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Abstract

Inductive inference is a well-studied form of nonmonotonic
reasoning in which various forms of inference are based on
conditional belief bases rather than belief bases consisting of
classical logic statements. Given its nonmonotonic nature,
many important logical properties that are taken for granted
in the classical case do not necessarily carry over to inference
involving conditionals. In this paper we consider two such
properties—equivalence and language-independence. More
specifically, we provide different notions of equivalence in
the conditional case, and show which of these are satisfied
by which forms of conditional inference. Similarly, we con-
sider two different versions of language independence, and
test various forms of conditional inference against these. As
its main overall contribution, the paper provides deeper theo-
retical insights into the field of inductive inference.

1 Introduction

Nonmonotonic reasoning is one of the original areas of
Knowledge Representation and Reasoning, and a driving
force behind its early development. It remains a major area
of KR today (Delgrande et al. 2024). Because of its depar-
ture from classical (monotonic) reasoning, many fundamen-
tal properties that are taken for granted in classical logics
do not carry over to nonmonotonic formalisms. In this pa-
per we focus on two such properties involving the interplay
between syntax and semantics, equivalence and language-
independence, and consider their role within the context of
inductive inference, a well-studied form of nonmonotonic
reasoning in which inference is based on conditional be-
lief bases rather than belief bases consisting of classical
logic statements (Kern-Isberner, Beierle, and Brewka 2020).
More specifically, we make the following contributions:

¢ We introduce different versions of equivalence for induc-
tive inference, point out the relationships between them,
and test some well-known forms of inductive inference
against them.

* We introduce properties constraining model-based induc-
tive operators to be tightly coupled to the conditional
statements provided in a belief base, and show that this is
incompatible with one of the notions of equivalence and
the property of Syntax Splitting (Kern-Isberner, Beierle,
and Brewka 2020).
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* Based on the failure of the well-studied form of inductive
inference known as lexicographic inference (Lehmann
1995) to satisfy one of our notions of equivalence, we pro-
pose a variant of lexicographic inference that satisfies it.

¢ We introduce two versions of language independence for
inductive inference and show that properties referred to as
conditional-functional and conditional-relational ensures
these forms of language independence.

The paper is organized as follows. Section 2 provides the
various preliminaries required to present our contributions.
Section 3 presents versions of equivalence for inductive in-
ference, and tests this against the newly-added property of
being conditional-based. Section 4 presents a version of
lexicographic inference that satisfies the notion of pairwise
equivalence introduced in the previous section. Section 5
introduces and studies two versions of language indepen-
dence. Section 6 considers related work. Finally, Section
7 concludes and considers future work.

2 Preliminaries

In the following we recall preliminaries on propositional
logic, and technical details on inductive inference.

2.1 Propositional Logic

For a finite set . of atoms, let £(X) be the corresponding
propositional language constructed using the usual connec-
tives A (and), V (or), - (negation), — (material implication)
and <> (material equivalence). A (classical) interpretation
(also called possible world) w for a propositional language
L(Y) is a function w : ¥ — {1,0} where 1 is understood
to denote truth, and 0 to denote falsity. Let ©(X) denote
the set of all interpretations for 3. We simply write €2 if the
set of atoms is implicitly given, and similarly for £. An in-
terpretation w satisfies (or is a model of) an atom a € %,
denoted by w |= a, if and only if w(a) = 1. The satisfac-
tion relation |= is extended to formulas in the usual way. As
an abbreviation we sometimes identify an interpretation w
with its complete conjunction, i.e., if a;,...,a, € X are
those atoms that are assigned 1 by wand ay, 41, ...,a,, € X
are those propositions that are assigned 0 by w we identify
w with ay A ... Aay A 2Gpyq ... A\ —ay, and will often
abbreviate this as aj ... apGn+1 - - - Gy, (OF any permutation
of this). For X C L(X) we also define w = X if and
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only if w = A for every A € X. Define the set of models
Modys (X) = {w € Q(X) | w |= X} for every formula or set
of formulas X (and use Mod(X) if ¥ is clear). A formula
or set of formulas X entails another formula or set of for-
mulas X5, denoted by X; = Xo, if Mod(X;) C Mod(X3).
Where § C ¥, and w € Q(X), we denote by w? the re-
striction of w to 6, i.e. w? is the interpretation over ¥ that
agrees with w on all atoms in §. Where ¥;,¥; C X, Q(%;)
will also be denoted by €2; for any 7 € N, and likewise ); ;
will denote Q(X; U ;) (for ¢,j € N). Likewise, for some
X C L(%;), we define Mod; (X) = {w € ; |w = X}

2.2 Reasoning with Nonmonotonic Conditionals

Given a language £, conditionals are objects of the form
(B|A) where A, B € L. The set of all conditionals based on
a language L is defined as: (L|£) = {(B|A) | A,B € L}.
We follow the approach of de Finetti (1937) who considers
conditionals as generalized indicator functions for possible
worlds or propositional interpretations w:

1 : wEAAB
(BlA)(w) = { 0 : wEAAN-B )
v wkE-A
where u stands for unknown or indeterminate. In other

words, a possible world w verifies a conditional (B|A) iff
it satisfies both antecedent and conclusion ((B|A)(w) = 1);
it falsifies, or violates it iff it satisfies the antecedent but not
the conclusion ((B|A)(w) = 0); otherwise the conditional
is not applicable, i.e., the interpretation does not satisfy
the antecedent ((B|A)(w) = u). We say that w satisfies a
conditional (B|A) iff it does not falsify it, i.e., iff w satis-
fies its material counterpart A — B. We will look at the
semantics of conditionals given by total preorders (TPOs)!
=<C Q(X) x Q(X). As is usual, given a preorder <, we
denote w < w’ and W’ <X wby w ~ w and w < W’ and
w' Zwbyw < . Given a TPO =< on possible worlds, rep-
resenting relative plausibility, we define A < B iff for ev-
ery w’ € min<(Mod(B)) there is an w € min<(Mod(A))
such that w < w’. This allows for expressing the valid-
ity of conditional inferences via stating that A _ B iff
(AN B) < (AN —B) (Makinson 1988) for a TPO. We
say that a set A C (L£(X)|£(X)) of conditionals is consis-
tent if there is an TPO =< over (X) s.t. A v _ B for every
(B|A) € A. In what follows, we will, for simplicity, always
assume a set of conditionals is finite and consistent, and call
such a set a conditional belief base. A is said to be valid
w.r.t. a TPO if every element of A is valid w.r.t. to the TPO.

