Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Two-Variable Logic for Hierarchically Partitioned and Ordered Data

Oskar Fiuk' , Emanuel Kieronski'!, Vincent Michielini’

"nstitute of Computer Science, University of Wroctaw,
2Faculty of Mathematics, Informatics, and Mechanics, Warsaw University
307023 @uwr.edu.pl, emanuel.kieronski@cs.uni.wroc.pl, michielini@mimuw.edu.pl

Abstract

We study Two-Variable First-Order Logic, FO?, under se-
mantic constraints that model hierarchically structured data.
Our first logic extends FO? with a linear order < and a chain
of increasingly coarser equivalence relations F; C Es C
We show that its finite satisfiability problem is NEXPTIME-
complete. We also demonstrate that a weaker variant of this
logic without the linear order enjoys the exponential model
property. Our second logic extends FO? with a chain of
nested total preorders <1 C<2C We prove that its finite
satisfiability problem is also NEXPTIME-complete. How-
ever, we show that the complexity increases to EXPSPACE-
complete once access to the successor relations of the pre-
orders is allowed. Our last result is the undecidability of FO?
with two independent chains of nested equivalence relations.

1 Introduction

Hierarchically partitioned data are pervasive in modern com-
puter systems. For example, Geographical Information Ser-
vices often organise geospatial information using progres-
sively more detailed fields: country, region, state, and city.
Similar hierarchies appear in numerous contexts: Data Stor-
age (organised into folders, subfolders, and files), Network
Management (addressing schemes like IPv4/IPv6 with sub-
net hierarchies), Dependency Maintenance (tools for track-
ing dependencies between modules, libraries, and services).

To model such hierarchical data, we consider domains in
which elements are annotated with data values drawn from
potentially infinite or very large domains. A key aspect is
that these data values can be tested for equality at multiple
levels of precision. This is naturally captured by a family
of increasingly coarser equivalence relations: two elements
are related by the k-th equivalence relation if the k-th level
equality test holds between their associated data values.

In this work, we establish results on the decidability and
complexity of satisfiability problems for several variants of
the Two-Variable Fragment of First-Order Logic, FO?, ex-
tended to support such increasingly coarser equivalence re-
lations. Our goal is to provide a logical framework that is ex-
pressive enough to model complex multi-level relationships
while retaining desirable computational properties for rea-
soning. As most of the investigated logics do not enjoy the
finite model property, their general and finite satisfiability

316

problems differ. Our primary focus is on finite satisfiability,
while the case of general satisfiability is left for future work.

The motivation for studying FO? stems from its good al-
gorithmic and model-theoretic properties. FO? combines an
NEXPTIME-complete satisfiability problem and the expo-
nential model property (Gridel, Kolaitis, and Vardi 1997)
with a reasonable expressive power. In particular, it embeds
(via the so-called standard translation) many modal, tem-
poral, and description logics (up to ALCZOH™#). Also,
it is the maximal, in terms of the number of variables, frag-
ment of First-Order Logic with decidable satisfiability prob-
lem, as already the Three-Variable Fragment is undecidable
(Kahr, Moore, and Wang 1962). In the last few decades, FO?
together with its variations have been extensively studied,
and plenty of results have been obtained in various scenar-
ios (cf. Subsection 1.2 on related work). All of this makes
FO? often the first-choice option for various reasoning tasks.

In the following subsections of this introduction, we de-
fine our logics and present the obtained results (Subsec-
tion 1.1), discuss related work (Subsection 1.2), compare the
expressive power of our logics (Subsection 1.3), and outline
the technical sections that follow (Subsection 1.4).

1.1 Logics of Interest and Our Results

Our underlying formalism is the Two-Variable Fragment of
First-Order Logic, FO?, whose formulas may use only the
variables x and y; any number of unary and binary common
relation symbols (i.e., with unconstrained interpretations);
the equality symbol; and constant symbols, but no function
symbols of positive arity. Extensions of FO? are denoted by
listing the special symbols (i.e., those with constrained in-
terpretations) in brackets, e.g., FO? [<,£QF]. This notation
makes it explicit which additional semantic constraints are
imposed on top of the base FO? syntax.

Order on domain elements. Let £ QS denote the family of
special symbols F, Es, ... whose interpretations are con-
strained to nested equivalence relations, that is for every
k € N: (i) the interpretation of F is an equivalence rela-
tion, and (ii) the interpretation of Ej_ is coarser than that
of Ej, (i.e., xEyy — xFEr+1y). Let < be a special symbol
interpreted as a strict linear order on domain elements.'

"Throughout the paper, we will also use the derived non-strict

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Our first considered logic is FO?[<,£QS], supporting
both a linear order on elements and hierarchical data values.

Potential applications of F02[<, EQF] can be found in,
e.g., temporal verification of multiprocess systems. We pro-
vide a motivational example of enforcing isolation policy in
an environment of processes, containers, and events.

System execution is modeled as a linear sequence of
events ordered by time using the relation <. Events are
generated by processes, and processes are grouped into con-
tainers. The equivalence relations E; and E» capture this
hierarchy: xF;y holds when events x and y come from the
same process, and x E>y when they come from possibly dis-
tinct processes yet running in the same container. These are
naturally nested: zF1y — xFEoy.

Importantly, the domain of our model consists only of
events: processes are implicitly represented as equivalence
classes of the relation F;. That is, all events belonging to
the same process form a single equivalence class of F;. (We
assume that every process reports at least one event, e.g.,
spawn event, to ensure that it has a non-empty class.) Like-
wise, containers are implicitly represented as equivalence
classes of the relation E5. (We assume that in every con-
tainer at least one process is running, €.g., r0ot process.)

Process-level properties (e.g., sandboxed, privileged) are
expressed via class-wise unary predicates. For example:

Va,y. 2By — (sandboxed(z) +» sandboxed(y))

This ensures that all events from the same process share the
same sandboxed or not sandboxed label, even though the
logic only quantifies over events.

Using the above described encoding, we can impose the
following isolation policy: “A sandboxed process must not
communicate with events outside its container unless an ex-
plicit grant was made before from a privileged process.”

This policy can be formalised with a sentence:

V. (Sandboxed(:cl) A @cross—container-message(901)) —
(Hyl- y1 <z1 AxiEryr A @permission-grant(yl)),
Where Qeross-container-message (1) stands for the formula
Jya. 71 < Y2 A 71 Eoya A message(z1, ya),

and Qopermission—grant (yl) for
Jxs. privileged(zs) A z3 < y1 A grant(xs, yi).

In the above formulas, we annotated variables as x1, y1,
Yo, x3 for readability to reflect their roles in different pro-
cesses. However, only two variables x and y, with reuse
across quantifiers, are sufficient to express this property.

