ g(0).

A fundamental concept in the field of argumentation
is that of semantics—a formal method for evaluating the
strength of arguments in weighted argumentation graphs.
Semantics is typically defined as a function that assigns a
value from an ordered scale to each argument, with higher
values indicating stronger arguments. In the following dis-
cussion, we adopt the scale [0, 1], which is the most com-
monly used in the literature.
Definition 5 (Semantics). A semantics is a function S map-
ping any G = ⟨A,w,R⟩ ∈ wAG to δSG : A → [0, 1]. For
a ∈ A, δSG(a) is the strength degree of a in G under S.

Some semantics may be defined using specific evaluation
methods. An example of such semantics is h-Categorizer
from (Besnard and Hunter 2001; Pu, andY. Zhang, and Luo
2014). Other examples can be found in (Leite and Martins
2011; Amgoud and Doder 2019).
Definition 6. Let S be a semantics and (f ,g) an evaluation
method. S is based on (f ,g) iff for any G = ⟨A,w,R⟩ ∈
wAG, for any a ∈ A,

δSG(a) = f

(
w(a),g

(
δSG(b1), . . . , δ

S
G(bn)

))
(1)

where {b1, . . . , bn} = attG(a). Let EqSG(a) =
{δSG(a), δSG(y1), . . . , δ

S
G(ym)} denote the set of all equa-

tions invoked during the recursive computation of δSG(a).

Here, g is an aggregation function that combines the
strengths of all direct attackers of a into a single value, rep-
resenting the overall strength of the attacking group. The
function f is an influence function that determines how this
aggregated value affects the initial weight of a. Note that
the above recursive definition implies that, in order to com-
pute the value of a, the semantics must solve a system of
equations EqSG(a) = {δSG(a), δSG(y1), . . . , δ

S
G(ym)}, thus it

must also evaluate the arguments y1, . . . , ym, which include
the direct (b1 . . . , bn) and indirect attackers of a.

We show that when a semantics is based on an evaluation
method, the value assigned to an argument depends solely
on a subgraph of the weighted argumentation graph (wAG),
specifically the portion that captures the attack structure rel-
evant to that argument. This result is significant, as it pre-
cisely identifies the set of arguments that influence—either
directly or indirectly—the strength of a given argument.

Theorem 1. Let S be a semantics based on an evaluation
method (f ,g), G = ⟨A,w,R⟩ ∈ wAG, and a ∈ A. The
following equivalence holds:

EqSG(a) = {δSG(a), δSG(y1), . . . , δ
S
G(ym)} iff

StrG(a) = {a, y1, . . . , ym}.

Semantics based on evaluation methods solve a system of
equations (of the form (1) in Definition 6), with one equation
per argument. This system may, in general, admit multiple
solutions, each representing a different semantics. Evalua-
tion methods that guarantee a unique solution—and there-
fore define a unique semantics—are referred to as rational.

Definition 7 (Rationality). An evaluation method (f ,g) is
rational if there is a unique semantics that is based on (f ,g),
that is, if two semantics S and S′ are both based on (f ,g),
then S = S′.

The rationality of an evaluation method is of great im-
portance, as it ensures that the semantics it defines is well-
characterized and unambiguous. Obviously, if weighted
graphs in wAG are acyclic (no cycles involved), then any eval-
uation method would be rational.
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3 Principles
For a semantics to be reasonable, it should satisfy cer-
tain desirable properties, referred to as axioms in (Amgoud
and Ben-Naim 2016) or principles in (Amgoud et al. 2017;
Baroni, Rago, and Toni 2018; Baroni and Giacomin 2007).
These properties capture high-level behavioral expectations
that a semantics may be required to fulfill. In what follows,
we consider the set of principles introduced in (Amgoud et
al. 2017), to which we add a new one, called Locality. Let S
be an arbitrary but fixed semantics. It satisfies a principle if
it fulfills its conditions.
Anonymity: ∀G = ⟨A,w,R⟩,G′ = ⟨A′,w′,R′⟩ ∈ wAG,
for any isomorphism h from G to G′, it holds that: ∀ a ∈
A, δSG(a) = δSG′(h(a)).

The Independence principle ensures that the value of an
argument is invariant under changes to unrelated parts of the
weighted graph.
Independence: ∀G = ⟨A,w,R⟩,G′ = ⟨A′,w′,R′⟩ ∈
wAG s.t A∩A′ = ∅, it holds: ∀ a ∈ A, δSG(a) = δSG⊕G′(a).

