
Reasoning about Knowledge on Regular Expressions Is 2EXPTIME-complete

Avijeet Ghosh1 , Sujata Ghosh2 , François Schwarzentruber3
1Chennai Mathematical Institute, Chennai

2Indian Statistical Institute, Chennai
3ENS de Lyon, France

avi.ghosh23@gmail.com, sujata@isichennai.res.in, francois.schwarzentruber@ens-lyon.fr

Abstract

Logics for reasoning about knowledge and actions have seen
many applications in various domains of multi-agent systems,
including epistemic planning. Change of knowledge based
on observations about the surroundings forms a key aspect in
such planning scenarios. Public Observation Logic (POL) is
a variant of public announcement logic for reasoning about
knowledge that gets updated based on public observations.
Each state in an epistemic (Kripke) model is equipped with
a set of expected observations. These states evolve as the
expectations get matched with the actual observations. In
this work, we prove that the satisfiability problem of POL
is 2EXPTIME-complete.

1 Introduction
Intelligent artificial agents are being used for performing
various tasks including planning and scheduling in real life,
from simple to more complicated ones. For example, a robot
may try to move from a point to another by overcoming cer-
tain hurdles. Or, it may try to keep an eye over the surround-
ings without other agents knowing about it. Accomplishing
a goal in such surveillance activities may involve the robot’s
knowledge about other agents’ knowledge. Automated plan-
ning (Ghallab, Nau, and Traverso 2004) is a branch of study
in multi-agent systems that involves deciding whether a se-
quence or plan of actions exists to attain some goal. An
extension of such planning studies is termed as epistemic
planning (Bolander 2017), where the goal, like in the case of
surveillance robot, involves knowledge of multiple agents.

Reasoning about knowledge using logical systems has
been studied extensively in the domain of modal logic
(Blackburn, de Rijke, and Venema 2001), more specifi-
cally using epistemic logic (Fagin et al. 1995). In addi-
tion, reasoning about the knowledge dynamics of agents has
been studied using dynamic epistemic logic (DEL) (van Dit-
marsch, van der Hoek, and Kooi 2007), among others. Ev-
idently, a popular approach in epistemic planning is the use
of model-checking problem in DEL (Bolander 2017). How-
ever, this problem turns out to be undecidable when one con-
siders finite iterations of such actions in DEL (Aucher and
Bolander 2013). Moreover, it is shown that for the general
epistemic planning tasks, the plan existence problem is al-
ready undecidable with two agents.

Public observation logic (POL) (van Ditmarsch et al.
2014) deals with expected observations (actions) that are
associated with each state in an epistemic model (Fagin et
al. 1995), and are represented by regular expressions. The
model gets updated depending on the matching of actual
and expected observations, and accordingly, agents’ knowl-
edge gets updated as well. This dynamic behavior based on
some sequence (finite iteration) of observations inherently
makes this setting useful in reasoning about various con-
cepts involving knowledge and actions, for example, epis-
temic planning.

In (Chakraborty et al. 2023), we show that public an-
nouncement logic (PAL) with propositional announcements
is closely related to the word fragment of POL, where the
regular expressions describing observations are only in the
word form. In this sense, POL can be considered as a
dynamic logic-like extension of PAL, taking iteration of
the Boolean announcements under its wings. Thus, it is
worthwhile to check whether POL is decidable, since PAL
with iterated announcements is undecidable (Miller and
Moss 2005). Note that the decidability (van Ditmarsch and
French 2022) of arbitrary PAL with Boolean announcements
(BAPAL) provides a push towards an affirmative response to
our query. Before moving forward, let us provide a scenario
that can be modeled by POL.

Example 1. Consider a surveillance drone hovering over
the boundary zone between two territories, T1 and T2, say,
in conflict with each other. Suppose the drone is deployed
by T1, and if it is detected in the airspace of T2, it might
get destroyed. How would the drone differentiate between
the two territories so that it can restrict itself from entering
T2? According to its expectations based on the vegetation
in the area, if it observes the sequence of (spruce∗-pine∗-
cedar-fir∗)∗ (∗ denotes the continuance of such sequences),
it would know that it is in area T1, while if it observes
(spruce∗-pine∗-larch-fir∗)∗, it would know that it is in T2.

With regard to the computational behavior of POL, we
explored the complexity of the model-checking problem for
POL in (Chakraborty et al. 2022). In addition, we investi-
gated the satisfiability problem for the star-free fragment of
POL in (Chakraborty et al. 2023), where the observations
comprise of star-free regular expressions. In this work, we
complete this study by providing an answer to the remain-
ing open problem concerning the decidability of full POL.
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We show that the satisfiability problem of POL (with Kleene
star) is 2EXPTIME-complete, in contrast to PAL with it-
erated announcements, making it a more viable option for
modelling planning and related problems. The techniques
used in our proofs may be of a more general interest.

For the upper bound, we start with the usual filtration ar-
gument (Blackburn, de Rijke, and Venema 2001) - if a for-
mula is satisfiable then it is satisfiable in a model of expo-
nential size. Although filtration is usually sufficient to prove
decidability, for POL this is not the case, as the expected ob-
servations associated with each state in a model may be arbi-
trary (Section 3). We characterize satisfiability in terms of a
finite syntactic structure defined by Hintikka sets (Smullyan
1995), which we call a bubble transition structure. We pro-
vide a correspondence between the expected observations
and the corresponding automata (Section 4) to facilitate our
study. Then in exponential time, we reduce the satisfia-
bility problem of deterministic propositional dynamic logic
(DPDL) to that of POL by encoding the constraints on the
epistemic structures by propositional theories (Section 5).
For the lower bound, we encode a superposition of three
same configurations of a Turing machine in the leaves of
a POL model considered as a full binary tree (Section 6).
Without further ado, let us start by recalling POL.

2 Public Observation Logic
To begin with, we provide a brief overview of Public Obser-
vation Logic (van Ditmarsch et al. 2014). Let P be a count-
able set of propositional letters, Ag be a finite set of agents,
and Σ be a finite alphabet of atomic actions/observations.
We now introduce observation expressions as follows:

Definition 2 (Observation Expression). Given a finite set of
observations Σ, observation expressions are defined recur-
sively as: π := ∅ | a | π + π | π;π | π⋆, with a ∈ Σ.

Note that an observation expression π is a regular ex-
pression, and L(π) denotes the language corresponding to
the regular expression π. We use these observation expres-
sions to describe observations within formulas (cf. Defini-
tion 3) as well as expected observations at states in a model
(cf. Definition 4). In the surveillance example, an obser-
vation may be spruce-pine-cedar-fir-spruce (abbreviated as
spcfs) or spruce-pine-larch-fir-spruce (abbreviated as splfs),
among others. Let us now describe the language of POL.

Definition 3 (POL Syntax). The language of POL can be
recursively defined as:

φ := ⊤ | p | φ ∨ φ | ¬φ | K̂iφ | ⟨π⟩φ

where p ∈ P , i ∈ Ag, and π is an observation expression
over Σ.

