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Abstract
We introduce a general abstract framework for database re-
pairs, where the repair notions are defined using formal logic.
We distinguish between integrity constraints and so-called
query constraints. The former are used to model consistency
and desirable properties of the data (such as functional de-
pendencies and independencies), while the latter relate two
database instances according to their answers to the query
constraints. The framework allows for a distinction between
hard and soft queries, allowing the answers to a core set of
queries to be preserved, as well as defining a distance between
instances based on query answers. We illustrate how differ-
ent repair notions from the literature can be modelled in our
framework. The framework generalises both set-based and car-
dinality based repairs to semiring annotated databases. Finally,
we initiate a complexity-theoretic analysis of consistent query
answering and checking existence of a repair in our setting.

1 Introduction
Inconsistency is a common phenomenon when dealing with
large collections of data. In real-world applications, data
is often made available from non-trustworthy sources re-
sulting in very diverse quality of data and leading to prob-
lems related to the integrity of databases and repositories.
Database repairing, one of the main approaches for deal-
ing with inconsistency, focuses on frameworks that allow
inconsistencies to be identified in order to then obtain a
database that satisfies the constraints imposed. The usual
approach is to search for a ’similar’ database that satisfies
the constraints. This new database is called a repair, and
in order to define it properly one must determine the mean-
ing of ‘similar’. Repairs have been studied from different
perspectives and several frameworks have been presented,
including the introduction of preference criteria represented
by weights (Staworko, Chomicki, and Marcinkowski 2012,
Lukasiewicz, Malizia, and Molinaro 2023), as well as both
hard and soft constraints (Carmeli et al. 2024). In some cases,
such as when dealing with inconsistent knowledge bases
(KBs), inconsistency-tolerant semantics are employed to ex-
tract meaningful answers from the facts in the KB without
altering the underlying data (Bienvenu and Bourgaux 2020,
Lukasiewicz et al. 2022). Another approach to deal with in-
consistency is to use an inconsistency measure, which can
be either a function that counts the number of integrity con-
straints violated, an abstract non-negative mapping to some

partial order, or even a numerical measure based on an ab-
stract repair semantics (Decker 2017, Parisi and Grant 2023,
Livshits et al. 2021, Bertossi 2019). In this setting, a repair
need not satisfy all specified integrity constraints but instead
repairs are tolerant for a certain amount of inconsistency.

A database may admit multiple (a priori) incomparable
repairs in the sense that it is not always clear what is the best
way to repair an inconsistent database. Consistent Query
Answering (CQA) aims to generalise the notion of cautious
reasoning (or certain answers, in database parlance) in the
presence of inconsistent knowledge. In the setting of CQA,
a “valid” answer to a query is one that can be found in every
possible repair. This problem has been analysed for different
data models and different types of integrity constraints, under
the most prominent repair semantics.

Data provenance provides means to describe the origins of
data, allowing to give information about the witnesses to a
query, or determining how a certain output is derived. Prove-
nance semirings were introduced by Green et al. (2007) to
devise a general framework that allows to uniformly treat ex-
tensions of positive relational algebra, where the tuples have
annotations that reflect very diverse information. Some moti-
vating examples of said relations come from incomplete and
probabilistic databases, and bag semantics. The framework
captures a notion of data provenance called how-provenance,
where the semiring operations capture how each output is
produced from the source. Subsequently semiring semantics
for full first-order logic (FO) were developed by Grädel and
Tannen (2017). The semantics refines the classical Boolean
semantics by allowing formulae to be evaluated as values
from a semiring. If K is a semiring, then a K-relation is a
relation whose records are annotated with elements from K.

This paper considers repairs and consistent query answer-
ing for K-databases (i.e, relational databases whose tables
are K-relations). Our general approach encompasses rela-
tional databases under set and bag semantics, as well as repair
semantics over K-relations encoding some provenance data.
Our contribution. We present an abstract framework for
defining database repairs that allows us to unify and simulta-
neously incorporate diverse notions that have been used in the
literature to deal with inconsistency. We allow a distinction
between integrity constraints classifying properties of data as
either necessary or merely desirable to preserve in a repair.
The latter are used in our framework to define a measure
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for the inconsistency. The repair notions in our framework
are expressed through the preservation of a given core set
of query answers; together with integrity constraints, this
yields the space for possible repairs. The distance between
databases is computed using distances between the answers
of specified queries in each instance. The technical defini-
tions are presented in Section 3. We show examples of how
well-known repair notions from literature can be expressed in
our framework and exemplify the flexibility of the framework
by generating novel repair notions.

Our framework enables us to simultaneously prove com-
plexity results for a wide family of repair notions. We exem-
plify this in the simpler setting of set-based databases and
obtain results for the complexity of the most important com-
putational problems. As we initiate the complexity analysis
of our framework, we focus on two widely adopted and well-
understood constraint classes in data integration (LAV and
GAV) as a natural starting point due to their simplicity and
practical relevance. Although more expressive settings have
been considered (e.g., Arming. et al. (2016)), they typically
entail significantly higher complexity. Our results extend and
generalise existing results on the data complexity of repair-
ing, and pinpoint problems that are complete for the first and
second level of the polynomial hierarchy (see Sec. 4.1).

Related work. Most of the previous research on repairs
has been conducted within the data management commu-
nity, while the problem of measuring inconsistency has been
approached mostly by the knowledge representation com-
munity. Some works use a logic-based approach to explore
reasoning under inconsistencies in knowledge bases and on-
tologies as a means to compute consistent answers and re-
pairs (see, e.g., (Greco et al. 2003, Subrahmanian and Am-
goud 2007, Zhang et al. 2017, Lukasiewicz et al. 2023)). Bur-
dick et al. (2019) address the problem of repairing using en-
tity linking, weights and consistent answers to determine the
strength of the links, thus allowing the repair to be performed
only on a given part of the schema. In the repair literature, a
set of integrity constraints and a distance between instances is
always presented. In some cases, the distance is represented
by an inconsistency measure. However, while there are ap-
proaches to repairs that reflect the evaluation of important
queries as criteria for determining preference, these usually
focus on how to resolve conflicts and provide meaningful
query answers despite the inconsistency (Calautti et al. 2022,
Staworko et al. 2012, Yun et al. 2018). On the other hand, the
idea of having a core set of query answers that need to be pre-
served is similar to Belief Revision (BR) concepts. The AGM
theory for Belief Change, defined by Alchourron et al. (1985),
represents belief sets as sets of formulae closed under a con-
sequence operator, and a list of postulates describes how the
revision operator incorporates new information, even if this
information is inconsistent with what is believed. Guerra and
Wassermann (2019) give a characterisation of model repair in
terms of BR by introducing a new postulate that preserves the
core of a belief set in the repair model. We are not aware of
existing repair frameworks that simultaneously incorporate
the impositions given by a set of integrity constraints and
preserve the answers of a given set of queries, as well as

allow the introduction of shades of inconsistency or truth as
part of an inconsistency measure or minimality criteria.

Ten Cate et al. (2015) gave a systematic study of the data
complexity of CQA for set-based repairs. The restrictions
imposed to the integrity constraints arise from classes of
tuple-generated dependencies, vital in data exchange and
integration. Their results can be framed as results concern-
ing particular instances of our framework; by refining the
components of our framework, our results generalise theirs.