The principle of Directionality ensures that an argument
can only be influenced by other arguments that are con-
nected to it through a directed path.
Directionality: ∀G = ⟨A,w,R⟩ ∈ wAG, ∀a, b ∈ A, ∀G′ =
⟨A′,w′,R′⟩ ∈ wAG s.t. A′ = A, w′ = w, R′ = R ∪
{(a, b)}, it holds: ∀x ∈ A, if there is no path from b to x,
then δSG(x) = δSG′(x).

The next principle states that the strength degree of an
argument depends only on its initial weight and the strength
degrees of its direct attackers.
Equivalence: ∀G = ⟨A,w,R⟩ ∈ wAG, ∀a, b ∈ A, if

• w(a) = w(b),

• there exists a bijective function h from attG(a) to
attG(b) s.t. ∀x ∈ attG(a), δSG(x) = δSG(h(x)),

then δSG(a) = δSG(b).
Maximality states that the strength of a non-attacked ar-

gument is equal to its initial weight.
Maximality: ∀G = ⟨A,w,R⟩ ∈ wAG, ∀a ∈ A, if
attG(a) = ∅, then δSG(a) = w(a).

Neutrality ensures that worthless attackers have no impact
on their targets.
Neutrality: ∀G = ⟨A,w,R⟩ ∈ wAG, ∀a, b ∈ A, if

• w(a) = w(b),

• attG(b) = attG(a) ∪ {x} such that x ∈ A \ attG(a)
and δSG(x) = 0,

then δSG(a) = δSG(b).
The next principle highlights the negative role of attacks.

It states that an argument loses strength if it is attacked by at
least one serious attack.
Weakening: ∀G = ⟨A,w,R⟩ ∈ wAG, ∀a ∈ A, if

• w(a) > 0,

• ∃b ∈ attG(a) s.t. δSG(b) > 0,

then δSG(a) < w(a).

(Strong) Proportionality states that argument strength is
sensitive to the initial weight.
Proportionality: ∀G = ⟨A,w,R⟩ ∈ wAG, ∀a, b ∈ A, if
• attG(a) = attG(b),
• w(a) ≥ w(b),
then δSG(a) ≥ δSG(b).
Strong Proportionality: ∀G = ⟨A,w,R⟩ ∈ wAG, ∀a, b ∈
A, if
• attG(a) = attG(b),
• w(a) > w(b),
• δSG(a) > 0,

then δSG(a) > δSG(b).
The Resilience principle ensures that an argument does

not lose all of its strength unless its initial weight is zero.
Resilience: ∀G = ⟨A,w,R⟩ ∈ wAG, ∀a ∈ A, if w(a) > 0,
then δSG(a) > 0.

The Reinforcement principle ensures that the strength of
an argument is sensitive to the strength of its attackers: the
stronger the attacker, the greater its negative impact.
Reinforcement: ∀G = ⟨A,w,R⟩ ∈ wAG, ∀a, b ∈ A, if
• w(a) = w(b),
• attG(a) \ attG(b) = {x},
• attG(b) \ attG(a) = {y},
• δSG(y) > δSG(x),

• δSG(a) > 0,

then δSG(a) > δSG(b).
The Counting principle states that the strength of an argu-

ment decreases as the number of serious attackers increases.
Counting: ∀G = ⟨A,w,R⟩ ∈ wAG, ∀a, b ∈ A, if
• w(a) = w(b),
• attG(b) = attG(a)∪{x} such that x ∈ A\att(a) and
δSG(x) > 0,

• δSG(a) > 0,

then δSG(a) > δSG(b).

We now introduce a new principle, called Locality, which
is a refined version of the classical Independence principle.
It states that the value assigned to an argument depends only
on its reachable subgraph. This property is particularly pow-
erful, as it enables local reasoning and modular computation.
Furthermore, it is useful for characterizing semantics.
Locality: ∀G = ⟨A,w,R⟩ ∈ wAG, ∀ a ∈ A, δSG(a) =
δSG↓StrG(a)(a).

Next, we show that independence follows from locality,
and that locality follows from a combination of indepen-
dence and directionality. These results apply to any seman-
tics, whether or not they are based on evaluation methods.
Theorem 2. Let S be a semantics.

• If S satisfies locality, then it satisfies independence.
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• If S satisfies independence and directionality, then it sat-
isfies locality.

