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Abstract

We study Two-Variable First-Order Logic, FO2, under se-
mantic constraints that model hierarchically structured data.
Our first logic extends FO2 with a linear order < and a chain
of increasingly coarser equivalence relations E1 ⊆ E2 ⊆ . . ..
We show that its finite satisfiability problem is NEXPTIME-
complete. We also demonstrate that a weaker variant of this
logic without the linear order enjoys the exponential model
property. Our second logic extends FO2 with a chain of
nested total preorders ⪯1⊆⪯2⊆ . . .. We prove that its finite
satisfiability problem is also NEXPTIME-complete. How-
ever, we show that the complexity increases to EXPSPACE-
complete once access to the successor relations of the pre-
orders is allowed. Our last result is the undecidability of FO2

with two independent chains of nested equivalence relations.

1 Introduction
Hierarchically partitioned data are pervasive in modern com-
puter systems. For example, Geographical Information Ser-
vices often organise geospatial information using progres-
sively more detailed fields: country, region, state, and city.
Similar hierarchies appear in numerous contexts: Data Stor-
age (organised into folders, subfolders, and files), Network
Management (addressing schemes like IPv4/IPv6 with sub-
net hierarchies), Dependency Maintenance (tools for track-
ing dependencies between modules, libraries, and services).

To model such hierarchical data, we consider domains in
which elements are annotated with data values drawn from
potentially infinite or very large domains. A key aspect is
that these data values can be tested for equality at multiple
levels of precision. This is naturally captured by a family
of increasingly coarser equivalence relations: two elements
are related by the k-th equivalence relation if the k-th level
equality test holds between their associated data values.

In this work, we establish results on the decidability and
complexity of satisfiability problems for several variants of
the Two-Variable Fragment of First-Order Logic, FO2, ex-
tended to support such increasingly coarser equivalence re-
lations. Our goal is to provide a logical framework that is ex-
pressive enough to model complex multi-level relationships
while retaining desirable computational properties for rea-
soning. As most of the investigated logics do not enjoy the
finite model property, their general and finite satisfiability

problems differ. Our primary focus is on finite satisfiability,
while the case of general satisfiability is left for future work.

The motivation for studying FO2 stems from its good al-
gorithmic and model-theoretic properties. FO2 combines an
NEXPTIME-complete satisfiability problem and the expo-
nential model property (Grädel, Kolaitis, and Vardi 1997)
with a reasonable expressive power. In particular, it embeds
(via the so-called standard translation) many modal, tem-
poral, and description logics (up to ALCIOH∩,̸=). Also,
it is the maximal, in terms of the number of variables, frag-
ment of First-Order Logic with decidable satisfiability prob-
lem, as already the Three-Variable Fragment is undecidable
(Kahr, Moore, and Wang 1962). In the last few decades, FO2

together with its variations have been extensively studied,
and plenty of results have been obtained in various scenar-
ios (cf. Subsection 1.2 on related work). All of this makes
FO2 often the first-choice option for various reasoning tasks.

In the following subsections of this introduction, we de-
fine our logics and present the obtained results (Subsec-
tion 1.1), discuss related work (Subsection 1.2), compare the
expressive power of our logics (Subsection 1.3), and outline
the technical sections that follow (Subsection 1.4).

1.1 Logics of Interest and Our Results
Our underlying formalism is the Two-Variable Fragment of
First-Order Logic, FO2, whose formulas may use only the
variables x and y; any number of unary and binary common
relation symbols (i.e., with unconstrained interpretations);
the equality symbol; and constant symbols, but no function
symbols of positive arity. Extensions of FO2 are denoted by
listing the special symbols (i.e., those with constrained in-
terpretations) in brackets, e.g., FO2[<, EQ⊆]. This notation
makes it explicit which additional semantic constraints are
imposed on top of the base FO2 syntax.
Order on domain elements. Let EQ⊆ denote the family of
special symbols E1, E2, . . . whose interpretations are con-
strained to nested equivalence relations, that is for every
k ∈ N: (i) the interpretation of Ek is an equivalence rela-
tion, and (ii) the interpretation of Ek+1 is coarser than that
of Ek (i.e., xEky → xEk+1y). Let < be a special symbol
interpreted as a strict linear order on domain elements.1

1Throughout the paper, we will also use the derived non-strict
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Our first considered logic is FO2[<, EQ⊆], supporting
both a linear order on elements and hierarchical data values.

