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Abstract

The Game Description Language (GDL) is a widely used for-
malism for specifying the rules of general games. Writing
correct GDL descriptions can be challenging, especially for
non-experts. Automated theorem proving has been proposed
to assist game design by verifying if a GDL description sat-
isfies desirable logical properties. However, when a descrip-
tion is proved to be faulty, the repair task itself can only be
done manually. Motivated by the work on repairing unsolv-
able planning domain descriptions, we define a more general
problem of finding minimal repairs for GDL descriptions that
violate formal requirements, and we provide complexity re-
sults for various computational problems related to minimal
repair. Moreover, we present an Answer Set Programming-
based encoding for solving the minimal repair problem and
demonstrate its application for automatically repairing ill-
defined game descriptions.

1 Introduction
The Game Description Language (GDL) has been developed
as a lightweight knowledge representation formalism for de-
scribing the rules of arbitrary finite games (Love, Gene-
sereth, and Hinrichs 2006). It is used as the input language
for general game-playing (GGP) systems, which can learn
to play any new game from the mere rules without human
intervention, thus exhibiting a form of general intelligence.

However, GDL can also model ill-defined games. For in-
stance, a game may end up in a state where some players
have no legal moves. In other cases, a game may have no
sequence of joint actions that allows a player to win, result-
ing in an unfair game. Additionally, some games may run
indefinitely, making it impossible to determine a winner.

To ensure that a GDL description is usable for the GGP
competitions, the notion of well-formed descriptions has
been proposed (Genesereth and Thielscher 2014). A well-
formed game should ensure that each player has at least one
legal action in any non-terminal state, the game must termi-
nate after finitely many steps, and for each player, there is a
sequence of joint moves leading to one of its winning states.

Writing correct GDL descriptions can be challenging for
non-experts. Automated theorem proving has been proposed
to assist game design by verifying whether a GDL game
satisfies desired properties (Schiffel and Thielscher 2009;
Ruan, Van Der Hoek, and Wooldridge 2009). But theorem

provers can only verify GDL descriptions, not automatically
repair them, which as of now can only be done manually.

Motivated by this, and in line with recent interest and
work on automatically repairing planning domain descrip-
tions (Gragera et al. 2023), in this paper, we introduce the
more general problem of automatically repairing game de-
scriptions given in GDL that do not comply with any given
formal requirements, such as well-formedness. We consider
a repair as a set of modifications to the legality and game
evolution rules. To avoid “redesigning” the original game,
we focus on minimal repairs. We consider game properties
expressed in Game Temporal Logic (GTL) (Thielscher and
Voigt 2010), a logic similar to the Linear Temporal Logic on
finite traces (LTLf) (Bansal et al. 2023) with only the tempo-
ral operator “weak next”, supporting both positive and neg-
ative properties that a game should, or should not, satisfy.

Our contribution is manifold. We provide a formal def-
inition of game repair along with theoretical results on the
minimal repair problem: sufficient conditions on when cer-
tain repair problems have or do not have solutions, and tight
complexity results for different computational problems re-
lated to minimal repairs. We provide an encoding based on
the Answer Set Programming (ASP) technique Guess and
Check (Eiter and Polleres 2006) to solve the minimal repair
problem, thus offering the first automated method for repair-
ing GDL descriptions.

Related work. Our work is related to ASP-based ap-
proaches for formal model repair in various contexts, e.g.
biological networks (Gebser et al. 2010), service-based pro-
cesses (Friedrich et al. 2010; Lemos, Lynce, and Monteiro
2019), logic programs (Merhej, Schockaert, and De Cock
2017), and Petri nets (Chiariello, Ielo, and Tarzariol 2024).

Another piece of related work is repairing unsolvable
planning domain descriptions (PDDL) (Gragera et al. 2023).
While PDDL and GDL differ, our work is more general: we
can not only repair reachability to the goal (aka. winnability
in GDL) but any game properties expressible in GTL.

Given their syntactic and semantic similarity, ASP has
been widely used for reasoning about GDL games, in-
cluding for solving single or multiplayer games with
ASP (Thielscher 2009; He, Saffidine, and Thielscher 2024),
and automatically verifying game-specific GTL properties
with ASP (Thielscher and Voigt 2010).
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[cr] role(p). base(win). base(loss). terminal:- true(win). goal(p,100):- true(win).
input(p,l). input(p,r). terminal:- true(loss). goal(p, 0):- true(loss).

[c1] legal(p,l). [c2] next(loss):- does(p,l). [c3] next(win):- does(p,r).

Figure 1: GDL description of a simple game. c1, .., cr are rule numbers, with cr containing all rules other than c1, c2 and c3. c1 says l is a
legal action for p. c2 says that loss will always hold after p does l, while c3 says that win would hold if p could do r instead.

Outline. After providing necessary background on GDL
and GTL, we define the GDL minimal repair problem and
provide theoretical results in Section 3. In Section 4, we
present an ASP encoding to find minimal repairs. We
demonstrate its use with a case study in Section 5. We con-
clude in Section 6. Omitted proofs are available in an ac-
companying technical report (He et al. 2025).

2 Preliminaries
We assume readers to be familiar with basic concepts of
logic programming with negation (Lloyd 1987) and Answer
Set Programming (ASP) (Gebser et al. 2012).

2.1 Game Description Language
The Game Description Language (GDL) can be used to de-
scribe the rules of any finite game with concurrent moves.
GDL uses a normal logic program syntax along with the fol-
lowing preserved keywords used to describe the different el-
ements of a game (Genesereth and Thielscher 2014):

role(P ) P is a player
base(F ) F is a base proposition for game positions

input(P,A) Action A is in the move domain of player P
init(F ) base proposition F holds in the initial position
true(F ) base proposition F holds in the current position

legal(P,M) P can do move M in the current position
does(P,M) player P does move M
next(F ) F holds in the next position
terminal the current position is terminal
goal(P,N) P gets N points in the current position

There are further restrictions for a set of GDL rules to be
valid (Love, Genesereth, and Hinrichs 2006): role can ap-
pear only in facts; init and next can only appear as heads
of rules; true and does can only appear in rule bodies.
Moreover, init cannot depend on true , does , legal , next ,
terminal , or goal while legal , terminal , and goal cannot
depend on does . Finally, valid game descriptions must be
stratified and allowed—such normal logic programs always
admit a finite grounding and a unique stable model/answer
set (Lloyd 1987; Gebser et al. 2012). A valid description of
a very simple game with a single player is given in Fig. 1.