2 Preliminaries
We write a⃗ to denote a finite tuple (a1, . . . , an) of elements
from some set A. A multiset is a generalisation of a set that
keeps track of the multiplicities of its elements. We write
{{· · ·}} to denote a multiset whose elements are written be-
tween the double curly brackets. E.g., the multiset {{a, a, b}}
has two copies of a and a single copy of b. The support
Supp(A) of a multiset A is the underlying set of A. E.g.,
Supp({{a, a, b}}) = {a, b}. A set or a multiset A is finite if
its cardinality |A| is a natural number.

Definition 1. A semiring is a tuple (K,+, ·, 0, 1), where
+ and · are binary operations on a set K, (K,+, 0) is a
commutative monoid with identity element 0, (K, ·, 1) is a
monoid with identity element 1, ‘·’ is distributive over ‘+’,
and x·0 = 0 = 0·x for all x ∈ K. A semiring is commutative
if (K, ·, 1) is a commutative monoid.

A semiring K has divisors of 0, if ab = 0 for some non-
zero a, b ∈ K. It is +-positive if a+ b = 0 implies that a =
b = 0. It is positive if it is both +-positive and has no divisors
of 0. E.g., the modulo two integer semiring Z2 is not positive
since it is not +-positive (even though it has no divisors of
0), while Z4 has divisors of 0. Throughout the paper, we
consider only partially ordered commutative semirings which
are positive and have 0 as their minimum element (e.g., all
naturally ordered positive semirings satisfy this). We write <
for the order relation. The Boolean semiring (B,∨,∧, 0, 1)
models logical truth or set-based data, and is formed from the
two-element Boolean algebra. It is the simplest example of a
semiring that is not a ring. The semiring of natural numbers
(N,+, ·, 0, 1) consists of natural numbers with their usual
operations and can be used, e.g., to model multisets of data.
The probability semiring (R≥0,+, ·, 0, 1) consists of the non-
negative reals with standard addition and multiplication.

An aggregate function σ (for a semiring K) is a function
that maps multisets of elements of K into an element of
K. For instance, the sum and product of the elements in a
multiset are aggregate functions.

Definition 2. Let K be a semiring, A a set, and n ∈ N. An
n-ary K-relation is a function R : B → K, where B ⊆ An.
The support of R is Supp(R) := {b ∈ B | R(b) ̸= 0}, and
B is often identified with An via R(b) = 0 for b ∈ An \B.

Note that K-relations, for K = B or K = N, are essen-
tially sets and multisets, respectively.

2.1 Relational structures and databases
A finite purely relational vocabulary is a finite set
{R1, . . . , Rn} of relation symbols; each with a fixed arity
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ar(Ri) ∈ N. We consider relational vocabularies τ extending
finite purely relational vocabularies with a countable set of
constant symbols ci, for i ∈ N. A τ -interpretation I maps
each n-ary relation symbol to an n-ary relation I(Ri) ⊆ An

and each constant symbol c to some element I(c) ∈ A, over
some domain set A. If instead, the interpretations of n-ary
relation symbols are K-relations with support from An, we
call I a (τ,K)-interpretation. A finite τ -structure (or finite
(τ,K)-structure, resp.) A consists of a finite domain set A
and the interpretations of the symbols in τ , which in the case
of (τ,K)-structures are K-relations. We write RA and cA to
denote the interpretations I(R) and I(c) of R and c in A.

Formally, a database schema S extends a relational vocab-
ulary τ with a finite set Att of attributes and countable sets
of possible values Ran(x), for each x ∈ Att. The domain
of the schema Dom(S) consists of the union of Ran(x) for
x ∈ Att. Sometimes we write Dom instead of Dom(S).
Furthermore, S fixes the type Type(Ri) ∈ Attn of each
n-ary relation symbol Ri and the type Type(c) ∈ Att of
each constant symbol c. A database D is obtained via an
interpretation that maps each constant symbol c ∈ τ to an
element cD ∈ Ran(Type(c)) and each n-ary relation sym-
bol R ∈ τ to a finite relation RD ⊆ Ran(Type(R)), where
Ran(x1, . . . , xn) is defined as Ran(x1) × · · · × Ran(xn).
The active domain Adom(D) of a database D is the
smallest finite set such that RD ⊆ Adom(D)ar(R) and
cD ∈ Adom(D) for each relation symbol R and constant
symbol c of the schema. We denote the set of all databases
over S by DBS(S) and write DBS when the context allows.
For a semiring K and database schema S, a K-database
is obtained from a database of schema S by reinterpreting
its relation symbols by K-relations of the same support.
Instances D of a database schema can naturally be interpreted
as finite structures over the underlying schema vocabulary,
extended by unary relation symbols Rx, for each x ∈ Att,
interpreted as Ran(x)∩Adom(D). The domain of the finite
structure corresponding to a database D is Adom(D). From
now on, we identify finite structures with databases.

Let D be a database (K-database, resp.) and R be a rela-
tion (K-relation, resp.) of the database. An atomic formula
R(⃗a) is called a fact, if a⃗ ∈ RD (resp., a⃗ ∈ Supp(RD)). Sim-
ilarly, ¬R(⃗a) is a negated fact, if a⃗ ̸∈ RD (⃗a ̸∈ Supp(RD),
resp.). If R(⃗a) is a fact, then a⃗ is a record of R and D. In
the set-based environment, we sometimes define databases
by listing all the facts in the database tables. We use set com-
parison symbols and operations, e.g., symmetric difference ⊕
and ⊆ on databases and sets. Table 1 serves as an illustration
of an annotated database.

2.2 Logics and query languages
We consider logics that are syntactic fragments and exten-
sions of first-order logic and whose satisfaction relations are
defined over databases or K-databases. More importantly,
formulae of these logics have well-defined notions of free and
bound variables. Sentences are formulae without free vari-
ables. Logic formulae are naturally interpreted as database
queries; sentences are Boolean queries and formulae with k
free variables are k-ary queries. We write Var for the set of
first-order variables. If ϕ is a formula with free variables in

Table STOCK
ID Product Warehouse #
112 potato A 4
112 cabbage A 6
113 carrot B 7

Table BUILDINGS
Name Address #

A 5 Regent St. 1
C 2 Broad Ln. 1
D 14 Mappin St. 1

Table 1: An example of a product N-database D with quantities
modelled via annotations in the semiring of natural numbers, where
STOCK is a ternary and BUILDINGS a binary N-relation. As this
will serve as a running example, the duplicated IDs are intended.

x⃗, and a⃗ is a tuple of domain elements of the same length, we
write ϕ(⃗a/x⃗) to denote that the variables x⃗ are interpreted as
a⃗. If s : Var → Adom(D) is a variable assignment, s[⃗a/x⃗] is
the assignment that agrees otherwise with s but maps x⃗ 7→ a⃗.

The two main approaches to defining logics for K-
databases are the logics for meta-finite structures of Grädel
and Gurevitch (1998) and the use of semiring semantics as
defined by Grädel and Tannen (2017). We adopt an approach
close to the latter, where in addition to having K-relations,
“truth” values of sentences are also elements of a semiring.
K-databases can be seen as a special kind of model-defining
K-interpretations of Grädel and Tannen.