Potential applications of FO2[<, EQ⊆] can be found in,
e.g., temporal verification of multiprocess systems. We pro-
vide a motivational example of enforcing isolation policy in
an environment of processes, containers, and events.

System execution is modeled as a linear sequence of
events ordered by time using the relation <. Events are
generated by processes, and processes are grouped into con-
tainers. The equivalence relations E1 and E2 capture this
hierarchy: xE1y holds when events x and y come from the
same process, and xE2y when they come from possibly dis-
tinct processes yet running in the same container. These are
naturally nested: xE1y → xE2y.

Importantly, the domain of our model consists only of
events: processes are implicitly represented as equivalence
classes of the relation E1. That is, all events belonging to
the same process form a single equivalence class of E1. (We
assume that every process reports at least one event, e.g.,
spawn event, to ensure that it has a non-empty class.) Like-
wise, containers are implicitly represented as equivalence
classes of the relation E2. (We assume that in every con-
tainer at least one process is running, e.g., root process.)

Process-level properties (e.g., sandboxed, privileged) are
expressed via class-wise unary predicates. For example:
∀x, y. xE1y →

(
sandboxed(x)↔ sandboxed(y)

)
This ensures that all events from the same process share the
same sandboxed or not sandboxed label, even though the
logic only quantifies over events.

Using the above described encoding, we can impose the
following isolation policy: “A sandboxed process must not
communicate with events outside its container unless an ex-
plicit grant was made before from a privileged process.”

This policy can be formalised with a sentence:

∀x1.
(
sandboxed(x1) ∧ φcross-container-message(x1)

)
→(

∃y1. y1 < x1 ∧ x1E1y1 ∧ φpermission-grant(y1)
)
,

where φcross-container-message(x1) stands for the formula
∃y2. x1 < y2 ∧ ¬x1E2y2 ∧message(x1, y2),

and φpermission-grant(y1) for
∃x3. privileged(x3) ∧ x3 < y1 ∧ grant(x3, y1).

In the above formulas, we annotated variables as x1, y1,
y2, x3 for readability to reflect their roles in different pro-
cesses. However, only two variables x and y, with reuse
across quantifiers, are sufficient to express this property.

As stated above, all variables refer to events: x1 is a dis-
patch message event from Process 1 (the sender) that initi-
ates the communication, and y2 is a deliver message event
from Process 2 (the receiver) that receives the message from
Process 1, as indicated by message(x1, y2). The event y1 is
an earlier event from the same process as x1, representing
the grant acknowledge event, marking the point at which
Process 1 becomes aware of and is authorised to act on the
granted permission. Finally, x3 is a grant authorise event

linear order ≤, and their analogues for other orders, e.g., ≺ and ⪯.
Notice that in FO2 ≤ is definable from < and vice-versa.

from Process 3 (a privileged admin) that issues the permis-
sion and notifies Process 1, as indicated by grant(x3, y1).

The intended temporal order of events x3<y1<x1<y2 is
enforced: the permission is issued before it is acknowledged
(x3<y1); the message is sent after the permission being ac-
knowledged (y1<x1) and before being delivered (x1<y2).

Notice also that, to detect that Process 1 and Process 2
are running in distinct containers, we refer to their represen-
tative events using ¬xE2y. Since E1 is nested within E2,
it follows that if two events are not E2-related, then their
respective E1-classes (i.e., processes) must also belong to
distinct E2-classes (i.e., containers).

Our first main contribution is establishing the complexity
of the finite satisfiability problem for FO2[<, EQ⊆]:
Theorem 1. Finitely satisfiable sentences of FO2[<, EQ⊆]
admit models of exponential size. The finite satisfiability
problem for FO2[<, EQ⊆] is NEXPTIME-complete.

Notice that FO2[<, EQ⊆] does not include the induced
successor of<.2 (Björklund and Bojańczyk 2007) show that
adding it leads to undecidability (see: Subsection 1.2).
Order on data values. We consider now a different way to
incorporate a linear order into our scenario. We trade an or-
der on domain elements for a family of nested linear orders
on data values, i.e., on equivalence classes of E1, E2, . . . .