We can marginalize total preorders and even inference op-
erators, i.e., restricting them to sublanguages, in a natural
way: If © C X then any TPO = on (%) uniquely induces
a marginalized TPO =g on )(©) by setting

w?j‘@ w iff WP < WS,

@

Note that on the right hand side of the iff condition above
w?, w? are considered as propositions in the super-language

'A total preorder is a binary relation that is transitive and com-
plete (and therefore reflexive), i.e., w1 =X w2 or wa =X w; for all
Wi, w2.
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L(£2). Hence w9 < w? is well defined (Kern-Isberner and
Brewka 2017). Similarly, any inference relation p on £(X)
induces a marginalized inference relation g on L(©) by
setting A v Biff A~ B forany A, B € L(©).

An obvious generalisation of total preorders are ordinal
conditional functions (OCFs), (also called ranking func-
tions) k : Q — N U {oo} with k71(0) # 0. (Spohn
1988). They express degrees of (im)plausibility of possi-
ble worlds and propositional formulas A by setting r(A) :=
min{x(w) | w = A}. A conditional (B|A) is accepted by
iff Ap, Biff K(AAB) < k(AA—B). Notice that any OCF
induces a TPO on §2, defined by wy = ws iff K(w1) < K(w2).

2.3 Inductive Inference Operators

In this paper we will be interested in inference operators
I~ o parametrized by a finite conditional belief base A.
Such inference operators are induced by A, in the sense that
A serves as a starting point for the inferences in |~ ,. We
call such operators inductive inference operators:

Definition 1 ((Kern-Isberner, Beierle, and Brewka 2020)).
An inductive inference operator (from conditional belief
bases) is a mapping C that assigns to each % and each con-
ditional belief base A C (L(X)|L(X)) an inference relation
I A on L(X) that satisfies the following basic requirement
of direct inference:

(DY) If A is a conditional belief base and |~ . is an in-
ference relation that is induced by A, then (B|A) € A
implies A~ A B.

As already indicated in the previous subsection, inference
operators can be obtained on the basis of TPOs, and OCFs,
respectively (among others):

Definition 2. A model-based inductive inference operator
for TPOs (on ) is a mapping C'° that assigns to each
conditional belief base A a TPO <a on Q s.t. A~ < Bfor
every (B|A) € A (i.e., s.t. (DY) is ensured).

A model-based inductive inference operator for OCFs (on
Q) is a mapping C°°! that assigns to each conditional belief
base A an OCF ka on Q s.t. A is accepted by ka (i.e., s.t.
(D) is ensured).

Examples of inductive inference operators for OCFs
include System Z (also called rational closure, (Gold-
szmidt and Pearl 1996; Pearl 1990), see Sec. 2.4) and
c-representations with selection strategies ((Kern-Isberner
2002), see Sec. 2.6), whereas lexicographic inference
((Lehmann 1995), see Sec. 2.5) is an example of an induc-
tive inference operator for TPOs.

This paper extends the study of properties of inductive
inference operators. We first recall a property that has
been recently introduced and studied, syntax splitting (Kern-
Isberner, Beierle, and Brewka 2020). To define the property
of syntax splitting we assume a conditional belief base A
that can be split into subbases A, A% s.t. A C (£;|£;) with
L;=L(E)fori=12stENYy=0and X, Uy =3,
writing A = A U A? whenever this is the case.

21,32
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Definition 3 (Independence (Ind), (Kern-Isberner, Beierle,
and Brewka 2020)). An inductive inference operator C sat-
isfies (Ind) if for any A Al Uzh22 A? and for any
ABeL;, CeLl;(i,je{1,2},j#1)

AN \Biff ANC I~ B

Definition 4 (Relevance (Rel), (Kern-Isberner, Beierle, and
Brewka 2020)). An inductive inference operator C satisfies
(Rel) if for any A = A! U21,22 A? and for any A, B € L;
(i € {1,2}),

A A\Biff A oiB.

Definition 5 (Syntax splitting (SynSplit), (Kern-Isberner,
Beierle, and Brewka 2020)). An inductive inference oper-
ator C satisfies (SynSplit) if it satisfies (Ind) and (Rel).

Thus, (Ind) requires that inferences from one sub-
language are independent from formulas over the other sub-
language, if the belief base splits over the respective sub-
languages. In other words, information on the basis of one
sublanguage does not influence inferences made in the other
sublanguage. (Rel), on the other hand, restricts the scope
of inferences, by requiring that inferences in a sublanguage
can be made on the basis of the conditionals in a condi-
tional belief base formulated on the basis of that sublan-
guage. (SynSplit) combines these two properties. System
Z satisfies (Rel) but not (Ind) (Kern-Isberner, Beierle, and
Brewka 2020), while lexicographic inference (Heyninck,
Kern-Isberner, and Meyer 2022) and c-inference (Kern-
Isberner, Beierle, and Brewka 2020) satisfy full (SynSplit).

24 System Z

We present system Z as defined by Goldszmidt and Pearl
(1996) as follows. A conditional (B|A) is tolerated by a fi-
nite set of conditionals A if there is a possible world w with
(B|A)(w) = 1 and (B'|A")(w) # 0 for all (B'|A") € A,
i.e. w verifies (B|A) and does not falsify any (other) con-
ditional in A. The Z-partitioning (or ordered partition)

OP(A) = (Ao,...,Ay) of A s defined as: Ag = {§ €
A| Atolerates 6}; and OP(A\ Ag) = Aq,..., A, .
For § € A we define: ZaA(0) = i iff § € A, and

OP(A) = (Ay,...,A,). Finally, the ranking function k%

is defined via: k% (w) = max{Za() | 6(w) = 0,6 €

A}+1, withmax () = —1. The resulting inductive inference

operator Czczf is denoted by CZ. System Z is equivalent to
A

rational closure (Lehmann and Magidor 1992), and the two

terms are used interchangeably in the literature.