Definition 3. Let (K,+, ·, 0, 1) be a semiring, D be a K-
database, and s : Var → D be an assignment. The value
JϕKD,s of a formula ϕ ∈ FO under s is defined as follows:

JR(x⃗)KD,s= RD(s(x⃗)) Jϕ ∧ ψKD,s= JϕKD,s · JψKD,s
J¬ϕKD,s= Jnnf(¬ϕ)KD,s Jϕ ∨ ψKD,s= JϕKD,s+ JψKD,s

J∀xϕKD,s=
∏

a∈Adom(D)

JϕKD,s[a/x] J∃xϕKD,s=
∑

a∈Adom(D)

JϕKD,s[a/x]

J¬R(x⃗)KD,s= 1, if JR(x⃗)KD,s= 0, and 0 otherwise,

Jx ∼ yKD,s= 1, if s(x) ∼ s(y), and 0 otherwise,

where ∼ ∈ {=, ̸=} and nnf(¬ϕ) is the formula obtained
from ¬ϕ by pushing all the negations to atomic level using the
usual dualities. We use the standard shorthands ϕ→ ψ and
ϕ↔ ψ. For sentences ϕ, we write JϕKD as a shorthand for
JϕKD,s∅ , where s∅ is the empty assignment. We write D, s |=
ϕ (D |= ϕ, resp.), if JϕKD,s ̸= 0 (JϕKD ̸= 0, resp.). We define

JϕKBD,s = 1, if D, s |= ϕ, and JϕKBD,s = 0 otherwise.

If ϕ is a query, then a query answer over a database D is a
tuple of elements a⃗ from Adom(D) such that D |= ϕ(⃗a/x⃗).
We write Ans(D, ϕ) := {a⃗ ∈ Adom(D)n | D |= ϕ(⃗a/x⃗)}
to denote the set of answers to the query ϕ in the database
D. We set wD,ϕ(⃗a) := Jϕ(⃗a/x⃗)KD to indicate the annotated
answers to the query in the database.

2.3 Repairs and consistent query answering
Integrity constraints (ICs) are sentences in some logic that
describe the necessary properties the data should comply. Let
S be a database schema. Given a set of ICs C, we say that
D ∈ DBS(S) is consistent (w.r.t. C) if D satisfies C, that
is, D |= ϕ for every ϕ ∈ C. Otherwise, D is inconsistent.
A set of ICs is consistent if there exists a database instance
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D that makes the ICs true. Given a distance d between
instances and D1,D2,D3 ∈ DBS, we write D2 ≤d,D1 D3

if d(D1,D2) ≤ d(D1,D3). A database D2 is a repair of D1,
if D2 is ≤d,D1

-minimal in the set {D ∈ DBS(S) | D |= C}.
Set-based repairs are one of the most prominent types of

repairs. The goal is to find a consistent database instance,
with the same schema as the original one, that satisfies the
repair semantics (e.g., subset, superset and symmetric differ-
ence) and differs from the original by a minimal set of records
under set inclusion. Given a set of ICs C, the instance D′ is a
symmetric difference repair of D w.r.t. C if D′ |= C and there
is no instance D′′ such that D′′ |= C and D⊕D′′ ⊊ D⊕D′.
The instance D′ is a subset repair of D w.r.t. C if D′ ⊆ D
and D′ is a symmetric difference repair of D. Superset repair
is defined analogously. Cardinality-based repairs as defined
in (Lopatenko and Bertossi 2007) aim to find repairs of the
original database that minimise the cardinality of the sym-
metric difference between instances.

Related to the problem of repairing, consistent query an-
swering (CQA) proposes that a valid query answer is one
that holds across all possible database repairs. More formally,
given a database D, a set of ICs C, and a query q(x⃗), the con-
sistent answers to q w.r.t. D and C, denoted byCQA(q,D, C),
is the set of tuples a⃗ such that a⃗ ∈ Ans(D′, q) for each repair
D′ of D w.r.t. C. For Boolean queries q computing the consis-
tent answers of q is equivalent to determining if D′ |= q for
every repair D′. Hence, CQA(q,D, C) contains the empty
tuple if D′ |= q for all repairs D′ of D. CQA has been
studied across various data models, repair semantics, and IC
types, especially where repairs are well-explored.

Repairs are instances that eliminate all inconsistency of the
given database. This notion can be relaxed to simply look for
a “reduction” of the inconsistency to some acceptable level,
giving way to the notion of inconsistency-tolerant repairs. In
this context, it suffices to find a nearly consistent instance
without adding constraint violations. To this end, one for-
malises measuring inconsistency via inconsistency measures.
These are typically R-valued functions that meet certain pos-
tulates that vary with chosen semantics. This concept has
been explored for both relational and graph databases. Incon-
sistency can be measured using a general definition taking
values in an ordered positive semiring, not just R≥0. Incon-
sistency measures should meet certain postulates, including
the consistency postulate “D |= C implies M(C,D) = 0”.

Definition 4. Given a set of ICs C and an instance D, an
inconsistency measure (IM) M is a function that maps (C,D)
to a value in a semiring K.

3 Unified Framework for Repairs
Database repairing always incurs a cost, reflected by the
number of record changes needed for consistency. Some
changes may be costlier, and some facts may need to remain
unchanged. Sometimes, tolerating inconsistency is preferable
to the repair cost, thus requiring various repair approaches.
Inconsistency measures, usually based on database ICs, can
vary in flexibility. We divide ICs into those that must be satis-
fied (hard-constraints Ch), and those for which a degree of in-
consistency is allowed (soft-constraints Cs). Hard-constraints

represent those properties usually referred to as “integrity
constraints”. We suggest a fine-grained repair framework
utilising both hard and soft constraints, and including hard-
queries (Qh) for further constraining the repair space and
soft-queries (Qs) for defining the minimality criteria.
Hard-Queries (Qh = (Q+

h ,Q
−
h )). These yield a core set

of answers that we want to preserve in a repair, both in the
positive and negative sense. For any Boolean query ϕ ∈ Q+

h ,
if D′ is a repair of D, we want D |= ϕ to imply D′ |= ϕ. For
non-Boolean queries, we want the answers to a hard-query
in D to be also retrieved in D′. Formally (in the setting of
Boolean annotations), we require Ans(D, ϕ) ⊆ Ans(D′, ϕ).
If the annotations are non-Boolean, the above notion is gen-
eralised to reflect the annotations. Moreover, we require that
for all Boolean queries ψ ∈ Q−

h , D ̸|= ψ implies D′ ̸|= ψ,
and for non-Boolean queries, we want that all answers to a
hard-query in D′ are already answers in D. Formally, for
every ϕ ∈ Q+

h , ψ ∈ Q−
h and a⃗ ∈ Adom(D)n, we require

that wD,ϕ(⃗a) ≤ wD′,ϕ(⃗a) and wD,ψ (⃗a) ≥ wD′,ψ (⃗a). E.g.,
if annotations reflect multiplicities in a multiset, the corre-
sponding multiplicities for answers of Q+

h (resp. Q−
h ) can

only increase (decrease) in repairs.
Soft-Queries (Qs). These reflect answers which are deemed
important, but not necessary to maintain. Given a database D
they define a partial order ≤Qs,D between database instances
reflecting how close the instances are from D with respect to
the answers to queries in Qs. To simplify the presentation,
we define the notion for Boolean queries, but will later extend
this to formulae as well. Let Qs = {φ1, . . . , φn} be the set
of soft-queries, and let D be a database. We define Qs[D] :=
(Jφ1KD , . . . , JφnKD). From the order of the semiring K, we
obtain the canonical partial order ≤nK for Kn, which gives
rise to a partial order ≤Qs,D between databases by setting
D′ ≤Qs,D D′′ if Qs[D] ≤nK Qs[D

′] ≤nK Qs[D
′′]. This

notion resembles standard set-based repairs.
As an alternative, we define a notion similar to cardinality

based repairs. Let ∆: Kn ×Kn → Kn be a function that
intuitively computes a distance between tuples of semiring
values, and let σ be an n-ary aggregate function taking values
in K. Define a distance between instances in terms of Qs by
setting dQs

(D,D′) := σ
(
∆(Qs[D],Qs[D

′])
)
.