As stated above, all variables refer to events: x; is a dis-
patch message event from Process 1 (the sender) that initi-
ates the communication, and y is a deliver message event
from Process 2 (the receiver) that receives the message from
Process 1, as indicated by message(z1,y2). The event y; is
an earlier event from the same process as xj, representing
the grant acknowledge event, marking the point at which
Process 1 becomes aware of and is authorised to act on the
granted permission. Finally, x3 is a grant authorise event

linear order <, and their analogues for other orders, e.g., < and <.
Notice that in FO? < is definable from < and vice-versa.

317

from Process 3 (a privileged admin) that issues the permis-
sion and notifies Process 1, as indicated by grant(xs, y1).

The intended temporal order of events x3<y; <x1<ys is
enforced: the permission is issued before it is acknowledged
(x3<y1); the message is sent after the permission being ac-
knowledged (y; <x1) and before being delivered (1 <ys).

Notice also that, to detect that Process 1 and Process 2
are running in distinct containers, we refer to their represen-
tative events using —xFEsy. Since F; is nested within Fj,
it follows that if two events are not E5-related, then their
respective Fq-classes (i.e., processes) must also belong to
distinct E5-classes (i.e., containers).

Our first main contribution is establishing the complexity
of the finite satisfiability problem for FO?[<, £ Q<]:

Theorem 1. Finitely satisfiable sentences of FO?[<,£QF]
admit models o { exponential size. The finite satisfiability
problem for FO*[<, £ Q%] is NEXPTIME-complete.

Notice that FO?*[<,£QS] does not include the induced
successor of <.? (Bjorklund and Bojariczyk 2007) show that
adding it leads to undecidability (see: Subsection 1.2).

Order on data values. We consider now a different way to
incorporate a linear order into our scenario. We trade an or-
der on domain elements for a family of nested linear orders
on data values, i.e., on equivalence classes of F, E,

Let << denote the family of special symbols <1, <o, ...
whose interpretations are constrained to nested total pre-
orders, that is for each k£ € N: (i) the interpretation of =< is
a total preorder3, and (ii) the interpretation of <, is a subre-
lation of the interpretation of <1 (i.e. t=Xxy = T=k+1Y).

For example, interpretations over N defined by n < m
iff | 757] < [{gw] satisfy the above requirements.

Our second logic is FO? [X€], supporting hierarchical data
values that can be compared at multiple levels of granularity
using less-than, equal, and greater-than comparison tests.

In FOQ[], we naturally keep nested equlvalence rela-
tions E1, F, ... Their interpretation is now given by the
<g-equivalent elements: xFry <+ 2 y ANy <k .

Natural applications of FO?[<S] arise in temporal rea-
soning tasks that involve increasingly fine-grained notions
of time. A representative case study is a system support-
ing atomic transactions. Here, the elements of the structure
represent low-level operations. The finest preorder <; mod-
els the underlying timeline, where <;-equivalent elements
are treated as occurring in parallel. Transactions are mod-
eled implicitly as Es-equivalence classes, ordered chrono-
logically by <. Coarser preorders can be used to represent
higher-level structures such as <3 for commit order, <4 for
versioning, and so on. With this encoding, we can express
that, e.g., “raised exceptions must be handled in the future,
yet within the same transaction” as follows:

Vz. exception(z) — Jy. x <1 y A xFE2y A handles(y, x)

For FO?[<<], we establish the following theorem:

Notice that the induced successor is definable in FO, yet not in
FO?, by the formula o(z,y) ;= < y AVz. (z < z = y < 2).

3A rotal preorder is a transitive relation < such that, for every
x,y, either x =< y or y < «x holds (in particular, x < x holds).

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Theorem 2. Finitely satisfiable sentences of FO*[<<] admit
models of exponential size. The finite satisfiability problem
for FO?[<<] is NEXPTIME-complete.

Adding successors on data values. We consider now a
logic FO?[<S,..] that enriches the syntax of FO*[<S] by
adding, for each <j-symbol, its induced successor predicate
Sk, defined as Si(x,y) := x <y A Vz. (x%kz — yjkz).
Applications of FO?*[<S, .| naturally extend those of
FO?[<]; we continue with the transaction-based system
scenario. For example, we can express the property: “If a
transaction fails, then in the immediate =1-successor time-
slot a rollback must occur, using the last available snapshot

from the immediate =o-predecessor transaction.” Formally:
V. fail(z) — (Jy. rollback(y) A Si(z,y) A zEay A
Ju. last-snapshot(z) A Sa(z, y) A restore-to(y, z))

Here, S;(z,y) A xF>y ensures that the rollback follows the
failure in the very next <;-time-slot within the same trans-
action, while Sy (x,y) ensures that the snapshot belongs to
the transaction immediately preceding the one containing
the rollback. In particular, this guarantees that the snapshot
was created before the failure. Additional axioms can be
imposed to refine the scenario further: for instance, we can
define last-snapshot as the <;-maximum snapshot within
each F-class, or require that after a rollback the system pro-
ceeds directly to the <s-successor transaction.

Now we state the second main contribution of this paper:

Theorem 3. Finitely satisfiable sentences of FO*[<S,] ad-

mit models of doubly exponential size. The finite satisfiabil-
ity problem for FO?[<S, | is EXPSPACE-complete.

Absence of orders. Both FO?[<, £ Q<] and FO?[<<] admit
sentences that enforce infinite models (e.g., Vz. Jy. <y
and Vz. Jy. <1v). This contrasts with pure FO* which en-
joys the finite model property (i.e., every satisfiable sentence
has a finite model). A natural question arises: Can nested
equivalence relations alone enforce infinite models, or is this
phenomenon solely due to the presence of linear orders?
Let FO?[£QF] denote FO? extended with the family of
nested equivalence relations Fq, Es,.... We answer that
FO?[£ Q] does indeed enjoy the finite model property:

Theorem 4. Satisfiable sentences of FO*[€ Q<] admit mod-
els of exponential size. The satisfiability and finite satisfia-
bility problems for FO*[£ Q| coincide and are NEXPTIME-
complete.

Undecidability. A natural candidate to explore next is a
logic supporting two independent families of nested equiva-
lence relations E1, Es, ... and Fy, F5,.... We prove that
reasoning in such a logic is undecidable—even in a very
restricted setting—when each family has length 2 and the
vocabulary, except the four special equivalence symbols, is
composed of unary predicates only.

Theorem 5. The satisfiability and finite satisfiability prob-
lems are undecidable for the constant-free, equality-free,
monadic fragment of FO? extended with four special sym-
bols F1, Fs, F1, Fs, interpreted as equivalence relations
such that FEs is coarser than E\ and F5 is coarser than F}.

318

1.2 Related Work

FO? with equivalence relations. FO? with a single equiv-
alence relation has the exponential model property and
an NEXPTIME-complete satisfiability problem (Kieronski
and Otto 2012). With two equivalence relations (not nec-
essarily nested), the finite model property is lost; both
satisfiability and finite satisfiability are 2-NEXPTIME-
complete (Kieronski et al. 2014). With three equivalence
relations, FO? is undecidable (Kieronski and Otto 2012).