Henceforth, we abbreviate “GDL Description” as GD.
A valid GDG over ground terms Σ can be interpreted as a

multi-agent state transition system: Let β = {f ∈ Σ |G |=
base(f)} be the base propositions and γ = {(p, a) ∈
Σ × Σ |G |= input(p, a)} the move domain for the play-
ers. Suppose that S = {f1, ... , fn} ⊆ β is any given po-
sition and A = {p1, ... , pk} → Σ any function that as-
signs to each of k ≥ 1 players an action from their move
domain. In order to use the game rules G to determine
the state update, S needs to be encoded as a set of facts
using keyword true: Strue = {true(f1)., ... , true(fn).}

and the joint action A by a set of facts using keyword does:
Adoes = {does(p1, A(p1))., ..., does(pk, A(pk)).}.
Definition 1 (Schiffel and Thielscher 2010). The semantics
of a valid GDL description G is the state transition system
• R = {p ∈ Σ |G |= role(p)} (player names)
• S0 = {f ∈ β |G |= init(f)} (initial state)
• T = {S ⊆ β |G ∪ Strue |= terminal} (terminal states)
• l = {(p, a, S) |G ∪ Strue |= legal(p, a)} (legal moves)
• u(A,S)={f ∈ β |G∪Strue∪Adoes |=next(f)}(update)
• g = {(p, v, S) |G ∪ Strue |= goal(p, v)} (goal value)

Let γ(p) = {a | (p, a) ∈ γ} be the move domain of p, and
B={S ⊆ β | ∃p ∈ R. ∀a ∈ γ(p). G∪Strue ̸|= legal(p, a)}
be all states of G in which some player has no legal action.
We represent a valid sequence of n steps starting at the initial

state S0 as S0
A0−−→ S1

A1−−→ ...
An−1−−−→ Sn where Si /∈

T for i < n and all moves are legal in the corresponding
state, i.e. (p,A(p), Si) ∈ l for each p ∈ R. Valid sequences
are sometimes abbreviated as (S0, S1, ... , Sn). A sequence
terminates in n steps if Sn ∈ T . E.g. in the game in Fig. 1,
the only terminating sequence is {} (p,l)→ {loss}. A sequence
ends in a non-playable state after n steps if Sn ∈ B \ T .

A sequence (S0, ... , Sm) is n-max if m = n or Sm ∈
T ∪ B with m < n (Haufe, Schiffel, and Thielscher 2012).
The horizon of a game is the smallest n such that all n-max
sequences terminate, end in a non-playable state, or enter a
repeated state of the sequence.

Genesereth and Thielscher (2014) define a valid GD to be
well-formed if:

1. For each p, there is a terminating sequence (S0, ... , Sm)
with G ∪ Strue

m |= goal(p, 100) (weak winnability).
2. No sequence ends in a non-playable state (playability).
3. All play sequences terminate (termination).
Our GD in Fig. 1 is not well-formed because it is not weakly
winnable since action r is not legal for the player. A standard
requirement for GD’s used in the GGP competition is to be
well-formed (Genesereth and Thielscher 2014).

We define a GD to be n-well-formed if it is well-formed
and the game has a horizon of no more than n.

2.2 The Game Temporal Logic
The Game Temporal Logic (GTL) (Thielscher and Voigt
2010) is defined over GDs and allows the formulation of
properties that involve finitely many successive game states.
Definition 2. The set of GTL formulas over a GD G is:

φ ::= q | φ ∧ φ | ¬φ | ⃝φ

where q is an atom true(f) for some f ∈ β, or legal(p,a)
for some (p, a) ∈ γ, or any other ground atom of predicates
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of G but which is neither init nor next and which does not
depend, in G, on does. ⃝ is the temporal operator “next”.
Standard connectives like ∨ and → are defined as usual.

The degree deg(φ) of a formula φ is the maximal “nest-
ing” of the unary operator ⃝ in φ.

Definition 3. Let G be a valid GD and φ a GTL for-
mula with deg(φ) = n. We say G satisfies φ (written
G |=t φ) iff for all n-max sequences (S0, ... , Sm) we have
G, (S0, ... , Sm) |=t φ as the following inductive definition:

G, (Si, ... , Sm) |=t q iff G ∪ Strue
i |= q

G, (Si, ... , Sm) |=t ¬φ iff G, (Si, ... , Sm) ̸|=t φ

G, (Si, ... , Sm) |=t φ1 ∧ φ2 iff G, (Si, ... , Sm) |=t φ1

and G, (Si, ... , Sm) |=t φ2

G, (Si, ... , Sm) |=t ⃝φ iff G, (Si+1, ... , Sm) |=t φ (i < m)

G, (Sm) |=t ⃝φ always

The GTL model checking task decides if G |=t φ holds,
where φ is a GTL formula. Due to its syntactic and seman-
tic similarities to GDL, ASP is a natural choice for GTL
model checking. The encoding consists of (1) an ASP en-
coding of the GTL formula, (2) an ASP representation of the
game rules, and (3) an action generator in ASP. Detailed de-
scription and examples of the encoding are available in the
original article (Haufe, Schiffel, and Thielscher 2012).

Definition 4 (ASP encoding of GTL (Haufe, Schiffel, and
Thielscher 2012)). Let φ be a GTL, i ∈ N, and η(φ, i) a
function that gives a unique atom of arity 0 for every φ and i.
The encoding PEnc(φ, i) of φ at level i is recursively defined
(below, q(⃗t ) means the predicate q with arguments t⃗):

• PEnc(q(⃗t ), i) = {η(q(⃗t ), i):- q(⃗t, i).}
• PEnc(¬φ, i) = {η(¬φ, i):- not η(φ, i).} ∪ PEnc(φ, i)

• PEnc(φ1 ∧ φ2, i) = {η(φ1 ∧ φ2, i):- η(φ1, i), η(φ2, i).}
∪ PEnc(φ1, i) ∪ PEnc(φ2, i)

• PEnc(⃝φ, i) = {η(⃝φ, i):-terminal(i).,
η(⃝φ, i):-no play(i).,
η(⃝φ, i):-η(φ, i+ 1).} ∪ PEnc(φ, i+ 1)

Definition 5 (Thielscher and Voigt 2010). The Temporal-
Extension with horizon n ≥ 0 of a valid GD G (denoted
Pn

Ext(G)) is defined as Pn
Ext(G) =

⋃
0≤i≤n{ci | c ∈ G}

where ·i replaces each occurrence of

• init(f) by true(f, 0); and next(f) by true(f, i+ 1).
• q (⃗t ) by q (⃗t, i) if q /∈ {init, next} is a predicate symbol

that depends on true or does .

Definition 6 (Haufe, Schiffel, and Thielscher 2012). The
action generator requires each player to make a legal ac-
tion at each playable, non-terminal state up to step n: Pn

legal
consists of the following clauses Pi for each 0 ≤ i ≤ n.

• no play(i):- role(R), not legal(R,A, i) : input(R,A).
• end(i):- 1 {terminal(i); no play(i)}.
• end(i):- end(i− 1). for each i > 0.
• 1{does(R,A, i) : input(R,A)}1:-not end(i), role(R).
• :- does(R,A, i), not legal(R,A, i).

Verifying G |=t φ is then achieved by checking that there
is no deg(φ)-max with G, (S0, ... , Sm) ̸|=t φ.
Theorem 1 (Haufe, Schiffel, and Thielscher 2012). Let G
be a valid GD, and φ be a GTL formula with deg(φ)=n.
Then,G |=t φ iff the program Pn

legal∪Pn
Ext(G)∪PEnc(φ, 0)∪

{:- η(φ, 0)} has no stable model.