Let ⪯⊆ denote the family of special symbols ⪯1,⪯2, . . .
whose interpretations are constrained to nested total pre-
orders, that is for each k ∈ N: (i) the interpretation of ⪯k is
a total preorder3, and (ii) the interpretation of ⪯k is a subre-
lation of the interpretation of⪯k+1 (i.e. x⪯ky → x⪯k+1y).

For example, interpretations over N defined by n ⪯k m
iff ⌊ n

10k
⌋ ≤ ⌊ m

10k
⌋ satisfy the above requirements.

Our second logic is FO2[⪯⊆], supporting hierarchical data
values that can be compared at multiple levels of granularity
using less-than, equal, and greater-than comparison tests.

In FO2[⪯⊆], we naturally keep nested equivalence rela-
tions E1, E2, . . . Their interpretation is now given by the
⪯k-equivalent elements: xEky ↔ x ⪯k y ∧ y ⪯k x.

Natural applications of FO2[⪯⊆] arise in temporal rea-
soning tasks that involve increasingly fine-grained notions
of time. A representative case study is a system support-
ing atomic transactions. Here, the elements of the structure
represent low-level operations. The finest preorder⪯1 mod-
els the underlying timeline, where ⪯1-equivalent elements
are treated as occurring in parallel. Transactions are mod-
eled implicitly as E2-equivalence classes, ordered chrono-
logically by ⪯2. Coarser preorders can be used to represent
higher-level structures such as ⪯3 for commit order, ⪯4 for
versioning, and so on. With this encoding, we can express
that, e.g., “raised exceptions must be handled in the future,
yet within the same transaction” as follows:

∀x. exception(x)→ ∃y. x ≺1 y ∧ xE2y ∧ handles(y, x)

For FO2[⪯⊆], we establish the following theorem:
2Notice that the induced successor is definable in FO, yet not in

FO2, by the formula φ(x, y) := x < y ∧ ∀z. (x < z → y ≤ z).
3A total preorder is a transitive relation ⪯ such that, for every

x, y, either x ⪯ y or y ⪯ x holds (in particular, x ⪯ x holds).
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Theorem 2. Finitely satisfiable sentences of FO2[⪯⊆] admit
models of exponential size. The finite satisfiability problem
for FO2[⪯⊆] is NEXPTIME-complete.

Adding successors on data values. We consider now a
logic FO2[⪯⊆succ] that enriches the syntax of FO2[⪯⊆] by
adding, for each⪯k-symbol, its induced successor predicate
Sk, defined as Sk(x, y) := x≺ky ∧ ∀z.

(
x≺kz → y⪯kz

)
.

Applications of FO2[⪯⊆succ] naturally extend those of
FO2[⪯⊆]; we continue with the transaction-based system
scenario. For example, we can express the property: “If a
transaction fails, then in the immediate ⪯1-successor time-
slot a rollback must occur, using the last available snapshot
from the immediate⪯2-predecessor transaction.” Formally:
∀x. fail(x)→

(
∃y. rollback(y) ∧ S1(x, y) ∧ xE2y ∧

∃x. last-snapshot(x) ∧ S2(x, y) ∧ restore-to(y, x)
)

Here, S1(x, y) ∧ xE2y ensures that the rollback follows the
failure in the very next ⪯1-time-slot within the same trans-
action, while S2(x, y) ensures that the snapshot belongs to
the transaction immediately preceding the one containing
the rollback. In particular, this guarantees that the snapshot
was created before the failure. Additional axioms can be
imposed to refine the scenario further: for instance, we can
define last-snapshot as the ⪯1-maximum snapshot within
eachE2-class, or require that after a rollback the system pro-
ceeds directly to the ⪯2-successor transaction.

Now we state the second main contribution of this paper:
Theorem 3. Finitely satisfiable sentences of FO2[⪯⊆succ] ad-
mit models of doubly exponential size. The finite satisfiabil-
ity problem for FO2[⪯⊆succ] is EXPSPACE-complete.