Since FO? can express containment between equivalence
relations, the work of (Kieronski et al. 2014) established de-
cidability for FO? over hierarchical partitions of depth two
(with no ordering). However, it does not yield optimal com-
plexity bounds even in this restricted setting and leave the
question of the finite model property unanswered.

FO? with linear orders. The satisfiability and finite sat-
isfiability problems for FO? with a single linear order are
NEXPTIME-complete (Otto 2001). With three linear orders,
both problems become undecidable (Kieronski 2011). The
case of two linear orders was studied in (Zeume and Harwath
2016), where finite satisfiability is shown to be decidable in
2-NEXPTIME when one linear order is accessible via both
the order and successor predicates, and the other only via
one of them. General satisfiability was not addressed.

Data Words. FO? with a linear order and an equivalence
relation has been studied extensively in the context of data
words. These are structures interpreting unary predicates,
an equivalence relation, a linear order, and its induced suc-
cessor relation. The satisfiability problem for FO? on data
words is decidable but non-elementary-hard (Bojaficzyk et
al. 2011). When the successor relation is omitted, the prob-
lem becomes NEXPTIME-complete.

Quite close to our setting are data words with nested
equivalences, that where considered in (Bjorklund and
Bojariczyk 2007). It is shown there that satisfiability is de-
cidable when the linear order is accessible only via its suc-
cessor relation, and becomes undecidable as soon as both the
order and its successor are accessible. The variant closest to
FO?[<,£QS], where only the linear order (and not its suc-
cessor) is available, was not explored in that work. Notice
that data words restrict the common part of the signature to
unary symbols, whereas we allow full FO? with arbitrary bi-
nary relations that may freely interact with the equivalences.

FO? with total preorders. The EXPSPACE-completeness
of the finite satisfiability problem for FO? over structures
with one total preorder, its induced successor relation, a
linear order, and additional unary relations was established
in (Schwentick and Zeume 2012). As in the case of data
words, no common binary relations are permitted. When
two independent total preorders are available, satisfiability
becomes undecidable. To the best of our knowledge, the
case of a single total preorder combined with arbitrary bi-
nary relations, as well as settings with nested total preorders,
have not been investigated so far.

FO? over trees. An alternative perspective on nested equiv-
alence relations is to interpret them as trees. If only & nested
equivalence symbols E1, ..., E; are considered, structures

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

can be viewed as modeling the leaves of unranked trees of
fixed depth k, where F;(a,b) holds if a and b share a com-
mon ancestor at depth k—:. Importantly, only leaf nodes
constitute the domain; internal tree nodes serve an auxil-
iary role and are not part of the universe. This interpreta-
tion is different from standard two-variable logics over trees,
cf. (Bojariczyk et al. 2009; Charatonik and Witkowski 2016;
Benaim et al. 2016), where all tree nodes belong to the do-
main and the structure is accessed via navigational predi-
cates such as parent, child, descendant, etc.

Other logics. Nested equivalence relations can be simulated
in description logics such as SHZ and SHOZ, which in-
clude transitive roles (S), inverse roles (Z), role hierarchies
(H), and, possibly, nominals (O). These logics have EX-
PTIME-complete satisfiability problems. However, interac-
tions between binary relations (roles) are limited to role hier-
archies, meaning one can only express containment between
relations (these can be equivalences or common relations).
Moreover, these logics do not include linear orderings.
Among first-order fragments, the Unary Negation Frag-
ment, UNFO (ten Cate and Segoufin 2013), is particularly
worth to mention. This logic restricts negation to subfor-
mulas with at most one free variable. Its extension cap-
turing SHOZ, denoted UNFO+SOH, is decidable and 2-
EXPTIME-complete (Danielski and Kieroniski 2019). Re-
markably, UNFO+SO% enables reasoning over arbitrarily
many independent families of nested equivalence relations.

1.3 Expressivity of FO?[<, £ Q] and FO?[<¢]
Cc

Naturally, FO?[<S,] is more expressive than FO?[<<], yet
both formalisms are incomparable with FO*[<,£QS]. In
FO?[<S,..] and FO?[<€], every Ej-class necessarily forms
an interval with respect to a linear order induced from the
total preorder =<1 by resolving ties arbitrarily. In contrast,
this interval property cannot be expressed in FO?[<, £QS].
On the other hand, F02[<, EQS] can enforce that certain

classes do not form intervals:
V. Jy. x <y A-zEy A (P(z) < —P(y))
Va,y. (P(z) A P(y)) = zEyy

1.4 Outline of Technical Sections

Section 2 introduces the necessary notions and definitions.
Section 3 proves Theorem 1. Section 4 sketches the proofs
of Theorems 2 and 4, as these are similar to that of Theo-
rem 1; more details are in the full version. Theorem 3 is es-
tablished in Section 5, with certain technical details deferred
to the full version. Section 6 presents the undecidability re-
sult of Theorem 5. Finally, Section 7 concludes the paper.

2 Preliminaries
2.1 Notation and Conventions

We denote the set of natural numbers including 0 by N. For
k € N, the notation [k] stands for the set {1,...,k}, with
the convention that [0] = @. More generally, we use inter-
val notation [a,b] C N to denote the set {a,a + 1,...,b}
whenever a < b, and the empty set & whenever a > b. If £

319

is an equivalence relation on a set A, then E[a] denotes the
equivalence class of an element @ € A, and B/E denotes
the quotient set via F of a subset B C A.

A signature o is a finite set of symbols, partitioned as
o = ConsURels, where Cons is the set of constant symbols
and Rels is the set of relation symbols (including special
symbols such as <, Ej, Es, etc.). Every relation symbol
has associated arity. We do not allow function symbols of
positive arity. The signature of a formula is the finite set of
relation and constant symbols that appear in the formula.

The size (or length) of a formula , denoted |y, is defined
as the total number of symbols it contains, where each oc-
currence of a symbol—be it a variable, relation symbol, or
constant—contributes 1 to the count.

We use Fraktur letters such as 2(, B, ... to denote struc-
tures, and the corresponding Roman letters A, B, ... for
their domains. A structure 2{ over a signature o interprets the
symbols in o: a relation symbol R as a relation R* C A*
with k£ denoting the arity of R; and a constant symbol ¢ as
an element ¢® € A. If B C A, we write 2 [B for the re-
striction of 2 to the subdomain B. The size of a structure is
the cardinality of its domain. Elements of structures are typ-
ically denoted by a, b, ...; variables by z,y, possibly with
decorations. We write ¢(Z) to indicate that all free variables
of the formula ¢ are contained in the tuple Z.

An (atomic) 1-fype over a signature o is a maximal consis-
tent set of literals involving only the variable x. Similarly, an
(atomic) 2-type over o is a maximal consistent set of literals
over the variables z and y; in particular, a 2-type naturally
determines the 1-types of both z and y. We use the symbol
« (possibly with decorations) to denote 1-types.