We refer to the size of a logic program as the size of the
ground program. Since the size of the ASP program accord-
ing to Definitions 4–6 is polynomial w.r.t. the size of G and
φ, it is known that GTL model-checking is in co-NP.

3 The GDL Repair Problem
In this section, we propose a formal definition of GDL game
repair and then present theoretical results on this problem.

3.1 Problem Definition
We first define some auxiliary notation. For a valid GD G
with base propositions β and move domain γ (cf. Section 2):
• N = {next(f) | f ∈ β} (the domain of next)
• L = {legal(p, a) | (p, a) ∈ γ} (the domain of legal )
• F = {true(f), not true(f) | f ∈ β}
• A = {does(p, a), not does(p, a) | (p, a) ∈ γ}
• |P | = the total number of rules of a grounded program P .
• If r is a grounded rule, then hd(r) denotes the atom in the

head of r, and bd(r) the set of literals in the body of r.
For a GTL formula φ and op ∈ {∧,∨} we define the abbre-
viation nest(φ, op, n) recursively as follows:

• nest(φ, op, 0) = φ

• nest(φ, op, n) = φ op (⃝ nest(φ, op, n− 1)).

For example, nest(true(win),∨, 2) denotes the GTL for-
mula true(win) ∨ (⃝(true(win) ∨ (⃝true(win)))).

For the definition of repair, we assume that the GD have
been grounded and transformed into a simplified form ac-
cording to the following definition.
Definition 7. Suppose G is a valid, grounded GD. G is in
restricted form iff for every rule r ∈ G the following holds:

• “legal” does not appear in bd(r).
• “does” does not appear in bd(r) unless hd(r) ∈ N .
• If r is a legal rule, i.e. hd(r) ∈ L, then bd(r) ⊆ F .
• If r is a next rule, i.e. hd(r) ∈ N , then bd(r) ⊆ A ∪ F .

The last two items state that for a GD in restricted form,
the body of any legal (resp. next) rule can only have positive
or negative atoms of the predicate true (resp. true or does).

Any valid GD has a finite grounding, and GDL in re-
stricted form can be shown to be expressive enough to model
all finite perfect-information games using the same construc-
tion as by Thielscher (2011) for GDL-II. Thus, for simplic-
ity, we only consider GD in restricted form. Informally
speaking, we are given a GD that satisfies (violates) unde-
sired (desired, resp.) properties formulated in GTL. Then,
to repair a GD, we allow the following possible changes:

1. modifying existing legal/next rules by
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• deleting the entire rule or some literals from its body,
• changing the head of a legal rule to a new atom in L (or

the head of a next rule to a new atom in N , resp.), or
• adding one or more literals in F to the body of a legal

rule (or literals in A ∪ F to the body of a next rule);
2. adding a bounded number of new legal/next rules.
The goal is to make minimal changes so that the result-
ing GD satisfies or dissatisfies some GTL properties. We
only allow modifications to legal/next rules because chang-
ing other rules, such as the definition of base propositions,
initial state, and goal, would be akin to defining a new game
rather than repairing an existing one. To ensure that the set
of possible repairs is always finite, we also assume a given
bound on the number of legal/next rules that can be added.

Since the input GD is in restricted form, we may assume
w.l.o.g. that it has a form G = GL∪GN ∪GE ∪GR, where
• GL (resp. GN ) contains all the legal (resp. next) rules.
• GE has a fixed number of “empty” rules of the form ∅.
• GR has all other rules (e.g., rules defining init, goal, ...).
GE is the section reserved for new legal/next rules, with ∅

being a “placeholder” symbol that does not appear elsewhere
in G. Let GO = GL ∪ GN and GC = GL ∪ GN ∪ GE .
We associate each r ∈ GC with a unique ID from the set
I = {1, ... , |GC |}, and we denote the i-th rule as ri. We
assume a simple order by which the IDs of the rules in GL

are smaller than the IDs of rules in GN , which in turn are
smaller than the IDs of rules in GE . A change tuple for-
mally defines an individual change to a GD. Repairing a
GD involves applying a set of change tuples (aka. repair) to
the GD simultaneously. To conveniently describe individual
changes to a GD, we define the following notation:
• Dom = ({c} × ({∅} ∪ L ∪ N )) ∪ ({+,−} × (A ∪ F))

Definition 8 (Change tuples and repairs). Let G be a valid
game description. A change tuple on G has the form
⟨i, (tp, l)⟩ ∈ I × Dom. A repair R is a set of change
tuples. Suppose L+

i = {l | ⟨i, (+, l)⟩ ∈ R} and L−
i =

{l | ⟨i, (−, l)⟩ ∈ R}, for each i ∈ I. The repair is valid
iff for all i ∈ I, all of the following hold:

a) |{h | ⟨i, (c, h)⟩ ∈ R}| ≤ 1.
b) L+

i ⊆ (A ∪ F) \ bd(ri) and L−
i ⊆ bd(ri).

c) If ri ∈ GL and ⟨i, (c, h)⟩ ∈ R, then h ∈ {∅} ∪ L.
d) If ri ∈ GN and ⟨i, (c, h)⟩ ∈ R, then h ∈ {∅} ∪ N .
e) If hd(ri) ∈ L or ⟨i, (c, h)⟩ ∈ R for h ∈ L, then L+

i ⊆ F .

The resulting GD, written rep(G,R), after applying a valid
repair R toG is r′1∪ ...∪r′|GC |∪GR where, for each i ∈ I:

i) hd(r′i)=h if ⟨i, (c, h)⟩∈R, otherwise hd(r′i)=hd(ri)
ii) bd(r′i)=bd(ri)∪L

+
i \L−

i if hd(r′i) ̸= ∅; else bd(r′i) = {}.

Intuitively, the change tuple ⟨i, (c, h)⟩ means changing
hd(ri) to h. Deleting rule i is achieved by setting hd(ri) to
∅ with the change tuple ⟨i, (c, ∅)⟩. ⟨i, (+, l)⟩ with l /∈ bd(ri)
means adding l to the body of ri while ⟨i, (−, l)⟩ with
l ∈ bd(ri) means deleting l from ri’s body. Since a GDL
rule can only have one head atom, condition a) must hold

for a valid repair. Conditions c) and d) imply that a legal
rule cannot be changed to a next rule or vice versa. Condi-
tion ii) for the repair operation ensures that a rule ri in the
resulting GD has an empty body when it has an empty head.

Adding a new rule with head h is represented by ⟨i, (c, h)⟩
along with zero or more ⟨i, (+, l)⟩ tuples for some h ̸= ∅
and ri ∈ GE . Up to |GE | new rules can thus be added.
Condition e) requires that the body of any legal rule in the
repaired GD does not contain a literal l ∈ A, because legal
cannot depend on does in a valid GD.