Absence of orders. Both FO2[<, EQ⊆] and FO2[⪯⊆] admit
sentences that enforce infinite models (e.g., ∀x. ∃y. x<y
and ∀x. ∃y. x≺1y). This contrasts with pure FO2 which en-
joys the finite model property (i.e., every satisfiable sentence
has a finite model). A natural question arises: Can nested
equivalence relations alone enforce infinite models, or is this
phenomenon solely due to the presence of linear orders?

Let FO2[EQ⊆] denote FO2 extended with the family of
nested equivalence relations E1, E2, . . . . We answer that
FO2[EQ⊆] does indeed enjoy the finite model property:
Theorem 4. Satisfiable sentences of FO2[EQ⊆] admit mod-
els of exponential size. The satisfiability and finite satisfia-
bility problems for FO2[EQ⊆] coincide and are NEXPTIME-
complete.

Undecidability. A natural candidate to explore next is a
logic supporting two independent families of nested equiva-
lence relations E1, E2, . . . and F1, F2, . . . . We prove that
reasoning in such a logic is undecidable—even in a very
restricted setting—when each family has length 2 and the
vocabulary, except the four special equivalence symbols, is
composed of unary predicates only.
Theorem 5. The satisfiability and finite satisfiability prob-
lems are undecidable for the constant-free, equality-free,
monadic fragment of FO2 extended with four special sym-
bols E1, E2, F1, F2, interpreted as equivalence relations
such that E2 is coarser than E1 and F2 is coarser than F1.

1.2 Related Work
FO2 with equivalence relations. FO2 with a single equiv-
alence relation has the exponential model property and
an NEXPTIME-complete satisfiability problem (Kieroński
and Otto 2012). With two equivalence relations (not nec-
essarily nested), the finite model property is lost; both
satisfiability and finite satisfiability are 2-NEXPTIME-
complete (Kieroński et al. 2014). With three equivalence
relations, FO2 is undecidable (Kieroński and Otto 2012).

Since FO2 can express containment between equivalence
relations, the work of (Kieroński et al. 2014) established de-
cidability for FO2 over hierarchical partitions of depth two
(with no ordering). However, it does not yield optimal com-
plexity bounds even in this restricted setting and leave the
question of the finite model property unanswered.
FO2 with linear orders. The satisfiability and finite sat-
isfiability problems for FO2 with a single linear order are
NEXPTIME-complete (Otto 2001). With three linear orders,
both problems become undecidable (Kieroński 2011). The
case of two linear orders was studied in (Zeume and Harwath
2016), where finite satisfiability is shown to be decidable in
2-NEXPTIME when one linear order is accessible via both
the order and successor predicates, and the other only via
one of them. General satisfiability was not addressed.
Data Words. FO2 with a linear order and an equivalence
relation has been studied extensively in the context of data
words. These are structures interpreting unary predicates,
an equivalence relation, a linear order, and its induced suc-
cessor relation. The satisfiability problem for FO2 on data
words is decidable but non-elementary-hard (Bojańczyk et
al. 2011). When the successor relation is omitted, the prob-
lem becomes NEXPTIME-complete.

Quite close to our setting are data words with nested
equivalences, that where considered in (Björklund and
Bojańczyk 2007). It is shown there that satisfiability is de-
cidable when the linear order is accessible only via its suc-
cessor relation, and becomes undecidable as soon as both the
order and its successor are accessible. The variant closest to
FO2[<, EQ⊆], where only the linear order (and not its suc-
cessor) is available, was not explored in that work. Notice
that data words restrict the common part of the signature to
unary symbols, whereas we allow full FO2 with arbitrary bi-
nary relations that may freely interact with the equivalences.
FO2 with total preorders. The EXPSPACE-completeness
of the finite satisfiability problem for FO2 over structures
with one total preorder, its induced successor relation, a
linear order, and additional unary relations was established
in (Schwentick and Zeume 2012). As in the case of data
words, no common binary relations are permitted. When
two independent total preorders are available, satisfiability
becomes undecidable. To the best of our knowledge, the
case of a single total preorder combined with arbitrary bi-
nary relations, as well as settings with nested total preorders,
have not been investigated so far.
FO2 over trees. An alternative perspective on nested equiv-
alence relations is to interpret them as trees. If only k nested
equivalence symbols E1, . . . , Ek are considered, structures
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can be viewed as modeling the leaves of unranked trees of
fixed depth k, where Ei(a, b) holds if a and b share a com-
mon ancestor at depth k−i. Importantly, only leaf nodes
constitute the domain; internal tree nodes serve an auxil-
iary role and are not part of the universe. This interpreta-
tion is different from standard two-variable logics over trees,
cf. (Bojańczyk et al. 2009; Charatonik and Witkowski 2016;
Benaim et al. 2016), where all tree nodes belong to the do-
main and the structure is accessed via navigational predi-
cates such as parent, child, descendant, etc.
Other logics. Nested equivalence relations can be simulated
in description logics such as SHI and SHOI , which in-
clude transitive roles (S), inverse roles (I), role hierarchies
(H), and, possibly, nominals (O). These logics have EX-
PTIME-complete satisfiability problems. However, interac-
tions between binary relations (roles) are limited to role hier-
archies, meaning one can only express containment between
relations (these can be equivalences or common relations).
Moreover, these logics do not include linear orderings.