We now illustrate OCFs in general and system Z in par-
ticular with the well-known “Tweety the penguin”-example.

Example 1. Consider the conditional belief base A
{(f]b), (blp), (=f|p)}, where b is intended to represent be-
ing a bird, f represents being able to fly, and p repre-
sents being a penguin. A has the following Z-partitioning:
Ao = {(f|b)} and Ay = {(blp), (=f|p)}. This gives rise
to the following /@Z—ordering over the worlds based on the
signature {b, f,p}:
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w K'/g w /ﬁ}i w Iﬂ?g w K:i
pbf 2 pbf 1 pbf 2 pbf 2
pbf 0 pbf 1 pbf 0 pbf 0

As an example of a (non-)inference, observe that e.g.
z z
Th X pandp A f R0

2.5 Lexicographic Inference

We recall lexicographic inference as introduced by Lehmann
(1995). For some conditional belief base A, the order
j'zx is defined as follows: Given w € € and A’ C
A V(wA) = [{(BIA) € A | (BlA)w) = O},
Given a set of conditionals A partitioned in OP(A) =
(Ao, ..., A,), the lexicographic vector for a world w €  is
the vector lex(w) = (V(w, Ag), ..., V(w,A,)). Given two
vectors (r1,...,2,) and (y1,...,Yn), (T1,...,2,) =<'
(y1,...,yn) iff there is some j < n s.t. xp = y; for every
k> jand z; < yj. w <R W' iff lex(w) <'* lex(w’). The
resulting inductive inference operator C™¢, will be denoted

jlex
by C'** to avoid clutter.

Example 2 (Example 1 ctd.). For the Tweety belief base A
as in Example 1 we obtain the following lex(w)-vectors:

w lex(w) w lex(w)  w lex(w)  w lex(w)
pbf (0.1)  pbf (1,0)  pbf (02) pbf (01)
pbf (00) pbf (1,0) pbf (00) pbf (0,0)

The lex-vectors are ordered as follows:
(0,0) <" (1,0) <" (0,1) <" (0,2).
Observe that e.g. T |~ lzxﬂp andp A [~ lsz.

2.6 Reasoning with c-Representations

c-Representations (Kern-Isberner 2001b; Kern-Isberner
2004) are special ranking models obtained by assigning in-
dividual integer impacts to the conditionals in A and gener-
ating the world ranks as the sum of impacts of falsified con-
ditionals. A related concept is that of ranking constructions
(Weydert 1996).

Definition 6 (c-representation (Kern-Isberner 2001b;
Kern-Isberner 2004)). A c-representation of A
{(B1]A1),...,(Bn|An)} is an OCF Kk constructed
from non-negative integer impacts n; € Ny assigned to
each (B;|A;) such that k accepts A and is given by:

sw)= 3

1<isn
wkEA;B;

3)

c-Representations can conveniently be specified using a
constraint satisfaction problem:

Definition 7 (CR(A), (Kern-Isberner 2001b; Beierle et al.
2018)). Let A = {(Bi|A1),...,(Bn|An)}. The constraint
satisfaction problem for c-representations of A, denoted by
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CR(A), is given by the conjunction of the constraints, for
allj e {1,...,n}:

n; 20 4
n; > min N — min_ ng  (5)
wEAL By wEAL By

Note that (4) expresses that falsification of condition-
als should not make worlds more plausible, and (5) en-
sures that  as specified by (3) accepts A. A solution of
CR(A) is a vector 7 = (n1,...,7n,) of natural numbers.
Sol(CR(A)) denotes the set of all solutions of CR(A). For
77 € Sol(CR(A)) and & as in Equation (3), » is the OCF
induced by 7] and is denoted by r7. CR(A) is sound and
complete (Kern-Isberner 2001b; Beierle et al. 2018): For
every 77 € Sol(CR(A)), ks is a c-representation with
ki = A, and for every c-representation k£ with k = A,
there is 77 € Sol(CR(A)) such that k = £

c-Inference was introduced by Beierle et al. (2016; 2018)
as the skeptical inference relation obtained by taking all
c-representations of a belief base A into account.

Definition 8 (c-inference, NZSk, (Beierle, Eichhorn, and
Kern-Isberner 2016)). Let A be a conditional belief base
and let A, B be formulas. B is a (skeptical) c-inference

from A in the context of A, denoted by A ZSkB, iffA B
holds for all c-representations k of A, yielding the inductive
inference operator

c-sk . c-sk
C A= by

Additionally to taking all c-representations of a belief
base into account, an inductive inference operator can also
be defined based on single c-representations. This can be
done by employing the concept of selection strategies (Kern-
Isberner, Beierle, and Brewka 2020).

Definition 9 (selection strategy -+, (Kern-Isberner,
Beierle, and Brewka 2020)). A selection strategy (for
c-representations) is a function -y A +— 7] assign-
ing to each conditional belief base A an impact vector
7 € Sol(CR(A)).

Each selection strategy yields an inductive inference op-
erator for OCFs via CJ™ 1 A = Ky (a).