Since both |GC | as well as the domains for the base propo-
sitions and moves are fixed, the number of repairs is finite,
and the space complexity of a repair isO(|GC |·(|F|+|A|)).
Example 1. LetG be the GD consisting of the rules in Fig. 1
and GE = {[c4] ∅}. Then, GL = c1, GN = c2 ∪ c3,
GR = cr, and |I| = |GC | = 4. A valid (but not necessarily
minimal) repair R of G is

{⟨3, (−, does(p, r))⟩, ⟨4, (c, legal(p, r))⟩}
In words, remove does(p, r) from the body of c3 and change
the head of rule c4 (the empty rule) to legal(p, r). Thus,
rep(G,R) = c1 ∪ c2 ∪{next(win).}∪ {legal(p, r).}∪ cr.

To capture the total cost of a repair to G, we consider a
cost function based on the cost of each individual change:
Definition 9 (cost function). Let G be a valid GD. A cost
function over G is a mapping cost : I ×Dom→ N>0. The
cost cost(R) of a repair R toG is

∑
⟨i,dom⟩∈R cost(i, dom).

Definition 10 (Minimal repair problem). A repair task is a
tuple ⟨G,Φ+,Φ−, cost⟩, with G a GD, Φ+ and Φ− sets of
GTL formulas over G, and a cost function.

A solution is a valid repair R with rep(G,R) |=t φ
+ for

all φ+ ∈ Φ+, and rep(G,R) ̸|=t φ
− for all φ− ∈ Φ−.

The minimal repair problem (MRP) takes a repair task T
as input and outputs the lowest-cost solution repair R to T .
Example 2. Consider Φ+ = {ψend(n), ψplay(n)} and
Φ− = {ψloss(p, n) | G |= role(p)} for some GD G and
n > 0, then the answer to the MRP ⟨G,Φ+,Φ−, cost⟩ is the
lowest-cost repair to make G to be n-well-formed, where
• ψend(n)

def= nest(terminal,∨, n)
• ψlg(p) =

∨
a∈γ(p) legal(p, a)

• ψplay(n)
def= nest(terminal ∨

∧
G|=role(p) ψlg(p),∧, n)

• ψloss(p, n)
def= nest(¬terminal ∨ ¬goal(p, 100),∧, n)

ψend(n) requires all n-max sequences to terminate or end in
a non-playable state. ψplay(n) requires all players to have
some legal actions per non-terminal state. ψloss(p, n) ∈ Φ−

ensures some n-max sequence terminate with goal(p, 100).
For the GD in Example 1, if n= 1 and cost(i, dom) = 1

uniformly for all i∈I and dom∈Dom, the repair with the
change tuple ⟨4, (c, legal(p, r)⟩ of cost 1 is a solution to the
MRP, and p can now weakly win the game (by playing r).

Existence of a Solution Repair. Repair tasks (or MRPs)
may have no solutions, for example, if the GTL formulas are
contradictory, or when |GE | is too small to allow for a repair.
The following theorem states sufficient conditions to ensure
that a game can always be repaired to be n-well-formed for
any n > 0.
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Theorem 2. Let G be a GD and R be the set of players in
G. For any n > 0, there exists a repair R on G such that
rep(G,R) is n-well-formed if all of the following hold:

• G ∪ Strue
0 ̸|= terminal , and for all pi ∈ R, |γ(pi)| ≥ 2.

• For each pi ∈ R, there exists a state Si ⊆ β such that
G ∪ Strue

i |= goal(pi, 100) ∧ terminal .
• |GL| + |GE | ≥ 2 · |R| and |GN | + |GE | ≥ |N | · |R| as

well as |GL|+ |GN |+ |GE | ≥ (2 + |N |) · |R|.

Proof (Sketch). We show that the conditions ensure that G
can always be repaired to be 1-well-formed, hence, it is n-
well-formed for any n > 0. Note that any GD in restricted
form with at most |GL| + |GE | legal, at most |GN | + |GE |
next, and at most |GC | legal or next rules and with the same
set of base propositions, move domain, and other rules GR,
are obtainable from G by a valid repair. If all conditions
hold, there is a GD with 2·|R| legal rules and at most |N |·|R|
next rules so that all 1-max sequences end in one of the |R|
terminal states, with the i-th one a winning state for pi.

A repair task may have no solution if |GE | is chosen to be
too small. The following theorem provides sufficient condi-
tions to confirm that a repair task has no solution, even for
arbitrarily large |GE |: If ψend(n)∈Φ+ for some n (i.e., the
desired maximal horizon of the resulting game so that all
n-max sequences terminate or end in a non-playable state)
and the repair task has no solution with |GE | reaching some
polynomial bound, increasing |GE | (i.e., allow for more new
rules to be added) is not enough to make the task solvable.

Theorem 3. Let T = ⟨G,Φ+,Φ−, cost⟩ be a repair task
with ψend(n)∈Φ+ for some n. Let K=max(1, |Φ−|) and
R the set of players in G. If T has no solution and |GE | ≥
K · (n+1) · |L|+n ·K · |N | · (|R|+1), then any repair task
T ′=⟨G′,Φ+,Φ−, cost′⟩, where G′=GL∪GN ∪G′

E ∪GR

and |G′
E | ≥ |GE |, also has no solution.

3.2 Complexity Results
After having formally defined the game description repair
problem, we now present some complexity results related to
MRP by considering different decision problems.

• MRPb: Given a repair task T and a cost bound C ∈ N,
decide if there is a solution repair of cost at most C.

• MRPt: For a repair task T and change tuple t = ⟨i, dom⟩,
decide if some lowest-cost solution repair to T contains t.

Theorem 4. MRPb is ΣP
2 -complete.

Proof. (Membership) We can guess a repair R, validate if
R is valid with cost ≤ C, and calculate G′ = rep(G,R)
in PTIME. We can check if G′ ̸|=t φ

−
i for all φ−

i ∈ Φ− in
NP time, and if G′ |=t φ

+
i for all φ+

i ∈ Φ+ in co-NP time
(Th. 1). Thus, MRPb is in NPNP = ΣP

2 .
(Hardness) As a ΣP

2 -hard problem, we reduce deciding
the validity of a quantified Boolean formula (QBF) of the
following form (Stockmeyer 1976) to an MRPb:

Ψ = ∃x1 ... xn∀y1 ... ym E, n,m ≥ 1 (E1)

where E = D1 ∨ ... ∨Dk, each Di = l1i ∧ l2i ∧ l3i , and each
lji is a literal over variables X ∪ Y with X = {x1, ... , xn}
and Y = {y1, ... , ym}.