Among first-order fragments, the Unary Negation Frag-
ment, UNFO (ten Cate and Segoufin 2013), is particularly
worth to mention. This logic restricts negation to subfor-
mulas with at most one free variable. Its extension cap-
turing SHOI , denoted UNFO+SOH, is decidable and 2-
EXPTIME-complete (Danielski and Kieroński 2019). Re-
markably, UNFO+SOH enables reasoning over arbitrarily
many independent families of nested equivalence relations.

1.3 Expressivity of FO2[<, EQ⊆] and FO2[⪯⊆]

Naturally, FO2[⪯⊆succ] is more expressive than FO2[⪯⊆], yet
both formalisms are incomparable with FO2[<, EQ⊆]. In
FO2[⪯⊆succ] and FO2[⪯⊆], every Ek-class necessarily forms
an interval with respect to a linear order induced from the
total preorder ⪯1 by resolving ties arbitrarily. In contrast,
this interval property cannot be expressed in FO2[<, EQ⊆].
On the other hand, FO2[<, EQ⊆] can enforce that certain
classes do not form intervals:

∀x. ∃y. x < y ∧ ¬xE1y ∧
(
P (x)↔ ¬P (y)

)
∀x, y.

(
P (x) ∧ P (y)

)
→ xE1y

1.4 Outline of Technical Sections
Section 2 introduces the necessary notions and definitions.
Section 3 proves Theorem 1. Section 4 sketches the proofs
of Theorems 2 and 4, as these are similar to that of Theo-
rem 1; more details are in the full version. Theorem 3 is es-
tablished in Section 5, with certain technical details deferred
to the full version. Section 6 presents the undecidability re-
sult of Theorem 5. Finally, Section 7 concludes the paper.

2 Preliminaries
2.1 Notation and Conventions
We denote the set of natural numbers including 0 by N. For
k ∈ N, the notation [k] stands for the set {1, . . . , k}, with
the convention that [0] = ∅. More generally, we use inter-
val notation [a, b] ⊆ N to denote the set {a, a + 1, . . . , b}
whenever a ≤ b, and the empty set ∅ whenever a > b. If E

is an equivalence relation on a set A, then E [a] denotes the
equivalence class of an element a ∈ A, and B/E denotes
the quotient set via E of a subset B ⊆ A.

A signature σ is a finite set of symbols, partitioned as
σ = Cons∪Rels, where Cons is the set of constant symbols
and Rels is the set of relation symbols (including special
symbols such as <, E1, E2, etc.). Every relation symbol
has associated arity. We do not allow function symbols of
positive arity. The signature of a formula is the finite set of
relation and constant symbols that appear in the formula.

The size (or length) of a formula φ, denoted |φ|, is defined
as the total number of symbols it contains, where each oc-
currence of a symbol—be it a variable, relation symbol, or
constant—contributes 1 to the count.

We use Fraktur letters such as A,B, . . . to denote struc-
tures, and the corresponding Roman letters A,B, . . . for
their domains. A structure A over a signature σ interprets the
symbols in σ: a relation symbol R as a relation RA ⊆ Ak

with k denoting the arity of R; and a constant symbol c as
an element cA ∈ A. If B ⊆ A, we write A↾B for the re-
striction of A to the subdomain B. The size of a structure is
the cardinality of its domain. Elements of structures are typ-
ically denoted by a, b, . . . ; variables by x, y, possibly with
decorations. We write φ(x̄) to indicate that all free variables
of the formula φ are contained in the tuple x̄.

