Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Fitting Description Logic Ontologies to ABox and Query Examples

Maurice Funk, Marvin Grosser, Carsten Lutz

Leipzig University
ScaDS.AI Center Dresden/Leipzig
{mfunk, grosser, clu}@informatik.uni-leipzig.com

Abstract

We study a fitting problem inspired by ontology-mediated
querying: given a collection of positive and negative examples
of the form (A, ¢) with A an ABox and q a Boolean query, we
seek an ontology O that satisfies A U O |= ¢ for all positive
examples and A U O £ g for all negative examples. We
consider the description logics ALC and ALCZ as ontology
languages and a range of query languages that includes atomic
queries (AQs), conjunctive queries (CQs), and unions thereof
(UCQs). For all of the resulting fitting problems, we provide
effective characterizations and determine the computational
complexity of deciding whether a fitting ontology exists. This
problem turns out to be CONP-complete for AQs and full CQs
and 2EXPTIME-complete for CQs and UCQs. These results
hold for both ALC and ALCZ.

1 Introduction

In many areas of computer science and Al, a fundamental
problem is to fit a formal object to a given collection of ex-
amples. In inductive program synthesis, for instance, one
wants to find a program that complies with a given collection
of examples of input-output behavior (Jacindha, Abishek,
and Vasuki 2022). In machine learning, fitting a model to a
given set of examples is closely linked to PAC-style gener-
alization guarantees (Shalev-Shwartz and Ben-David 2014).
And in database research, the traditional query-by-example
paradigm asks to find a query that fits a given set of data
examples (Li, Chan, and Maier 2015).

In this article, we study the problem of fitting an ontology
formulated in a description logic (DL) to a given collection
of positive and negative examples. Our concrete setting is
motivated by the paradigm of ontology-mediated querying
where data is enriched by an ontology that provides domain
knowledge, aiming to return more complete answers and to
bridge heterogeneous representations in the data (Bienvenu
and Ortiz 2015; Xiao et al. 2018). Guided by this application,
we use examples that take the form (A, q) where A is an
ABox (in other words: a database) and g is a Boolean query.
We then seek an ontology O that satisfies A U O = ¢ for all
positive examples and A U O £ q for all negative examples.
It is not a restriction that q is required to be Boolean since
our queries may contain individuals from the ABox.

A main application of this ontology fitting problem is to
assist with ontology construction and engineering. This is in

336

the spirit of several other proposals that have the same aim,
such as ontology construction and completion using formal
concept analysis (Baader et al. 2007; Baader and Distel 2009;
Kriegel 2024) and Angluin’s framework of exact learn-
ing (Konev et al. 2017), see also the survey (Ozaki 2020).
We remark that there is a large literature on fitting DL
concepts (rather than ontologies) to a collection of exam-
ples, sometimes referred to as concept learning, see for in-
stance (Lehmann and Hitzler 2010; Biihmann et al. 2018;
Funk et al. 2019; Jung et al. 2021). Concepts can be viewed
as the building blocks of an ontology and in fact concept
fitting also has the support of ontology engineering as a main
aim. The techniques needed for concept fitting and ontology
fitting are, however, quite different. While it is probably
unrealistic to assume that an ontology for an entire domain
can be built in a single step from a given set of examples, we
believe that small portions of the ontology can be constructed
this way, thereby supporting a step-by-step development pro-
cess by a human engineer. Moreover, in ontology-mediated
querying there are applications where a more pragmatic view
of an ontology seems appropriate: instead of providing a
careful and detailed domain representation, one only wants
the ontology to support more complete answers for some
given query or a small set of queries (Calvanese et al. 2006;
Kharlamov et al. 2017; Sequeda et al. 2019). In such a case,
an ontology of rather small size may suffice and deriving it
from a collection of examples seems natural, close in spirit
to query-by-example.

As ontology languages, we concentrate on the expres-
sive yet fundamental DLs ALC and ALCZ, and as query
languages we consider atomic queries (AQs), conjunctive
queries (CQs), full CQs (CQs without quantified variables),
and unions of conjunctive queries (UCQs). In addition, we
study a fitting problem in which the examples only consist of
an ABox and where we seek an ontology that is consistent
with the positive examples and inconsistent with the negative
ones; this is related, but not identical to both AQ-based and
full CQ-based fitting. For all of the resulting combinations,
we provide effective characterizations and determine the pre-
cise complexity of deciding whether a fitting ontology exists.
The algorithms that we use to prove the upper bounds are
able to produce explicit fitting ontologies.

For consistency-based fitting and for AQs, our characteriza-
tions of fitting existence make use of the connection between

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

ontology-mediated querying and constraint satisfaction prob-
lems (CSPs) established in (Bienvenu et al. 2014). While this
connection does not extend to full CQs, the intuitions do and
in all three cases our characterizations enable a CONP upper
bound, both for ALC- and ALCZ-ontologies. Correspond-
ing lower bounds are easy to obtain by a reduction from the
digraph homomorphism problem. We remark that the com-
plexity is thus much lower than that of the associated query
entailment problems, meaning to decide whether AU O |= ¢
for a given ABox A, ontology O, and query ¢. In fact, the
complexity of query entailment is EXPTIME-complete for all
cases discussed so far (Baader et al. 2017).

For CQs and UCQs, we give a characterization of fitting
existence based on the existence of certain forest models Z.
These models are potentially infinite, intuitively because the
positive examples (.4, ¢) act similarly to an existential rule: if
we homomorphically find A in Z, then at the same place we
must (in a certain, slightly unusual sense) also find q. Thus
the existential quantifiers of ¢ may enforce that every element
of 7 has a successor, resulting in infinity. As a consequence
of this effect, the computational complexity of fitting exis-
tence for CQs and UCQs turns out to be much higher than for
AQs and full CQs: it is 2EXPTIME-complete both for CQs
and UCQs, no matter whether we want to fit an ALC- or an
ALCZ-ontology. For ALCZ, the complexity thus coincides
with that of query entailment, which is 2EXPTIME-complete
both for CQs and UCQs (Lutz 2008). For ALC, the complex-
ity of the fitting problem is harder than that of the associated
entailment problems, which are both EXPTIME-complete
(Lutz 2008). Our upper bounds are obtained by a mosaic pro-
cedure. The lower bounds for ALCZ are proved by reduction
from query entailment and for ALC they are proved by reduc-
tion from the word problem of exponentially space-bounded
alternating Turing machines.

Proofs are provided in the appendix of (Funk, Grosser, and
Lutz 2025).

Related Work. To the best of our knowledge, the only
other study of fitting problems for ontologies is a recent
one by (Jung, Hosemann, and Lutz 2025). However, it
uses interpretations as examples rather than ABox and
queries. Vaguely related are fitting problems for DL con-
cepts. These have been investigated from a practical an-
gle by (Lehmann and Hitzler 2010; Biithmann et al. 2018;
Rizzo, Fanizzi, and d’Amato 2020), and from a founda-
tional perspective by (Funk et al. 2019; Jung et al. 2020;
Jung et al. 2021; Jung et al. 2022). Other approaches
that support the construction of an entire ontology include
Angluin’s framework of exact learning by (Konev et al.
2017) and formal concept analysis by (Baader et al. 2007;
Baader and Distel 2009; Kriegel 2024). These and related
approaches are surveyed by (Ozaki 2020).