Because every OCF « can be uniquely represented by a
TPO =, where, for all wy,ws € Q, w1 =, we iff K(wy) <
k(w2), this also yields an inductive inference operator for
TPOs via nyjgp WA Y
Example 3. For the belief base A from Ex. 1 a selection
strategy -y for c-representations could yield the OCF rz via
v(A) = 77 = (1,2,2), vielding the following ordering of
worlds:

w /4177’ w KZT7’ w Klﬁ w KZ?,’
pbf 2 pbf I pbf 4 pbf 2
pbf 0 pbf 1 pbf O pbf O

We have pb PK?, because H;,’(pb?) =1 < 2= kp(pbf)
(and thus also pbf =.. pbf). In fact, this holds for all
c-representations of A which means pb |,VCA-sk?.
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3 Equivalence in Conditional Reasoning

We first define some preliminaries regarding equivalence.
Two conditionals (B]|A;) and (Bg|As) are equivalent iff
every world has the same attitude to both conditionals: i.e.
(B1]41)(w) = (Bz2|A2)(w) for every w € Q. This is equiv-
alent to A; = As and By A A; = By A A,. Notice that this
implies that for any TPO =<, A; |~ L By iff As |~ . Bs. We
write (B1]A41) = (B2]Az) in that case.

We now define the following kinds of equivalence for con-
ditional knowledge bases:

Definition 10. Two conditional knowledge bases A, and
Asg are:

* bijective pairwise equivalent if there is a bijection f :
Ay = Ay s.t. § = f(0) forevery § € Aq;

* pairwise equivalent if for every 61 € A there is some
02 € Ag s.t. 81 = 09, and vice versa;

* globally equivalent if for every TPO =, Ay is valid w.rt.
=< iff As is valid w.rt. <.

The intuition behind these notions is the following: bijec-
tive pairwise equivalence requires that two sets of condition-
als have the same size, and that every conditional in one set
is equivalent to a conditional in the other set. Pairwise equiv-
alence requires that for every conditional in the first set Aq,
we can find an equivalent conditional in Ao, and vice versa,
but does not require these sets to have the same size. Finally,
global equivalence merely requires that A; and As have the
same semantic structure, in the sense that they are valid w.r.t.
the same TPOs.

These notions are strictly hierarchical:

Proposition 1. If Ay and A, are bijectively pairwise equiv-
alent, they are pairwise equivalent, and if they are pairwise
equivalent, they are globally equivalent.

The following example shows global equivalence does not
imply pairwise equivalence:
Example 4. Consider A1 = {(q|p), (r|p)} and As = {(gA
r|p)}. Then clearly Ay and Ao are globally equivalent but
not pairwise equivalent.

The following example shows pairwise equivalence does
not imply bijective pairwise equivalence:
Example 5. Consider Ay = {(q|p)} and A2 = {(q|p), (g
plp)}. Then clearly Ay and A5 are pairwise equivalent but
not bijectively so.

The following properties express that an inductive infer-
ence operator satisfies a given notion of equivalence:

Definition 11. Let an inductive inference operator C be
given. Then C:

* satisfies bijective pairwise equivalence if for any two bi-
Jective pairwise equivalent knowledge bases A1 and Ao,
C(A1) = C(Ay).

* satisfies pairwise equivalence if for any two pairwise
equivalent knowledge bases Ay and Ay, C(Aq)
C(As).

* satisfies global equivalence if for any two pairwise glob-

ally equivalent knowledge bases A1 and As, C(Aq)
C(Ay).
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In other words, an inductive inference operator C satis-
fies [bijective] pairwise [global] equivalence if for any [bi-
jective] pairwise [globally] equivalent knowledge bases A
and Ag, A o Biff Apv , B. Bijective pairwise equiva-
lence guarantees that replacing a conditional in the knowl-
edge base with another that imposes identical constraints on
possible worlds does not significantly alter the inferences
made. Pairwise equivalence builds in the additional require-
ment that removing duplicate (modulo equivalence) condi-
tionals should not impact the conclusions drawn. Global
equivalence is the strongest of the three properties, and bi-
jective pairwise equivalence the weakest (this is an immedi-
ate consequence of Proposition 1).

We commence the study of the satisfaction of equiva-
lence for the inductive inference operators, moving from the
strongest to the weakest result. We start with System Z:

Proposition 2. System Z satisfies global equivalence.
We show C-inference satisfies pairwise equivalence:
Proposition 3. c-Inference satisfies pairwise equivalence.

The proof is based on constructing for each c-
representation of A; a c-representation of Ao and vice
versa, such that the sum of impacts of all equivalent con-
ditionals is the same.

Regarding inference with single c-representations, we in-
troduce the following postulate for selection strategies.

(PPE) A selection strategy o satisfies preservation of pair-

wise equivalence if, for any two pairwise equivalent belief
bases A1, Ay and every 6 € Ay:

> o (ADlsysreansi=sy = Y (D)l (5,16,e 006,25}

(PPE) demands that for each conditional the sum of impacts
over the set of equivalent conditionals must be the same in
A; and A,. Utilizing (PPE) we obtain the following result.
Pl.'oposit'ion 4. If o satisfies (PPE) then C' satisfies pair-
wise equivalence.

We will see in Section 3.1 that global equivalence is not
satisfied for both inferences based on c-representations, but
first turn to lexicographic inference. Surprisingly, we ob-
serve that it does not even satisfy pairwise equivalence:

Proposition 5. Lexicographic inference does not satisfy
pairwise equivalence.

Proof. Consider the following conditional knowledge bases:

Ay ={(pla), (rlg)}

Ax =A1U{(rAgla)}
A; and A, are pairwise equivalent. It is easy to see that
OP(A1) = (A1) and OP(A3) = (Ag). Thus, the lexico-
graphic vectors for the worlds pgr and pqr are determined
as follows:

V(pqr, Ar) = 1,V (pgr, Az) = 1,since pqr = q A —p;
Vipgr,Ar) = 1,V(pgr,Az) = 2,sincepqr =
g AT A=(rAg).

~lex lex

This means that pgr ~ | pqr whereas pgr <3 pqr. O
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Notice that the example used in this proof is also a vio-
lation of the property of Cut when applied to conditionals:
if A A\ B then C(A U {(B|A)}) C C(A). This rule says
that if we add a conditional to A that is already inferred on
the basis of A - such as (r A g|q) being added to A; above
- then this should not lead to the inference of any new con-
ditionals. In the above we have, e.g., ¢ A (p <> —7) [ 5 7
but g A (p <» —7) v 5, 7. Despite violating pairwise equiv-
alence, lexicographic inference satisfies bijective pairwise
equivalence:

Proposition 6. Lexicographic inference satisfies bijective
pairwise equivalence.