It is worth mentioning that directionality does not gener-
ally follow from locality. However, we show that, for se-
mantics grounded in rational evaluation methods, satisfying
locality entails satisfying directionality.

Theorem 3. Let S be a semantics based on a rational eval-
uation method. If S satisfies locality, then it also satisfies
directionality.

The two previous results suggest an equivalence between
the principle of locality and the combination of indepen-
dence and directionality—assuming semantics based on ra-
tional evaluation methods.

Corollary 1. Let S be a semantics based on a rational eval-
uation method. S satisfies locality iff S satisfies indepen-
dence and directionality.

It was shown in (Amgoud et al. 2017) that the first twelve
principles are compatible, meaning they can all be satisfied
simultaneously by a semantics. We show below that all thir-
teen principles are likewise compatible.

Theorem 4. There exists at least one semantics that satisfies
the thirteen principles.

Finally, we show that the maximum possible strength of
an argument is its initial weight, provided the semantics sat-
isfies certain mandatory axioms: independence, directional-
ity, maximality, neutrality, and weakening. This result aligns
with the claims made by Pollock in (Pollock 2001), where
he argues that the strength of an argument corresponds to its
initial weight—computed in a specific way—which dimin-
ishes as the argument becomes the target of serious attacks.

Theorem 5. Let S be a semantics that satisfies indepen-
dence, directionality, maximality, neutrality and weaken-
ing. For any G = ⟨A,w,R⟩ ∈ wAG, for any a ∈ A,
δSG(a) ∈ [0,w(a)].

4 Characterization Results
In this section, we characterize the classes of semantics that
satisfy subsets of the presented principles. Such results are
of great importance as they clarify the space of possible se-
mantics, provide formal specifications, that is, precise de-
scriptions of semantics’s structure, behavior, and properties.

The following representation theorem establishes a one-
to-one correspondence between the equivalence principle
and the class of semantics that satisfy it. In particular, it
shows that every semantics of this class can be defined by
an evaluation method with a commutative aggregation func-
tion — i.e. one that treats the set of attackers as unordered,
so their order has no effect on the outcome. To put it dif-
ferently, semantics that satisfy the equivalence principle are
defined as described in equation 1 of Definition 6.

Theorem 6. A semantics S satisfies equivalence iff S is
based on an evaluation method (f ,g), where the aggrega-
tion function g is commutative.

Unsurprisingly, existing semantics that satisfy the equiva-
lence principle all rely on an evaluation method. This is par-
ticularly the case for the h−Categorizer semantics (Besnard
and Hunter 2001; Pu, andY. Zhang, and Luo 2014), the trust-
based semantics from (da Costa Pereira, Tettamanzi, and
Villata 2011), the social semantics from (Leite and Martins
2011), and the three gradual semantics (Hbs, Mbs, Cbs) de-
fined in (Amgoud et al. 2017).

The following results focus on those semantics grounded
in evaluation methods—i.e., exactly the ones satisfying the
equivalence principle (Theorem 6)—and then pinpoint the
sub-classes of these semantics that obey other principles.

The first result characterizes the semantics—defined
via an evaluation method (f ,g)—that satisfy Maximality.
Specifically, it shows that such a semantics satisfies Maxi-
mality if and only if the function f treats the base value g()
as a neutral element. Importantly, this result holds regardless
of whether the evaluation method (f ,g) is rational.

Theorem 7. Let S be a semantics based on an evalua-
tion method (f ,g). S satisfies maximality iff f satisfies f -
invariance (i.e., ∀x ∈ [0, 1], f(x, e) = x).

We likewise characterize the subclass of seman-
tics—based on evaluation methods (f ,g)—that satisfy the
Resilience principle. Once again, the key condition depends
on a specific property of the function f , and the characteri-
zation holds even when (f ,g) is not rational.

Theorem 8. Let S be a semantics based on an evaluation
method (f ,g). S satisfies resilience iff f satisfies robustness
(i.e., ∀x ∈ [0, 1], ∀y ∈ I, f(x, y) > 0 whenever x > 0).

The next characterisation also concerns semantics based
on evaluation methods (f , g)-whether rational or not. We
show that these semantics satisfy proportionality if and only
if their functions f are non-decreasing in their first variable.

Theorem 9. Let S be a semantics that is based on an eval-
uation method (f ,g). S satisfies proportionality iff ∀x, x′ ∈
[0, 1], ∀y ∈ I, if x ≥ x′, then f(x, y) ≥ f(x′, y).