2 Preliminaries
2.1 Description Logic

Let N¢, Ngr, and N; be countably infinite sets of concept
names, role names, and individual names. An inverse role
takes the form »— with r a role name, and a role is a role

337

name or an inverse role. If » = s~ is an inverse role, then we
set r~ = s. An ALCZ-concept C is built according to

C,D:=T|A|-C|CnND|3r.D

where A ranges over concept names and r over roles. As
usual, we write | as abbreviation for =T, C'LU D for =(—=C'N
D), and Vr.C for =3r.—~C. An ALC-concept is an ALCL-
concept that does not use inverse roles.

An ALCT-ontology is a finite set of concept inclusions
(Cls) C T D, where C,D are ALCZ-concepts. ALC-
ontologies are defined likewise. We may write C' = D as
shorthand for C & D and D C C. An ABox is a finite set
of concept assertions A(a) and role assertions r(a,b) where
A is a concept name, 7 a role name, and a, b are individual
names. We use ind(.A) to denote the set of individual names
used in A.

The semantics of concepts is defined as usual in terms
of interpretations Z = (AZ,-) with AT the (non-empty)
domain and T the interpretation function, we refer to (Baader
et al. 2017) for full details. An interpretation Z satisfies a CI
C C Dif CT C DZ, a concept assertion A(a) if a € AZ,
and a role assertion r(a, b) if (a,b) € rT; we thus make the
standard names assumption. We say that Z is a model of
an ontology O, written Z = O, if it satisfies all concept
inclusions in it, and likewise for ABoxes. An ontology is
satisfiable if it has a model and an ABox is consistent with
an ontology O if A and O have a common model.

A homomorphism from an interpretation Z; to an in-
terpretation T, is a mapping h: ATt — AZ2 such that
d € AT implies h(d) € AZ2 and (d,e) € r¥* implies
(h(d), h(e)) € rZ2 for all concept names A, role names 7,
and d,e € AT1. We write Z; — I, if there exists a homo-
morphism from Z; to Z and Z; - Z, otherwise. We will
also use homomorphisms from ABoxes to ABoxes and from
ABoxes to interpretations. These are defined as expected. In
particular, homomorphisms from ABox to ABox need not
map individual names to themselves, which would trivialize
them.

2.2 Queries

A conjunctive query (CQ) takes the form ¢ = 3T ©(T) where
T is a tuple of variables and ¢ a conjunction of atoms A(t)
and r(¢,t"), with A € N¢, r € Ng, and ¢, ¢’ variables from
T or individuals from N,. With var(q), we denote the set
of variables in . We take the liberty to view g as a set of
atoms, writing e.g2. a € ¢ to indicate that « is an atom in q.
We may also write r~(z,y) € ¢ in place of r(y, z) € g. An
atomic query (AQ) is a CQ of the simple form A(a), with
A a concept name. A CQ is full if it does not contain any
existentially quantified variables. A union of conjunctive
queries (UCQ) q is a disjunction of CQs. We refer to each of
these classes of queries as a query language.

A CQ g gives rise to an interpretation Z, with A%« the set
of all variables and individuals in g, AZ« = {t | A(t) € ¢},
and rfe = {(t,t') | r(t,t') € ¢} forall A € Nc and r € Ng.
With a homomorphism from a CQ ¢ to an interpretation Z, we
mean a homomorphism from Z, to Z that is the identity on all
individual names. If we want to emphasize the latter property,
we may speak of a strong homomorphism. In contrast, a

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

weak homomorphism from ¢ to Z, as sometimes used in our
proofs, need not be the identity on individual names. For an
interpretation Z and a UCQ ¢, we write Z |= q if there is a
(strong) homomorphism i from a CQ in ¢ to Z. For an ABox
A and ontology O, we write AU O |= ¢ if Z |= ¢ for all
models Z of A and O.

Note that all queries introduced above are Boolean, that is,
they evaluate to true or false instead of producing answers.
For the purposes of this paper, however, this is without loss
of generality since we admit individual names in queries.

We use ||O|| to denote the size of any syntactic object O
such as a concept, an ontology, or a query. It is defined as
the length of the encoding of O as a word over some suitable
alphabet.

An ALC-forest model T of an ABox A is a model of A
such that

1. the directed graph (AZ,{J, %\ (ind(A) x ind(A)) is a
forest (a disjoint union of trees) and

2. v N (ind(A) x ind(A)) = {(a,d) | r(a,b) € A}.

ALCTI-forest models are defined likewise, but based on the
undirected version of the graph in Point 1. In other words,
in ALC-forest models all edges must point away from the
roots of the trees while this is not the case for ALCZ-forest
models. With the degree of an interpretation, we mean the
maximal number of neighbors of any element in its domain.

Lemma 1. Let £ € {ALC, ALCT}, O be an L-ontology,
A an ABox, and q a UCQ. If AU O £ q, then there is an
L-forest model T of A and O of degree at most ||O|| that
satisfies T - q.

The proof of Lemma 1, which can be found for instance
in (Lutz 2008), relies on unraveling, which we shall also use
in this article. Let Z be an interpretation and d € AT. A
pathin 7 is a sequence p = dyi71 - - - dp—17—1d, of domain
elements d; from AZ and role names r; such that (d;, d; 1) €
rZ for 1 < i < n. We say that the path starts at d; and use
tail(p) to denote d,,.

The ALC-unraveling of T at d is the interpretation U de-
fined as follows:

AY = setof all paths in Z starting at d
AU = {p|tail(p) € AT}
™ = {(p,p') | p’ = pre for some e}.

The ALCZ-unraveling of Z at d is defined likewise, with
the modification that inverses of roles can also appear in paths
and that (p, p') is also included in 7 if p = p/r—e. Note
that there is a homomorphism from ¢/ to Z that maps every
p € AY to tail(p).

2.3 ABox Examples and the Fitting Problem

Let Q be a query language such as Q@ = AQ or @ = CQ. An
ABox-Q example is a pair (A, q) with A an ABox and ¢ a
query from Q such that all individual names that appear in g
are from ind(A).

By a collection of labeled examples we mean a pair £ =
(E*, E™) of finite sets of examples. The examples in £
are the positive examples and the examples in £~ are the

338

negative examples. We say that O fits E if AU O [¢ for
all (A,q) € Et and AU O £ gforall (A,q) € E~. The
following example illustrates this central notion.