Arguably, the failure of lexicographic inference to sat-
isfy pairwise equivalence is undesirable, as it means that the
number of (equivalent) conditionals in a knowledge base has
an effect on the inferences from the knowledge base. To
overcome this defect, we will propose a variant of lexico-
graphic inference that avoids this in Section 4.

3.1 Satisfaction of Global Equivalence and
Syntax Splitting

We now show a more general result that shows that the sat-
isfaction of global equivalence is perhaps too strong of a re-
quirement, in the sense that it is incompatible with another
property deemed desirable for inductive inference opera-
tors, namely syntax splitting. To show this, we will assume
another property, namely conditional-basedness, which ex-
presses that worlds that have exactly the same attitudes w.r.t.
the inducing set of conditionals should not be distinguished.
Intuitively, in inductive inference, the only information that
is relevant is the set of conditionals the inductive inference
operator is based on.

Definition 12. A model-based inductive inference operator
C for TPOs is conditional-based if;, for any wi,ws € Q, if
(0)(w1) = (6)(w2) for every 6 € A then wy =a wa.

A similar property can be defined for model-based induc-
tive inference operators on OCFs.

Notice that this is a rather harmless property, in the sense
that any of the inductive inference relations studied in this
paper satisfy it:

Proposition 7. System Z, lexicographic inference and infer-
ence with a single c-representation are conditional-based.

‘We can now show that, in the context of conditional-based
inductive inference operators, global equivalence and Ind
are jointly incompatible.

Proposition 8. There exists no conditional-based inductive
inference operation that satisfies global equivalence and
satisfies (Ind).

Proof. Suppose that C satisfies global equivalence and sat-
isfies syntax splitting.

Consider first Ay = {(a|T), (| T)}. With (DD, T~ % a
(which implies ab < w for any w € Q\ {ab}), and likewise,

C .

T A, b Then since Ay = {(a|T)} L{{a},{b} {Eb|T)},
T A-bp S aby (Ind). This means that ab <§, @b. With
symmetry, we establish that ab <gl ab.
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Consider now Ay = {(a A b|T)}. Notice that A; and
A are globally equivalent. Thus, since C satisfies global
equivalence, <§ =<§_. However, as ((a A b|T))(ab) =
((aAB|T))(ab) = ((a Ab|T))(ab) = 0, we see that ab ~§_
ab ~§  ab, contradiction. O

Notice that global equivalence is only incompatible with
the (Ind) sub- property of (SynSplit). Indeed, as system Z
satisfies only (Rel) (Kern-Isberner and Brewka 2017), we
see it is possible to satisfy global equivalence and (Rel).

We can utilize Proposition 8 to see that inference with a
single c-representation does not satisfy global equivalence.

Proposition 9. CZ'” does not satisfy global equivalence.

Because c-inference is not OCF-based, Proposition 8 is
not applicable. Nevertheless, the following result holds.

Proposition 10. c-Inference does not satisfy global equiva-
lence.

Proof. Consider the globally equivalent belief bases A; =
{(a]T), (6| T)} and Ay = {(a A b|T)}. Then it can be veri-

fied that b 3" a but b |3 a O

4 A Variant of Lexicographic Inference that
Satisfies Pairwise Equivalence

Obtaining a variant of lexicographic inference that satisfies
pairwise equivalence is rather straightforward. Instead of
counting which conditionals are violated by a world, we
count which conditionals are violated up fo equivalence.
In more detail, we observe that equivalence of condition-
als is an equivalence relation over (£|£), and thus, as usual,
we define the equivalence class of a conditional (B|A) as
[(B|A)] ={(D|C) e (L|L)| A=Cand ANB = CAD}.
We can now count the violations of conditionals in A by w
up to equivalence as:

V=(w, A) = {I(BIA)] | (B]A)(w) = 0,(B|A) € A}
It is easy to observe that V=(w,A) < V(w,A)
for any w and set of conditionals A. We can
now define, for A with OP(A) = (Ao,...,A,),
lex=(w) = (V=(w,Ag),...,V=(w,A,)). We further-
more let wy j'ZX’E wy iff 1lex=(wy) =<' lex™(wy). We
denote the corresponding inductive inference relation by
C'®=, We illustrate this with an adapted Tweety-Example:
Example 6. Let A = {(f|b), (blp), (=fIp), (=f A plp)}-
Notice that (—~f A plp) = (—f|p) We have the following
lex- and lex=-vectors:

w lex(w) lex=(w) w lex(w)  lex=(w)

pbf (0,2)  (01) pbf  (1,0)  (1,0)
pbf (0,3)  (02) pbf (01) (01)
pbf  (0,0)  (0,0) pbf  (1,0)  (1,0)
pbf (0,00  (0,0) pbf (0,00  (0,0)
We see that e.g. pﬁ <'ZX pbf yet pW Q:IZX’E pbf. This
lex

means that p A =(b A —f) |~ Nbf whereas p A —(b A
)R

We note firstly that this inference relation lies between
System Z and lexicographic inference:

Proposition 11. For any conditional knowledge base
A, A}NiB implies A|~|ZX’EB and A}NIEX’EB implies
ARSB.

The next proposition shows that this inference relation is
well-behaved in the sense that it satisfies pairwise equiva-
lence and syntax splitting.

Proposition 12. C'*%= satisfies pairwise equivalence.
Proposition 13. C'*= satisfies SynSplit.

Furthermore, it should be noticed that, as C'®= is a
model-based inductive inference operator for TPOs, it sat-
isfies all the so-called KLM-postulates, including rational
monotony.