Strong proportionality is satisfied by a semantics if and
only if the latter is based on an evaluation method (f ,g)
whose function f is strictly increasing in its first variable.

Theorem 10. Let S be a semantics that is based on an eval-
uation method (f ,g). S satisfies strong proportionality iff
∀x, x′ ∈ [0, 1], ∀y ∈ I, if x > x′, then f(x, y) > f(x′, y).

We now introduce a class of semantics grounded in eval-
uation methods that satisfy specific constraints.

Definition 8. We define S as the set of all semantics S based
on an evaluation method (f ,g) that satisfies the following
properties:

• ∀x ∈ [0, 1], f(x, e) = x.
• ∀x, x′ ∈ [0, 1], ∀y ∈ I, if x > x′, then f(x, y) > f(x′, y).
• ∀x ∈ [0, 1], ∀y ∈ I, f(x, y) > 0 whenever x > 0.
• g is commutative.
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Building on the previous results, we establish a represen-
tation theorem that connects the principles of equivalence,
maximality, proportionality, strong proportionality, and re-
silience to the class S. Specifically, the theorem demon-
strates a one-to-one correspondence between these princi-
ples and the class of semantics that satisfy them.
Theorem 11. A semantics S satisfies equivalence, maximal-
ity, proportionality, strong proportionality and resilience iff
S ∈ S.

5 Properties of Semantics in S
In this section, we examine additional properties of seman-
tics within the class S. We show that any semantics in S
based on a rational evaluation method satisfies locality, and
therefore also satisfies independence and directionality. Re-
call that the rationality of a method is crucial for it to char-
acterise its corresponding semantics.
Theorem 12. If a semantics S ∈ S is based on a rational
evaluation method, then S satisfies locality, independence
and directionality.

The above result follows mainly from the rationality con-
dition. It is worth mentioning that the satisfaction of the
three principles (locality, independence, and directionality)
by a semantics that is based on an evaluation method (f ,g)
does not necessarily imply that (f ,g) is rational. Indeed,
trust-based semantics, as defined in (da Costa Pereira, Tet-
tamanzi, and Villata 2011), satisfies the three principles de-
spite being based on an evaluation method that violates ra-
tionality. It can be shown that this semantics is based on
(f ,g), where f(x, y) = min(x, 1− y) and g(x1, . . . , xn) =
max{x1, . . . , xn}. Consider now a graph where A =
{a, b}, w(a) = w(b) = 1, and R = {(a, b), (b, a)}. It
can be checked that the system of the two equations S(a) =
f(w(a),g(S(b))) and S(b) = f(w(b),g(S(a))) has an infi-
nite number of solutions, showing that (f ,g) is not rational.

The next result concerns the principle of anonymity,
which is satisfied by all existing semantics in the litera-
ture. It shows that this principle is satisfied by any semantics
based on a rational evaluation method.
Theorem 13. If a semantics S ∈ S is based on a rational
evaluation method, then S satisfies anonymity.

The two preceding results hold under the assumption of
rational evaluation methods. In contrast, the following re-
sults do not require this assumption. The first shows that
neutrality is satisfied by any semantics in the set S whose
evaluation method uses an aggregation function g for which
0 is a neutral element, i.e., g satisfies g-invariance.
Theorem 14. For any semantics S ∈ S based on an evalua-
tion method (f ,g), if g satisfies g-invariance, then S satisfies
neutrality.

The next result concerns the principle of weakening,
which captures the role of attacks. It is satisfied by any se-
mantics in S whose evaluation method uses a function f that
is strictly decreasing in its second variable and satisfies f -
invariance, and a function g that is strictly increasing and
satisfies g-invariance (see Table 1 for definitions).

Theorem 15. Let S ∈ S be based on an evaluation method
(f ,g). If f satisfies f -invariance and decreasing-S, g sat-
isfies g-invariance and strict monotonicity, then S satisfies
weakening.

The principle of reinforcement is satisfied by any seman-
tics in the set S, provided its evaluation method uses a func-
tion f that is strictly decreasing in its second variable and a
function g that is strictly increasing. Moreover, if g also sat-
isfies g-invariance, then the semantics additionally satisfies
the counting principle.

Theorem 16. Let S ∈ S be based on an evaluation method
(f ,g) such that: f satisfies decreasing-S and g satisfies strict
monotonicity. The following properties hold:

• S satisfies reinforcement.
• If g satisfies g-invariance, then S satisfies counting.