Soft-Constraints (Cs). Modelled using sentences, these
are used to define an inconsistency measure M that al-
lows us to obtain degrees of tolerance for the repair. Let
fsc : DBS × L → K be a function, and let σ be an ag-
gregate function taking values in K. The value fsc(D, ϕ)
indicates how inconsistent D is according to ϕ (e.g., how
far the property defined by ϕ is of being true in D) and σ
then aggregates the levels of inconsistency. We stipulate that
fsc(D, ϕ) = 0 iff D |= ϕ. The inconsistency measure is
defined as M(D, Cs) := σ{{fsc(D, ϕ) | ϕ ∈ Cs}}.

Next we exemplify the use of soft constraints with a σ
that is the aggregate sum defined by the + of the semiring of
natural numbers and with two examples of the function fsc.

Example 5. Consider D in Table 1 and the soft-constraint
that warehouses A and B may contain at most one type of
product. This is expressed as Cs := {ϕA, ϕB}, where ϕc =
∀x∀y∀x′∀y′ (STOCK(x, y, c)∧STOCK(x′, y′, c) → y = y′),
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for c ∈ {A, B}. In the first example below, an inconsistency
measure is defined using the Boolean truth value of a negated
formula ¬ϕ as a measure of the inconsistency of D:

M(D, Cs) :=
∑

{{J¬ϕKBD | ϕ ∈ Cs}} = 1 + 0 = 1.

In the second, we directly use the semiring value J¬ϕKD:

M(D1, Cs) :=
∑

{{J∃x∃y∃x′∃y′ (STOCK(x, y, c)∧

STOCK(x′, y′, c)∧y ̸= y′)KD | c ∈ {A, B}}} = 48+0 = 48.

We are now ready to formally define our repair framework
that incorporates the concepts discussed.
Definition 6 (repair framework). Fix a database schema
S. For each part of the framework, we may use a different
logic L over the schema. Fix an inconsistency measure M
defined in terms of L-sentences as described above. A repair
framework R = (Ch, Cs,Qh,Qs,M,mQs) is a tuple, where
Ch and Cs are finite sets of L-sentences representing hard
and soft-constraints, Qh = (Q+

h ,Q
−
h ) and Qs are finite

sets of L-formulae representing hard and soft-queries, and
mQs

∈ {dQs
,≤Qs,D} is a method to compare databases as

described above. We require Ch to be consistent.

Given a database D and a repair framework, we define the
following relativised sets of L-sentences: QD

s := {φ(⃗a/x⃗) |
φ(x⃗) ∈ Qs, a⃗ ⊆ Adom(D) of suitable type}, and Q⋆,D

h :=
{φ(⃗a/x⃗) | φ(x⃗) ∈ Q⋆

h, a⃗ ⊆ Adom(D) of suitable type}
for ⋆ ∈ {+,−}. This shift from sets of formulae to sets
of sentences is not crucial but does make the presentation
of the following definition slightly lighter. Note that if b⃗
contains an element that is not in the active domain of D then
the interpretations of atoms R(⃗b) (and their negations) are
computed as if the elements belonged to the active domain
of D. That is,
r
R(⃗b)

z

D
=

r
R(⃗b)

zB

D
= 0,

r
¬R(⃗b)

z

D
=

r
¬R(⃗b)

zB

D
= 1.

In the following definition (item 1.), we choose to limit the
active domains of repairs. With this restriction, it is possible
to use more expressive logics in the different parts of the
framework without increasing the computational complexity
too much; see Section 4.3 for our upper bounds. Note that any
inconsistent database instance can be provided with sets of
fresh data values, which can then be used as fresh data values
for the repairs without affecting our complexity results.
Definition 7 (R-repair). Given a repair framework R =
(Ch, Cs,Qh,Qs,M,mQs), a K-database D, and a thresh-
old ϵ ∈ K s.t. ε ≥ 0, we say that D′ is an ε-R-repair of D
if the following six items are fulfilled:

(1) Adom(D′) ⊆ Adom(D),
(2) D′ |= Ch,
(3) JϕKD ≤ JϕKD′ , for all ϕ ∈ Q+

h ,
(4) JψKD ≥ JψKD′ , for all ψ ∈ Q−

h ,
(5) M(D′, Cs) ≤ ε,
(6) D′ is minimal with respect to ≤Qs,D, if mQs

=≤Qs,D,
and dQs

(D,D′) is minimised, if mQs
= dQs

.

We say that D′ is an annotation unaware repair if in (3) and
(4) all refereces to J−KD are replaced with J−KBD. Notice
that, JϕKBD ≤ JϕKBD′ if and only if J¬ϕKBD′ ≤ J¬ϕKBD. Hence,
in the annotation unaware case, we may omit (4) and write
Qh for Q+

h . We drop ε from ε-R-repair, if ε = 0 or Cs = ∅.

Note that, if ε > 0, the above notions are meaningful, even
if Cs is inconsistent (recall that we consider only partially
ordered positive semirings whose minimum element is 0).
The framework facilitates the creation of diverse repair no-
tions. For instance, by using (3) and (4) it is straightforward
to specify a repair notion which is a subset repair with re-
spect to some relation R (put R(x⃗) in Q−

h ), a superset repair
with respect to some other relation S (put S(x⃗) in Q+

h ), and
where the interpretation of a third relation T must remain un-
changed (put T (x⃗) in both Q+

h and Q−
h ). Moreover, putting

¬R(x⃗) in Q+
h and ¬S(x⃗) in Q−

h leads to a repair notion that
allows annotations to be changed freely as long as, with re-
spect to supports of relations, the repair notion is a subset
repair with respect to R and a superset repair with respect
S. The notions of minimality facilitated by (6) are also di-
verse. The repair notions obtained by using ≤Qs,D resemble
standard set-based repairs, while notions given by dQs are
similar to cardinality based repairs. This is due to dQs being
in a sense 1-dimensional, as it aggregates distances between
interpretations of formulae in Qs into a single semiring value,
which is then mimimised.

If Cs = ∅ or ϵ = 0, Definition 7 yields a classical definition
of a repair, where the desired minimality and repair criteria is
defined through Qh and Qs. If instead 0 < ϵ ≤ M(Cs,D),
it resembles the definition of inconsistency-tolerant repair
given in (Decker 2017). The following example shows how
the standard superset and subset repairs, and their cardinality
based variants, are implemented in our framework.
Example 8. Consider the database in Tab. 1 restricting at-
tention to the STOCK table, and notice that the hard con-
straint Ch := {“ID is a key”} is violated. Setting Q−

h :=
{STOCK(x, y, z)} as negative hard queries, yields that no
tuples can be added to STOCK nor any annotations can be
increased in the repairs. Setting Qs := {STOCK(x, y, z)}
as soft queries and using the partial order ≤Qs,D as the
minimality notion, together with the hard queries, yields the
standard subset repair notion (in bag semantics). In this case,
the database in Tab. 1 has two repairs, obtained by removing
one of the records of STOCK with ID 112.