Let G be a GD with players p1, ... , pm, base propositions
r1, x1, ... , xn, y

+
1 , ... , y

+
m, y

−
1 , ... , y

−
m, and the move domain

of each player being {pos, neg}. G contains the following
rules with GL = R1 ∪R2, GN = R3 ∪ . . .∪R6, |GE | = 0,
and GR is R7 plus the definitions of role , base , and input :

• R1 =
⋃m

i=1{[ri] legal(pi, pos).}
• R2 =

⋃m
i=1{[ri+m] legal(pi, neg).}

• R3 =
⋃n

i=1{[ri+2m] next(xi):-true(xi).}
• R4 =

⋃m
i=1{[ri+2m+n] next(y

+
i ):-does(pi, pos).}

• R5 =
⋃m

i=1{[ri+3m+n] next(y
−
i ):-does(pi, neg).}

• R6 = {[r4m+n+1] next(r1).}
• R7 =

⋃k
i=1{terminal:-σ(l1i ), σ(l

2
i ), σ(l

3
i ), true(r1).}

where σ(lji )=


true(y+s ) if lji = ys and ys ∈ Y

true(y−s ) if lji = ¬ys and ys ∈ Y

true(xs) if lji = xs and xs ∈ X

not true(xs) if lji = ¬xs and xs ∈ X

Let C = 2n−1, Φ− = {}, and Φ+ = {⃝terminal},
and cost(i, (−, l)) = 22m+n−i when 2m+1 ≤ i ≤ 2m+n
and l ∈ bd(ri); otherwise, cost(i, (tp, l)) = 2n. Put in
words, removing true(xi) from the body of the i-th rule of
R3 (1 ≤ i ≤ n) costs 2n−i (i.e., 2n−1, ... , 21, 20) while any
other change costs 2n. We require the repaired GD to satisfy
G′ |=t ⃝terminal and the repair must cost ≤ 2n−1. Note
that the MRPb ⟨G,Φ+,Φ−, cost, C⟩ can be constructed in
PTIME w.r.t. the size of Ψ. Ψ is valid iff the MRPb is true:

“⇒”: If Ψ is valid, there exists XT ⊆ X such that if
we set all x ∈ XT to true and all x ∈ X \ XT to false,
then for any YT ⊆ Y if we assign all y ∈ YT to true and
all y ∈ Y \ YT to false, some Dj ∈ E must be satisfied.
Consider a repair where ⟨i+2m, (−, true(xi)⟩ is a change
tuple in R (i.e., we remove true(xi) from the i-th rule of
R3) iff xi ∈ XT . The repair costs ≤ 2n−1, and terminal
holds in the next state for any joint action A. Concretely,
if Adoes =

⋃m
i=1{does(pi, ai).} where ai = pos iff yi ∈

YT , then the j-th rule of form R7 in the repaired GD can be
activated in the next state S1 where S0

A−→ S1.
“⇐”: Similarly, if the MRPb has a solution R, then as-

signing xi=⊤ iff ⟨i+2m, (−, true(xi)⟩ ∈ R, gives a satisfi-
able partial assignment to the existential variables in Ψ.

Theorem 5. MRPt is ∆P
3 -complete.

Proof (Sketch). (Membership) Since the maximum possi-
ble cost of a valid repair is bounded (Def. 8 and 9) and the
answer to MRPb is monotonic, we can do a binary search
for the lowest cost bound C such that the MRPb returns
“yes”. Once we have that C, consider a new cost function:
cost′(j, dom′) = 2 · cost(j, dom′) if ⟨j, dom′⟩ ̸= ⟨i, dom⟩,
and cost′(i, dom)=2 · cost(i, dom)−1. The answer to the
MRPt is the same as MRPb with the new cost function and a
cost bound 2·C−1. Since the number of MRPb oracle calls
is polynomial w.r.t. the size of the input, MRPt is in ∆P

3 .
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(Hardness) For a TQBF (Krentel 1992) of the form (E1),
we create an MRPt with the same G, Φ+, Φ−, and cost
function as in Th. 4. The ∆P

3 -hard problem “Deciding if
the lexicographically smallest satisfiable partial assignment
to the existential variables of a TQBF of the form (E1) has
xn = ⊤” can be reduced to checking if the change tuple
⟨n+2m, (−, true(xn))⟩ is in some optimal repair.

The complexity class of the actual function problem MRP
is given as follows, and the proof can be easily obtained by
modifying the proof of Theorem 5.
Theorem 6. MRP is F∆P

3 -complete.
We conclude by pointing out that solving an MRP with

Φ+ = {} is simpler; e.g., fixing weak winnability only can
be achieved by Φ+ = {} and the same Φ− as in Example 2
for some n > 0, so that for every player, there is an n-max
sequence that terminates with goal(p, 100).
Theorem 7. MRPb is NP-complete, MRPt ∆P

2 -complete,
and MRP F∆P

2 -complete if Φ+ = {}.

4 Encoding
We discuss an ASP-based approach to solving minimal
repair problems. Theorem 6 shows that MRP is F∆P

3 -
complete, beyond the expressiveness of normal logic pro-
grams with optimization statements (F∆P

2 ). Disjunctive
logic programs with optimization statements, however, can
express F∆P

3 problems (Romero 2025). Hence, we can
encode an MRP by a disjunctive ASP with optimization
statements using the saturation technique (Eiter and Gottlob
1995), and extract the change tuples as well as the repaired
GD from the stable model of the program.

With the help of an existing guess and check tool1, a suit-
able disjunctive ASP can be automatically generated rather
than having to be written from scratch. A guess and check
(G&C) program (Eiter and Polleres 2006) is a pair of logic
programs ⟨PG, PC⟩. M is a stable model of ⟨PG, PC⟩ iff
M is a stable model of PG, and PC ∪ H is unsatisfiable,
where H is the set of atoms of the form holds(x) in M. The
Potassco software translates a G&C program into a disjunc-
tive program and solve it. To solve MRP using G&C, we
map rules in the GC part of a GD to ASP atoms as follows.
Definition 11. Let G be a valid GD. We define a mapping τ
from literals inGC to tuples: for each q ∈ ∅∪A∪F∪L∪N ,
• τ(q) = ∅ if q = ∅
• τ(q) = (ba, f) if q = next(f), for some f
• τ(q) = (ac, (p, a)) if q = legal(p, a), for some p, a
• τ(q) = (pos, ba, f) if q = true(f), for some f
• τ(q) = (neg, ba, f) if q = not true(f), for some f
• τ(q) = (pos, ac, (p, a)) if q = does(p, a), for some p, a
• τ(q) = (neg, ac, (p, a)) if q = not does(p, a), for p, a
We define the inverse mapping from tuples to GDL atoms as
τ−1 such that τ−1(τ(q)) = q and Π be the mapping from
rules inGC to a set of ASP atoms of the form ha() and lit():
• ha(i, τ(q)) ∈ Π(GC) iff hd(ri) = q for i ∈ I

1Available at https://github.com/potassco/guess and check/

• lit(i, τ(q)) ∈ Π(GC) iff q ∈ bd(ri) for i ∈ I
Π−1 is the inverse mapping such that Π−1(Π(GC)) = GC .

For example, c2 in Fig. 1 is mapped to ha(2, (ba, loss)) and
lit(2, (pos, ac, (p, l))), and Π−1 maps them back to c2.

First, we create a program PD defining the domain of: the
IDs of old rules 1, . . . , |GO| (o rule), the IDs of rules inGC

(rule), the IDs of empty rules (e rule), the polarity of liter-
als pos/neg (pol), and the set of atomic propositions (atom),
which contains atom(ac, (p, a)) for each (p, a) in the move
domain and atom(ba, f) for each f as a base proposition.
To avoid naming conflicts, we use o ha (old head) and o lit
when referring to the ASP representation (cf. Def. 11) of the
input G (i.e., Π(GC)), and lit and hd for the repaired G′.