The box formulas are defined as follows: [π]φ =

¬⟨π⟩¬φ, Kiφ = ¬K̂i¬φ. The formula Kiφ is read as
‘agent i knows φ’, while K̂iφ is read as ‘agent i considers
φ as an epistemic possibility’. The formula ⟨π⟩ψ expresses
that there is a sequence of atomic observations that matches
the language of the (regular) expression π and ψ holds af-
ter the said sequence is observed publicly. For example, the

T1,¬T2 ¬T1, T2u v

(s∗p∗cf∗)∗ (s∗p∗lf∗)∗

Drone

Figure 1: Msd (the surveillance drone model)

formula ⟨(s⋆p⋆lf⋆)c⟩KdT2 expresses that after an observa-
tion of finite sequences of spruce and pine followed by a
larch and then a finite sequence of fir, the drone knows that
it is in the region T2. We are now ready to describe the POL
models (van Ditmarsch et al. 2014) that capture the expected
observations of agents. They can be seen as epistemic mod-
els (Fagin et al. 1995) together with, for each world, a set of
potential observations.

Definition 4 (POL model). A POL model is a tuple M =
(S,R, V,Exp), where, (i) S is a non-empty set of states, (ii)
Ri ⊆ S × S is an equivalence relation for all i ∈ Ag. R =
{Ri}i∈Ag , (iii) V : S → 2P is a valuation function, and (iv)
Exp : S → REΣ is an expectation function assigning an
observation expression over Σ to each state in S.

Figure 1 models the scenario discussed in the introduc-
tion. The model consists of the set of states S = {u, v},
with u representing the state of the drone hovering over the
region T1 and v representing the same for T2. The expected
observations of the drone in the two states are assigned ac-
cordingly (cf. the regular expressions assigned to u and v).

To interpret the changes in agent knowledge based on ob-
servations, POL semantics involves model updates. The ob-
servation expressions associated with the states get updated
according to the sequence of actions already observed. To
model this idea formally, we first explain the process of
residuation of observation (regular) expressions with respect
to words: Given a word w ∈ Σ⋆ and a regular expression π
over Σ, π\w is a regular expression, called the residuation
of π with w, where, L(π\w) = {u | wu ∈ L(π)}. For
example, for a, b ∈ Σ, (b⋆aa(a+ b)⋆)\ba = a(a+ b)⋆.

Definition 5 (Model update by observation). Given a word
w over Σ, the model M|w = (S′, R′, V ′, Exp′) is defined
as follows: (i) S′ = {s ∈ S | L(Exp(s)\w) ̸= ∅}, (ii)
R′ = R|S′×S′ , (iii) V ′ = V |S′×S′ , and, (iv) Exp′ is given
by Exp′(s) = Exp(s)\w for all s ∈ S′.

We are now ready to give the interpretation of the POL
formulas in POL models.

Definition 6 (Truth of a POL formula). Given a model M =
(S,R, V,Exp) and an s ∈ S, the truth definition of a POL
formula φ (M, s ⊨ φ), is given as follows:

• M, s ⊨ p iff p ∈ V (s), where p ∈ P .
• M, s ⊨ ¬ψ iff M, s ⊭ ψ.
• M, s ⊨ ψ ∨ χ iff M, s ⊨ ψ or M, s ⊨ χ.

• M, s ⊨ K̂iψ iff there is t ∈ S, s. th. sRit and M, t ⊨ ψ.
• M, s ⊨ ⟨π⟩ψ iff there exists w ∈ L(π) such that
L(Exp(s)\w) ̸= ∅ and M|w, s ⊨ ψ.

The truth definitions are as usual except for the last one.
The formula ⟨π⟩ψ holds if there is an observation sequence
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(a word w, say) that matches π, and after observing w (pub-
licly), ψ holds. The dual formula [π]ψ is interpreted accord-
ingly. As for the drone example and its model (Figure 1)
defined above, we can verify:

- Msd, s |= [s∗p∗]¬(KdT1 ∨Kd¬T1). This example cor-
responds to the drone being uncertain about its where-
abouts: observing an arbitrary number of s’s followed by
p’s is compatible with both the expectation (s∗p∗cf∗)∗ of
the T1 vegetation, and the expectation (s∗p∗lf∗)∗ of the
non-T1 vegetation.

- Msd, s |= ⟨s∗p∗c⟩(KdT1). This example expresses the
existence of a sequence of observations that reveals that
the drone is in the region T1.

Satisfiability Problem. The satisfiability problem of POL
is as follows: Given a POL formula φ, does there exist a
POL model M and a state s in it such that M, s ⊨ φ? In
what follows, we show that the POL satisfiability problem is
decidable and explore the complexity of the problem.

3 Finite Model Property
As a first step we show the following result:

Theorem 7 (Finite model property). If φ is satisfiable then
φ is satisfied in a POL model with 2O(|φ|) states.

3.1 Closure Sets
Definition 8 (Fischer-Ladner Closure). The Fischer-Ladner
closure of a formula φ, denoted by FL(φ), is the smallest
set containing φ and satisfying the following conditions:

• ifψ ∈ FL(φ) andψ not starting with ¬ then ¬ψ ∈ FL(φ)

• if ¬ψ,Kiψ, K̂iψ, [π]ψ or ⟨π⟩ψ in FL(φ) then ψ∈FL(φ)
• if ψ ∧ χ or ψ ∨ χ are in FL(φ) then ψ, χ ∈ FL(φ)

• if ⟨π1;π2⟩ψ ∈ FL(φ) then ⟨π1⟩⟨π2⟩ψ ∈ FL(φ)

• if ⟨π1 + π2⟩ψ ∈ FL(φ) then ⟨π1⟩ψ, ⟨π2⟩ψ ∈ FL(φ)

• if ⟨π⋆⟩ψ ∈ FL(φ) then ⟨π⟩⟨π⋆⟩ψ ∈ FL(φ)

• if [π1;π2]ψ ∈ FL(φ) then [π1][π2]ψ ∈ FL(φ)

• if [π1 + π2]ψ ∈ FL(φ) then [π1]ψ, [π2]ψ ∈ FL(φ)

• if [π⋆]ψ ∈ FL(φ) then [π][π⋆]ψ ∈ FL(φ)

In simple words, the Fischer-Ladner closure of a formula
constitutes all subformulas that need to be considered in a
satisfiability argument to satisfy the original formula. Note
that if [π]ψ ∈ FL(φ), we have [π\a]ψ ∈ FL(φ). For exam-
ple, suppose [b⋆ab]ψ ∈ FL(φ). Note that b⋆ab\a = b. By
definition 8, [b⋆][ab]ψ ∈ FL(φ) implies [ab]ψ, [b][b⋆][a]ψ ∈
FL(φ). Since [ab]ψ ∈ FL(φ), therefore [a][b]ψ ∈ FL(φ),
which finally implies [b]ψ ∈ FL(φ). The same is also true
for the diamond formulas (⟨π⟩ψ) as well.