Let 21 be a structure. For any a € A, we write tp™[a] to
denote the unique 1-type realised by a in 2, that is the 1-
type a such that 2 = a(a). Similarly, for distinct elements
a,b € A, the notation tp®[a, b] denotes the unique 2-type
realised in 2 by the pair (a, b).

2.2 Scott Normal Form

A sentence ¢ is in Scott Normal Form (Scott 1962) if it is
in the shape of V,y. ¥o(z,y) A /\ﬂ]\f:1 V. Jy. Ym(x,y),
where M denotes the number of Skolem conjuncts. For m &
[0, M], the formula ,, (z, y) is quantifier-free and constant-
free, and uses only relation symbols of arity 1 and 2.

There is a standard polynomial-time procedure transform-
ing any FO? sentence into Scott Normal Form, preserv-
ing satisfiability over the same domains; see e.g., (Pratt-
Hartmann 2023). It is readily verified that it is sound for
the extensions of FO? introduced in Subsection 1.1.

We standardise the special relation symbols in ¢ by as-
suming they are the consecutive symbols FEi,..., Fx for
some K € N. We do the same in the case of <-symbols.

For convenience, we interpret additional symbol F) as the
identity relation, and assume that E' 1, the first symbol not
used in ¢, is interpreted as the universal relation. Note that
this preserves nestedness: £y C Ej and Ex C Ex .

3 Proof of Theorem 1

In this section, we establish our first main result.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Theorem 1. Finitely satisfiable sentences of FO?[<, Q]
admit models o { exponenttal size. The finite satisfiability
problem for FO*[<, £ Q%] is NEXPTIME-complete.

For this whole section, we fix a sentence ¢ from the logic
FO?[<,£QS]. Assuming that ¢ is finitely satisfiable, we
aim to prove that it is actually satisfied by a model of ex-
ponential size. As discussed in Subsection 2.2, we may as-
sume that ¢ is in Scott Normal Form, i.e., in the shape of
Va,y. oz, y)/\/\ﬁf:1 V. Jy. ¥ (z,y), where M denotes
the number of Skolem conjuncts. By convention, ¢ uses the
first K nested equivalence symbols F1, ..., Ek; in addtion,
we interpret Eg and Ex 1 as the identity and universal re-
lations, respectively. Let ¢ denote the set of all 1-types over
the signature of .

The main ingredient of our proof is the following lemma,
which allows us to replace a single equivalence class with its
small counterpart, without touching the rest of the structure.

Lemma 6. Let A be a finite model of . Fix k € [0, K],
and let C be an Ejy1-class in AJ/E},|. Then there exists a
subset D C C such that:

1. D is the union of at most 12 - M3 - || many Ej-classes
from C/E}X.
2. @ has a model B over the domain B = (A\ C) UD.

We will prove Lemma 6 in a moment. Let us first demon-
strate how to derive Theorem 1 from it.

Proof of Theorem 1. Assume that ¢ is finitely satisfiable,
and consider a finite model 2(of minimal size.

Because of this minimality, for each k& € [0, K], every
Ej1-class of 20 is partitioned by at most 12- M3 - || many
E-classes. As otherwise, Lemma 6 would give us a model
of strictly smaller size. Since each Ey-class of 2l is of size
1, an immediate induction tells us that, for each k € [K+1],
the Ej-classes of 2l are of size at most 12% - M3F . |a|*.

Yet, EX 1 having only one equivalence class, the size of
2 is therefore bounded by 12K +1. Ar3K+3. || K+1 Clearly,
K and M are both O(Jp]|). As ¢ does not use constants, the
number of 1-types in c is 2/Rels| = 20(¢D),

We conclude that the size of 2(is indeed 20(¢l*), O

We now prove Lemma 6.

Suppose that 2 is a finite model of ¢, k is a number be-
tween 0 and K, and C is any Ej1-class of A/E,?H.

We assume w.l.0.g. that the domain A is a finite subset
of N and that the order <* of 2 coincides with the usual
order on N, allowing us to write just < instead of <*.

We use the following terminology: if m € [M] and a,b
are elements of A, then we call b a witness of a when-
ever A = 9, (a,b). In addition, b is an internal witness
if (a,b) € E}; an external witness if b € A\ C and
(a,b) ¢ E¥; and a C-witness if b € C and (a,b) ¢ EP.

We fix witness functions f,,: A — A, i.e., such that for
eachm € [M] and every a € A, A = ¢, (a,fm(a)).

Before delving into the details, let us outline our proof
strategy. We construct the set D C C, to replace the se-
lected E}j1-class C, in three steps: First, we define a sub-

set W; C C that will serve as witnesses for elements out-
side C. Next, we set Wy := Ume[M fm [W1], which will

provide witnesses for elements in Wi. Similarly, we define
Wi == Ume[M) fm[Wh), to serve as witnesses for elements
in Wy It will be enough to define D as the Ej-closure of
(WTUWraUWi)NC. Finally, the structure 95 will be defined
as A [[(A\ C) U D] but with certain 2-types redefined.

In order to replace the original C-witnesses by other ele-
ments, we use the following notion of configurations.

Let £ € [M] and a € A. Assume that (by,...,bs) and
(c1,...,ce) are tuples of pairwise distinct elements of A.
We say that they realise the same a-configuration if the fol-
lowing conditions hold:

(i) Forevery i € [¢], tp*[b;] = tp*[ci].

(ii) Forevery i € [{], a > b; if and only if a < ¢;, where < is

any of the symbols “<”, “=""or “>".

(iii) For every i € [(] and every j € [K], (a,b;) € E}' if and

320

only if (a,¢;) € E.

We define now the set W C C. For this, we introduce
the notion of the r-extremal subset of a finite subset S C N,
of £ elements a1 < as < ... < ag: if £ < 2 - r, then this
subset, denoted by extr,.(S), is S itself; if £ > 2 - r, then it
is{ai,...,ar,ap—ps1,-..,a0} C S.

For each 1-type «, we take the set V,, of the M smallest
and M largest realisations of o from every Ej-class in C:

Vo = U extry({a € £ | tp*[a] = a}).
gec/E}

We then define Wj as the set of 2M smallest and 2M
largest elements of each V:

WI = U eXtI‘Q.]\/[(V)

acX

In the following claim, we justify that any configuration
of C-witnesses can be realised within T/7.

Claim 7. Let ¢ € [M), and let a € A\ W}. Suppose that
bi,...,be are distinct elements of C\ E}[a). Then there exist
distinct elements cy, . . ., co in Wy such that (b1, ...,bs) and
(c1,...,ce) realise the same a-configuration.