Example 1. Consider the collection of labeled ABox-UCQ
examples E = (ET, E™), where

ET = { ({authorOf(a, b), Publication(b)}, Author(a)),

({Reviewer(a)}, 3 reviews(a, z) A Publication(z)),
({Publication(a)}, Confpaper(a) V Jarticle(a)) },
and E= = (. An ALC-ontology that fits (E+, E™) is
O = { JauthorOf.Publication C Author
Reviewer T Jreviews.Publication
Publication C Confpaper Ul Jarticle }.

There are, however, many other fitting ALC-ontologies as
well, including as an extreme O = {T C 1} and, say,

O’ = O U {Author C JauthorOf.Reviewer}.

We can make both of them non-fitting by adding the negative
example

({Author(a)}, 3x authorOf (a,) A Reviewer(x)).

Let £ be an ontology language, such as £ = ALCZ, and Q
a query language. Then (£, Q)-ontology fitting is the problem
to decide, given as input a collection of labeled ABox-Q
examples E, whether E admits a fitting £-ontology. We
generally assume that the ABoxes used in E have pairwise
disjoint sets of individual names. It is not hard to verify
that this is without loss of generality because consistently
renaming individual names in a collection of examples has
no impact on the existence of a fitting ontology.

There is a natural variation of (£, Q)-ontology fitting
where one additionally requires the fitting ontology to be
consistent with all ABoxes that occur in positive examples.!
We then speak of consistent (L, Q)-ontology fitting. The fol-
lowing observation shows that it suffices to design algorithms
for (£, Q)-ontology fitting as originally introduced.

Proposition 1. Let L be any ontology language and Q €
{AQ, FullCQ,CQ,UCQ}. Then there is a polynomial time
reduction from consistent (L, Q)-ontology fitting to (L, Q)-
ontology fitting.

Proof. We exemplarily treat the case @ = AQ. The other
cases are similar. Let E be a collection of labeled ABox-AQ
examples. We extend FE to a collection E’ by adding, for
each positive example (A, Q(a)) € ET, a negative example
(A, X (a)) where X is a concept name that is not mentioned
in . Then E admits a fitting £-ontology that is consistent
with all ABoxes in positive examples if and only if £ admits
a fitting L-ontology. In fact, any £-ontology that fits £, does
not mention X, and is consistent with all ABoxes in positive
examples is also a fitting of E’. Conversely, any ontology
that fits £’ must be consistent with all ABoxes that occur in
positive examples as otherwise one of the additional negative
examples would be violated. a

"Note that it is implicit already in the original formulation that
the fitting ontology must be consistent with all ABoxes that occur
in negative examples (A, ¢), as otherwise AU O |= q.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

3 Consistency-Based Fitting

We start with a version of ontology fitting that is based on
ABox consistency rather than on querying. An example is
then simply an ABox, and an ontology O fits a collection of
examples F = (E*, E7) if A is consistent with O for all
A € ET and inconsistent with O for all A € E~. We refer
to the induced decision problem as consistent L-ontology
fitting.?> 'We believe that it is natural to consider this basic
case as a warm-up.

Example 2. Consider the collection of labeled ABox exam-
ples E = (Et,E™), where

» E* contains the ABox Ay = {r(a1,az2)} and
* E~ contains the ABox Ay = {r(b,b)}.

Then O = {3r.3r. T T L} is an ALC-ontology that fits
(E*,E™). If we swap ET and E~, then there is no fitting
ALC-ontology or ALCZ-ontology.

We start with a characterization of consistent £-ontology
fitting in terms of homomorphisms.

Theorem 1. Let E = (ET, E™) be a collection of labeled
ABox examples, L € {ALC, ACCT}, and AT = W ET.
Then the following are equivalent:

1. E admits a fitting L-ontology;
2. AA AT forall Ae E™.

Note that the characterizations for ALC and ALCZ are
identical, and thus a collection of labeled ABox-consistency
examples admits a fitting .ALC-ontology if and only if it
admits a fitting ALCZ-ontology. It is clear from the proofs
that further adding role inclusions, see (Baader et al. 2017),
does not increase the separating power either. Adding number
restrictions, however, has an impact; see Section 7.

The proof of Theorem 1 makes use of the connection be-
tween ontology-mediated querying and constraint satisfaction
problems (CSPs) established in (Lutz and Wolter 2012). In
particular, for the “2 = 1” direction we use the fact that for
every ABox A, one can construct an ontology O such that for
all ABoxes B that only use concept and role names from A,
the following holds: B — A if and only if 5 is consistent
with O. We apply this choosing A4 = A™.

We obtain an upper bound for consistent ontology fitting
by a straightforward implementation of Point 2 of Theorem 1
and a corresponding lower bound by an easy reduction of the
homomorphism problem for directed graphs.

Theorem 2. Let £ € {ALC, ALCI}. Then consistent L-
ontology fitting is CONP-complete.

It might be worthwhile to point out as a corollary of Theo-
rem 1 that negative examples can be treated independently,
in the following sense.

Corollary 1. Let £ € {ALC, ALCT} and E be a collection
of labeled ABox examples, with E= = { Ay, ..., A, }. Then
E admits a fitting L-ontology if and only if for 1 < i < n,
the collection of ABox examples (E™,{A;}) admits a fitting
L-ontology.

“Not to be confused with consistent (£, Q)-ontology fitting as
briefly considered in Proposition 1.

339

We note that, in related fitting settings such as the one stud-
ied in (Funk et al. 2019), statements of this form can often be
shown in a very direct way rather than via a characterization.
This does not appear to be the case here.

4 Atomic Queries

We consider atomic queries and again present a characteri-
zation in terms of homomorphisms. These are now in the
other direction, from the positive examples to the negative
examples, corresponding to the complementation involved
in the well-known reductions from ABox consistency to AQ
entailment and vice versa. What is more important, however,
is that it does no longer suffice to work directly with the
(negative) examples. In fact, the positive examples act like a
form of implication on the negative examples, similarly to an
existential rule (with atomic unary rule head), and as a result
we must first suitably enrich the negative examples.

Let E = (ET, E7) be a collection of labeled ABox-AQ
examples. A completion for E is an ABox C that extends the
ABox A~ := Lﬂ(A;Q(a))eE, A by concept assertions Q(b)
where b € ind(A™) and @ a concept name that occurs as an
AQin ET.

Theorem 3. Let E = (ET, E™) be a collection of labeled
ABox-AQ examples and let L € {ALC, ALCT}. Then the
following are equivalent:

1. E admits a fitting L-ontology;
2. there is a completion C for E such that
(a) forall (A,Q(a)) € ET: if h is a homomorphism from
AtoC, then Q(h(a)) € C;
(b) forall (A,Q(a)) € E~: Q(a) &C.

The announced behavior of positive examples as an impli-
cation is reflected by Point 2a. Note that, as in the consistency
case, there is no difference between ALC and ALCZ. The
proof of Theorem 3 is similar to that of Theorem 1. It might
be worthwhile to note that Theorem 3 does not suggest a
counterpart of Corollary 1. Such a counterpart would speak
about single positive examples rather than single negative
ones, because of the complementation mentioned above. The
following example illustrates that it does not suffice to con-
centrate on a single positive example (nor a single negative
one). Intuitively, this is due to the fact that the ABox A in
Point 2a may be disconnected.