5 Language Independence

In this section we consider the property of language inde-
pendence for inductive inference operators. The property
intuitively states that inductive inference should be inde-
pendent of how exactly atoms are expressed. For example,
it should not matter whether we represent two atoms as a
and b or p and q. More generally, in many cases, atoms
can be equivalently represented as complex formulas and
vice versa. For example, one can represent “I don’t have
a dog” by a or —a. In more formal detail, we follow Mar-
quis and Schwind (2014) by defining a symbol translation
as any mapping o : ¥ — L(X’). We can extend such a
translation to formulas by simply defining o(A) as the for-
mula obtained by substituting any p € ¥ by o(p) in A, and
for any conditional knowledge base A we denote by o(A)
the knowledge base obtained by replacing each (B | A) in
A by (6(B) | o(A)). As Marquis and Schwind already
observed, it is sensible to restrict attention to to a specific
classes of symbol translations. We look at two such classes,
namely belief-amount preserving symbol translations (BAP)
(Section 5.1) and the more general atom independence pre-
serving (AIP) symbol translations (Section 5.2). Section 5.3
contains results on language independence for concrete in-
ference operators.

5.1 Belief-Amount Preserving Symbol
Translations

Following Marquis and Schwind (2014), a BAP-translation
is defined as a translation that induces a bijection between
interpretations in the two signatures:

Definition 13. A mapping o : ¥ — L(X') is a belief-
amount preserving symbol translation from 3 to ¥/ (in short,
a BAP-translation) if there is a bijection -y : Q(2) — Q(X')
s.t. for every A € L(X), Mod(c(A)) = {y(w) | w €
Mod(A)}.

The idea is that a symbol translation is a way of translat-
ing every atom to a formula such that the images of atoms
are semantically equivalent (in the new language) to their
originals: every world in the original language corresponds
to exactly one world in the translated language.
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Example 7. Consider ¥ = {a,b} and the symbol transla-
tion from X to itself given by o(a) = a and o(b) = a + b.
Then we have the following translations of Q(X):

olab) = aha+b (=ad)
o(ab) = an—(a<b) (=ab)
o(@) = an(asb) (=ab)
o(@) = an-(a<b) (=ab)

We thus see that the bijection y with ~y(ab) = ab, y(ab) = ab
and that maps ab and ab to their selves is a bijection that
ensures o is a BAP-translation.

We are now ready to state what it means for an inductive
inference operator to satisfy BAP-language independence—
it should be invariant under BAP symbol translation.

Definition 14. An inductive inference operator C satis-
fies BAP-language independence if for every X,%/, ev-
ery BAP-translation o : ¥ — L(X'), and every condi-
tional belief base A C (L(X)|L(X)) we have A~ B iff
o(A) U(A)U(B

On the level of TPOs, we obtain the following representa-
tion of BAP-language independence (a variant for OCFs is
obtained similarly):

Proposition 14. A model-based inductive inference oper-
ator for TPOs C satisfies BAP-language independence if
for every BAP-translation o : ¥1 — X, and any condi-
tional belief base A over L(X1), wy XA wa iff 0(w1) =s(a)
g (UJQ).

We now delineate a condition that ensures BAP-language
independence (as well as generalising the property of being
conditional-based), which we call conditional-functional.
Intuitively, this property requires that an induced conse-
quence relation C(A) only depends on the attitudes worlds
have w.rt. conditionals. Formally defining this property
turned out to be rather intricate, and we do so below in full
detail. Intuitively, the idea is that we are interested in infer-
ence operators that only depend on vectors (i1, ...,4,) of
attitudes of worlds to conditionals.

In more formal detail, we let an n-dimensional vector
mass distribution (nVMD) for a signature 3 be a function
F i {1,0,u}" — N st Sgeqr0upF(@) = 2% In-
tuitively, a VMD F' is a function that keeps track of how
many times every vector of attitudes occurs. This can be
seen as a placeholder for a conditional knowledge base, in
the sense that this is the only information about a conditional
knowledge base that should be of interest for a conditional-
functional inductive inference operator that looks solely at
the attitudes of worlds w.r.t. conditionals. Before we define
conditional-functionality formally, we need to define the no-
tion of a vector function.

Definition 15. A vector function is a function D that re-
turns, for any n and any nVMD F, a pair (VIP, EIQ) where:

1. VP C {1,0,u}",
2. CPisaTPO on V2.
such that:
s & € VP implies F(d) > 0, and
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* for any permutation o on {1,...,n}, VU[(’F) = o(VP)
and & EUD(F) Biffo=t(@) CR o1(B).

This places us in the position to be able to define
conditional-functionality.

Definition 16. A TPO-based inductive inference operator C
is conditional-functional iff there is a vector function D such
that, for any A, w; <A wa iff (01(w1),...,0n(w1)) EIQA
(01(wa), ..., 0n(w2)), where A {61,...,0n} and
Fa(@) = Hw | d = (61(w), .-, 0n(w))}].

The intuition behind this definition is the following: C
should depend only on attitudes of worlds w.r.t. condition-
als. That is, we should be able to formulate it on basis of the
VMD alone. This is formalized by the condition that w; <a
Wa iff <(51 (wl), ey (5n(w1)> EQA <61(UJ2), N ,(Sn(WQ» for
a vector function D generating TPOs over the attitude-
vectors that depends only on the VMD. Furthermore, the ex-
act ordering of the conditionals in a conditional knowledge
base should not matter. Hence the requirement of invariance
under permutations for vector functions.

Example 8. We start with the conditional belief base from
Example 1 and show how it can be interpreted in terms of
a 3VMD. We first recall that the worlds have the following
attitudes w.r.t. the conditionals 61 = (f|b), 2 = (b|p) and

o3 = (=fIp):

w w(d) w(d) w(ds) w w(d1) w(d2) w(ds)
pbf 1 1 0 ) 1 1
pbf u 0 0 pof u 0 1
pbf 1 u u pbf 0 u u
pof u u u pbf u u u
This means that we can view this knowledge base as the
3VMD F defined by:
a F@) a F(a)
(1,1,0) 1 (u,0,0) 1
(Lu,u) 1 (u,u,u) 2
(0,1,1) 1 (u,0,1) 1
0,u,u) 1

and F (&) = 0 for all remaining & € {1,0,u}™.
Furthermore, system Z for this instance is captured by
D(F) = (VP,C2) with VP = {&@ | F(@ > 0} and
(u, uyu), (1, u,u) E2 (0, u,u), (0,1,1) CR
(1,1,0), (u,0,0), (u,0,1).