Using the same soft queries Qs := {STOCK(x, y, z)}, we
can instead define a distance between instances using the
modulus |a−b| and the aggregate sum of the natural numbers
as dQs

(D,D′) :=
∑
ϕ∈Qs

|JϕKD − JϕKD′ |. In this case, the
database in Tab. 1 has only one repair. The instance that com-
plies with the key constraint and the hard queries, and min-
imises this distance with respect to D is the one that keeps tu-
ples STOCK(112, cabbage, A) and STOCK(113, carrot, B).
Considering Q+

h := {∃x∃y∃z STOCK(x, y, z)} as the hard
queries for an annotation-aware repair, yields that repairs
maintain at least the same quantity of product units as D, or
more. Note that this restriction allows annotations to change
and does not prevent tuples from being deleted or added.
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Example 9. Let D be the two-table database of Table 1
and R = (Ch, Cs,Qh,Qs,M,mQs) be a repair frame-
work, where Ch := {“Warehouse is a foreign key”}
are the hard-constraints, the soft-constraints are Cs :=
{∀x¬STOCK(x, cabbage, A), ∀x¬STOCK(x, potato, B)},
the positive and negative hard-queries are defined as
Q+
h := {¬STOCK(x, y, z),BUILDINGS(u, v)} and

Q−
h := {STOCK(x, y, z)}, and the soft-queries are set

Qs := {STOCK(x, y, z),BUILDINGS(u, v)}. Let M be
the annotation-aware inconsistency measure from Example
5, mQs

be ≤Qs,D, and ϵ := 5.
Now, the hard-queries imply that any repair D′ of D must

be such that no deletions to BUILDINGS nor additions to
STOCK have been done and the support of the table STOCK
has remained unchanged. The soft-queries together with
≤Qs,D imply that the repair should coordinate-wise minimise
the changes made to the tables. The soft-constraints imply
that not too many cabbages (potatos, resp.) are stored in
warehouse A (B, resp.). Hence, the only ϵ-R-repairs of D
are databases that insert a tuple (B, x) with annotation 1 to
BUILDINGS for some address x and change the annotation
of the second record of STOCK in D from 6 to 5.

Some properties are expected when dealing with repairs,
for example, a consistent D should not need to be re-
paired. Indeed, if D satisfies Ch and Cs, then in particular
M(Cs,D) = 0 and it follows from the ≤dQs ,D

-minimality
of D (minimality of dQs

(D,D), resp.) that D is a repair. It is
often desirable that any D can always be repaired. However,
our framework can express both ICs and critical properties
of databases that should be kept unchanged (expressed using
Qh). Assuming that the set of ICs is consistent, there will
always be some D′ which satisfies the ICs and thus D′ |= Ch
and M(Cs,D′) = 0. However, this is not sufficient to ensure
that Ans(D,Q+

h ) ⊆ Ans(D′,Q+
h ) and Ans(D,Q−

h ) ⊇
Ans(D′,Q−

h ). Furthermore, if we want to find an
inconsistency-tolerant repair and only assume Ch to be con-
sistent, this is not sufficient to ensure that M(Cs,D′) ≤ ϵ for
an instance D′ that satisfies Ch. Hence, deciding the existence
of a repair results a meaningful problem in our framework.

We conclude with worked out examples illustrating how
our repair framework can generate new repair notions and
exemplify its flexibility.

Example 10. Consider a database schema with two relations
indicating teacher allocations in a department; T (x, y) and
C(z) indicate that a lecturer x is assigned to course y, and
that z is a course. Consider an annotation unaware repair
framework (Ch, Cs,Qh,Qs,M, dQs

), where Cs := {},

Ch := {∀y (C(y) → ∃xT (x, y)) ,¬T (t4, c),¬C(a)},
Q+
h := {T (t1, c), T (t2, d), C(b), C(c), C(d)}, Q−

h := ∅,
Qs := {ϕi = ∀x∃≤iy

(
C(y) ∧ T (x, y)

)
| 1 ≤ i ≤ 10},

where t1, . . . , t4, a, b, c, and d are constants. The sentence
ϕi (written using counting quantifiers as the usual shorthand)
expresses that every teacher is assigned to at most i courses.
From Qs, we define a distance between instances to describe
a minimality concept that is neither set-based nor cardinality-

based (below ∆(x1, x2) := |x1 − x2|):

dQs(D,D
′) :=

∑
ϕi∈Qs

∆
(
JϕiK

B
D , JϕiK

B
D′

)
.

The distance prioritises instances that have a similar
maximum allocation per teacher. Consider an instance
D := {T (t1, c), T (t2, d), T (t1, b), T (t4, c), C(a), C(b),
C(c), C(d), C(e)}. Here, we have Jϕ1K

B
D = 0 and JϕiK

B
D =

1 for every i ≥ 2. Now, D′ := {T (t1, c), T (t2, d), T (t1, b),
T (t4, e), C(b), C(c), C(d), C(e)} is a repair satisfying that
every course in C(y) has at least one teacher assigned, the
facts T (t4, c) and C(a) are no longer in the database, and
prioritises the criteria that maximum allocation per teacher
is as similar as possible to D. The framework allows us to
express prioritised repairs in terms of formulae, which dif-
fers from the approach of using predefined priority criteria
studied in the repair literature.

Next, we give two examples of a repair framework for a
graph databases. For simplicity, we consider simple digraphs.
Example 11. Consider a simple directed labelled graph
(V G, EG, TG) representing a railway network; nodes are
stations and edges are direct rail links. The predicate T (x)
indicates that there is a taxi rank at station x. We set Ch :=
{∀x∃y E(x, y)}, Cs := {∀x∀y (E(x, y) → T (y))},

Q+
h := {E(London,Cardiff), E(Cardiff, London)

E(London,Edinburgh), E(Edinburgh, London)}∪{¬T (x)},
and Qs := {E(x, y)}. The distance used to determine a
repair minimises the cardinality of the symmetric difference
of {E(a, b) | G |= E(a, b), a, b ∈ V G} and {E(a, b) |
H |= E(a, b), a, b ∈ V H}. We use the same inconsistency
measure as in Example 5, with the semiring value of the
formula ∃x∃y(E(x, y) ∧ ¬T (y)), and set ϵ := 5. That is,
the measure counts the number of violations to the rule that
stipulates “if there is a direct connection between x and y,
then there is a taxi rank in station y”. The space of repairs are
those graphs (V H , EH , TH) with minimum degree at least 1,
bidirectional connections between London and Cardiff, and
London and Edinburgh, and have at most 5 connections to a
station with no taxi ranks, no new taxi ranks added.
Example 12. Consider graph databases that are relational
structures of vocabulary {E,P1, P2}, whereE is binary, and
P1 and P2 are unary. For simplicity, we restrict to structures
with Boolean annotations. Let (Ch, Cs,Qh,Qs,M,≤dQs

)
be a repair framework over the semiring of natural num-
bers, where Ch specifies some ICs, Cs := ∅, and Q+

h :=
{P1(x),¬P2(x)} ∪ {ψi(x⃗i) | 1 ≤ i ≤ 10}, where the
formula ψi(x⃗i) := x0 = xi ∧