Example 3. Consider the collection of labeled ABox-AQ
examples E = (ET, E™) with

E* = { ({A2(a)}, Ai1(a)), ({Aa(b)7A4(b/)}7A2(b)) }
E7 ={({45(c0)}, 41(c)), ({As(d)}, A5(d)) }-

E does not admit a fitting ALCZ-ontology, which can be
seen by applying Theorem 3: by definition, any completion
C must satisfy A~ = {As(c), A4(d)} C C. To satisfy Condi-
tion 2a of Theorem 3, it must then also satisfy As(c) € C and
A (c) € C. But then C violates Condition 2b of Theorem 3 for
the first negative example. If we drop any of the positive ex-
amples, we find completions C = A~ andC = A~ U{B(c)},
respectively, which satisfy Conditions 2a and 2b. Also drop-
ping any negative example leads to a satisfying completion.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

In contrast to the case of consistent L-ontology fitting, a
naive implementation of the characterization given in Theo-
rem 3 only gives a X:5-upper bound: guess the completion C
for E and then co-guess the homomorphisms in Point (a). In
the following, we show how to improve this to CONP. The
main observation is that we can do better than guessing C
blindly, by treating positive examples as rules.

Definition 1. Let E = (E+, E7) be a collection of labeled
ABox-AQ examples, and let A~ =Y 4 o(a))ep- A A refu-
tation candidate for E is an ABox C that can be obtained by
starting with A~ and then applying the following rule zero
or more times:

(R) if (A,Q(a)) € ET and h is a homomorphism from A to
C, then setC = CU{Q(h(a))}.

Rule (R) can add at most | E*| - |ind(A™)| (and thus only
polynomially many) assertions to A ™.

Proposition 2. Let E = (E+, E™) be a collection of labeled
ABox-AQ examples and let L € {ALC, ALCT}. Then the
following are equivalent:

1. E admits no fitting L-ontology;

2. there is a refutation candidate C for E such that Q(a) € C
for some (A,Q(a)) € E™.

Note that Point 1 of Proposition 2 is the complement of
Point 1 of Theorem 3, and thus C has a different role: we may
co-guess it, in contrast to the C in Theorem 3 which needs
to be guessed. A close look reveals that we indeed obtain a
CONP upper bound.

Theorem 4. Let L € {ALC, ALCT}.
ontology fitting is CONP-complete.

Then (L,AQ)-

Proof. CONP-hardness can be proved as in the consistency
case. It thus remains to argue that the complement of the
(L, AQ)-ontology fitting problem is in NP. By Proposition 2,
it suffices to guess an ABox C with the same individuals
as A~ and to verify that (i) C is a refutation candidate and
(ii) Q(a) € C for some (A, Q(a)) € E~. To verify (i) we
may guess, along with C, a sequence of positive examples
(A,Q(a)) € ET with associated homomorphisms from .4
that demonstrate the construction of C from A~ by repeated
applications of Rule (R). The maximum length of the se-
quence is |[E™T| - |ind(A™)|. With the sequence at hand, it is
then easy to verify deterministically in polynomial time that
C is a refutation candidate. a

In view of the close connection between ABox consistency
and AQ entailment, one may wonder whether the two fitting
problems studied in this and the preceding section are, in
some reasonable sense, identical. We may ask whether for
every instance E of consistent £-ontology fitting, there is an
instance E’ of (£, AQ)-ontology fitting with the same set of
fitting ontologies and vice versa. It turns out that neither is
the case. For better readability, in the following we refer to
ABox examples as ABox-consistency examples. For £ an
ontology language and E a collection of labeled examples,
let Og, ¢ be the set of all L-ontologies that fit £.

Proposition 3. Let £ € {ALC, ALCT}. Then

340

1. there exists a collection of ABox-AQ examples E, such that
there is no collection of ABox-consistency examples E’
with Og r = Op' ;

2. there exists a collection of ABox-consistency examples,

such that there is no collection of ABox-AQ examples E'
with OE,[; = OE/,L-

Proof. For Point 1, consider the collection of ABox-AQ
examples F = (ET, E~) with ET = {({A(a)}, B1(a))}
and E- = {({A4(a)}, B2(a))}. Note that we use A(a)}
only to ensure that a occurs in the ABoxes. It is easy to see
that for Oy {T € By} and O; = {T C By}, O fits
FE and 05 does not. Furthermore, every ABox is consistent
with both @; and O,. Therefore, for every collection of
ABox-consistency example E’, either {O1, O3} C Opr or
01 ¢ OEQL and 02 ¢ OE’,L~

For Point 2, consider the collection of ABox-consistency
examples E = (E1,0) with ET = {{s(a,b)}} and let E’ be
any collection of ABox-AQ examples. If there is a negative
example (A, A(a)) in E’ for some concept name A, then for
O ={T C A}, O fits E but O does not fit E’. If there is no
negative example in E’, then for O’ = {T C L}, O’ fits F’,
but @’ does not fit F. a

5 Full Conjunctive Queries

We next study the case of full conjunctive queries. Tech-
nically, it is closely related to both the AQ-based case and
the ABox consistency-based case. However, the potential
presence of role atoms in queries brings some technical com-
plications.

We call an example (A, q) inconsistent if any ALCI-
ontology O that satisfies A U O k= ¢ is inconsistent with A,
and consistent otherwise. It is easy to see that any example
(A, q) such that g contains a role atom 7(a, b) ¢ A must be
inconsistent. In fact, this follows from Lemma 1. Conversely,
any example (A4, ¢) such that ¢ does not contain such a role
atom is consistent. This is witnessed by the ontology

O={TCA|AQ)eq.

Note that an inconsistent positive example (A,) expresses
the constraint that .4 must be inconsistent with the fitting
ontology @ and an inconsistent negative example (A, q)
expresses that .4 must be consistent with the fitting ontol-
ogy O. In view of this, it is clear that, up to swapping posi-
tive and negative examples, FullCQ-based fitting generalizes
consistency-based fitting. Moreover, it trivially generalizes
AQ-based fitting since every AQ is a full CQ.

Proposition 4. Ler L € {ALC, ALCZ}. Then for every
collection of ABox-consistency or ABox-AQ examples E,
there is a collection of ABox-FullCQ examples such that
Og,c = Op/ .

For the following development, we would ideally like to
get rid of inconsistent examples to achieve simpler character-
izations.

There is, however, no obvious way to achieve this for in-
consistent positive examples. We can get rid of inconsistent
negative examples based on the following observation. As-
sume that a collection of ABox-FullCQ examples E contains

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

an inconsistent negative example (A, ¢). We replace it with
the negative example (A, X (a)) where X is a fresh concept
name and a € ind(A) is chosen arbitrarily. The set of fit-
ting ALCZ-ontologies for the resulting set of examples E’
remains essentially the same.