Proof. We can partition the b;’s into several subtuples by
the 1-types that these elements realise. Considering these
tuples independently, we obtain several tuples of the ¢;’s to
be glued together into a final tuple. Hence, w.l.0.g. assume
that all the b;’s realise the same 1-type «, for some o € ox.
Similarly, we can moreover assume that the b;’s are re-
lated to a in the same way, say b; < a holds for every ¢ € [¢].
Consider the set S := {c € C | ¢ < a and tp*[c] = a}.
Notice that {b1,...,b;} C S\ EP[a]. Moreover, any ¢-
tuple of distinct element from S\ E[a] realises the same
a-configuration as the b;’s. Hence, select ¢ minimal ele-
ments ci, ..., ¢, from the set S\ E'[a]. Because ¢ < M,
we have that {cy,...,c,} C V,. Now, crucially among the
2 - M minimal elements of the set V,,, in addition to the ele-
ments ¢y, ..., ¢y, there are at most M additional “bad” ele-
ments from the set S N E[a]. In consequence, we have that
{c1,...,ce} Cextra.pns(Vy), which is a subset of Wi. O

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Naturally, elements of W require witnesses themselves,
which is why, as announced above, we define Wy
Ume[M] frm [W1]. Similarly, elements of Wy need witnesses,
so we define Wy := Ume[M) Fm [Wh.

We do not introduce further sets Wy, Wy, ..., as ele-
ments of Wy \ (Wi U Wyp) can be assigned C-witnesses
again in Wy. This step resembles the construction of the ex-
ponential model property for FO? by Griidel, Kolaitis, and
Vardi (Gridel, Kolaitis, and Vardi 1997), where three sets of
elements provide witnesses for each other in a circular fash-
ion. Our setting is slightly more intricate, but the general
idea remains: Wy provides C-witnesses for Wy, Wy for Wy,
and, to close the cycle, we adjust the 2-types so that W} pro-
vides C-witnesses for Wiy \ (WiUW7). Moreover, W needs
to provide C-witnesses for elements outside Wy U Wy U Wyy.
We ensure all of this in the subsequent steps of the proof.

We define the set D (from the statement of Lemma 6) as:

U

a€(WIUWrUWi)NC

D= EPa).

This choice of D satisfies the first item of Lemma 6:
Claim 8. The set D is a union of at most 12 - M - |a| many
Ey-classes of C/ER.

Proof. We have that |Wj| < 4- M - |a|, [Wy| < M - |,
and |[Wi| < M - |Wy|. Therefore, each of the sets Wy, Wy
and Wy is of size at most 4 - M? - |a|. We conclude, as
|'D‘§|VVIUVVIIUWIH|§12'M3'|O£|. O

To conclude this proof, it remains to establish also the
second item of Lemma 6: the sentence ¢ has a model ‘B
over the domain B := (A \ C) U D. In this structure, the
1-types, the linear order <, and the relations E}, are induced
from 2, yet some 2-types will be redefined in a specific way.

In particular, this redefinition will ensure the elements of
B\ (Wi U W) to have C-witnesses in W].

Let N denote |B \ (W1 U Wyr)|. We fix an enumeration
ai,...,an of the set B\ (W; U Wy). We inductively con-
struct a sequence of structures Bg, By, ..., By: By is the
induced structure [B, and, for each n € [0, N—1], B,,4+1
is obtained from B,, by modifying some 2-types between
an+1 and Wi\ ER[a,1] in the way described below.

Let W (an+1) denote the set of C-witnesses of a,, 11 sug-
gested by the witness functions f,:

We(an+1) = {fm(an+1) | m € [M]} 0 (C\ B [an41])-

We set by, ..., by as the distinct elements of We(ay41),
with ¢ < M. From Claim 7, there are distinct elements
c1,...,ce from Wy realising the same a,,1-configuration
as by,...,by. We define the structure B,, 1 almost as B,
except that for each c¢; (which is in Wi C B), the 2-type
between a,, 41 and c; is defined as the 2-type between a,, 11
and b;, i.e., tpT 1 [ay 41, ¢;] == tpT [an41, b

The following claim summarises the properties of 8,, 1.
Claim 9. Suppose that the numbers n and N, the elements

ai,...,an of B\ (Wi UWh), and the structure B, are
all defined as above. Then:

321

1. 'B,, 11 realises only the 1-types and 2-types from .
2. The linear order <®n+' and the equivalence relations

Ej%"“,for every j € [K), are all inherited from 2 | B.
3. For all distinct a,b € B, tp®[a,b] = tpT +1[a, b] unless
(a,b) or (b,a)isin ({a1,...,ans1} x Wi)\ B
4. For each i € [n+1] and each b € We(a;), there exists
¢ € Wi such that tp*[a;, b] = tpTn+1[a;, c].
From the items of Claim 9, we conclude that the structure
B, defined as the final structure B, is a model of ¢ over

the domain (A\ C)UD. This finishes the proof of the second
item of Lemma 6.

4 How to show Theorems 2 and 4

Theorems 2 and 4 follow by similar arguments as Theo-
rem 1. We sketch them here; details are in the full version.

Theorem 2. We proceed via a reduction to FO*[<, £QF].
Let 2 be a finite FO*[<]-model of ¢. We expand it to
an FO*[<, £ Q<]-structure 2 by: (i) setting B} := j%o N
(=32)~ for all k; and (ii) interpreting <* as a linear order
derived from < %o by resolving ties within F;-classes arbi-
trarily. Applying Lemma 6 to 2 yields a model B over the
domain B = (A \ C) UD with D C C. Item 2 of Claim 9
implies that j?:jgrB for all k. Since nested preorders are
preserved under taking substructures, B respects the seman-
tics of <i-symbols, and thus it can be naturally transformed
back into an FO?[<]-model of . Since the size bound
analysis from the proof of Theorem 1 still applies, we get a
small model and thereby establish Theorem 2.

Theorem 4. The argument proceeds analogously to that for
Lemma 6 and Theorem 1, but now starting from a possibly
infinite model 2. In the absence of the linear order, we may
choose arbitrary realisations of 1-types into r-extremal sub-
sets (rather than the maximal and minimal ones). The rest
of the reasoning carries over directly, with the only mod-
ification being that, due to the possible infinity of 2, it is
sometimes necessary to work with natural limit structures.

5 Proof of Theorem 3

In this section, we establish our second main result.

Theorem 3. Finitely satisfiable sentences of FO*[<S .| ad-
mit models of doubly exponential size. The finite satisfiabil-

ity problem for FO?[<S, .| is EXPSPACE-complete.

succ
For this section, we fix a sentence ¢ of FO*[<S,], and
assume that it is in Scott Normal Form, i.e., in the shape of
Y, y. oz, y)/\/\fﬂ\n/l[:1 V. Jy. ¥ (z,y), where M denotes
the number of Skolem conjuncts. As explained in Subsec-
tion 2.2, the problem of transforming any FO? sentence into
Scott Normal Form, satisfiable over the same domains, is in
polynomial-time. Hence, this assumption is without loss of
generality. By convention, ¢ uses the first K special sym-
bols <, for k € [K], and the corresponding derived sym-
bols E}, and Si; moreover we interpret the symbols F and
E'x 41 as the identity and universal relations, respectively.