Example 9. Consider φ = ⟨(a + b)⋆⟩p. Then, we have:
FL(φ) = {φ,¬φ, p, ⟨a+ b⟩⟨(a+ b)⋆⟩p, . . .}.

Observation 10. (Harel, Kozen, and Tiuryn 2000) Given φ,
|FL(φ)| ≤ O(|φ|).

3.2 Filtration
A standard approach for showing decidability of the satis-
fiability problem in modal logics is the filtration technique
(Blackburn, de Rijke, and Venema 2001), which goes by
proving the small model property: For any satisfiable for-
mula, there exists a finite model satisfying it whose size
can be bounded with respect to the input formula. We pro-
vide a similar argument using the following construction of
the small model. We first define an equivalence relation ∼
among the states of a model M = ⟨S, {Ri}i∈Ag, V, Exp⟩
(∼⊆ S × S) with respect to a formula φ as follows:

s ∼ s′ iff for all ψ ∈ FL(φ), (M, s |= ψ iff M, s′ |= ψ)

Note that, the relation ∼ is reflexive, transitive and symmet-
ric, that is, an equivalence relation over S. For any s ∈ S,
we denote [s] to be the equivalence class with respect to ∼
that contains s. Next we give the small model construction
following (Blackburn, de Rijke, and Venema 2001).
Definition 11 (Small Model of a Formula). Given a model
M = ⟨S, {Ri}i∈Ag, V, Exp⟩ and a formula φ, a small
model M∼ = ⟨S∼, {R∼

i }i∈Ag, V ∼, Exp∼⟩ is defined as:
• S∼ = {[s] | s ∈ S}
• ([s], [s′]) ∈ R∼

i if these conditions hold:
1. there exists s1 ∈ [s] and s2 ∈ [s′] s. t. (s1, s2) ∈ Ri.
2. for all K̂iψ ∈ FL(φ), M, s′ ⊨ ψ ∨ K̂iψ implies that

M, s ⊨ K̂iψ.
• V ∼([s]) = V (s)

• Exp∼([s]) = Exp(sc) for some sc ∈ [s].
Note that the above relation R∼

i ⊆ S∼ × S∼ is an equiv-
alence relation. The trickier parts are the transitivity and
symmetry. The former can be proved using condition (2), as
discussed in (Blackburn, de Rijke, and Venema 2001). The
latter, that is symmetry, can be proved using (1) and (2). For
all proof details, see (Ghosh, Ghosh, and Schwarzentruber
2025). Before proving the small model property, we prove
the following lemma, which shows that the choice of sc in
Definition 11 is not important. The main theorem follows.
Lemma 12. For any formula of the form ψ′ = ⟨π⟩ψ ∈
FL(φ), if s ∼ s′, then there exists a w ∈ L(π) such that
[(M, s ⊨ ψ′, s survives in M|w and M|w, s ⊨ ψ) iff
(M, s′ ⊨ ψ′, s′ survives in M|w and M|w, s′ ⊨ ψ)].
Proof Sketch. The proof goes by induction on the size of
π. Since s and s′ satisfy the same formulas in FL(φ), the
result follows by definition 8. In particular, the inclusion of
formulas within FL(φ) that take care of the prefixes of π
in ⟨π⟩ψ plays an important role. We give a detailed proof
in (Ghosh, Ghosh, and Schwarzentruber 2025).
Theorem 13. Given a model M = ⟨S, {Ri}i∈Ag, V, Exp⟩
and a formula φ, for any ψ ∈ FL(φ) and w ∈ Σ⋆,

M|w, s ⊨ ψ iff M∼|w, [s] ⊨ ψ.
Corollary 14. If φ is POL-satisfiable, then φ is satisfiable
in a POL-model with at most 2|FL(φ)| states.

Proof. If M, s |= φ then M∼, [s] |= φ. Note that M∼

contains at most 2|FL(φ)| states.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

358



Although we have a small model property for POL, it does
not give an immediate decidability proof for the satisfiabil-
ity problem of POL. We note that in POL models, each state
is associated with not only a valuation but also a regular ex-
pression. Given a satisfiable formula, the popular filtration
technique (Blackburn, de Rijke, and Venema 2001) gives us
a model where (i) the number of states is bounded above
with respect to the size of Fischer-Ladner closure, and (ii)
the number of possible valuations is bounded above due to
the fact that the number of propositions is bounded by the
size of the input formula. However, the size of the regular
expression Exp(s) associated with each state s may be ar-
bitrarily large, and it is not straightforward to come up with
a bound. We now provide a way to deal with this difficulty.

4 Unraveling the Filtrated Model
We give alternative models to POL in terms of finite bub-
ble transition structures (BTS). They are unraveled POL
models in which the expectation functions are represented
with explicit transitions. Furthermore, BTS’s are syntactic
in nature: epistemic relations are between states labeled by
Hintikka sets (Blackburn, de Rijke, and Venema 2001). In
contrast to states in standard epistemic models, Hintikka sets
also contain information about the future, e.g., if a Hintikka
set contains ⟨a⟩K̂ip, it says after a is observed, i should con-
sider p as possible. In addition, these BTS’s are always fi-
nite. Let us now describe them.

4.1 Finite Transition Model
Hintikka sets are sets of POL formulas satisfying some con-
ditions, as defined below.

Definition 15 (Hintikka set of Formulas). A Hintikka set H
is a set of formulas satisfying following conditions:

1. If ψ does not start with negation, ψ ∈ H iff ¬ψ /∈ H .
2. ψ1 ∧ ψ2 ∈ H iff {ψ1, ψ2} ⊆ H .
3. ψ1 ∨ ψ2 ∈ H iff ψ1 ∈ H or ψ2 ∈ H .
4. If Kiψ ∈ H then ψ ∈ H .
5. If ⟨π1 + π2⟩ψ ∈ H then ⟨π1⟩ψ ∈ H or ⟨π2⟩ψ ∈ H .
6. If ⟨π1π2⟩ψ ∈ H then ⟨π1⟩⟨π2⟩ψ ∈ H .
7. If ⟨π⋆⟩ψ ∈ H then either ψ ∈ H or ⟨π⟩⟨π⋆⟩ψ ∈ H .
8. If [π1 + π2]ψ ∈ H then {[π1]ψ, [π2]ψ} ⊆ H

9. If [π1π2]ψ ∈ H then [π1][π2]ψ ∈ H

10. If [π⋆]ψ ∈ H then {ψ, [π][π⋆]ψ} ⊆ H

Besides the usual boolean conditions in Definition 15, (4)
corresponds to reflexivity of the knowledge relation. To sat-
isfy diamond observation formulas ⟨π⟩ψ, L(π) must contain
a word. Thus, (5) corresponds to the word coming from π1
or π2, (6) corresponds to a word from π1, followed by one
from π2, and (7) takes care of the iteration. In (8-10), the
box formulas are considered in a dual manner.