Lemma 2. For L € {ALC, ALCTL}, there is an L-ontology
that fits E if and only if there is one that fits E'.

Completions for collections of ABox-FullCQ examples
are defined in exact analogy with completions for collections
of ABox-AQ examples.

Theorem 5. Let E = (Et, E™) be a collection of labeled
ABox-FullCQ examples and let L € {ALC, ALCT}. Then
the following are equivalent:

1. E admits a fitting L-ontology;
2. there is a completion C for E such that

(a) for all consistent (A, q) € ET: if h is a homomorphism
Sfrom Ato C and Q(a) € g, then Q(h(a)) € C;

(b) for all (A,q) € E~: there is a Q(a) € q such that
Qa) £C;

(c) for all inconsistent (A, q) € ET: there is no homomor-
phism from A to C.

The proof of Theorem 5 uses Theorem 3. Note that, once
more, there is no difference between ALC and ALCZ. As
in the case of AQs, our characterization suggests only a X5
upper bound. However, we can get down to CONP in the
same way as for AQs. The following is in exact analogy with
Definition 1.

Definition 2. Ler E = (E+, E™) be a collection of labeled
ABox-FullCQ examples, and let A~ = Y 4 pep- A A
refutation candidate for E is an ABox C that can be obtained
by starting with A~ and then applying the following rule
zero or more times:

(R) if (A, q) € ET is consistent and h is a homomorphism
Sfrom Ato C and Q(a) € g, then set C = C U {Q(h(a))}.

The proof of the following is then analogous to that of
Proposition 2. Details are omitted.

Proposition 5. Let E = (E*, E™) be a collection of labeled
ABox-AQ examples and let L € {ALC, ALCI}. Then the
following are equivalent:

1. E admits no fitting L-ontology;
2. there is a refutation candidate C for E such that one of the
following conditions is satisfied:
(a) there is an (A,q) € E~ such that Q(a) € C for all
Q) € ¢;
(b) there is an inconsistent (A,q) € E™ and a homomor-
phism from A to C.

And finally, the proof of the following is similar to that of
Theorem 4.

Theorem 6. Let L € {ALC, ALCT}. Then (L, FullCQ)-
ontology fitting is CONP-complete.

341

6 CQsand UCQs

We now turn to conjunctive queries and UCQs, which con-
stitute the most challenging case. This is due to the fact
that, since positive examples act as implications, the presence
of existentially quantified variables in the query effectively
turns these examples into a form of existential rule. Thus,
completions as used for AQs and full CQs are no longer
finite.

Throughout this section, we assume that ABoxes in pos-
itive examples are never empty. This is mainly to avoid
dealing with too many special cases in the technical develop-
ment. We conjecture that admitting empty ABoxes does not
change the obtained results.

6.1 Characterization for ALC and ALCT

We start with a characterization for the case of UCQs (and
thus also CQs) that is similar in spirit to the one for full
CQs given in Theorem 5. The characterization applies to
both ALC and ALCZ in a uniform, though not identical way.
As already mentioned, finite completions no longer suffice
and we replace them with potentially infinite interpretations.
There is another interesting view on this: the fitting ontolo-
gies constructed (as part of the proofs) in Sections 3 and 4
do not make existential statements, that is, their sets of mod-
els are closed under taking induced subinterpretations. This,
however, cannot be achieved for CQs and UCQs. We illus-
trate this by the following example which also shows that,
unlike for AQs and full CQs, there is a difference between fit-
ting ALC-ontologies and fitting ALCZ-ontologies. Induced
subinterpretations are defined in exact analogy with induced
substructures in model theory.

Example 4. Consider the collection of ABox-CQ examples
E = (Et,E™) where

Y = {({Ai(a)}, 3z r(z,a) A As(2)),
({Az2(a)}, Fxr(x,a) A A1 (x))
E= = {({4i(a)}, B(a)), ({A2(a)}, B(a))}-

Then there is a fitting ALCZ-ontology:
0= { A1 E E'T_.AQ, A2 E HT_.Al }

The set of models of O is clearly not closed under taking
induced subinterpretations. In fact, this is true for every
ALCTI-ontology O’ that fits E since any such O’ must (i) log-
ically imply O and (ii) be consistent with the ABoxes { A(a)}
and {B(a)}, due to the negative examples.

Moreover, it is easy to see that there is no ALC-ontology O
that fits E. This is due to Lemma I and the negative examples,
ensuring that any such O would have to be consistent with
the ABoxes in E.

We start with a preliminary. Let £ € {ALC, ALCT}, let
A be an ABox, 7 an interpretation, and ~ a homomorphism
from A to Z. We define an interpretation Z 4 5, . as follows.
Start with interpretation Zy:

AT = ind(A)
ATo = {a|h(a) € AT} forall A € N¢
rfo = {(a,b) | r(a,b) € A} forallr € Ng.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Then Z 4 5, ¢ is obtained by taking, for every a € ind(A),
the L-unraveling of Z at h(a) and disjointly adding it to Z,
identifying the root with a. It can be shown that if 7 is a
model of some L-ontology O, then Z 4,5, is also a model
of O. Informally, we use Z 4, to ‘undo’ the potential
identification of individual names by h, in this way obtaining
a forest model of A.

Theorem 7. Let E = (E1,E~) be a collection of la-
beled ABox-UCQ examples with E= # () and let L €
{ALC, ALCTI}. Then the following are equivalent:

1. there is an L-ontology O that fits E;

. . . . 2
2. there is an interpretation T with degree at most 21ZI” such
that

(a) T =.cp- T where, foreache = (A,q) € E-, L is
an L-forest model of A with I, |~ q;

(b) forall (A,q) € ET: if his a homomorphism from A
1oL, thenTyyp = q.

The proof of Theorem 7 follows the same intuitions as
the proofs of our previous characterizations, but is more
technical. One challenge is that, in the “2 = 1” direction,
we first need to construct from an interpretation Z as in the
theorem a suitable finite interpretation that we can then use
to identify a fitting £-ontology. For this we adopt the finite
model construction for ontology-mediated querying from
(Gogacz, Ibanez-Garcia, and Murlak 2018).

6.2 Upper Bounds
Our aim is to prove the following.

Theorem 8. Let £ € {ALC, ALCT} and Q € {CQ, UCQ}.
Then (L, Q)-ontology fitting is in 2EXPTIME.

It suffices to prove the theorem for @ = UCQ. We prove
it for ALC and ALCZ simultaneously. We use the charac-
terization provided by Theorem 7 combined with a mosaic
procedure, that is, we attempt to assemble the interpretation Z
from Point 2 of Theorem 7 by combining small pieces.