Small model property. We begin with the first part of Theo-
rem 3, establishing that every finitely satisfiable sentence of

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Algorithm 1: Finite Satisfiability for FO?[<S]

—succ

Input: A sentence ¢ in Scott Normal Form
Output: Decides whether ¢ is finitely satisfiable
1 guess the domain size N € N;
2 fori+1,2,...,Ndo

3 | guess the number r; € [K+1];

4 guess the 1-type o; € «;

5 if a; £ ¢o(z, x) then reject;

6 | Wi {me[M]|a; Em(r,2)}

7 forj e {1,...,i—1} do

8 if g; < r; then

9 L pj < 43

10 q; — T

11 guess the 2-type 3,; € Bla;, a4, pj, ¢5];

12 if 5, = vo(z, y) A o(y, x) then reject;
13 Wi« W;U{m € [M]| B = ¥m(z,y)};
14 | Wi Wiu{m € [M]|Bj; = ¥m(y,x)}
15 | pis g1

16 if W; = [M] for every i € [N| then accept;
17 else reject;

FO?[<S,..] has a model of doubly exponential size. The key
ingredient is the following lemma, analogous to Lemma 6;

its proof is deferred to the full version of the paper.

Lemma 10. Let A be a finite model of . Fix k € [0, K],
and let C be an Ejy1-class in A/EY,_|. Then there exists a
subset D C C such that:

1. D is the union onQO(M) many Ey-classes from C/E,%l
2. @ has a model B with domain B = (A\ C) UD.

The argument for deriving the small model bound from
Lemma 10 is parallel to that of Theorem 1 from Lemma 6.
Let 2 be a minimal-size finite model. By Lemma 10, for

each k € [0, K], every E),1-class of 2 is partitioned into at

odeh . . .
most 22 many Ej-classes. Since each Fy-class is a sin-

gleton and E | has a single equivalence class, it follows
that 2 is indeed of doubly exponential size:

1A < (220<w>)K“ _ o(K+1)x20UeD _ 520D

Satisfiability-checking procedure. We now turn to the
second part of Theorem 3, establishing an EXPSPACE
procedure deciding the finite satisfiability problem for
FO?[<S,..]. A preliminary version of this procedure, op-
erating in 2-EXPSPACE, is given in Algorithm 1.

We call a 1-type or 2-type proper if it interprets all the
special symbols <, Fj, and S in a manner consistent
with the semantics of FO?[<S, .]. In other words, proper
types are exactly those that can occur in actual models of
FO?[<S,..]. In particular, they respect the natural compat-
ibility conditions between equivalences and preorders, e.g.,
if Ey(z,y) holds, then x < y and y <j 2 must both hold
as well. For 2-types, we additionally require that they entail
x =i y for the relevant k; this condition guarantees com-

patibility with the fixed ordering alignment assumed in the

algorithm. Denote by c and 3 the sets of proper, respec-
tively, 1-types and 2-types over the signature of (.

In the procedure, we use a table 3[x, *, *, x|. In this table,
the entry B[a, as, p, q|, for every oy, a0 € v and 1 < p <
q < K+1, stores a set of 2-types. We put a 2-type 8 € B
into the set 3oy, as, p, q] if the following conditions hold:

() tp?[z] = oy and tp°[y] = a.
(ii) Foreach k € [K], Ey(z,y) € Biff ¢ < k.

(iii) Foreach k € [K], Sk(z,y) € Biffp <k < q.

322

Algorithm 1 attempts to verify the existence of a model
2 for ¢ over the domain {1, ..., N}, for some N € N. We
assume that the preorders j% are aligned with the natural
order < on N (i.e., i<gj — ©<j). In the ith iteration of the
outer loop, the algorithm examines how the new element ¢
interacts with all previous elements 1,...,i—1, denoted by
J in the inner loop. The variable g; stores the smallest index
k such that j and 7 belong to the same Ej-class; and K41
is a sentinel value. If p;<gq;, then p; records the smallest
index k for which j and ¢ lie in <j-consecutive Fj-classes;
if instead p;=gq;, then no such consecutive Ej-classes exist.

To illustrate better the idea of Algorithm 1, we visualise
the structure in the following schematic, each horizontal
brace groups together the elements of one E-class, and =<j
linearly orders the E;-classes from left to right:

123456 789 1011 12 13 14 15 16 17 18
[y — A W A N — U —

Ey B, By By E; Ey
Eq Eq Es
E3 E3
Ey

Consider now the 18th iteration of the outer loop, that is,
+ = 18. The values of the variables p; and g; for selected j
are: ps =3, ¢s = 4; p9 =2, g9 = 4; p12 =2, q12 = 2.

Intuitively, these pairs (p,, ¢;) capture the relative posi-
tion of j with respect to ¢ in the hierarchy of equivalence
classes, allowing the algorithm to determine which 2-types
between elements j and ¢ are admissible.

The algorithm maintains, for each element i € [N], a set
W; C [M] recording which Skolem conjuncts are already
satisfied for ¢, and accepts precisely when every element has
all its witnesses secured, i.e., when W; = [M] for all i.

We formalise the above explanations in the following
claim, establishing completeness of the procedure.

Claim 11. Suppose that ¢ has a finite model . Then there
exists a sequence of guesses of Algorithm 1 such that, after
i iterations, where i € [N), the following invariants hold:

s For j € [i], tp®[j]=cy, and for j<k<i, tp*[j, k|=5; 1.
o Ifi > 1, then, for k € [K), (i—1,4i) € EF iffr; < k.

e Forj € [i]and k € [K], (j,i) € EF iffq; < k.

s Forj€lilandk € [K), (j,i) € S} iffp; < k < gj.

* For j € [i], W; indicates witnesses of j located in 2 | [i].

Soundness follows as well. Given a transcription of an
accepting run, we reconstruct a finite model of ¢ as follows.
Take the domain to be {1,..., N}, assign to each element ¢

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

the 1-type «;, and for each ordered pair (j,4) assign the 2-
type 3;;. Since each pair is processed exactly once, and all
2-types are determined consistently with both the preorder
relations and their successors, no conflicts can arise. The
resulting structure therefore satisfies ¢.

Corollary 12. Algorithm 1 is sound and complete.

Algorithm 1 operates in space proportional to N. By the
already established small model property, /N can be assumed
doubly exponential in ||, yielding a 2-EXPSPACE bound.

However, we note that the precise identities of the previ-
ously processed elements j < ¢ are irrelevant: all informa-
tion needed about such an element j is captured by the tuple
(aj, Wy, pj,q;). Consequently, after the ith iteration, the al-
gorithm’s configuration can be represented compactly as a
counting function, recording the number of such tuples:

Fi: o x 2M 5 [K41] x [K+1] — N.
It is straightforward to adapt the procedure to work directly
with this representation. Storing F; explicitly as a table re-
quires O(|ar| - 2™ - K2 - log N) bits of space. Since || is
200D M and K are O(|¢|), and N is doubly exponential
in ||, the overall space usage is singly exponential in ||.