Notice that while conditional-basedness (Definition 12)
also requires that ranking of worlds only depend on the at-
titudes of those worlds w.rt. conditionals, it does not re-
quire that this attitude is invariant under variations in the
language (e.g. symbol-translations). It is thus not hard to see
that any conditional-functional operator is also conditional-
based, but not vice-versa. The latter is shown by the follow-
ing example:

Example 9. Consider Ay = {(q|p)} and As = {(plq)}

Then there are conditional-based operators that assign
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P4q,Dq,Pq <A, Pq (corresponding to the ordering over vec-
tors 1,u T 0) and pq <a, Pq,Pq, pq (corresponding to the
ordering over vectors 1 C u,0). However, such an inductive
inference operator is not conditional-functional.

For TPO-based inductive inference operators, being
conditional-functional implies satisfying bijective pairwise-
equivalence and BAP-language independence.

Proposition 15. If a TPO-based inductive inference oper-
ator C is conditional-functional then it satisfies bijective
pairwise equivalence and BAP-language independence.

The final result in this section shows the converse—for
TPO-based inductive inference operators, satisfying bijec-
tive pairwise equivalence and language independence im-
plies being conditional-functional.

Proposition 16. If a TPO-based inductive inference oper-
ator C satisfies bijective pairwise equivalence and BAP-
language independence then it is conditional-functional.

5.2 AIP Language Independence

In the previous section we considered the notion of language
independence, which was based on the concept of BAP-
translations. We now consider a stronger form of language
independence (stronger in the sense that the two languages
are “more” independent), which is based on a more general
class of symbol translations which Marquis and Schwind
called atom independence preservation (AIP) symbol trans-
lations. These are defined in terms of relations between
valuations of different languages, rather than bijections as
with BAP-translations. In what follows, given a relation
R C QX) x Q(X') and w € Q(X), we use R(w) to de-
note the set {w’ € (') | R(w,w’)}. Then an AIP relation
between Q(X) x Q(X') is a relation that satisfies the follow-
ing three properties:

R(w) # D forallw € Q(X)
* R(w1) N R(wz) = 0 for all wy,ws € Q(T) s.t. w1 # wa
¢ UweQ(E) R(w) = Q(¥')

Definition 17. A mapping o : ¥ — L(X') is a AIP-
translation if there is an AIP relation between (Z) and
Q(X) s.t. for every A € L(X), Mod(c(A4)) = {R(w) |
w € Mod(A)}.

Example 10. Suppose ¥ = {a,b} and &) = {b, c,d}. Then
a possible AIP-translation would be o(a) = ¢V d, o(b) = b.
This corresponds to the AIP relation R such that R(ab) =
{bcd, bed, bed}, R(ab) = {bcd, bed, bed}, R(ab) = {bed}
and R(ab) = {bed}.

Definition 18. An inductive inference operator C satis-
fies AIP language independence if for every ¥,Y/, ev-
ery AlIP-translation o : ¥ — L(X'), and every condi-
tional belief base A C (L(X)|L(X)) we have A~ B iff
o(A) a0 (B

A special case of AIP language independence, termed
Atomicity, has been investigated in the context of infer-
ence from probabilistic knowledge bases by Paris and Ven-
covska (1990). This special case restricts to AIP-translations

403

o and bases A such that o assigns each atom to either itself
or a formula over atoms that do not appear in A.

Since every BAP-translation is an AIP-translation (they
are the special case in which R(w) always consists of a
unique element), AIP language independence implies BAP
language independence. We note the following characteri-
sation of AIP languange independence in terms of TPOs:

Proposition 17. A model-based inductive inference op-
erator for TPOs C satisfies AIP language independence
if for every AlP-translation o Y1 — Yo, and any
conditional belief base A over L(X1), w1 =a w2 iff
minjﬂ(A) R(wl) ja(A) minjd(A) R(UJQ).

To be able to characterise AIP language independence,
we need to restrict conditional-functionality by considering
a (strict) subset of the vector functions. Two nVMDs F}
and F5 are said to be equivalent, denoted as F; =~ Fj,
whenever {& | Fi(@&) > 0} {d | Fx(@) > O}
We refer to a vector function D as weight-independent if
(VFI, C F]) = (VFD2 , E}QZ) whenever F; ~ Fy. Intuitively, a
vector function is weight-independent if the weights of vec-
tors do not matter, only if they are zero or non-zero. On the
level of attitudes of worlds w.r.t. conditionals, this means
that we disregard how many worlds have a certain attitude
w.r.t. a set of conditionals.

Definition 19. A TPO-based inductive inference oper-
ator C is conditional-relational iff there is a weight-
independent vector function D such that, for any A, wi; <A

wa Iff (G1(wr), - 0n(wr)) ER, (01(wa), ..., dn(w2)),

where A = {b1,...,0,} and FA(Q) {w | =
(01(w)y .oy O (W) }H-
Clearly, conditional-relationality implies conditional-

functionality, as any weight-independent vector function is
also a vector function. However, the converse does not hold:

Example 11. Consider the following inductive inference op-
erator CZ# defined by: w; —<i# wy iff k% (w1) < KZ (w2)
or k& (w1) = K& (we) and [{w € Q| V6 € A : §(w) =
()} > {we|VseA:d(w) =01(w)}| Intuitively,
this operator refines system Z by also comparing the number
of worlds that have exactly the same attitude towards condi-
tionals as the world under consideration. For example, for
the Tweety belief base (Example 1), we obtain:

pof,pb f <27 pbf <X pof,pbf <%¥ pbf,pbf,pb f,pb f

This refines system Z e.g. by positing Pbf, pb f are more
preferred than Dbf, as the former both are indifferent with
respect to each conditional, whereas Dbf verifies (f|b) but
is indifferent w.r.t. the two other conditionals in A.