Example 16. Consider φ := Ki(⟨a⟩(p∨q)∧[a⋆]⟨a⟩(p∨q)).
A Hintikka set containing φ is given as follows:

H ={φ, ⟨a⟩(p ∨ q) ∧ [a⋆]⟨a⟩(p ∨ q),
⟨a⟩(p ∨ q), [a⋆]⟨a⟩(p ∨ q), [a][a⋆]⟨a⟩(p ∨ q)}

The second formula in H comes from (4), the third and fourth
ones are due to (2), and the last one is a consequence of (10).

Let Ki(H) = {Kiψ | Kiψ ∈ H} be the set of knowl-
edge formulas in H . We now define (epistemic) bubbles.
They are similar to POL models but differs in three ways.
First, there is no expectation function Exp anymore. Sec-
ond, the information about the future in a state s previously
stored in Exp(s) is now provided in the Hintikka set L(s)
attached to s. For instance if ⟨a⟩⊤ ∈ L(s) it means that a
can be observed in s. Note that all the necessary informa-
tion about the expectation function and indistinguishability
are now relational structures on Hintikka sets. Third, a bub-
ble is tailored for the corresponding formula φ: Hintikka
sets are given with respect to φ and the number of states is
bounded by 2|FL(φ)| (as in Corollary 14).

Definition 17. A bubble wrt a POL formula φ is a labelled
relational structure ⟨S, {Ri}i∈Ag, L⟩ such that:

1. S is a set of (abstract) states such that 0 ≤ |S| ≤ 2|FL(φ)|

2. L : S → 2FL(φ) is a labelling function such that for every
s ∈ S, L(s) is a Hintikka set.

3. Ri ⊆ S × S, is a binary equivalence relation such that:
(a) For any s ∈ S, any formula K̂iψ ∈ L(s), there exists

an s′ ∈ S such that ψ ∈ L(s′) and (s, s′) ∈ Ri.
(b) For all s′, s′′ ∈ [s]i, the equivalence class of s under

Ri, Ki(L(s′)) = Ki(L(s′′)).
Point 3 describes the interaction between the indistin-

guishability relationRi and the Hintikka sets. If a state satis-
fies K̂iψ, then there is an i-indistinguishable state satisfying
ψ (3a). Also, knowledge of agent i (formulas of the form
Kiψ) are the same in all the i-indistinguishable states (3b).
We now introduce the notion of a-successor. Considering a
bubble B that intuitively corresponds to a POL model M,
an observation successor of B is a bubble B′ which corre-
sponds to M|a.

Definition 18. Let B = ⟨S, {Ri}i∈Ag, L⟩ and B′ =
⟨S′, {R′

i}i∈Ag, L′⟩ be two bubbles wrt to φ. Let a ∈ Σ. B′

is an a-successor of B (B a−→ B′) if the following conditions
hold:

1. S′ ⊆ S and for all s ∈ S′, L(s) ∩ P = L′(s) ∩ P .
2. For all s ∈ S, ⟨a⟩ψ ∈ L(s) iff (s ∈ S′ and ψ ∈ L′(s)).
3. For all s ∈ S′, [a]ψ ∈ L(s) iff ψ ∈ L′(s).
4. (Perfect Recall): R′

i = Ri ∩ (S′ × S′).

Point 1 says that the set of states is decreasing when an
observation a is made, and that the valuations do not change
(for the surviving states). Point 2 says that any state s sat-
isfying a diamond formula ⟨a⟩ψ must survive after observ-
ing a, and then, must satisfy ψ. Point 3 says that if a state
survives, same rule should apply for box formulas as well.
Point 4 says that if an agent considers a state possible from
the state s in the projected (residuated) model, she should
consider it possible before the projection (Perfect Recall:
⟨a⟩K̂iψ → K̂i⟨a⟩ψ). Now we introduce the notion of bub-
ble transition structure (BTS) of a formula φ, which is a
deterministic automaton where nodes are bubbles.
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s
φ, [a]⊥
K̂i((⟨a⟩(p∨ q)∧ [a⋆]⟨a⟩(p∨ q)

t
(⟨a⟩(p ∨ q) ∧ [a⋆]⟨a⟩(p ∨ q)
⟨a⟩(p ∨ q), [a∗]⟨a⟩(p ∨ q),
[a][a∗]⟨a⟩(p ∨ q), p

i

i

i t

p ∨ q, p,
⟨a⟩(p ∨ q),
[a∗]⟨a⟩(p ∨ q),
[a][a∗]⟨a⟩(p ∨ q)

i

B∗

B

a
a

Figure 2: A BTS for φ := [a]⊥∧K̂i(⟨a⟩(p∨q)∧ [a⋆]⟨a⟩(p∨q)).
There are two bubbles: B∗ and B. There are two abstract states: s
and t. If a state appears in a bubble, it is labelled by a Hintikka set:
for instance, s in B∗ is labelled by L∗(s) = {φ, [a]⊥, . . . }.

Definition 19 (BTS). Given a POL formula φ, a bubble
transition structure (BTS) of φ is a tuple B = ⟨B, δ⟩ where
B is the (finite) set of all bubbles wrt φ, and δ : B × Σ →
B ∪ {‡} is the transition function such that:

1. Some bubble B∗ = ⟨S∗, {R∗
i }i∈Ag, L∗⟩ ∈ B , called the

initial bubble, is s. th. there is an s ∈ S∗, with φ ∈ L∗(s)

2. For all B = ⟨S, {Ri}i∈Ag, L⟩ ∈ B, either δ(B, a) = ‡
or, δ(B, a) = Ba where Ba is an a-successor of B.

3. For every ⟨π⟩ψ ∈ L(s) for any s ∈ S of any node
B = ⟨S, {Ri}i∈Ag, L⟩ ∈ B in B, there is a k length
word a1a2 . . . ak ∈ L(π), a sequence of nodes (bubbles)
B0 = B,B1, . . . , Bk, where each Bj ∈ B, such that:

(a) Bj = δ(Bj−1, aj), for all 1 ≤ j ≤ k.
(b) s∈Sk and ψ∈Lk(s), where Bk=⟨Sk, {Rki }i∈Ag, Lk⟩.

In other words, a BTS can be thought of as a structure
where each node represents some residue of the model rep-
resented by the bubble B∗ given in (1), which represents a
model satisfying φ. (2) assumes that a model can have at
most one residue structure for every letter a ∈ Σ. (3) says
that if ⟨π⟩ψ is satisfied at a state in a model, then there ex-
ists a model which is residuated on some w ∈ L(π) and the
same state in the residuated model satisfies ψ. Note that a
formula may have zero or multiple BTS’s.

Example 20. Consider the BTS B in Figure 2, where φ :=

[a]⊥ ∧ K̂i(⟨a⟩(p ∨ q) ∧ [a⋆]⟨a⟩(p ∨ q)).
• All formulas appearing in the labels are in FL(φ)
• φ appears in the label of s in B∗ (Definition 19 (1)).
• The bubble B is an a-observation successor of B∗ as per

Definition 18.