An (atomic) 1-type over a signature σ is a maximal consis-
tent set of literals involving only the variable x. Similarly, an
(atomic) 2-type over σ is a maximal consistent set of literals
over the variables x and y; in particular, a 2-type naturally
determines the 1-types of both x and y. We use the symbol
α (possibly with decorations) to denote 1-types.

Let A be a structure. For any a ∈ A, we write tpA[a] to
denote the unique 1-type realised by a in A, that is the 1-
type α such that A |= α(a). Similarly, for distinct elements
a, b ∈ A, the notation tpA[a, b] denotes the unique 2-type
realised in A by the pair (a, b).

2.2 Scott Normal Form
A sentence φ is in Scott Normal Form (Scott 1962) if it is
in the shape of ∀x, y. ψ0(x, y) ∧

∧M
m=1 ∀x. ∃y. ψm(x, y),

whereM denotes the number of Skolem conjuncts. Form ∈
[0,M ], the formula ψm(x, y) is quantifier-free and constant-
free, and uses only relation symbols of arity 1 and 2.

There is a standard polynomial-time procedure transform-
ing any FO2 sentence into Scott Normal Form, preserv-
ing satisfiability over the same domains; see e.g., (Pratt-
Hartmann 2023). It is readily verified that it is sound for
the extensions of FO2 introduced in Subsection 1.1.

We standardise the special relation symbols in φ by as-
suming they are the consecutive symbols E1, . . . , EK for
some K ∈ N. We do the same in the case of ⪯k-symbols.

For convenience, we interpret additional symbolE0 as the
identity relation, and assume thatEK+1, the first symbol not
used in φ, is interpreted as the universal relation. Note that
this preserves nestedness: E0 ⊆ E1 and EK ⊆ EK+1.

3 Proof of Theorem 1
In this section, we establish our first main result.
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Theorem 1. Finitely satisfiable sentences of FO2[<, EQ⊆]
admit models of exponential size. The finite satisfiability
problem for FO2[<, EQ⊆] is NEXPTIME-complete.

For this whole section, we fix a sentence φ from the logic
FO2[<, EQ⊆]. Assuming that φ is finitely satisfiable, we
aim to prove that it is actually satisfied by a model of ex-
ponential size. As discussed in Subsection 2.2, we may as-
sume that φ is in Scott Normal Form, i.e., in the shape of
∀x, y. ψ0(x, y)∧

∧M
m=1 ∀x. ∃y. ψm(x, y), whereM denotes

the number of Skolem conjuncts. By convention, φ uses the
first K nested equivalence symbols E1, . . . , EK ; in addtion,
we interpret E0 and EK+1 as the identity and universal re-
lations, respectively. Let α denote the set of all 1-types over
the signature of φ.

The main ingredient of our proof is the following lemma,
which allows us to replace a single equivalence class with its
small counterpart, without touching the rest of the structure.
Lemma 6. Let A be a finite model of φ. Fix k ∈ [0,K],
and let C be an Ek+1-class in A/EA

k+1. Then there exists a
subset D ⊆ C such that:

1. D is the union of at most 12 ·M3 · |α| many Ek-classes
from C/EA

k .
2. φ has a model B over the domain B = (A \ C) ∪ D.

We will prove Lemma 6 in a moment. Let us first demon-
strate how to derive Theorem 1 from it.

Proof of Theorem 1. Assume that φ is finitely satisfiable,
and consider a finite model A of minimal size.

Because of this minimality, for each k ∈ [0,K], every
Ek+1-class of A is partitioned by at most 12 ·M3 · |α|many
Ek-classes. As otherwise, Lemma 6 would give us a model
of strictly smaller size. Since each E0-class of A is of size
1, an immediate induction tells us that, for each k ∈ [K+1],
the Ek-classes of A are of size at most 12k ·M3k · |α|k.