∧
0≤j<k≤i xj ̸= xk ∧∧

0≤j<iE(xj , xj+1) expresses that x⃗i = (x0, . . . , xi) in-
duces a cycle of length i, and Q−

h := ∅. Finally, we set
Qs := {∃x(x = x)}. The distance dQs is the annotation
aware distance given in Example 8. Given a graph database
G, the space of repairs of G described by Ch and Qh are
those labelled graphs G′ that satisfy the ICs in Ch, include
all vertices labelled with P1 with labels intact, include ev-
ery short cycle of G with possibly different labels, and does
not label new vertices with P2. The graphs with minimal
dQs

(G,G′) are those G′ that are closest to G in cardinality.
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4 Annotation Unaware Case
First we recall some important definitions, and stipulate
some conventions used in this section. We consider re-
pair frameworks (Ch, Cs,Qh,Qs,M, dQs

), where Ch and
Cs are finite sets of first-order sentences of which Ch is as-
sumed to be consistent, and Qh = (Q+

h ,Q
−
h ) and Qs are

finite sets of first-order formulae. In this section, we fix
the following canonical inconsistency measure and distance
between databases and simply write (Ch, Cs,Qh,Qs) to de-
note repair frameworks: the inconsistency measure M is
defined as M(D, Cs) :=

∑
{{ J¬ϕKBD | ϕ ∈ Cs }}, and the

distance between databases dQs
is defined as dQs

(D,D′) :=∑
{{
∣∣ JϕKBD − JϕKBD′

∣∣ | ϕ ∈ QD
s }}. In this section, we focus

on annotation unaware repairs as defined in Definition 7 us-
ing the semiring of natural numbers. Hence, we essentially
consider set-based databases (that is B-databases) that are
encoded as N-databases to obtain richer repair frameworks.
Since the inconsistency measure and distance are defined
to be annotation unaware, and we restrict our attention to
repairs of set-based databases encoded as bag-databases, we
may stipulate that all repairs obtained will have Boolean an-
notations. Technically the sets of repairs may also contain
non-Boolean annotations, but the set will be invariant under
collapsing the annotations to Booleans.

4.1 Classical results on complexity of repair
The complexity of database repairs is often characterised for
ICs specified in fragments of tuple-generating dependencies
(tgds). Queries used for consistent query answering are often
conjunctive queries. Next, we define the fragments of first-
order logic of interest.

We write Atoms for the set of atomic formulae R(x⃗),
where R is a relation and x⃗ is a variable tuple. The set
Lit of literals contain atomic formulae and their negations.
A tgd is a first-order sentence of the form ∀x⃗

(
φ(x⃗) →

∃y⃗ψ(x⃗, y⃗)
)
, where φ,ψ are conjunctions of atomic formu-

lae, x⃗ = (x1, . . . , xn) and y⃗ = (y1, . . . , ym) are variable
tuples, and every universally quantified variable xi occurs
in φ. A local-as-view (LAV) tgd is a tgd in which φ is a
single atomic formula. A global-as-view (GAV) tgd is a
tgd ∀x⃗

(
φ(x⃗) → ψ(x⃗′)

)
in which ψ is a single atomic for-

mula such that the variables in x̄′ are among the variables of
x̄. A conjunctive query is a first-order formula of the form
∃x1 . . . ∃xn(ϕ1 ∧ · · · ∧ ϕm), where each ϕi is an atomic
formula. We write CQ for the set of conjunctive queries.

We are interested in the following computational problems.
Let R be a repair framework and q a query.

Problem: Consistent query answering (R-CQA(q)).

Instance: Database D, a tuple t⃗ ∈ Adom(D)∗.
Question: Is t⃗ ∈Ans(D′, q) for every R-repair of D?

Problem: Existence of repair (∃R-repair).

Instance: Database D.
Question: Does D have an R-repair?

If R is replaced with a classical repair notion in the defini-
tions above, we obtain the usual decision problems.

ICs repair notions R-CQA

Ch Cs Q+
h /Q

−
h Qs Complexity

LAV ∅ Atoms Atoms coNP-h [Prop 14]
GAV ∅ Atoms Atoms coNP-h †
GAV ∅ CQ/Atoms ∅ coNP-c [Thm. 18]
FO ∅ FO ∅ coNP-c [Thm. 18]
tgds ∅ Atoms Atoms Θp2-c [Thm. 19]
FO ∅ FO FO Θp2-c [Thm. 19]

Table 2: Data complexity overview for consistent query answering.
Hardness results hold already for conjunctive queries, while inclu-
sions are proven for first-order queries. Upper/lower bounds transfer
to respective classes, e.g., the membership result for FO applies
also to subclasses like Lit or Atoms. In the Q+

h /Q
−
h -column, if we

do not use a slash, then the specification refers to both Q+
h and Q−

h .
† : (ten Cate, Fontaine, and Kolaitis 2015, Theorem 5.5)

Ten Cate et al. (2015) present a thorough study on the data
complexity of CQA and repair checking problems for set-
based repairs. As this section deals with so-called cardinality-
based repairs, their results are not directly applicable. We
generalise cardinality-based variants of these repair notions.

4.2 Complexity of simple repair notions
For simplicity, we focus on notions where Cs = ∅. Table 2
summarises our results on the complexity of CQA.
Remark 13. For R = (GAV, ∅,Atoms,Atoms), the exis-
tence of a conjunctive query q such that R-CQA(q) is coNP-
hard follows from the proof by Ten Cate et al. 2015, Thm. 5.5
in a straightforward manner. A proof sketch can be found in
the full arXiv version (Fröhlich et al. 2025).
Proposition 14. Let R = (LAV, ∅,Atoms,Atoms). There
is a conjunctive query q such that R-CQA(q) is coNP-hard.

Proof. We reduce from the complement of 3-COLOUR-
ABILITY. The components of the repair framework are:

Ch := {∀xy E(x, y)→∃jk(C(x, j) ∧ C(y, k) ∧ P (j, k))} ,
Q+
h = Q−

h := {E(x, y), P (j, k)}, Qs := {C(x, j)}.

Let G = (V,E) be a graph. The instance D is defined as:

ED := { (x, y) ∈ E }, CD := {},
PD := {1, 2, 3}2 \ {(1, 1), (2, 2), (3, 3)}.

Further define q := ∃x j k
(
C(x, j) ∧ C(x, k) ∧ P (j, k)

)
.

The intuition of the relational symbols is as follows: E
encodes the edges of the graph G, C assigns to each vertex a
colour and P encodes inequality between the three possible
colours. Now, we claim that the following is true for all
R-repairs D′ of D: Ans(D′, q) is nonempty if and only if
G ̸∈ 3-COLOURABILITY.

IfG ̸∈ 3-COLOURABILITY, then no valid colouring exists.
It follows that in all repairs there must be a vertex x which is
assigned two colours to satisfy the hard constraint, thereby
satisfying the query q. If G ∈ 3-COLOURABILITY, then
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there exists a valid colouring f forG. Let Df be the following
instance:
EDf := ED, CDf := {(x, f(x)) | x ∈ V }, PDf := PD.

It is easy to see, that Df is a repair of D and q(Df ) is false,
so the consistent answers to q cannot be nonempty. Since
3-COLOURABILITY is NP-complete, the claim follows.

Proposition 15. Let R = (GAV, ∅,CQ ∪ Atoms, ∅). Then
∃R-repair is NP-complete.

Proof. Inclusion to NP is due to Theorem 16; NP-hardness
is shown in the full arXiv version (Fröhlich et al. 2025).