By Definition 15, since [a⋆]⟨a⟩(p ∨ q) ∈ L∗(t),
[a][a⋆]⟨a⟩(p ∨ q) ∈ L∗(t). Now by Definition 18 (2), since
⟨a⟩(p ∨ q) ∈ L∗(t), we have (p ∨ q) ∈ L(t). We also have
[a⋆]⟨a⟩(p ∨ q) ∈ L∗(t), which again, by definition of Hin-
tikka set gives rise to {⟨a⟩(p∨q), [a][a⋆]⟨a⟩(p∨q)} ⊆ L∗(t).

4.2 Completeness
Theorem 21. If φ is satisfiable, then there is a BTS of φ.

Proof Sketch. Suppose φ satisfiable. By Corollary 14,
there exists M with at most 2|FL(φ)| states and s such that
M, s |= φ. We create a transition system B = ⟨B, δ⟩, where

B contains exactly the bubbles Bw corresponding to M|w
for some w ∈ Σ⋆. The transition function δ is defined by

δ(B, a) =

{
Bwa, ∃ w such that B = Bw and M|wa exists
‡, otherwise

It can be shown that B is a BTS of φ. For complete proof,
see (Ghosh, Ghosh, and Schwarzentruber 2025).

4.3 Soundness
Theorem 22. If there is BTS of φ, then φ is satisfiable.

Consider a BTS B = ⟨B, δ⟩ of φ. The proof of Theo-
rem 22 constitutes the construction of a pointed POL model
Mφ, s0 satisfying φ out of B. We construct the POL model
Mφ = ⟨Sφ, {Rφi }i∈Ag, V φ, Exp⟩ as follows: Sφ = S∗,
Rφi = R∗

i for all agents i, V φ(s) = L∗(s) ∩ P , that is,
the propositions of φ that labels in s, for any s ∈ S∗.
The state s0 is some state such that φ ∈ L∗(s0), where
B∗ = ⟨S∗, {R∗

i }i∈Ag, L∗⟩ is the initial bubble.
It remains to define the expectation function Exp. For

each state s, we define Exp(s) as a regular expression that
characterizes the language of the automaton As defined in
the following:

- The set of states of As is B;
- The transition function of As is given by δ;
- The initial state of As is B∗;
- The final states of As are the bubbles B containing s.

As a state s cannot resurrect, non-final states in As are ab-
sorbing: when a non-final state is reached by reading some
word, it is impossible to reach a final state again.
Example 23. Consider Figure 2. In At, both B∗ and B are
final. We set Exp(t) = aa∗. In As, only B∗ is final. We set
Exp(s) = ϵ.

The proof of Theorem 22 ends with the following claim,
implying that φ is satisfiable.
Claim 24. Mφ, s0 |= φ.

Proof. We prove a more general result. We prove the fol-
lowing property P(ψ) by inducting on ψ ∈ FL(φ):

P(ψ) :
for all bubbles B ∈ B, for all states s ∈ B, if
ψ ∈ L(s) then Mφ|w, s ⊨ ψ for all wordsw ∈ Σ⋆

such that B∗ w−→
∗
B

where B∗ w−→
∗
B means that there is a path from B∗ to B

by reading the word w in B.
Base Case. The case ψ = p is implied by the construction
and point 1 of Definition 18.

Inductive Step. Based on the syntax of ψ:

• ψ = K̂iχ. As ψ ∈ L(s), by Definition 17, there is
some t such that (s, t) ∈ Ri and χ ∈ L(t). By IH,
Mφ|w, t ⊨ χ. Due to point 4 (Perfect Recall) of Def-
inition 18, the relation (s, t) ∈ Ri is retained from B∗

along the path B∗ w−→
∗
B. Consider the construction

of As. Since all bubbles having s in it are marked fi-
nal, hence Exp(s)\w ̸= ∅ since w ∈ L(Exp(s)). Hence
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by construction and the previous argument, the relation is
retained in Mφ as well since s is still retained in Mφ|w.
Therefore Mφ, s ⊨ K̂iχ.

• ψ = ⟨π⟩χ. By point 3 of Definition 19, there is some
w′ ∈ Σ⋆ such that χ ∈ L′(s), where L′ is the labelling

function for a bubble B′ and B w′

−→
∗
B′. Hence by IH,

Mφ|ww′ , s ⊨ χ. This implies Mφ|w, s ⊨ ⟨π⟩χ.

Hence the property P(ψ) is proved for any formula ψ ∈
FL(φ) for any state s of any bubbleB in BTS. In particular,
P(φ) implies Mφ, s0 ⊨ φ since φ ∈ L∗(s0) of B∗.

5 POL Satisfiability by DPDL
Finally, to provide an algorithm for checking satisfiability of
POL, we now provide a translation of POL formulas to De-
terministic Propositional Dynamic Logic (DPDL) formulas
and use the complexity results of DPDL (Ben-Ari, Halpern,
and Pnueli 1982a). Before proceeding further, let us have a
brief look at the syntax and semantics of DPDL.

5.1 On DPDL

Given a countable set of atomic propositions P , and a fi-
nite set of actions Σ, the language of DPDL is given by the
following:

φ := ⊤ | p ∈ P | φ ∨ ψ | ¬φ | ⟨π⟩ψ,

where π is regular expression over Σ.
A DPDL model is given by: M = ⟨W, {→a}a∈Σ, V ⟩,

where, W is a finite set of states, →a⊆ W ×W is a binary
relation such that for every a ∈ Σ, and for every w ∈ W ,
if (w,w1) ∈→a and (w,w2) ∈→a then w1 = w2, and V :
W → 2P is the valuation function.

We extend the relation →a to →π for any general regular
expression π in the usual way:

• →π1+π2
= →π1

∪ →π2

• →π1;π2
={(w, v) |∃u ∈W : (w, u) ∈→π1

∧(u, v) ∈→π2
}

• →π⋆=
⋃
k≥0 →πk where πk = π;π; . . . ;π︸ ︷︷ ︸

k times

Given a DPDL model M = ⟨W, {→a}a∈Σ, V ⟩ and a
DPDL formula φ, we define M, s ⊨ φ for some s ∈ W as
usual by induction on φ. We mention the modal case below
that involves the language of the regular expression.

• M, s ⊨ ⟨π⟩ψ iff there is a wordw ∈ L(π) such that s→w

t and M, t ⊨ φ

To clarify the distinction between DPDL and PDL (Harel,
Kozen, and Tiuryn 2000), let us consider the formula, ⟨a⟩p∧
⟨a⟩¬p. The formula is satisfiable in PDL, but not in DPDL.

5.2 Translation of POL into DPDL

We introduce a translation from POL-formulas into DPDL-
formulas. The idea is as follows. On the one hand, each
observation operator ⟨π⟩ is directly simulated by its DPDL-
dynamic operator counterpart. On the other hand, we encode
each epistemic structure as a propositional theory.

Thanks to the filtration result (see Theorem 13), we know
that a satisfiable formula φ has a POL model with at most
2|FL(φ)| worlds. We can then pinpoint the worlds by labels
ℓ, ℓ′, . . . from the set of labels Lφ0 = {1, . . . , 2|FL(φ)|}.