Let £ € {ALC, ALCT} and assume that we are given
a set of ABox-UCQ examples Ey = (Ej, Ey). We will
often consider maximally connected components of ABoxes
and CQs which, for brevity, we simply call components. We
wish to work with only connected queries in positive ex-
amples. This can be achieved as follows. If (A4, q) € Ef
withqg = ¢; V -+ V ¢, and ¢; has components p1, ..., pg,
k > 1, then we replace (A, q) with positive examples
(A,q1), ..., (A, qr) where gj is obtained from ¢ by replacing
the disjunct g; with p;. This leads to an exponential blowup
of the number of positive examples, which, however, does
not compromise our upper bound because the size of the
examples themselves does not increase.

Throughout this section, we shall be concerned with L-
forest models Z of ABoxes A. We generally assume the
following naming convention in such models. All elements
of A must be of the form aw where a € ind(A) and w €
N*, that is, w is a finite word over the infinite alphabet N.
Moreover, (d,e) € r* implies that d, e € ind(A) or e = dc
ord = ec (if L = ALCT) where ¢ € N. If d,e € AT
and e = dc, then we call e a successor of d. Note that a

342

successor may be connected to its predecessor via a role
name, an inverse role, or not connected at all. The depth of
aw is defined as the length of w .

Since mosaics represent ‘local’ pieces of an interpretation,
disconnected ABoxes in examples pose a challenge: a homo-
morphism may map their components into different parts of a
forest model that are far away from each other. We thus need
some preparation to deal with disconnected ABoxes. For
positive examples, one important ingredient is the following
observation.

Lemma 3. Let T be an interpretation and (A,q) € ET a
positive example such that Condition (b) from Theorem 7 is
satisfied and each CQ in q is connected. Then there exists a
component B of A such that: if h is a homomorphism from
AtoZ, thenZIpy o = q

Note that Lemma 3 requires the component B to be uni-
form across all homomorphisms h. For each e = (A, q) €
E*, we choose a component ch(e) of A. Intuitively, ch(e)
is the component 3 from Lemma 3 with Z the interpreta-
tion from Point 2 of Theorem 7. Since, however, we do not
know Z, ch acts like a guess and our algorithm shall iterate
over all possible choice functions ch.

To deal with an example e = (A, q) € E™, we shall focus
on the component ch(e) of A. The other components of A,
however, cannot be ignored. We need to know whether they
have a homomorphism to Z, possibly some remote part of
it. This is not easily possible from the local perspective of
a mosaic, so we again resort to guessing. We choose a set
2 of ABoxes that are a component of the ABox of some
positive example. We will take care (locally!) that no ABox
in 20 admits a homomorphism to Z. All other components
of ABoxes in positive examples may or may not have a
homomorphism to Z, we shall simply treat them as if they do.
We say that a positive example (A, q) € E™ is ™A-enabled if
no component of A is in 2.

Note that the number of choices for 2 and ch is double
exponential (it is not single exponential since we have an
exponential number of positive examples, see above).

The queries in negative examples need not be connected.
To falsify a non-connected CQ, it clearly suffices to falsify
one of its components. We use another choice function to
choose these components: foreache = (A, py V---Vpyg) €
E~ and 1 < i < k, choose a component ch(e,p;) of p;.
There are single exponentially many choices.

Our mosaic procedure tries to assemble the £-forest model
T starting from a large piece that contains the ABox part of
7 as well as the tree parts up to depth 3|| E||. The potentially
infinite remainder of the trees is then assembled from smaller
pieces. We start with defining the large pieces.

Definition 3. A base candidate for ch and 2l is an interpreta-

tion J =Y, c - I that satisfies the following conditions:

1. foreache = (A,p1 V-V p) € E~, I is an L-forest
model of A such that T, [~ ch(e,p;) for 1 <i <k;

2. no ABox from 2l has a homomorphism to J ;

3. J has depth at most 3||Eo|| and degree at most 2I1¥ol’;

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

4. foralle = (A,q) € ET that are U-enabled: if h is a ho-
momorphism from ch(e) to J whose range contains only
elements of depth at most 2||Ey||, then Jen(e) n,c = 4-

To make sure that there are only finitely many (in fact
double exponentially many) base candidates, we assume that
(1) J interprets only concept and role names that occur in
E and (ii) if w € A7 has k successors wc, . . ., wcy, then
{c1,. ey ={1,... k}.

We next define the small mosaics. An L-tree interpretation
J is defined exactly like an L-forest model, except that all
domain elements are of the form w € N*, that is, there is no
leading individual name. We additionally require the domain
AY to be prefix-closed and call £ € A7 the root of J.

We say that 7' is a subtree of a tree interpretation 7 if,
for some successor c of €, J' is the restriction of J to all
domain elements of the form cw, with w € N*.

Definition 4. A mosaic for ch, 2, ande = (A,p; V -+ V
pr) € E~ is an L-tree interpretation M that satisfies the
following conditions:

1. M~ ch(e,pi) for 1 <i < k;

2. no ABox from 2l has a homomorphism to M;

3. M has depth at most 3||Ey|| and degree at most 2l Eoll*

4. foralle = (A,q) € ET that are A-enabled: if h is a
homomorphism from ch(e) to M whose range contains
only elements of depth at least || Ey|| and at most 2||Eq

then Men(e),n,c = 4

Let Z be an £-forest model and d € AZ. With Z |¢, we
mean the restriction of Z to all elements of the form dw,
with w € N*. We say that a mosaic M glues to d in T if
A \fl is identical to the interpretation obtained from M in the
following way:

>

* remove all elements of depth exactly 3||Ep||;

* prefix every domain element with d, that is, every w €
AM is renamed to dw.

Our algorithm now works as follows. In an outer loop, we
iterate over all possible choices for ch and 2. For each ch
and £, as well as for each e € I/~ we construct the set S o
of all mosaics for ch, 2, and e and then apply an elimination
procedure, producing a sequence of sets

Se,O 2 Se,l 2 Se,2 D

More precisely, S ;41 is the subset of mosaics M € S, ;
that satisfy the following condition:

(x) for all successors c of &, there is an M’ € S, ; that glues
to ¢ in M.

Let S, be the set of mosaics obtained after stabilization.

We next iterate over all base candidates J = U(, cE- I
for ch and A, for each of them checking whether there is,
for every element d € AZe of depth 1, a mosaic M € S,
that glues to d in AZe_Tf the check succeeds for some ch, 2
and J, we return ‘fitting exists’. Otherwise, we return ‘no
fitting exists’.

Lemma 4. The algorithm returns ‘fitting exists’ if and only
if there is an L-ontology that fits Ey.

343

It remains to verify that the algorithm runs in double expo-
nential time. Most importantly, we need an effective way to
check Condition 4 of Definitions 3 and 4. This is provided
by the subsequent lemma.

Let A be an ABox and p a CQ. An A-variation of p is a
CQ p’ that can be obtained from p by consistently replacing
zero or more variables with individual names from ind(.A)
and possibly identifying variables. We say that p’ is proper
if the following conditions are satisfied:

1. ifr(a,b) € p’ with a,b € Ny, then (a, b) € A;
2. I, is an L-forest model of A N p'.