Based on PD we create a generator PGen(G) for the MRP,
• PGen(G) = PD ∪Π(GC) ∪ {(1), . . . , (12)} (cf. Fig. 2)
to manipulate the ASP representation of all the rules G′

C
that can be obtained from G with some valid repair. We also
create a GD GInv (not in restricted form) to simulate Π−1:
• GInv = {(13), . . . , (18)} (cf. Fig. 2)
which ensures that if X = Π(G′

C) for some repaired GD G′

obtained fromG,GInv∪X∪GR is equivalent Π−1(X )∪GR.
Before we discuss the G&C encoding, let’s take a closer

look at PGen and GInv. Clauses (1)-(2) specify that every
rule in GE can remain empty or be modified to a legal/next
rule. We use rtype(i, ba) (resp. rtype(i, ac)) to denote the
type of the i-th rule as a next (resp. legal) rule. Clauses (3)-
(4) state that every rule in GO can be deleted (i.e., its head
changed to ∅) or acquire a new head of the same type.
Clause (5) says that if the new head hd(r′i) of a rule differs
from the original one, the repair must contain the change tu-
ple ⟨i, (c, hd(r′i))⟩. We use tup(i, tp, l) to denote the change
tuple ⟨i, (tp, τ−1(l))⟩ (cf. Def. 11).

Clauses (6)-(10) model repairs to the rule bodies after we
have fixed the heads. For every rule ri that does not have a
dummy head in the resulting GD (i.e., hd(r′i) ̸= ∅), (6) says
that we can remove any literal l in the body with the change
tuple ⟨i, (−, l)⟩; (7) says that we can add any true(f) or its
negation to the body if f ∈ β; and (8) says that we can add
any does(p, a) or its negation to the body if (p, a) ∈ γ and
ri is a next rule. Clauses (9)-(10) ensure that if hd(r′i) = ∅,
bd(r′i) = {} (cf. Def. 8). Otherwise, bd(r′i) in the resulting
GD contains all literals that have been added to ri and all
literals in bd(ri) in the input GD that have not been removed.

We also introduce constraints to improve the quality of the
repair (clauses (11)–(12)): Rules with an atom that appears
positively and negatively (a and not a) in the body, or with
two different actions for the same player (i.e., does(p, a) and
does(p, b) with a ̸= b), are redundant, hence not allowed.

To sum up, due to the way PGen(G) is encoded, by Defi-
nition 8, any stable model of PGen(G) corresponds to a valid
GD G′ that can be obtained from G with some valid repair.
The predicates lit and hd record the ASP representation of
G′

C , and the predicate tup records all the change tuples.
We now prove that GInv models Π−1. If X = Π(G′

C)
for some repaired GD G′, then G′′ = GInv ∪ X ∪ GR is
equivalent to G′ = Π−1(X ) ∪ GR in the sense that at any
state, a ground atom holds in G′ iff it holds in G′′.
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(1): 1{ha(I,(TP,F)):atom(TP,F);ha(I,∅)}1 :- e rule(I).

(2): rtype(I,TP) :- ha(I,(TP,F)), e rule(I).

(3): rtype(I,TP) :- o ha(I,(TP,F)).

(4): 1{ha(I,(TP,F)):atom(TP,F);ha(I,∅)}1 :- rtype(I,TP), o rule(I).

(5): tup(I,c,F) :- rule(I), ha(I,F), not o ha(I,F).

(6): {tup(I,-,(Q,TP,F))} :- o lit(I,(Q,TP,F)), not ha(I,∅).

(7): {tup(I,+,(Q,ba,F))} :- atom(ba,F), pol(Q), not o lit(I,(Q,ba,F)), rule(I), not ha(I,∅).

(8): {tup(I,+,(Q,ac,F))} :- not o lit(I,(Q,ac,F)), not ha(I,∅), rtype(I,ba), atom(ac,F), pol(Q).

(9): lit(I,(Q,TP,F)) :- tup(I,+,(Q,TP,F)).

(10): lit(I,(Q,TP,F)) :- o lit(I,(Q,TP,F)), not tup(I,-,(Q,TP,F)), not ha(I,∅).

(11): :- lit(I,(pos,TP,F)), lit(I,(neg,TP,F)).

(12): :- lit(I,(pos,ac,(P,A1))), lit(I,(pos,ac,(P,A2))), A1<A2.

(13): err t(I) :- lit(I,(pos,ba,F)), not true(F).

(14): err t(I) :- lit(I,(neg,ba,F)), true(F).

(15): err d(I) :- lit(I,(pos,ac,(P,A))), not does(P,A).

(16): err d(I) :- lit(I,(neg,ac,(P,A))), does(P,A).

(17): legal(P,A) :- ha(I,(ac,(P,A))), not err t(I).

(18): next(F) :- ha(I,(ba,F)), not err t(I), not err d(I).

(19): :∼ tup(I,TP,LIT). [cost(I,(TP,τ−1(LIT))),I,TP,LIT]

Figure 2: The ASP encoding of GDL repair, symbols like +,−,∅ should be replaced by constants in actual implementation

Theorem 8. Let G be a valid GD, M a stable model of
PGen(G), and X the set of all atoms lit, ha in M. If q(⃗t )
is a ground atom with a predicate symbol in {true, does,
legal, next} or appears in GR, then for any state S and
joint actionA overG’s base propositions and move domain:

• Π−1(X ) ∪ GR ∪ Strue ∪ Adoes |= q(⃗t ) iff GInv ∪ X ∪
GR ∪ Strue ∪Adoes |= q(⃗t ).

Proof (Sketch). Let G′ = Π−1(X ) ∪GR and G′′ = GInv ∪
X ∪ GR. By construction of PGen(G), G′ must be a valid
GD obtained from G with some valid repair. There are
four cases. First, if q ∈ {true, does}, the statement triv-
ially holds. Second, if q ∈ GR, the statement holds be-
cause q(⃗t ) solely depends on Strue and GR since, as G is
in restricted form, q cannot appear as head in GInv ∪ X or
Π−1(X ). Third, if q(⃗t ) = legal(p, a) for some p, a. Since
both G′ and G′′ are valid GDs, whether legal(p, a) holds or
not does not depend on Adoes. Thus, G′ ∪ Strue |= q(⃗t )
iff ha(i, (ac, (p, a))) ∈ X for some i and there is no f such
that: i) true(f) ∈ Strue and lit(i, (neg, ba, f)) ∈ X , or
ii) true(f) /∈ Strue and lit(i, (pos, ba, f)) ∈ X . This is
exactly what clauses (13)–(14) and (17) in Fig. 2 are model-
ing: (13) and (14) state that err t(i) is justified iff for some
f and i: i) true(f) ∈ Strue and lit(i, (neg, ba, f)) ∈ X ,
or ii) true(f) /∈ Strue and lit(i, (pos, ba, f)) ∈ X . (17)
enforces G′′ ∪ Strue |= q(⃗t ) iff there is some i such that
ha(i, (ac, (p, a))) ∈ X and err t(i) is not justified. The fi-
nal case when q = next is analogous to the previous case
(see (13)–(16) and (18)).