4.3 Existence of a repair and second-order logic
We now show how the existence of a repair can be reduced to
model checking of existential second-order logic, and obtain
general upper bounds for existence of repair and CQA.
Theorem 16. Let R = (Ch, ∅,Qh,Qs), where Qs is ar-
bitrary and Ch,Q+

h ,Q
−
h ⊆ FO. Then ∃R-repair is in

NP. Moreover, the problem is NP-complete for some
Ch,Q+

h ,Q
−
h ⊆ FO.

Proof. The NP-hardness was shown already in Proposi-
tion 15. Here we establish inclusion to NP. Recall that, in
the annotation unaware case, we may omit Q−

h and write
Qh for Q+

h ∪ {¬φ | φ ∈ Q−
h }. Fix a finite relational

vocabulary τ1 = {R1, . . . , Rn} of some schema S and
let τ2 = {S1, . . . , Sn} denote a disjoint copy of τ1. We
consider databases and repair notions with schema S. Let
R := (Ch, ∅,Qh,Qs) be a repair notion as described in the
theorem. Note first that Qs does not affect the existence of
a repair, so we may assume that Qs = ∅. Given a database
D over S , let (Ch, ∅,QD

h , ∅) be the repair notion, where QD
h

is the relativisation of Qh to D computed from Qh and D in
polynomial time. The existence of an R-repair of D can be
reduced to model checking as follows: The database D has
an R-repair if and only if D satisfies the formula

∃S⃗
( ∧
φ∈QD

h

∀x⃗
(
φ(x⃗) → φ∗[S⃗/R⃗](x⃗)

)
∧

∧
φ∈Ch

φ∗[S⃗/R⃗]
)
,

where φ∗[S⃗/R⃗] denotes the formula obtained from φ by sub-
stituting R⃗ by S⃗ and bounding its first-order qualifications
to the active domain of the repair obtained from the inter-
pretations of ∃S1 . . . ∃Sn. The fact that the above model
checking can be decided in NP with respect to the size of D
follows essentially from Fagin’s theorem; the fact that data
complexity of existential second-order logic is in NP suffices.
Note first that S1, . . . Sn are of polynomial size, since n and
their arities are constant. The fact that the satisfaction of the
subsequent formula can be checked in NP follows from the
fact that QD

h and Ch are polynomial size sets of FO-formulae
of constant size. Recall that R is fixed and D is the input,
and thus the size of φ∗ is constant as well.

Note that the above model checking problem could easily
be transformed into an FO satisfiability problem. Simply
append the constructed formula above to the FO description
of D and remove all (existential) second-order quantifiers
that are interpreted existentially in the satisfiability problem.

Lemma 17. Let R = (Ch, Cs,Qh,Qs). Then ∃R-repair is
reducible in logarithmic space to complement problem of
R-CQA(q), where q ∈ CQ.

Proof. By ten Cate et al. 2015, Thm. 7.1 the query q =
∃xP (x) with a fresh P suffices. That is, given an instance
D: ⊤ ∈ CQA(q,D,R) if and only if D has no repair.

Theorem 18. Let R = (Ch, ∅,Qh, ∅), where Ch,Q+
h ,Q

−
h ⊆

FO. Then R-CQA(q) is in coNP for any q ∈ FO. Moreover,
the problem is coNP-complete for some Ch ⊆ GAV, Q+

h ⊆
CQ ∪Atoms, Q−

h ⊆ Atoms, and q ∈ CQ.

Proof. coNP-hardness follows from Prop. 15 and Lemma 17;
for inclusion, see (Fröhlich et al. 2025) in arXiv.

The (less known) complexity class Θp2 is defined as
PNP[log] meaning a restriction to logarithmic many calls to
the NP oracle. By definition, we then have the containment
Θp2 ⊆ ∆p

2. Also it can be characterised by P||NP which is
having non-adaptive but unrestricted many parallel NP oracle
calls (Buss and Hay 1991, Hemachandra 1989).

Theorem 19. Let R = (Ch, ∅,Qh,Qs), with Ch, Q+
h , Q−

h ,
Qs ⊆ FO. Then R-CQA(q) ∈ Θp2 for all q ∈ FO. More-
over, R-CQA(q) is Θp2-hard for R = (Ch, ∅,Qh,Qs), with
Ch a set of tgds, Q+

h ,Q
−
h ,Qs ⊆ Atoms and some q ∈ CQ.

Proof. First, we show Θp2 membership. Fix the repair frame-
work R and query q. Let ⟨D, t̄⟩ be an instance of R-CQA(q).
Define the following auxiliary problem:

Problem: RCE (REPAIRCANDIDATEEXISTENCE)

Instance: Database D, n ∈ N and t̄ ∈ Adom(D).
Question: Does a database D′ exist such that D′ |= Ch,

Ans(D, ϕ) ⊆ Ans(D′, ϕ) for all ϕ ∈ Qh,
dQs(D,D

′) = n and D′ |= ¬q(t̄), if t̄ ̸= ∅?

It is easy to see that RCE ∈ NP.
Now, R-CQA(q) can be decided in polynomial time with

an RCE-oracle. First, use binary search over the interval
[0, |D|] to find the smallest n0 such that ⟨D, n0, ∅⟩ ∈ RCE.
Second, ⟨D, t̄⟩ ∈ R-CQA(q) if and only if ⟨D, n0, t̄⟩ ̸∈
RCE. That is, t̄ is a consistent answer of q if and only if
¬q(t̄) is not true in any repair D′ with a minimal distance
from D. The first step clearly needs log-many oracle calls,
while the second step only needs one.

For hardness reduce from the complement of MT3SAT=

which is ΘP2 -complete (Spakowski and Vogel 2000).

Problem: MT3SAT= (MAX-TRUE-3SAT-EQUALITY)

Instance: Two 3SAT formulas φ0 and φ1 having the same
number of clauses and variables.

Question: Is the maximum number of 1’s in satisfying
truth assignments for φ0 equal to that for φ1?

Let ā = a1a2a3 and Ch = {ψiā, ψi1, ψi2, ψi3, ψ4, ψ5 |
i, a1, a2, a3 ∈ {0, 1}}, where

ψiā = Riā(x1, x2, x3) → ∃v1, v2, v3Ii(x1, v1)
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∧ Ii(x2, v2) ∧ Ii(x3, v3) ∧ Tā(v1, v2, v3),
ψi1 = Ii(x, v1) ∧ Ii(x, v2) → E(v1, v2),

ψi2 = Ii(x, 0) → I ′(x, i, 1) ∧ I ′(x, i, 2),
ψi3 = Ii(xi, 1) → ∃x1−iF (x0, x1) ∧ Ii(x1−i, 1),
ψ4 = F (x1, x2) ∧ F (x1, x3) ∧D(x2, x3) → ∃sA(s),
ψ5 = F (x1, x2) ∧ F (x3, x2) ∧D(x1, x3) → ∃sA(s).