We introduce special atomic formulas of the form @ℓ.ψ
whose intuitive meaning is ‘subformula ψ is true in the ℓ-
th world’. We also introduce atomic propositions Ri(ℓ, ℓ′)
whose intuitive meaning is ‘the ℓ-th world is linked to the
the ℓ′-th world by the relationRi’. In addition, we introduce
atomic proposition surv(ℓ) that intuitively says that the ℓ-th
world has survived so far (meaning that the ℓ-th world is still
compatible with the observations that have been seen so far).

Given a POL-formula φ, we define a DPDL-
formula sem(φ) that encodes the semantics of φ:

• sem(p) =
∧
l∈Lφ

0
(@ℓ.p↔ ¬@ℓ.¬p)

• sem(¬ψ) =
∧
l∈Lφ

0
(@ℓ.¬ψ ↔ ¬@ℓ.ψ)

• sem(ψ ∨ψ′) =
∧
l∈Lφ

0
(@ℓ.(ψ ∨ψ′) ↔ (@ℓ.ψ ∨@ℓ.ψ′))

• sem(K̂iψ) =
∧
l∈Lφ

0
(@ℓ.K̂iψ ↔ (

∨
l′∈Lφ

0
(Ri(ℓ, ℓ

′) ∧
surv(ℓ′) ∧@ℓ′.ψ)))

• sem(⟨π⟩ψ) =
∧
l∈Lφ

0
(@ℓ.⟨π⟩ψ ↔ ⟨π⟩(@ℓ.ψ∧surv(ℓ)))

Formula sem(φ) is about the ‘local’ semantics of φ. For
example, sem(ψ ∨ ψ′) explains the semantics of ∨ in the
stage of ψ ∨ ψ′; the semantics of ψ and ψ′ are taken care
of by sem(χ) for the subformulas χ of ψ and ψ′. Formula
sem(⟨π⟩ψ) reflects the fact that the semantics of ⟨π⟩ψ is
given by the DPDL-operator ⟨π⟩ for a given world ℓ that
should survive. Formula sem(K̂iψ) expresses the seman-
tics of K̂iψ (see Definition 6) in the propositional theory:
the existence of a state is represented by the disjunction∨
l′∈L0φ

, the relation constraint is represented by the propo-
sitional formula Ri(ℓ, ℓ′) ∧ surv(ℓ′), and the truth of ψ in
the possible world by the proposition @ℓ′.ψ.

Given a POL-formula φ, we also define the DPDL-
formula Sφ as the conjunction of the following expressions:

1.
∧
ψ∈FL(φ)[Σ

⋆]sem(ψ)

2.
∧
ℓ∈Lφ

0
((@ℓ.p→ [Σ⋆]@ℓ.p) ∧ ((@ℓ.¬p→ [Σ⋆]@ℓ.¬p)))

3.
∧
ℓ,ℓ′((Ri(ℓ, ℓ

′) → [Σ⋆]Ri(ℓ, ℓ
′)) ∧ (¬Ri(ℓ, ℓ′)) →

[Σ⋆]¬Ri(ℓ, ℓ′))
4.
∧
i∈Agt

∧
ℓ∈Lφ

0
Ri(ℓ, ℓ)

5.
∧
i∈Agt

∧
ℓ∈Lφ

0

∧
ℓ′∈Lφ

0
(Ri(ℓ, ℓ

′) → Ri(ℓ
′, ℓ))

6.
∧
i∈Agt

∧
ℓ,ℓ′,ℓ′′∈Lφ

0
((Ri(ℓ, ℓ

′) ∧Ri(ℓ′, ℓ′′) → Ri(ℓ, ℓ
′′))

7. [Σ⋆]
∧
ℓ

∧
a∈Σ⟨a⟩⊤

8. [Σ⋆]
∧
ℓ

∧
a∈Σ(¬surv(ℓ) → ⟨a⟩¬surv(ℓ))

Point 1 says that for all subformulas ψ, the semantics of ψ
is enforced anywhere in the DPDL model. Point 2 says that
the truth value of any atomic proposition p does not change
at a given label/state ℓ when observations are made. Point
3 says that the epistemic relations do not change. Note that
labels ℓ, ℓ′ may not survive, that is handled by the proposi-
tion surv(ℓ). Points 4, 5, and 6 encode, respectively, the
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reflexivity, symmetry, and transitivity of the epistemic rela-
tion. Point 7 says that an a-successor always exists (even if
no labels survive! The surviving mechanism is fully handled
by propositions surv(ℓ)). Point 8 says that a label ℓ that is
dead remains dead.

Definition 25 (Translation from POL to DPDL). Given a
POL-formula φ, we define tr(φ) := surv(ℓ0)∧@ℓ0.φ∧Sφ.

In the translation tr(φ) above, we say that the state ℓ0
must have survived (the empty list of observations so far),
formula φ should be true in ℓ0, and Sφ forces the semantics
to be well-behaved.

Proposition 26. Given POL formulaφ, tr(φ) is computable
in exponential time in the size of φ.

Proof. Given a POL formula φ, there are at most O(|φ|)
many formulas in FL(φ), and by filtration (Theorem 13)
there can be at most O(2|φ|) many unique labels. Therefore
the time taken and the size of the formula tr(φ) is at most
O(|φ| × 2|φ|).

Proposition 27. φ is POL-satisfiable iff tr(φ) is DPDL-
satisfiable.

From Propositions 26 and 27, and from the fact
that DPDL satisfiability is EXPTIME-complete (Ben-Ari,
Halpern, and Pnueli 1982a) we get:

Theorem 28. POL-satisfiability is in 2EXPTIME.

Proof. Here is a double-exponential algorithm for testing
the satisfiability of φ in POL:

• compute tr(φ) (exponential-time in φ)
• test whether tr(φ) is DPDL-satisfiable (exponential time

in tr(φ), so double-exponential time in φ).

The result follows from the algorithm above.

6 Lower Bound
In the following we provide a lower bound for the satisfia-
bility problem of POL, and show that:

Theorem 29. POL satisfiability is 2EXPTIME-complete.

The upper bound was shown in Theorem 28. To
prove 2EXPTIME-hardness in Theorem 29, consider any
2EXPTIME problem A. As AEXPSPACE = 2EXPTIME
(Chandra, Kozen, and Stockmeyer 1981), there is an alter-
nating Turing machine M deciding A in exponential space
e(|x|) where x is the input, and |x| is its length/size. The ac-
cepting and rejecting state are respectively denoted by qacc
and qrej .

We represent a configuration as a word of symbols. A
symbol can be either a letter (0, 1, or ) written on the
tape, or a pair qa where q is a state of M and a is a let-
ter, or a special symbol #. The set of symbols is de-
noted by Sym. We suppose that the state symbol precedes
the letter on which the head is. All configuration words
start and finish by the special symbol #. For instance,

γβα

?