Based on Theorem 1 and 8, we can check if the repaired

game description G′ = G′
C ∪GR, with X = Π(G′

C) gener-
ated by PGen(G), satisfies a given GTL property as follows.

Corollary 1. Let G be a valid GD, φ be a GTL formula
with deg(φ) = n, M a stable model of PGen(G), and X
the set of all atoms of lit, ha in M. Let G′ = Π−1(X ) ∪
GR, and PVer(φ) = Pn

legal ∪ Pn
Ext(GInv ∪GR) ∪ PEnc(φ, 0) ∪

{:-η(φ, 0)}. Then, G′ |=t φ iff X ∪ PVer(φ) has no stable
model.

We return to the G&C framework. Consider an MRP in-
stance ⟨G, {φ+

1 , . . . , φ
+
m}, {φ−

1 , . . . , φ
−
n }, cost⟩. It is trivial

that in GTL,G |=t φ
+
i holds for all 1 ≤ i ≤ m iffG |=t φ0,

where φ0 = φ+
1 ∧ . . . ∧ φ+

m. Thus, we can replace formulas
in Φ+ with the single formula φ0. For the G&C, we define:

• PG = {(19)} ∪ PGen(G) ∪ PH ∪
⋃n

i=1 PVer(φ
−
i , i)

• PC = PVer(φ0) ∪ P ′
H (cf. Corollary 1).

where PH = {holds(q(I, F )):-q(I, F ). | q ∈ {lit, ha}}
and P ′

H = {q(I, F ):-holds(q(I, F )). | q ∈ {lit, ha}}.
Here, PG consists of: First, the repair generator PGen(G)

to generate the ASP representation of X = Π(G′
C) of all

possible resulting GDs G′ = G′
C ∪ GR. Second, an ASP

optimization statement written as a weak constraint (19) (cf.
Fig. 2) which says that the stable model of PG should min-
imize the total cost of the change tuples, ensuring that the
repair output by PGen(G) is an optimal one.

Third, PG uses a checker PVer(φ
−
j , j) for every φ−

j to
ensure that G′ ̸|=t φ

−
j . PVer(φ

−
j , j) modifies PVer(φ

−
j ) in

Corollary 1 by extending each occurrence of q(⃗t ) with a con-
stant j to q(⃗t, j) if q is a predicate that is neither ha nor lit.
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For example, does(R,A, i) inPn
legal become does(R,A, i, j)

(Def. 6). The extension is crucial because with PVer(φ), we
can only show G′ ̸|=t φ for a single φ by showing that
X ∪ PVer(φ) has a stable model, which involves generating
a deg(φ)-max sequence such that G′, (S0, ... , Sk) ̸|=t φ. In
our case, we need to show G′ ̸|=t φ

−
j for all j ≤ n, which

requires generating n sequences simultaneously that do not
interfere with each other, where the j-th one dissatisfies φ−

j .
To do so, we create n “copies” of PVer(φ) letting them share
the set X and the j-th copy generates a sequence that dissat-
isfies φ−

j to prove G′ ̸|=t φ
−
j .

Finally, PH in PG “wraps” all atoms of lit and ha (i.e.,
atoms in X ) of a stable model of PG with the G&C pre-
served predicate holds, allowing G′ to be shared between
PG and PC . Let H denote the set of all atoms of the form
holds(x) in the stable model of PG. The P ′

H part in PC

“decodes” every instances in H back to lit and ha (i.e., the
set X ). (Recall that in G&C, the stable model of PG is the
stable model of the overall program iff H ∪ PC is unsat-
isfiable.) This is equivalent to PVer(φ0) ∪ X has no stable
model, which proves that G′ |=t φ0 (cf. Corollary 1).

To sum up, PG generates an answer to the MRP by only
considering the constraints in Φ−. The repaired GD is
shared between PG and PC via the special G&C predicate
holds. Letting PC together with the set of holds instances to
have no stable models ensures that all formulas in Φ+ hold,
which in turn implies that the answer generated by PG is an
answer to the overall MRP. Our construction also indicates
that for MRP with Φ+ = {} (cf. Theorem 7), PG alone, a
normal logic program with optimization statements, suffices
to solve the problem.

5 Case Study
The motivation for introducing the GDL repair problem is
that, in practice, game descriptions might violate the inten-
tion of the game designers. Once these violated properties
are expressed in GTL and a cost function specified manu-
ally, we can use our encoding in Section 4 to automatically
generate minimal changes to fix a GD. Our encoding works
for any GDL repair task. We demonstrate this through a
simple case study on Tic-Tac-Toe, beginning with the well-
formedness property and then others.

Instance Description In Tic-Tac-Toe, two players x and o
alternate in marking cells on the board, beginning with x.
Turn-taking is modeled by the following pair of GDL rules:

1. next(control(o)):-true(control(x)).
2. next(control(x)):-true(control(o)).
The player who does not have control in a state can only
perform a noop action with no effect. The player who first
places three of their marks in a horizontal, vertical, or diag-
onal row is the winner. If all 9 cells of the board are marked
and neither x nor o wins, the game ends in a draw.

We purposefully break the GD by removing the second
rule. As a result, player x can never take control after step 1,
and o cannot take control after step 2. Consequently, the
broken GD is not well-formed as it violates both the weak
winnability and termination properties.

Experimental Setup To repair the broken GD, we need
to formulate an MRP of the form ⟨G,Φ+,Φ−, cost⟩ where
G = GL ∪ GN ∪ GR ∪ GE (cf. Section 3.1). We need to
specify: |GE |, the maximum number of new legal/next rules
we can add; Φ+, the GTL properties that the repaired GD
should satisfy; Φ−, the GTL properties that the repaired GD
should dissatisfy; and a cost function.

For simplicity, we set |GE | = 2 and use the following
uniform cost function for all our experiments:
• cost(i, (+, l)) = cost(i, (−, l)) = 1

• cost(i, (c, h)) = 1, if ri ∈ GE

• cost(i, (c, ∅)) = |bd(ri)|+ 1

• cost(i, (c, h)) = 2 · |bd(ri)|+ 2, if h ̸= ∅ and ri ∈ Go

This models the “editing” cost. Adding or deleting a body
literal costs 1, as does adding the head of a new legal/next
rule. We model deleting a rule (i.e., setting the head to ∅)
as deleting the head and all literals in the old body of a rule.
Likewise, replacing the head of an old rule is considered
a significant change, costed as: removing the old rule and
creating a new rule with a new head and the same body.

All MRPs are solved by G&C with Clingo 5.7.2 with the
inverse linear search-based core-guided optimization config-
uration (Lifschitz 2019) on a Latitude 5430 laptop 2.

Repairing the well-formedness property The most
fundemantal, general property of any “good” GD is
well-formedness, i.e., playability, termination, and weak
winnability. We can repair a GD to be n-well-formed, for
a give user-specified n as the desired maximal horizon for
the repaired game. In practice, n would be based on do-
main knowledge of the game that the GD was intended to
describe. For Tic-Tac-Toe, the desired maximal horizon is
obviously 9, the number of cells that can be marked. Hence,
in the MRP, we specify Φ+ = {ψplay(9), ψend(9)} and
Φ− = {ψloss(x, 9), ψloss(o, 9)} (cf. Example 2).