Summary: We have characterized a main class of seman-
tics—those that satisfy the principle of equivalence. Within
this class, we identified and characterized notable sub-
classes, each defined by additional principles such as maxi-
mality, resilience, and (strong) proportionality.

• S satisfies equivalence iff S is based on an evaluation
method (f ,g). (main class)

– S satisfies maximality iff f satisfies f -invariance.
– S satisfies resilience iff f satisfies robustness.
– S satisfies proportionality iff f is non-decreasing.
– S satisfies strong proportionality iff f satisfies

increasing-F .

We have shown that semantics of the main class satisfy
the remaining principles under specific conditions:

• Anonymity, Locality, Independence, Directionality if
(f ,g) is rational.

• Neutrality if g satisfies g-invariance.

• Weakening if f satisfies f -invariance and decreasing-S, g
satisfies g-invariance and strict monotonicity.

• Reinforcement if f satisfies decreasing-S and g satisfies
strict monotonicity.

• Counting if f satisfies decreasing-S, g satisfies strict
monotonicity and g−invariance.

6 Consequences of the Results
Extension semantics, originally introduced in (Dung 1995),
have been extended to deal with weighted argumentation
graphs. The central idea is to define a new defeat relation
that combines the initial attack relation with the arguments’
initial weights. Classical (unweighted) semantics are then
applied to the resulting flat graph. Two main approaches can
be distinguished: the contraction-based approach and the
change-based approach.

The contraction-based approach, studied in (Amgoud and
Cayrol 2002; Bench-Capon 2003), removes attacks from an
argument if it targets a stronger one. Formally, given a
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weighted argumentation graph G = ⟨A,w,R⟩ ∈ wAG, a
new binary relation R′ is defined such that for all a, b ∈ A,

(a, b) ∈ R′ iff (a, b) ∈ R and w(a) ≤ w(b).

In contrast, the change-based approach, introduced in
(Amgoud and Vesic 2011), reverses attacks from weaker ar-
guments targeting stronger ones. Formally, for a, b ∈ A,

(a, b) ∈ R′ iff (b, a) ∈ R and w(a) > w(b).

Both approaches yield a new (flat) graph ⟨A,R′⟩, on
which any classical extension-based semantics—including
preferred, stable, grounded, and complete—can be applied.
The latter are based on two key concepts: conflict-freeness
and defence.

• Conflict-freeness: A set E of arguments is conflict-free iff
∄a, b ∈ E such that (a, b) ∈ R′.

• Defence: A set E of arguments defends an argument a iff
for any argument b such that (b, a) ∈ R′, ∃c ∈ E such
that (c, b) ∈ R′.

Semantics generate extensions, sets of arguments that sat-
isfy specific conditions. Let G = ⟨A,R′⟩ be the graph in-
duced from G = ⟨A,w,R⟩ and let E ⊆ A.

• E is a complete extension iff it is a conflict-free set which
defends all its elements and contains any argument it de-
fends.

• E is a grounded extension iff it the subset-minimal com-
plete extension.

• E is a preferred extension iff it is a subset-maximal com-
plete extension.

• E is a stable extension iff E is conflict-free and ∀a ∈ A\E ,
∃b ∈ E such that (b, a) ∈ R′.

Let co, gr, pr, st denote complete, grounded, preferred,
and stable respectively, and Extx(G) the set of all exten-
sions under semantics x, with x ∈ {co, gr, pr, st}.

Once extensions are computed, a strength degree is as-
signed to every argument by aggregating the different exten-
sions. We recall below the assignment used in the literature
(eg., (Amgoud and Ben-Naim 2016)). Let 0 < α < β < 1
and x ∈ {co, gr, pr, st}.

• δxG(a) = 1 iff a ∈
⋂

E∈Extx(G)

E .

• δxG(a) = β iff ∃E , E ′ ∈ Extx(G) s.t a ∈ E and a /∈ E ′.

• δxG(a) = α iff a /∈
⋃

E∈Extx(G)

E and ∄E ∈ Extx(G) s.t.

some b ∈ E , (b, a) ∈ R′.

• δxG(a) = 0 iff a /∈
⋃

E∈Extx(G)

E and ∃E ∈ Extx(G) and

∃b ∈ E s.t. (b, a) ∈ R′.