Corollary 13. Algorithm I can be implemented to operate
in exponential space.

Lower bound. The final part of the proof of Theorem 3 is
to show the matching EXPSPACE-hardness lower bound for
the finite satisfiability problem for FO*[<S, .].

Here we give a short proof sketch; full details are deferred
to the full version. We reduce from the corridor tiling prob-
lem, which is EXPSPACE-complete. An instance consists
of a set of colours C, horizontal and vertical adjacency con-
straints, colours for the top-left and bottom-right cells (ini-
tial conditions), and a number 7 in unary. The decision ques-
tion is whether there exists a number m and a labelling with
colours from C of a 2™ x m grid that satisfies all constraints.

The reduction is realised by a conjunction of FO*[<S,]
sentences that enforce the structure to encode such a grid.
Introduce unary predicates B; for 0 < j < n together with
unary predicates P, for each colour ¢ € C. Interpretation:
each domain element is a grid cell; the predicates B; encode
the horizontal coordinate in binary (yielding width 2), and
each Fi-equivalence class represents a full row. Within a
row, P, marks the colour of the cell at the horizontal position
given by the bits. The successor relation S; links consecu-
tive F-classes, so rows form a vertical chain of length m.
Expressing the horizontal and vertical adjacency constraints,

as well as the initial conditions, in FOQ[jg] is routine.

Corollary 14. The finite satisfiability problem for
FO?[<S,..] is EXPSPACE-hard.

—succ

6 Proof of Theorem 5

In this section, we establish our undecidability result.

Theorem 5. The satisfiability and finite satisfiability prob-
lems are undecidable for the constant-free, equality-free,
monadic fragment of FO? extended with four special sym-
bols F1, Fs, F1, Fs, interpreted as equivalence relations
such that FEs is coarser than E\ and F5 is coarser than F}.

323

To the end of this section, we prove Theorem 5.

The idea demonstrated here is similar to Pratt-Hartmann’s
proof of the undecidability of FO? with counting and two
equivalence relations (Pratt-Hartmann 2014). Hovewer, in
the absence of the equality symbol, additional technical re-
finements are required.

The undecidability is proven via a reduction from the halt-
ing problem for two-counter machines. Such a machine M
consists of a finite set S = {so,...,sp} of states, one be-
ing initial (say sg) and one being final (say sg); two coun-
ters c¢; and ¢ holding non-negative integers; and a set of
transitions 6 C S x Op x S between states and opera-
tions over the counters; these operations are: increment a
counter, decrement a counter (if it is non-zero), or test if a
counter is zero. A configuration is a triple (s, ¢1, ¢3) hold-
ing the state s and the values of the two counters c; and cs.
A run is a (potentially infinite) sequence of configurations
which starts with the initial state s and respects the transi-
tion function. The machine terminates if it ever reaches the
final state sp. As two-counter machines can simulate Turing
machines, the halting problem for two-counter machines is
undecidable (more precisely, it is r.e.-complete).

We encode a run of some two-counter machine M. Each
configuration will be contained within an equivalence class
of the intersection relation Es N Fy. We write G2(x, y) for
the formula F5(z,y) A Fa(x,y). We partition the domain
with two unary predicates dg and dp, and axiomatise that
they are universal in each Gy-class:

Va. dg(z) < ~dp(x) (1)
Va,y. Ga(z,y) — (de(z) < de(y)))

If a configuration has its elements satisfying dg (resp.
dr), we call it a dg-configuration (resp. dg-configuration).
We specify that each F»- and F5-class has at most one con-
figuration of each type:

/\ YV, y. (Eg(x,y)/\da(z)/\da(y))%Fg(x,y) 3)
a€e{E,F}

N\ Ve, (Fa(z,y)Ada(@)Ada(y) = Ea(z,y) (4)
a€e{E,F}

We define now that each configuration is in precisely one
state s from the set of states S of M:

V. \/ Vy. Ga(z,y) — (s(y) A
seS s'€S: s'#s

-s'(y)) (5

We order configurations with a definable binary relation ¢:
among an FEs-class (resp. Fs-class), it links elements from
the dg-configuration to the successive dp-one (resp. from
the dp-one to the successive dg-one), see Figure 1:

t(z,y) = (Ba(z,y) Adp(x) Adr(y))
V (Fa(z,y) Ndp(z) Ade(y))

We have discussed so far how to axiomatise the succes-
sion of configurations, we explain now how to implement
the counters with the help of the two thinner equivalence
relations Fy and F}. We write G1(x,y) for the formula

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

By B, By

dr | | dg
l‘t’>l .

Iy

dp

%

dFt
&

Iy

Figure 1: A succession of configurations.

Ey(z,y) V Fi(z,y), defining the union of £ and F}; a pri-
ori not an equivalence relation. We require first that inside
any Go-class, F; and F} define the same relation:

Vac,y. (GQ(:U,y)/\Gl(may)) - (El(xay)/\Fl(xay)) (6)

We introduce two unary predicates c¢; and cy. Their in-
tended meaning is as follows: If £ is a Ga-class (repre-
senting a configuration), then, inside it, the value of the
counter c¢; is the number of equivalence classes of the re-
lation E; N £2 whose elements satisfy ¢;. In particular, if
no element of £ satisfies ¢;, then the value of the counter
c; equals zero. We permit elements to satisfy only a state
predicate, without being marked by c; or co. This ensures
that configurations where both counters are zero can still be
represented.

We require first that ¢; and co are mutually exclusive:

V. ner(x) V —eo(x) @)

We also state that c; and ¢y propagate within GG1-connected
components (and hence they do not interact via E; or F}):
2

/\ v, y. (G1(ﬂc,y) A Ci(ilf)) — ¢i(y)
i=1

®)

Then, the change of the counters is held as follows.
In a dg-configuration, F; may extend to the successive
dp-configuration and F may extend to the preceding dp-
configuration. And, in a dg-configuration, the situation is
symmetric. This makes it possible to transfer the values of
counters to the neighbouring configurations.

We define the formula ¢3_, (x) stating that the element x
admits a t-successor linked via G :

3 (x) = Fy. t(z,y) A Gi(z,y).

Notice that if two elements of two distinct configurations
are linked via ¢, then they are in particular linked via pre-
cisely one of E5 and F5, which does not leave any ambiguity
whether they are linked via E; or F.

We also define the symmetric formula 3. (x) stating
that = admits a ¢t-predecessor linked via G .

We define now, for each ¢ € {1, 2}, a formula ¢v;3-, ()
stating that every element y of the Go-class of x which sat-
isfies ¢; admits a t-successor via G'1:

Pvig— (@) == Vy. (Ga(z,y) Aei(y)) = o3 (y).