3 q0 2 1 0

1 q’2 1

Figure 3: Successor function in a Turing machine: from three con-
secutive symbols αβγ the successor function tells the symbol writ-
ten in the middle (?). On the right, we give an example of a a-
transition ‘if the machine is in state q with 0 under the head, then
write 1 and move to right and go into state q′’. In particular, we
have succa(3 q0 2) = 1, succa(q0 2 1) = q′ and succa(021) = 2.

the configuration 01110 0

q

where the tape con-
tains 011100 . . . , the machine is in state q, and the head
is under the third left-most cell is represented by the word
# 0 1 q1 1 0 0 # .

Without loss of generality (w.l.o.g.), we suppose that
the machine M switches between universal and existential
states and starts with an existential state. Also, w.l.o.g.
each configuration has at most two successor configura-
tions. So we use two functions succa and succb such that
given three consecutive symbols αβγ ∈ Sym3, succa(αβγ)
(resp. succb(αβγ)) is the symbol in the middle position after
the first transition (resp. the second transition), see Figure 3.
Taking a transition is modeled by the program a ∪ b. Fig-
ure 4 explains the idea behind the reduction, namely how to
represent a computation tree inside a POL model.

Encoding a configuration. We encode a superposition
of three configurations into an epistemic structure, and then
say that they are equal.

As there are two agents, thus two epistemic modalities
Ki and Kj we can simulate a standard K modal logic □.
For the rest of the proof, we consider such a modality □ and
its dual ♢. We also introduce □kφ for □ . . .□φ where □ is
repeated k times, and □≤kφ for φ ∧□φ ∧ · · · ∧□kφ.

We create a formula that ensures the existence of a binary
tree in the epistemic structure. A position in a word is a num-
ber in {0, 1, . . . , e(|x|)}. Each leaf is tagged with a 3-tuple
of positions pos1, pos2, pos3 in the tape, and a 3-tuple of
symbols α, β, γ, written respectively at position pos1, j, k,
in respectively the first, second and third configuration – the
values of pos1, pos2, k by the truth values of propositions
p1, . . . , pn, pn+1, . . . , p2n and p2n+1, . . . , p3n, respectively.
A position in the tape is a number between 0 and e(|x|)− 1.
As e(|x|) is exponential in |x|, the integer n above is poly-
nomial in |x|. Our binary tree branches over the values for
atomic propositions p1, . . . , p3n. To do so, we use the modal
logic formula given in (Blackburn, de Rijke, and Venema
2001) and already used in (Chakraborty et al. 2023):

∧
ℓ<6n

□ℓ
(
♢pℓ ∧ ♢¬pℓ ∧

∧
m<ℓ

(pm→□pm)∧
(¬pm→□¬pm)

)
(1)

In order to select some positions, we make the values of
propositions pm ‘observable’. To do that we introduce new
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observation symbol pm, p̄m ∈ Σ and the constraints:

[(a∪b)∗]□3n[Σ∗](pm ↔ ⟨pm⟩⊤ ∧ [p̄m]⊥) (2)

[(a∪b)∗]□3n[Σ∗](¬pm ↔ ⟨p̄m⟩⊤ ∧ [pm]⊥) (3)

In other words, being able to observe pm ∈ Σ (resp. p̄m ∈
Σ) means that pm is true (resp. false).

For each symbol α, we introduce observations 1:α, 2:α,
3:α. They are observable when symbol α is written in the
current cell of respectively the first, second, and third con-
figuration. The following three formulas say that there is a
unique symbol written at each position pos1, pos2, pos3:

[(a∪b)∗]□3n
⊕

α∈Sym
⟨i:α⟩⊤ (4)

for i = 1..3, and where
⊕

is the XOR operator.
The two following formulas say that the symbols of the

cells do not change when observing some positions:

[(a∪b)∗]□3n(
∧

α∈Symb

⟨i:α⟩⊤

→ [(p1 ∪ p̄1 ∪ · · · ∪ p3n ∪ p̄3n)∗]⟨i:α⟩⊤) (5)

[(a∪b)∗]□3n(
∧

α∈Symb

¬⟨i:α⟩⊤

→ [(p1 ∪ p̄1 ∪ · · · ∪ p3n ∪ p̄3n)∗]¬⟨i:α⟩⊤) (6)

We now say that for all i = 1..3, all leafs with the same posi-
tion posi contains the same symbol in the i-th configuration:

[(a∪b)∗][choose posi]
∨

α∈Sym
□3n⟨i:α⟩⊤ (7)

where choose pos1, choose pos2, choose pos3 are respec-
tively the programs (p1 ∪ p̄1) . . . (pn ∪ p̄n), (pn+1 ∪
p̄n+1) . . . (p2n ∪ p̄2n) and (p2n+1 ∪ p̄2n+1) . . . (p3n ∪ p̄3n).

Finally we say that the three configurations are equal.
When two positions - say pos1 and pos2 - are equal, then
the symbol located at pos1 in the first configuration and the
symbol located at pos2 in the second configuration are equal.
More generally, for i, j = 1..3, i < j:

[(a∪b)∗]□3n(posi=posj) →
∨

α∈Sym
⟨i:α⟩⊤ ∧ ⟨j:α⟩⊤ (8)

where pos1=pos2 is a Boolean formula saying that
p1, . . . , pn−1 and pn+1, . . . , p2n encode the same number,
and similar others.

Presence of the complete binary tree after transitions.
The following formula says that the existence of the a-
transition (a can be observed at the root) implies that a can
be observed at all nodes of the binary tree. Also if there is
no a-transition, then a is not observable at all nodes of the
tree. Same for b. This is captured by the following scheme
for ψ being ⟨a⟩⊤, ¬⟨a⟩⊤, ⟨b⟩⊤, ¬⟨b⟩⊤:

[(a∪b)∗](ψ → □≤6nψ) (9)

Leftmost and rightmost cells. We impose that the left-
most and rightmost cells always contain symbol #.

[(a∪b)∗]□3n(pos1 = 0 → ⟨1:#⟩⊤) (10)

[(a∪b)∗]□3n(pos1 = e(|x|)− 1 → ⟨1:#⟩⊤) (11)

Initial configuration. At position 1, there is the initial
state q0. At position 2 is the first letter x1 of x. The last
letter xn is at position n+ 1.

□3n(pos1=1) → ⟨1:q0x1⟩⊤ ∧ (pos1=2) → ⟨1:x2⟩⊤
· · · ∧ (pos1=n) → ⟨1:xn⟩⊤

(12)

After the word, we have the blank symbol :

□3n(pos1 ≥ n+ 1 ∧ pos1 < e(|x|)− 1) → ⟨1: ⟩⊤ (13)

Transitions. W.l.o.g. we suppose the machine stops
after writing . We define the two formulas accepted :=
♢3n⟨1:qacc ⟩⊤ and rejected := ♢3n⟨1:qrej ⟩⊤ meaning
that the current configuration is respectively an accepting or
rejecting one. We set final := accepted ∨ rejected.