We next show that the four extension-based semantics re-
called above are not grounded in any evaluation method. In
other words, there exists no semantics based on an evalua-
tion method that is equivalent to any of these four classical
extension-based semantics.

Theorem 17. There is no semantics S that is based on
an evaluation method such that S ≡ S′ and S′ ∈
{st, pr, gr, co}.

The above negative result stems from the fact that these
semantics violate the Equivalence principle. While Equiva-
lence requires that only the initial weights and the set of at-
tackers be taken into account, these semantics also consider
the structure of the graph.

Remark: It is worth mentioning that extensions themselves
can be computed by an equational approach as shown in
(Gabbay 2012). However, their aggregation to produce
strength degrees of arguments (as required in the Defini-
tion 5 of a semantics) is impossible.

7 On Explainability of Semantics in S
Explaining the outcomes of artificial intelligence models has
attracted significant attention over the past decade (Miller
2019). In the field of argumentation, numerous works have
focused on explaining the evaluations produced by various
semantics. Most of these efforts concentrate on extension-
based semantics, aiming to answer the question: ”Why is
an argument (not) accepted under a given semantics?” (e.g.,
(Doutre, Duchatelle, and Lagasquie-Schiex 2023; Fan and
Toni 2015b; Fan and Toni 2015a; Zeng et al. 2019; Liao and
van der Torre 2020; Saribatur, Wallner, and Woltran 2020;
Kampik, Cyras, and Alarcón 2024; Borg and Bex 2024)).
Generated explanations typically intend to describe the rea-
soning process of the semantics by identifying sets of argu-
ments or subgraphs deemed responsible for the acceptance
or rejection of a particular argument.

A smaller body of work has addressed the explainabil-
ity of gradual semantics (e.g., (Amgoud, Ben-Naim, and
Vesic 2017; Delobelle and Villata 2019)), where the pro-
posed approach consists of assessing how attacks influence
the strength degree of each argument.

Regardless of the family of semantics—whether
extension-based or gradual—most existing explanations
often fail to make the underlying logic of the semantics
explicit. For example, identifying a subgraph that leads to
the acceptance of an argument under the stable semantics,
as defined in (Dung 1995), does not clarify the two core re-
quirements: that stable extensions must be conflict-free and
must attack all arguments not included in them. Moreover,
explanations are generally semantics-dependent—they are
developed separately for each semantics, and few efforts
aim to provide a unifying framework applicable across
multiple classes of semantics. One exception is (Amgoud
2024), which introduces a general approach to post-hoc
explanations. However, that work does not capture the
internal logic of semantics, but rather correlations between
argumentation graphs and outcomes of semantics.

We argue that the most effective way to explain the
logic underlying a semantics—or, more broadly, any AI
model—is through the principles or axioms it satisfies. Prin-
ciples represent the foundational assumptions upon which a
semantics is built. As such, explanations based on princi-
ples are general and apply uniformly to all semantics within
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the same class. In this paper, we focus on the class S, iden-
tified through representation theorems in the previous sec-
tions. Our aim is to define explanations induced by the prin-
ciples satisfied by its semantics. More specifically, we in-
vestigate possible answers to the following question:

[Q:] Why argument a from a weighted graph G =
⟨A,w,R⟩ gets value δSG(a) under semantics S ∈ S?

Let us focus on local explanations, which concentrate on
the immediate neighborhood of an argument—that is, the ar-
gument itself and its direct attackers. Such explanations are
induced by the equivalence principle, which states that the
strength of an argument depends solely on its initial weight
and the strengths of its direct attackers. These elements thus
form a unique, sufficient and self-contained explanation.

Definition 9. A complete explanation of δSG(a) is the pair
Ec(δ

S
G(a)) = ⟨w(a), attG(a)⟩.

Example 1 (Cont) Consider again the example.

• Ec(δ
S
G(a)) = ⟨w(a), {b}⟩.

• Ec(δ
S
G(c)) = ⟨w(c), {b, e}⟩.

It is worth noting that complete explanations are unique,
which significantly reduces the number of possible explana-
tions compared to traditional approaches. Furthermore, its
size is bounded by the number of attackers, which is highly
appreciated in the XAI literature. However, a complete ex-
planation is not necessarily subset-minimal, since worthless
attackers—those with no impact on their targets as indicated
by the neutrality principle—can still be included. Therefore,
a more concise explanation would consist only of the argu-
ment’s initial weight and its serious attackers.