Further, let Z be an interpretation, & a homomorphism from
AtoZ, p’ an A-variation of p and g a weak homomorphism
from p’ to Z. We say that g is compatible with h if

1. h(a) = g(a) for all individual names a in p’;

2. for every variable x in p’, there is an a € ind(.A) such that
g(x) is L-reachable from h(a) in Z.

Here, an element e € AT is ALCZ-reachable from d € AT
if there are do,...,d, € AZ such that d = dy, d,, = e,
and, for 0 < i < n, (d;,d;41) € rT for some role 7. In
ALC-reachability, ‘role’ is replaced by ‘role name’.

Lemma 5. Let (A, q) be an example, T an interpretation,
and h a homomorphism from A to L. Then the following are
equivalent

L Tanc Fq

2. there exists a proper A-variation p’' of a CQ p in q and
a weak homomorphism from p' to I that is compatible
with h.

The Conditions in Point 2 of Lemma 5 can clearly be
checked by brute force in single exponential time, and so
can Conditions 1 to 3 of Definitions 3 and 4. Based on
Conditions 3 in these definitions, it is thus easy to see that we
can produce the set of all base candidates and of all mosaics
by a straightforward enumeration in double exponential time.
The elimination phase of the algorithm also clearly needs
only double exponential time.

6.3 Lower Bounds

Theorem 9. The (ALCZ,CQ)-ontology fitting problem is
2EXPTIME-hard.

To prove Theorem 9, we give a polynomial time reduction
from the complement of Boolean CQ entailment in ALCZ,
which is 2EXPTIME-hard (Lutz 2007). Assume that we are
given A, O, and ¢, and want to decide whether AU O [= q.
We construct a collection of labeled ABox-CQ examples
(Et,E™) such that AU O [~ ¢ if and only if there is an
ALCTZ-ontology O’ that fits (E*, E~).

To keep the reduction simple, we assume O to be in normal
form, meaning that every concept inclusion in O has one of
the following forms: T C A, Ay M A, C A, A C Ir.B,
dr.BC A, AC —-B, B C A. Itis well-known and easy
to see that any ALCZ-ontology O can be rewritten into an
ontology O’ of this form in polynomial time, introducing
fresh concept names as needed, such that 4 U O = ¢’ if and
only if AU O’ |= ¢ for all Boolean CQs ¢’ that do not use
the fresh concept names.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Real
A% a b g a b
c d T
Choice Choice A

Figure 1: Arrows denote s-edges.

The reduction uses fresh concept names Real, Choice,
Choice, and F, a fresh concept name A for every concept
name A in O and ¢, and a fresh role name s. It is helpful to
have the characterization in Theorem 7 in mind when reading
on.

We use a single negative example to ensure that the inter-
pretation Z from Point 2 of Theorem 7 is a model of .4 and
makes the concept name F' false everywhere:

(AU{Real(a) | a € ind(A)}, Tz F(z)).

We will use a gadget that introduces auxiliary domain ele-
ments. To distinguish the domain elements of primary in-
terest from the auxiliary ones, we label the former with the
concept name Real.

The interesting part of the reduction is to guarantee that at
each element labeled with Real and for each concept name A
in O or g, exactly one of the concept names A and A is true.
It is easy to express that both concept names cannot be true
simultaneously, via the following positive example:

({A(a), A(a)}, 3z F(2)).
To ensure that at least one of A and A is true, we use the
announced gadget. We first introduce one successor that sat-
isfies Choice and one that satisfies Choice, via the following
positive examples:
({Real(a)}, q) with ¢ = 3z (s(a, x) A Choice)
({Real(a)}, q) with ¢ = Jz (s(a, x) A Choice).

We then use a positive example (A*, ¢*) where A* and ¢*
are displayed in Figure 1. To understand the gadget, recall
Condition (b) of Theorem 7 and the fact that Z 4« j, . is a
forest model of A*, for any Z. The variable = in ¢* has
two distinct individual names as a predecessor, but the only
elements in Z 4~ j, » with this property are from ind(.A*). It
follows that any homomorphism that witnesses Z 4« 2 = ¢*
as required by Condition (b) of Theorem 7 maps x to ¢ or
to d. We transfer the choice back to the original element:

(A, A(a)) with A = {Real(a), s(a, b), Choice(b), A(b)}

(A, A(a)) with A = {Real(a), s(a, b), Choice(b), A(b)}.
We next include positive examples that encode O:

({Real(a)}, A(a)) forevery TC A O

({Ai1(a), Az(a)}, A(a)) forevery A1 MAC A0

({A(a)}, q) with ¢ = 3y (r(a, y) A Real(y) A B(y)))

forevery AC I3r.B € O

({r(a,b),B(b)}, A(a)) foreverydIr.BC Ac O
({A(a)}, B(a)) forevery AC -Be€ O
({B(a)}, A(a)) forevery -BC A€ O.

344

Finally, we add a positive example that ensures that F is
non-empty if ¢ is made true:

(Ag, 3z F(z)),

where A, is ¢ viewed as an ABox, that is, variables become
individuals and atoms become assertions. It remains to show
the following.

Lemma 6. AU O [~ q if and only if there is an ALCZ-
ontology that fits (E™, E™).

The reduction used in the proof of Theorem 9 also works
for ALC. But since CQ entailment in .ALC is only EXPTIME-
complete, this does not deliver the desired lower bound. We
thus resort to a reduction of the word problem for exponen-
tially space-bounded alternating Turing machines (ATMs).
Such reductions have been used oftentimes for DL query
entailment problems, see e.g. (Lutz 2007; Eiter et al. 2009;
Bednarczyk and Rudolph 2022).

Theorem 10. The (ALC, CQ)-ontology fitting problem is
2EXPTIME-hard.

The crucial step in an ATM reduction of this kind is to
ensure that tape cells of two consecutive configurations are
labeled in a matching way. This is typically achieved by
copying the labeling of each configuration to all successor
configurations so that the actual comparison can take place
locally. We achieve this with a gadget that is based on the
same basic idea as the gadget used in the proof of Theorem 9,
but much more intricate.

7 Conclusion

We introduced ontology fitting problems based on ABox-
query examples and presented algorithms and complexity
results, concentrating on the ontology languages ALC and
ALCT. We believe that our results can be adapted to cover
many common extensions of these. As an illustration, we
show in the appendix the following result for the extension
ALCQ of ALC with qualified number restrictions. A ho-
momorphism A from an ABox 4; to an ABox A is locally
injective if h(b) # h(c) for all r(a,b),r(a,c) € A;.

Theorem 11. Let E = (E*, E™) be a collection of labeled
ABox examples and AT = \#) E*. Then the following are
equivalent:

1. E admits a fitting ALC Q-ontology;

2. there is no homomorphism from any A € E~ to A% that
is locally injective.

Apart from extensions of ALC, there are many other natu-
ral ontology languages of interest that can be studied in future
work, including Horn DLs such as ££ and existential rules.
One can also vary the framework in several natural ways and,
for instance, consider the case where a signature for the fitting
ontology is given as an additional input or where negative
examples have a stronger semantics, namely AU O = —q in
place of AU O - g.