Our encoding from Section 4 is able to automatically
solve this MRP with an optimal repair at a cost of 1: The
solution generated by our G&C program is to simply create
a new rule with an empty body: next(control(x)). The re-
sulting GD is well-formed, and it is syntactically close to the
input, requiring only a single modification to the input.

Refining the repair with additional constraints While
the solution to our example Tic-Tac-Toe MRP successfully
restores well-formedness, this may not be the only intended
property for a game. Specifically, after repairing the GD
with the creation of the simple fact next(control(x)), the
base proposition (aka. fluent) control(x) is true in all po-
sitions of the game. As a result, the repaired GD allows
player x to always take control after step 1, which changes
Tic-Tac-Toe from a turn-taking game to a simultaneous-
move game.

In a GDL description, having a next rule with an empty
body is usually undesired as it allows a base proposition to
persist unconditionally across all play sequences after step 1.
Such a behavior can reduce the dimension of the state space
of a game and hence oversimplify the game.

2Source code link: https://github.com/hharryyf/gdlRepair
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If a game designer wants to avoid this behavior, the fol-
lowing GTL formula, a kind of “fluent dynamic constraint”
can be added to Φ−:

ψs(f, n)
def= ¬terminal ∧⃝nest(true(f),∧, n− 1)

This ensures that in the repaired GD, either the game ter-
minates at S0, or there exists some n-max sequences where
true(f) does not hold continuously after step 1 which effec-
tively rules out repairs that introduce rules like next(f).

Refining the MRP in this way means to find a repair
with Φ− = {ψloss(x, 9), ψloss(o, 9), ψs(control(x), 9)}
and Φ+ = {ψplay(9), ψend(9)}.

Now, the optimal repair generated by our G&C has a cost
of 2 to satisfy both well-formness and the additional fluent
dynamic constraint. One repair output by G&C suggests
adding the rule: next(control(x)):- true(control(o)),
which successfully restores the GD to the standard GDL de-
scription of Tic-Tac-Toe.

Further refine the repair with the turn-taking con-
straint While the above minimal repair is arguably the
desired one, the automatic solver G&C outputs another
lowest-cost repair of cost 2, namely, adding the rule:
next(control(x)):-not does(x,mark(1, 1)).

The new rule says that x will take control of the game in
the next step as long as that player does not mark the cell
(1, 1) in the current round. This is a perfectly appropriate
repair as the resulting variant of Tic-Tac-Toe is well-formed
and does satisfy the additional constraint from above. How-
ever, this repair may still be considered undesirable because
if x begins with marking the cell (1, 2) in step 1, for ex-
ample, the player keeps control in step 2. In this case both
control(x) and control(o) will be true in step 2, and hence
they can still mark cells simultaneously in some game states.

If it is desirable to ensure that an n-well-formed two-
player game after repairing satisfies a strict turn-taking prop-
erty, which is to say that, in our example, at each step of the
game either x or o take control of the game but not both, we
can introduce the following additional GTL constraint:

ψcon(n)
def= nest(ψx ∨ ψo,∧, n)

where, ψx = true(control(x)) ∧ ¬true(control(o)) and
ψo = true(control(o)) ∧ ¬true(control(x)).

To repair Tic-Tac-Toe with this extra constraint, the MRP
uses: Φ− = {ψloss(x, 9), ψloss(o, 9), ψs(control(x), 9)}
and Φ+ = {ψcon(9), ψplay(9), ψend(9)}.

Now the optimal repair still has cost 2, but the undesired
repair suggested by G&C when only considering the con-
straint to rule out a static fluent control(x) is eliminated.
One automatically generated repair suggests to add the rule:
next(control(x)):- does(x, noop). This new rule states
that whenever x does noop, it will take control in the next
step. In Tic-Tac-Toe, x can only do noop when o takes con-
trol, which means this new rule is effectively “equivalent” to
the original rule that we deleted—namely, x taking control
in the next step if o takes control in the current step.

More importantly, after introducing the turn-taking con-
straint, all lowest-cost repairs computed by G&C result in
a GD equivalent to the originally correct Tic-Tac-Toe game

description, in the sense that at every state of the repaired
game and the original Tic-Tac-Toe GD, the same set of le-
gal actions are available to the players and each joint action
leads to the same successor state in all these repaired games.

Summary The following table summarizes the lowest re-
pair cost (Copt) for each of the 3 MRPs that we considered in
our study: repair the well-formedness property only (WF),
repair the well-formedness property with the fluent dynamic
constraint (WF + FD), and repair all 3 properties simultane-
ously (WF + FD + TT). We also record the time for G&C to
find the first optimal repair (T1), and the time to compute all
optimal repairs (Ta).

Property Copt T1 (sec) Ta (sec)
WF 1 34.76 38.72
WF + FD 2 50.99 326.41
WF + FD + TT 2 122.29 195.15

We observe that G&C can find an appropriate repair for Tic-
Tac-Toe in all 3 situations in a feasible amount of time with
the resulting GD syntactically close to the original. More-
over, the case study demonstrates the ability of our encoding
to automatically repair ill-defined GDL descriptions. Upon
detecting—either manually or using a GTL theorem prover
(Haufe, Schiffel, and Thielscher 2012)—that a given GD vi-
olates human intentions, one can specify the desired proper-
ties as GTL formulas and use our approach to automatically
generate a repaired GD that satisfies the intended proper-
ties while remaining syntactically closest to the original GD.
And, if the repair suggested by G&C is still unsatisfactory,
one can refine the repair by defining new MRPs with ad-
ditional GTL properties based on additional human knowl-
edge of the resulting GD, until the generated repair is satis-
factory.

6 Conclusion
We investigated the problem of repairing GDL descriptions,
with a focus on minimal repairs. We established sufficient
conditions under which certain repair problems have, or do
not have, solutions. We proved tight complexity bounds for
the minimal repair problem and introduced the first auto-
mated method for repairing GDL descriptions using ASP,
thereby extending the capabilities of automated theorem
proving in GGP from mere fault detection to actual recti-
fication. One potential limitation of our automated method
concerns efficiency and scalability. This is due to the com-
plexity of the problem, but may be improved with the devel-
opment of more efficient disjunctive ASP solvers.

For future work, we plan to design a broken GDL descrip-
tion dataset from existing descriptions (GGP 2023) and sys-
tematically evaluate the performance of our encoding. We
also intend to explore whether certain fragments of the re-
pair problem (e.g., the F∆P

2 fragment in Theorem 7) can be
solved more efficiently. Another future direction is to ex-
plore the repair of game properties formulated in more ex-
pressive logics, such as LTLf (Bansal et al. 2023), as well as
to investigate how our approach can be extended to games
with imperfect information (Thielscher 2010), enabling the
repair of epistemic properties (Haufe and Thielscher 2012).
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