Definition 10. A relevant explanation of δSG(a) is the pair
Er(δ

S
G(a)) = ⟨w(a), {b ∈ attG(a) | δSG(b) ̸= 0}⟩.

Example 1 (Cont) Assume that w(b) = 0 and w(e) > 0.
Hence, maximality would lead to δSG(b) = 0 and resilience
implies δSG(e) > 0. Consequently, we get the following
relevant explanations:

• Er(δ
S
G(a)) = ⟨w(a), ∅⟩.

• Er(δ
S
G(c)) = ⟨w(c), {e}⟩.

A relevant explanation is considered optimal—meaning
it includes all and only the relevant information—when the
semantics satisfies the counting principle. This principle en-
sures that every serious attack contributes to reducing the
strength of its target. In contrast, semantics that violate this
principle, such as Mbs from (Amgoud et al. 2017) and the
Trust-based semantics from (da Costa Pereira, Tettamanzi,
and Villata 2011), base their evaluations on only a subset of
attackers, typically prioritizing the strongest ones. In such
cases, those influential attackers must be explicitly identi-
fied as part of the explanation. In case of the two semantics,
select the strongest attackers.

Complete and relevant explanations focus only on direct
attackers. However, the latter may themselves be influenced
by other arguments. Hence, one may want a global ex-
planation that highlights all elements that influenced the

strength δSG(a) of an argument a. Such explanation is
unique and provided by the locality principle by identifying
the exact portion of the graph required to evaluate the ar-
gument—namely, its attack structure. Any element outside
this set is for sure irrelevant to δSG(a). Formally, it contains
all arguments in the attack structure and their initial weights.

Definition 11. A global explanation of δSG(a) is the set

Eg(δ
S
G(a)) = {⟨w(x), x⟩ | x ∈ StrG(a)}.

This explanation highlights all the arguments that im-
pacted the strength of a.

Example 1 (Cont) Assume a semantics S ∈ S that evaluates
the arguments of the weighted graph G.

• Eg(δ
S
G(a)) = {⟨w(a), a⟩, ⟨w(b), b⟩}.

• Eg(δ
S
G(c)) = {⟨w(b), b⟩, ⟨w(c), c⟩, ⟨w(e), e⟩}.

We can also define its refined version by considering only
serious attackers.

Definition 12. A relevant global explanation of δSG(a) is:

Egr(δ
S
G(a)) = {⟨w(x), x⟩ | x ∈ StrG(a) and δSG(x) ̸= 0}.

The following property shows the links between the four
explanations.

Property 4. The following inclusions hold:

• Er((δ
S
G(a))) ⊆ Ec(δ

S
G(a)),

• Egr(δ
S
G(a)) ⊆ Eg(δ

S
G(a)).

It is worth noting that the computational complexity of
generating these explanations is linear, as any algorithm only
needs to examine the strengths of the argument’s direct at-
tackers. Note also that the provided explanations contain ar-
guments, however these can be replaced by their strengths.

8 Conclusion
The paper tackles a fundamental research challenge and of-
fers semantic characterizations through representation theo-
rems. This contribution advances the theoretical foundations
of a field that has, until now, received limited attention in
the literature. Indeed, several semantics have been proposed
in the literature, and a large number of principles have also
been defined in order to compare formally pairs of seman-
tics. However, there is no attempt at fully characterizing the
whole classes of semantics that satisfy subsets of principles.
This paper provides the first contribution in that direction.
It provided some representation theorems that establish one-
to-one correspondences between subsets of principles and
classes of semantics. The main result shows a bijection be-
tween the principle of equivalence and the large class of se-
mantics that are defined using evaluation methods. This re-
sult allows to clearly distinguish extension semantics from
gradual ones. Indeed, all existing gradual semantics satisfy
equivalence, thus argument strength depends only on the ar-
gument’s initial weight and the strengths of its direct attack-
ers. Extension semantics violate the principle because they
also take into account the topology of the graph.
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The paper provided also some representation theorems
delimiting the classes of evaluation methods that lead to the
satisfaction of various principles, including maximality, re-
silience and (strong) proportionality.

This work lends itself to a number of developments, the
most pressing of which is the characterization of rational
evaluation methods. Another important direction is the de-
velopment of representation theorems that fully characterize
the class of extension-based semantics. We also aim to fur-
ther investigate the principle-based approach to explainabil-
ity, and to compare it with the two prevailing alternatives in
the literature: the model-based and post-hoc approaches.
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