Acknowledgements
The third author was supported by DFG project LU 1417/4-1.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

References

Baader, F., and Distel, F. 2009. Exploring finite models in the
description logic. In Ferré, S., and Rudolph, S., eds., Proc.
of ICFCA 2009, volume 5548 of Lecture Notes in Computer
Science, 146-161. Springer.

Baader, F.; Ganter, B.; Sertkaya, B.; and Sattler, U. 2007.
Completing description logic knowledge bases using formal
concept analysis. In Veloso, M. M., ed., Proc. of IJCAI 2007,
230-235.

Baader, F.; Horrocks, 1.; Lutz, C.; and Sattler, U. 2017. An
Introduction to Description Logic. Cambridge University
Press.

Bednarczyk, B., and Rudolph, S. 2022. The price of
selfishness: Conjunctive query entailment for ALCSelf is
2EXPTIME-hard. In 36th Proc. of AAAI 2022, 5495-5502.
AAAI Press.

Bienvenu, M., and Ortiz, M. 2015. Ontology-mediated query
answering with data-tractable description logics. In Proc. of
Reasoning Web, volume 9203 of LNCS, 218-307. Springer.

Bienvenu, M.; ten Cate, B.; Lutz, C.; and Wolter, F. 2014.
Ontology-based data access: A study through disjunctive
datalog, CSP, and MMSNP. ACM Trans. Database Syst.
39(4):33:1-33:44.

Biihmann, L.; Lehmann, J.; Westphal, P.; and Bin, S. 2018.
DL-Learner structured machine learning on semantic web
data. In Proc. of WWW, 467-471. ACM.

Calvanese, D.; Dragone, L.; Nardi, D.; Rosati, R.; and
Trisolini, S. 2006. Enterprise modeling and data warehousing
in telecom italia. Inf. Syst. 31(1):1-32.

Eiter, T.; Lutz, C.; Ortiz, M.; and Simkus, M. 2009. Query
answering in description logics with transitive roles. In
Bouttilier, C., ed., Proc. of IJCAI 2009, 759-764.

Funk, M.; Jung, J. C.; Lutz, C.; Pulcini, H.; and Wolter,
F. 2019. Learning description logic concepts: When can
positive and negative examples be separated? In Proc. of
IJCAI 2019, 1682—-1688. ijcai.org.

Funk, M.; Grosser, M.; and Lutz, C. 2025. Fitting descrip-
tion logic ontologies to abox and query examples. arXiv.
2508.08007.

Gogacz, T.; Ibanez-Garcia, Y. A.; and Murlak, F. 2018.
Finite query answering in expressive description logics with
transitive roles. In Proc. of KR 2018, 369-378. AAAI Press.

Jacindha, S.; Abishek, G.; and Vasuki, P. 2022. Program
synthesis—a survey. In Computational Intelligence in Ma-
chine Learning, 409-421. Singapore: Springer Nature Singa-
pore.

Jung, J. C.; Lutz, C.; Pulcini, H.; and Wolter, F. 2020. Logical
separability of incomplete data under ontologies. In Proc. of
KR, 517-528.

Jung, J. C.; Lutz, C.; Pulcini, H.; and Wolter, F. 2021. Sep-
arating data examples by description logic concepts with
restricted signatures. In Proc. of KR, 390-399.

Jung, J. C.; Lutz, C.; Pulcini, H.; and Wolter, F. 2022. Logical

separability of labeled data examples under ontologies. Artif.
Intell. 313:103785.

345

Jung, J. C.; Hosemann, S.; and Lutz, C. 2025. Fitting
ontologies and constraints to relational structures. In Proc.
of KR.

Kharlamov, E.; Hovland, D.; Skjeveland, M. G.; Bilidas,
D.; Jiménez-Ruiz, E.; Xiao, G.; Soylu, A.; Lanti, D.; Rezk,
M.; Zheleznyakov, D.; Giese, M.; Lie, H.; loannidis, Y. E.;
Kotidis, Y.; Koubarakis, M.; and Waaler, A. 2017. Ontology
based data access in Statoil. J. Web Semant. 44:3-36.

Konev, B.; Lutz, C.; Ozaki, A.; and Wolter, F. 2017. Exact
learning of lightweight description logic ontologies. J. Mach.
Learn. Res. 18:201:1-201:63.

Kriegel, F. 2024. Efficient axiomatization of OWL 2 EL
ontologies from data by means of formal concept analysis.
In Wooldridge, M. J.; Dy, J. G.; and Natarajan, S., eds., Proc.
of AAAI 2024, 10597-10606. AAAI Press.

Lehmann, J., and Hitzler, P. 2010. Concept learning in
description logics using refinement operators. Mach. Learn.
78(1-2):203-250.

Li, H.; Chan, C.-Y.; and Maier, D. 2015. Query from exam-
ples: An iterative, data-driven approach to query construction.
Proc. VLDB Endow. 8(13):2158-2169.

Lutz, C., and Wolter, F. 2012. Non-uniform data complexity
of query answering in description logics. In Proc. KR 2012.
AAALI Press.

Lutz, C. 2007. Inverse roles make conjunctive queries hard.
In Proc. of DL 2007, volume 250 of CEUR Workshop Pro-
ceedings. CEUR-WS.org.

Lutz, C. 2008. Two upper bounds for conjunctive query
answering in SHIQ. In Proc. of DL 2008, volume 353 of
CEUR Workshop Proceedings. CEUR-WS.org.

Ozaki, A. 2020. Learning description logic ontologies:
Five approaches. where do they stand? Kiinstliche Intell.
34(3):317-327.

Rizzo, G.; Fanizzi, N.; and d’ Amato, C. 2020. Class expres-
sion induction as concept space exploration: From DL-Foil
to DL-Focl. Future Gener. Comput. Syst. 108:256-272.

Sequeda, J. F.; Briggs, W. J.; Miranker, D. P.; and Heide-
man, W. P. 2019. A pay-as-you-go methodology to de-
sign and build enterprise knowledge graphs from relational
databases. In Proc. of ISWC, volume 11779 of LNCS, 526—
545. Springer.

Shalev-Shwartz, S., and Ben-David, S. 2014. Understanding
Machine Learning - From Theory to Algorithms. Cambridge
University Press.

Xiao, G.; Calvanese, D.; Kontchakov, R.; Lembo, D.; Poggi,
A.; Rosati, R.; and Zakharyaschev, M. 2018. Ontology-
based data access: A survey. In Proc. of IJCAI, 5511-5519.
ijcai.org.

	Introduction
	Preliminaries
	Description Logic
	Queries
	ABox Examples and the Fitting Problem

	Consistency-Based Fitting
	Atomic Queries
	Full Conjunctive Queries
	CQs and UCQs
	Characterization for ALC and ALCI
	Upper Bounds
	Lower Bounds

	Conclusion