Conditional-relationality characterizes AIP-language in-
dependence (given bijective pairwise equivalence):

Proposition 18. If a TPO-based inductive inference opera-
tor C is conditional-relational then it satisfies bijective pair-
wise equivalence and AIP-language independence.

Proposition 19. If a TPO-based inductive inference op-
erator C satisfies bijective pairwise equivalence and AIP-
language independence then it is conditional-relational.
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5.3 Conditional-Relationality for Concrete
Operators

We show that all TPO-based inductive inference operators

considered in this paper are conditional-relational.

Proposition 20. System Z, Lexicographic inference and its

variant C'®= are conditional-relational.

Regarding inference with single c-representations, we
first state the following postulate, guaranteeing that a selec-
tion strategy is consistent with AIP language translations.
(IPAIP) A selection strategy -y is impact preserving w.r.t.

AIP language translations if, for every belief base A

and every AIP language translation o, we have y(A)

V(e (A)).

Utilizing (IPAIP) we obtain the following proposition.

Proposition 21. If v satisfies (IPAIP), then C™" satisfies
AIP-language independence.

Beierle and Kern-Isberner (2021) introduced the postu-
late syntax independendence ((SI)) for selection strategies
and showed that inference with a single c-representation
based on a (SI) -selection strategy satisfies bijective pair-
wise equivalence. We make use of this by combining (SI)
and (IPAIP) and applying Proposition 19 to obtain the fol-
lowing result.

Proposition 22. [f v satisfies (IPAIP) and (SI), then C:fip
is conditional-relational. -

6 Related Work

While there are several works related to the work we
have done in this paper (Weydert 2003; Kern-Isberner and
Brewka 2017; Kern-Isberner, Heyninck, and Beierle 2022),
the work of Weydert (2003) is perhaps the closest. Weydert
suggested several properties in his study of default reasoning
that share strong commonalities with some of the properties
discussed in our work. E.g. global logical invariance is sim-
ilar to the satisfaction of global equivalence, even though he
does not define (as far as we could see) in a formally pre-
cise manner when two sets of conditionals are equivalent.
Likewise, pairwise equivalence is closely related to his local
semanticality (Weydert 2003). Furthermore, strong irrele-
vance is very similar to relevance and representation inde-
pendence is very similar to language independence (with the
main differences being induced by the differences in the as-
sumptions of the framework of Weydert, such as allowing
for languages generated on the basis of infinite Boolean al-
gebras, and allowing for rankings over rational numbers).
Furthermore, he shows, in his exceptional inheritance para-
dox, that no consistent default inference notion (his version
of an inductive operator) can satisfy logicality, exceptional
inheritance and global logical invariance. This is a slightly
different but still quite similar result to our Proposition 8.
Essentially, we assume syntax splitting whereas he assumes
logicality (which means that the basic KLM-properties are
satisfied) and exceptional inheritance. Exceptional inheri-
tance states that {¢, -} |~ {(W¢)7(¢/|¢)}w’ if “4p and v}’ are
logically independent given ¢”, although the concept of log-
ical independence is not precisely formalised. We note as a

404

further difference that he does not study System Z, lexico-
graphic inference and c-representations, as we do.

Another related line of work is the work on conditional
structures by Kern-Isberner (2001a; 1998; 1999). Condi-
tional structures are algebraic structures that represent the
attitudes of worlds w.r.t. a set of conditionals. This allows
Kern-Isberner to, for example, define the notion of indiffer-
ence w.r.t. a set of conditionals, which is essentially a special
case of conditional-basedness, but restricted to OCFs. Con-
ditional structures have been a fruitful framework, for exam-
ple for characterizing so-called minimum cross-entropy and
conditional preservation in belief revision. In this paper, we
look at structures beyond OCFs, namely TPOs, and consider
additional postulates (e.g. language independence and con-
ditional relationality). We plan to look at formal connections
between our work and conditional structures in future work.

Finally, notions of equivalence have also been used by
Beierle and co-authors to investigate the expressivity of con-
ditionals (2023) and normal forms (2019).

7 Conclusion

The focus of this paper is on properties of inference within
classical logic-based inference that do not necessarily ap-
ply in the nonmonotonic case. Specifically, we consider the
cases of equivalences and language-independence within
the context of inductive inference. Table 1 summarizes
the main findings of our work. More specifically, it con-
siders the inductive inference operators System Z, lexico-
graphic inference and its variation (that was introduced in
Section 4), inference based on a single c-representation, and
c-inference. It shows for each of them, whether or not they
satisfy the listed properties. The numbers refer to the initial
reference of the result: 1 refers to Kern-Isberner et al. (2020)
2 to Heyninck et al. (2022), 3 to Beierle and Kern-Isberner
(2021), and 4 to Kern-Isberner (2001a).

System Z | Lex | Lex= | c-reps. | c-inf.

Independence x1 VIl Ve Ve
Relevance e iy Ve e
Global Eq. v X X X X

Pairwise Eq. v X v v v

Bij. Pairwise Eq. || v/ v |V VAN IV

Cond.-based v v |V ! na.
Cond.-funct. v v v v n.a.
Cond.-relat. v v v v n.a.

Table 1: Summary of the properties studied in this paper. An *

indicates that the underlying selection strategy needs to satisfy a
fitting postulate, while ‘n.a.’” means the notion is not applicable.

An obvious direction for future work is to study other in-
ductive inference operators, such as relevant closure (Casini
et al. 2014), disjunctive rational closure (Booth and Varz-
inczak 2021), system W (Haldimann and Beierle 2022;
Komo and Beierle 2022) or Weydert’s System J-variants
(2003). Another avenue is to see whether these postulates
can also be helpful in characterising inductive inference op-
erators. Finally, it may be useful to broaden this study to in-
clude other properties inherent to classical logic-based rea-
soning that do not carry over to nonmonotonic formalisms.
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