Because F; and F} are equivalence relations, we can see
that if py;3_, () is true, then the configuration succeeding

324

that of = has a value of ¢; greater than or equal to the value
of ¢; in the configuration of z. In order to make sure that it
cannot increase by more than one, we add a condition stating
that each two elements of the same configuration that satisfy
¢; and have no predecessor via (G; are necessarily related via
F/, and hence at most one equivalence relation is added:

/\ Va,y. (Ga(z,y) A ci(z) A cily)

1=1
A =p3(z) A=p3(y)) — Ei(z,y) (9

Symmetrically, we define pv;3. (z) stating that every el-
ement y of the Gy-class of x which satisfies ¢; admits a ¢-
predecessor via G1, and we also define the symmetric con-
dition making sure that each counter decreases by at most
one at every step:

2

N\ Yo,y (Galw,y) Aci(z) Aci(y)

i=1

A =p35(2) A =93 (y) — Ei(z,y) (10)

We define below four auxiliary formulas ¢; sero(),
(foi,eq ((L’), Soi,incr(x) and <;02',decr<x)-

First, the formula ¢; ,ero () states that no element of the
Go-class of z satisfy ¢;, and hence the counter ¢; is zero:

Gizero(T) 1= Vy. Ga(z,y) = —¢i(y).
Then, the formula ¢; .4 (x) states that the counter c; stays
the same from the configuration of x to the next one:

Pieq(T) = Pvia— (@) AVy. t(z,y) = pviae(y)-

Finally, the formulas ¢; jner () and ¢; geer(x) state that the
counter c¢;, respectively, increments and decrements from the
configuration of x to the successive one:

Qoi,incr(x) = @Viﬂ%(x) A Vy t(l’, y) — _'QOViH(—(y)
Pideer(T) = ~pvia— (T) AVyY. ¢z, y) = pvia(y)

Having the above formulas, as well as the unary state
predicates, we can easily axiomatise all the transitions of
the two-counter machine M together with its initial and fi-
nal configurations; we leave details to the reader.

Let O be a sentence expressing the existence of a run
of M that reaches the final state sp. It is immediate to see
that this sentence Oy is finitely satisfiable if and only if M
terminates. This allows us to conclude the undecidability
of finite satisfiability. For general (infinite) satisfiability, we
consider a sentence O}, expressing the existence of an infi-
nite run of M (i.e. never reaching the final state sr). Hence,
the general satisfiability problem is also undecidable.

7 Conclusion
We analysed four extensions of FO? that enable decidable
reasoning over nested equivalence relations: FO*[£Q<],
FO?[<, £QF], FO?*[<S], and FO*[<S, .|, establishing the
precise complexity of the finite satisfiability problems and
bounds on the size of minimal finite models. Except
FO? [£ QF] that enjoys the finite model property, understand-
ing general (infinite) satisfiability remains open. Finally, we
demonstrated that extending FO? with two independent fam-
ilies of nested equivalence relations leads to undecidability.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Acknowledgments

The first and second authors were supported by the Polish
National Science Center grant No. 2021/41/B/ST6/00996.
The third author was supported by the ERC grant INFSYS,
agreement No. 950398. We thank the first anonymous re-
viewer for his helpful feedback.

References

Benaim, S.; Benedikt, M.; Charatonik, W.; Kieronski, E.;
Lenhardt, R.; Mazowiecki, F.; and Worrell, J. 2016. Com-
plexity of two-variable logic on finite trees. ACM Trans.
Comput. Log. 17(4):32:1-32:38.

Bjorklund, H., and Bojariczyk, M. 2007. Shuffle expressions
and words with nested data. In Proceedings of the 32nd
International Conference on Mathematical Foundations of
Computer Science, MFCS’07, 750-761.

Bojaniczyk, M.; Muscholl, A.; Schwentick, T.; and Segoufin,
L. 2009. Two-variable logic on data trees and xml reasoning.
J. ACM 56(3).

Bojariczyk, M.; David, C.; Muscholl, A.; Schwentick, T.;
and Segoufin, L. 2011. Two-variable logic on data words.
ACM Trans. Comput. Log. 12(4):27.

Charatonik, W., and Witkowski, P. 2016. Two-variable logic
with counting and trees. ACM Trans. Comput. Log. 17(4):31.

Danielski, D., and Kieroriski, E. 2019. Finite satisfiability
of unary negation fragment with transitivity. In 44th Inter-
national Symposium on Mathematical Foundations of Com-
puter Science, MFCS, volume 138 of LIPIcs, 17:1-17:15.

Gridel, E.; Kolaitis, P.; and Vardi, M. Y. 1997. On the
decision problem for two-variable first-order logic. Bulletin
of Symbolic Logic 3(1):53-69.

Kahr, A.; Moore, E.; and Wang, H. 1962. Entschei-

dungsproblem reduced to the V3V case. Proc. Nat. Acad.
Sci. U.S.A. 48:365-377.

Kieronski, E., and Otto, M. 2012. Small substructures and
decidability issues for first-order logic with two variables.
Journal of Symbolic Logic 77:729-765.

Kieroniski, E.; Michaliszyn, J.; Pratt-Hartmann, I.; and Ten-
dera, L. 2014. Two-variable first-order logic with equiv-
alence closure. SIAM Journal of Computing 43(3):1012—
1063.

Kieronski, E. 2011. Decidability issues for two-variable log-
ics with several linear orders. In Computer Science Logic,
25th International Workshop / 20th Annual Conference of
the EACSL, CSL 2011, Proceedings, volume 12 of LIPIcs,
337-351.

Otto, M. 2001. Two-variable first-order logic over ordered
domains. Journal of Symbolic Logic 66:685-702.

Pratt-Hartmann, I. 2014. Logics with counting and equiva-
lence. In Proceedings of the Joint Meeting of CSL and LICS,
CSL-LICS ’14, 76:1-76:10. ACM.

Pratt-Hartmann, 1. 2023. Fragments of First-Order Logic.
Oxford Logic Guides. United Kingdom: Oxford University
Press.

325

Schwentick, T., and Zeume, T. 2012. Two-variable logic
with two order relations. Logical Methods in Computer Sci-
ence 8(1).

Scott, D. 1962. A decision method for validity of sentences
in two variables. Journal Symbolic Logic 27:477.

ten Cate, B., and Segoufin, L. 2013. Unary negation. Logical
Methods in Comp. Sc. 9(3).

Zeume, T., and Harwath, F. 2016. Order-invariance of two-
variable logic is decidable. In Proceedings of the 31st An-
nual ACM/IEEE Symposium on Logic in Computer Science,
LICS 16, 807-816.

	Introduction
	Logics of Interest and Our Results
	Related Work
	Expressivity of FO2[<,EQ5pt] and FO2[5pt]
	Outline of Technical Sections

	Preliminaries
	Notation and Conventions
	Scott Normal Form

	Proof of Theorem 1
	How to show Theorems 2 and 4
	Proof of Theorem 3
	Proof of Theorem 5
	Conclusion