Furthermore let q = ∃sA(s) and

Q+
h :={E(x, y), D(x, y), Ri(x, y, z), T (x, y, z)|i ∈ {0, 1}}

Q−
h :=Q+

h ∪ {I0(x, y), I1(x, y)} Qs:={I ′(x, y), A(s)}.
Let ⟨φ0, φ1⟩ be an instance of MT3SAT=, then

Tā = {(v1, v2, v3) | (v1, v2, v3) ̸= (a1, a2, a3)}
Riā = {(x1, x2, x3) | x1 ∨ x2 ∨ x3 is a clause of φi

and ai = 0 if xi is a positive literal, and 1 otherwise}
Ii = {(x, 0), (x, 1) | x ∈ φi} E = {(0, 0), (1, 1)}
D = {(x1, x2) | x1 ̸= x2, x1, x2 ∈ φ0 or x1, x2 ∈ φ1}
F = A = I ′ = ∅

defines the database D. The intuition for the relational sym-
bols is as follows: Tā encodes all satisfying assignments of
clauses, Riā contains the clauses of φi, Ii are the assignments
for φi, E is equality between 0 and 1, D encodes inequality
between variables, F will contain a surjective map between
the 1’s in I0 and I1, A will contain a value if F is not in-
jective and I ′ will contain every 0 assignment in Ii twice to
simulate an increased “weight” for the soft queries.

Now, the intuition for the hard constrains. First notice,
that due to ψi1 the relation Ii cannot contain both (x, 0) and
(x, 1) for all x ∈ φi. Furthermore ψiā forces Ii to contain an
assignment satisfying φi. Next, ψi2 duplicates and doubles
the assignments set to 0 in Ii into I ′. The constraint ψi3
creates a surjective map in F between the 1’s in I0 and I1.
Finally, ψ4 and ψ5 create a value in A if F is not injective.

As for the soft queries, since I ′ and A start empty, a repair
aims to minimise adding new facts to the relations. Because
I ′ contains two facts for each variable assigned to zero this
leads to repairs maximising the number of 1’s in their sat-
isfying assignments. The inclusion of A in the soft queries
ensures that A contains a values only if ψ4 or ψ5 take effect.

We now show that ⟨D, ∅⟩ ∈ R-CQA(q) if and only if
⟨φ0, φ1⟩ ̸∈ MT3SAT=. Assume ⟨φ0, φ1⟩ ∈ MT3SAT=

and D is constructed as described above. First note, that
repairs of D maximise the number of 1’s in satisfying as-
signments, by having I ′ as a soft query. Then, because of
⟨φ0, φ1⟩ ∈ MT3SAT=, there is a one-to-one mapping be-
tween the 1’s in the maximum assignments for φ0 and φ1. A
repair then has this bijective map encoded in F , which means
that A can be empty. Since repairs are minimal, A must
indeed be empty, so q must be false in all repairs, therefore
⟨D, ∅⟩ ̸∈ R-CQA(q).

For the other direction, assume ⟨φ0, φ1⟩ ̸∈ MT3SAT=

and D is again constructed as described above. Now max-
imising the number of 1’s in satisfying assignments does not
lead to a bijective map, so ψ4 or ψ5 takes effect and A is not
empty in all repairs. Therefore ⟨D, ∅⟩ ∈ R-CQA(q).

5 Conclusions and Future Work
Our main contribution is the introduction of a novel abstract
framework for defining database repairs. We showcase the
flexibility of our framework by giving examples of how the
main repair notions from the literature can be expressed in
our setting. In addition, we introduce novel repair notions
that exemplify further the potential of our framework.

As a technical contribution, we initiate the complexity-
theoretic study of our framework. Completing this systematic
classification remains an avenue for future work. In particu-
lar, exploring the possibilities for the soft constraints would
require a deeper investigation into inconsistency measures,
identifying suitable properties they should satisfy within this
framework and considering potential alternative postulates.
We examine the complexity of consistent query answering
and existence of a repair in the context of Boolean annota-
tions. Unlike in prior studies, determining whether a repair
exists is a meaningful problem in our framework, as it can
express both integrity constraints that potentially need to be
fixed as well as critical properties of databases that should
be preserved. Our complexity results are obtained by reduc-
ing known complete problems to questions related to repairs
in our framework, and by directly relating problems in our
framework to problems concerning logics (see Table 2 on
page 7 for an overview of our complexity results). Since our
framework is logic-based, the non-emptiness of the consis-
tent answers and the existence of a repair can be formulated
as model checking problems in logic.

We conclude with future directions and open questions:

• Our complexity results are mainly negative, as we show
intractable cases. Can we pinpoint R-repairs where the
related complexities are below NP? Does parameterised
complexity (Downey and Fellows 1999) help?

• What characterisations can we obtain for enumeration com-
plexity of repairs, or repair checking?

• Does there exist, for every level of the polynomial hierar-
chy, a fixed repair framework R such that the existence of
repair is complete for that level of the hierarchy?

• To what extent well-established repair semantics can be
captured by our framework, and what are its limitations?

Our complexity considerations focus on relational databases
and set semantics. A natural next step is to consider bag
semantics and K-databases in general. We decided to fo-
cus on the relational setting, since otherwise one would
need to also develop the needed complexity theory util-
ising semirings. Here approaches using BSS-machines
(Blum et al. 1997) and variants of arithmetic circuits utilis-
ing semirings (Jukna 2023) could be fruitful. Finally note
that since our framework is logic-based, it would not be hard
to adapt it for repairs in conjunction with data integration,
where data can be stored and queried under different data
models. The integrated view over the data sources could
be implemented using logical interpretations. Then, for in-
stance, integrity constraints and repair notions could be spec-
ified over the integrated view, which would abstract away the
specifics of the details of the concrete repairs on the source
data models.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

334



Acknowledgments
The first and second author acknowledge funding by DFG
grant ME 4279/3-1 under the id 511769688. The third and
fourth author were partially supported by the DFG grant VI
1045/1-1 under the id 432788559.

Finally, we thank the anonymous reviewers for their valu-
able comments.

References
Alchourrón, C. E.; Gärdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet contraction and
revision functions. J. Symb. Log. 50(2):510–530.
Arming, S.; Pichler, R.; and Sallinger, E. 2016. Complexity
of repair checking and consistent query answering. In ICDT,
volume 48 of LIPIcs, 21:1–21:18. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik.
Bertossi, L. E. 2019. Repair-based degrees of database
inconsistency. In LPNMR, volume 11481 of Lecture Notes in
Computer Science, 195–209. Springer.
Bienvenu, M., and Bourgaux, C. 2020. Querying and repair-
ing inconsistent prioritized knowledge bases: Complexity
analysis and links with abstract argumentation. In KR, 141–
151.
Blum, L.; Cucker, F.; Shub, M.; and Smale, S. 1997. Com-
plexity and Real Computation. Berlin, Heidelberg: Springer-
Verlag.
Burdick, D.; Fagin, R.; Kolaitis, P. G.; Popa, L.; and Tan,
W. 2019. Expressive power of entity-linking frameworks. J.
Comput. Syst. Sci. 100:44–69.
Buss, S. R., and Hay, L. 1991. On truth-table reducibility to
SAT. Inf. Comput. 91(1):86–102.
Calautti, M.; Greco, S.; Molinaro, C.; and Trubitsyna, I. 2022.
Preference-based inconsistency-tolerant query answering un-
der existential rules. Artif. Intell. 312:103772.
Carmeli, N.; Grohe, M.; Kimelfeld, B.; Livshits, E.; and
Tibi, M. 2024. Database repairing with soft functional
dependencies. ACM Trans. Database Syst. 49(2):8:1–8:34.
Decker, H. 2017. Inconsistency-tolerant database repairs
and simplified repair checking by measure-based integrity
checking. Trans. Large Scale Data Knowl. Centered Syst.
34:153–183.
Downey, R. G., and Fellows, M. R. 1999. Parameterized
Complexity. Monographs in Computer Science. Springer.
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