We encode a- and b-transitions as follows. We focus on
leaves containing consecutive cells: a cell at position pos1 in
the 1st configuration, the cell at pos1+1 in the 2nd configu-
ration, and the cell at pos1 + 2 in the 3rd configuration. The
superposition of the three configurations helps us to have ac-
cess to three symbols α, β, γ in consecutive cells. We then
use succa and succb to get the next middle symbol (at posi-
tion pos1 + 1 in the 2nd configuration).

[(a∪b)∗](¬final → □3n

(
pos2=pos1+1∧
pos3=pos2+1

)
→∧

αβγ∈Sym3(⟨1:α⟩⊤ ∧ ⟨2:β⟩⊤ ∧ ⟨3:γ⟩⊤)
→ (⟨a⟩⟨2:succa(αβγ)⟩⊤ ∧ ⟨b⟩⟨2:succb(αβγ)⟩⊤)

(14)

In a terminal configuration, the execution stops meaning
that we do not take transitions anymore ([a∪b]⊥).

[(a∪b)∗](final → [a∪b]⊥) (15)

Universal and existential configurations. We introduce
an observation symbol ∃, which is observable iff the current
configuration is existential. Existential and universal config-
urations are always alternating:

[(a∪b)∗](⟨∃⟩⊤ → [a∪b]¬⟨∃⟩⊤) (16)
[(a∪b)∗](¬⟨∃⟩⊤ → [a∪b]⟨∃⟩⊤) (17)

Winning condition. The two following formulas explain
what winning means at the final configurations:

[(a∪b)∗](accepted → ⟨win⟩⊤) (18)
[(a∪b)∗](rejected → ¬⟨win⟩⊤) (19)

The two following formulas explain what winning means at
a non-terminal configuration:

[(a∪b)∗]((¬final ∧ ¬⟨∃⟩⊤)

→ (⟨win⟩⊤ ↔ [a∪b]⟨win⟩⊤) (20)
[(a∪b)∗]((¬final ∧ ⟨∃⟩⊤)

→ (⟨win⟩⊤ ↔ ⟨a∪b⟩⟨win⟩⊤) (21)

The following formula says that the initial configuration
should be winning and is existential:

⟨win⟩⊤ ∧ ⟨∃⟩⊤ (22)

We define tr(x) to be the conjunction of formulas (1-22)
and the two following propositions conclude the proof.
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q00 1 0

0 q′1 0

0 q′0 0

1 q1 0

...
...

...

...
...

a b

a b

a b

(a) Computation tree of M on input x = 01. Each node of the
three is a configuration of the machine. The root contains the
initial configuration. The branching directions are called a and b.

binary tree

. . .
t

Exp(t) =


1:1, 2:1, 3:0,

a 1:q′1, a 2:q′1, a 3:0, b 1:q1, b 2:q1, b 3:0,

ab 1:q′0, ab 2:q′0, ab 3:0, . . .

.

(b) The corresponding POL model. The epistemic structure encodes a
binary tree. Each leaf t corresponds to three cell positions. The figure
examplifies a leaf t where the first and second position are both the
second cell while the third position is the third cell.

Figure 4: A computation tree and its corresponding POL model.

Proposition 30. tr(x) is computable in poly-time in |x|.

Proposition 31. x is A-positive iff tr(x) is POL-satisfiable.

We thus reduce any 2EXPTIME-problem A to the satisfi-
ability problem of POL, proving the latter to be 2EXPTIME-
hard, thus proving Theorem 29.

7 Related Work
Propositional Dynamic Logics. In POL, a residuated
model M|w can have at most a unique successor M|wa for
a letter a in the alphabet. This gives rise to a Σ-labelled
transition structure equivalent to a model where each node
is an epistemic skeleton of some M|w. Thus we get a natu-
ral connection with a Deterministic Propositional Dynamic
Logic (DPDL) (Ben-Ari, Halpern, and Pnueli 1982b) model
structure. But, there is a significant difference: each node
in our constructed transition structure is an epistemic model,
whereas in DPDL, it is a propositional valuation. To the best
of our knowledge, no such deterministic structures involving
epistemic constructions have been studied beforehand.

Epistemic Propositional Dynamic Logic (EPDL) has been
studied in (Li 2018). As in POL, each node of an
EPDL model is an epistemic structure, and it assumes per-
fect recall. However, the transitions in EPDL are non-
deterministic ones. Moreover, in EPDL, valuations may
change when actions are executed, while that is not the case
when observations are made in POL.

Another study on a PDL-like logic with epistemic oper-
ators (Heinemann 2007) concerns single agent knowledge
formulas, where, verification of only knowledge formulas in
the regular expressions is considered. Although, they have
given a hardness result (EXPTIME-hard) that follows from
PDL, they do not have any matching upper bound.
Temporal Logics. Since we are dealing with sequences of
observations and how the expected observation expressions
get residuated, there is a subtle temporal aspect to POL.
In LTLK, the interaction between time and knowledge as-
sumes perfect recall and synchronous rules, which also hold
in POL. But, there are some differences in the linearity as-
pects. More precisely, since POL deals with multiple letters
in the transition alphabet, knowledge does not change lin-
early, in the sense that, knowledge can change depending on

the observations that occur. At a single point of occurrence
this can be any one of the letters in the alphabet. We note
here that a valuation in a state in the next temporal transi-
tion in LTLK may change, whereas such a valuation remains
consistent in POL. Thus, ¬p ∧ Xp is satisfiable in LTLK,
whereas ¬p ∧ ⟨a⟩p is not satisfiable in POL, which leads to
a difference in expressive power. From the complexity view-
point, the satisfiability problem of LTLK is non-elementary,
whereas for POL, it is 2EXPTIME-complete. It is interest-
ing to note that both LTLK and POL can express that after
some finite sequence of observations, φ holds, but only POL
can express that after some even occurrences of observa-
tions, φ holds. Resolving the intricate relationship between
LTLK and POL needs further study.

Since knowledge updates branch out in POL depend-
ing upon the action observed, Computational Tree Logic
with epistemic operators (CTLK) (Dima 2008) forms a close
neighbour, whose satisfiability problem turns out to be un-
decidable. We note here that unravelled POL models create
indistinguishability within the nodes (distinct POL models)
themselves, whereas, indistinguishability in a CTLK model
occurs among nodes across the tree.

8 Perspectives
Our main contribution has been to show that the satisfiability
problem of POL (with Kleene star) is 2EXPTIME-complete.
Now, we plan to study more tractable fragments of POL, and
also more expressive extensions of POL, for instance, when
expectations are context-free grammars.

A dynamic extension of POL mentioned in (van Dit-
marsch et al. 2014), Epistemic Protocol Logic (EPL) is yet
to be studied from the computational viewpoint. This logic
is similar to DEL: EPL also comes with operators that have
pointed event or action model like DEL, which assigns ex-
pectations to the POL models. Such action models deal with
PDL-like regular expressions with Boolean verifiers. Com-
plexity studies for the logic are open problems.
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