Yet, EA
K+1 having only one equivalence class, the size of

A is therefore bounded by 12K+1·M3K+3·|α|K+1. Clearly,
K and M are both O(|φ|). As φ does not use constants, the
number of 1-types in α is 2|Rels| = 2O(|φ|).

We conclude that the size of A is indeed 2O(|φ|2).

We now prove Lemma 6.
Suppose that A is a finite model of φ, k is a number be-

tween 0 and K, and C is any Ek+1-class of A/EA
k+1.

We assume w.l.o.g. that the domain A is a finite subset
of N and that the order <A of A coincides with the usual
order on N, allowing us to write just < instead of <A.

We use the following terminology: if m ∈ [M ] and a, b
are elements of A, then we call b a witness of a when-
ever A |= ψm(a, b). In addition, b is an internal witness
if (a, b) ∈ EA

k ; an external witness if b ∈ A \ C and
(a, b) ̸∈ EA

k ; and a C-witness if b ∈ C and (a, b) ̸∈ EA
k .

We fix witness functions fm : A → A, i.e., such that for
each m ∈ [M ] and every a ∈ A, A |= ψm(a, fm(a)).

Before delving into the details, let us outline our proof
strategy. We construct the set D ⊆ C, to replace the se-
lected Ek+1-class C, in three steps: First, we define a sub-
set WI ⊆ C that will serve as witnesses for elements out-
side C. Next, we set WII :=

⋃
m∈[M ] fm[WI], which will

provide witnesses for elements in WI. Similarly, we define
WIII :=

⋃
m∈[M ] fm[WII], to serve as witnesses for elements

in WII. It will be enough to define D as the Ek-closure of
(WI∪WII∪WIII)∩C. Finally, the structure B will be defined
as A ↾ [(A \ C) ∪ D] but with certain 2-types redefined.

In order to replace the original C-witnesses by other ele-
ments, we use the following notion of configurations.

Let ℓ ∈ [M ] and a ∈ A. Assume that ⟨b1, . . . , bℓ⟩ and
⟨c1, . . . , cℓ⟩ are tuples of pairwise distinct elements of A.
We say that they realise the same a-configuration if the fol-
lowing conditions hold:

(i) For every i ∈ [ℓ], tpA[bi] = tpA[ci].

(ii) For every i ∈ [ℓ], a ▷◁ bi if and only if a ▷◁ ci, where ▷◁ is
any of the symbols “<”, “=” or “>”.

(iii) For every i ∈ [ℓ] and every j ∈ [K], (a, bi) ∈ EA
j if and

only if (a, ci) ∈ EA
j .

We define now the set WI ⊆ C. For this, we introduce
the notion of the r-extremal subset of a finite subset S ⊆ N,
of ℓ elements a1 < a2 < . . . < aℓ: if ℓ ≤ 2 · r, then this
subset, denoted by extrr(S), is S itself; if ℓ > 2 · r, then it
is {a1, . . . , ar, aℓ−r+1, . . . , aℓ} ⊂ S.

For each 1-type α, we take the set Vα of the M smallest
and M largest realisations of α from every Ek-class in C:

Vα :=
⋃

E∈C/EA
k

extrM ({a ∈ E | tpA[a] = α}).

We then define WI as the set of 2M smallest and 2M
largest elements of each Vα:

WI :=
⋃

α∈α
extr2·M (Vα).

In the following claim, we justify that any configuration
of C-witnesses can be realised within WI.

Claim 7. Let ℓ ∈ [M ], and let a ∈ A \WI. Suppose that
b1, . . . , bℓ are distinct elements of C\EA

k [a]. Then there exist
distinct elements c1, . . . , cℓ in WI such that ⟨b1, . . . , bℓ⟩ and
⟨c1, . . . , cℓ⟩ realise the same a-configuration.

Proof. We can partition the bi’s into several subtuples by
the 1-types that these elements realise. Considering these
tuples independently, we obtain several tuples of the ci’s to
be glued together into a final tuple. Hence, w.l.o.g. assume
that all the bi’s realise the same 1-type α, for some α ∈ α.

Similarly, we can moreover assume that the bi’s are re-
lated to a in the same way, say bi < a holds for every i ∈ [ℓ].

Consider the set S := {c ∈ C | c < a and tpA[c] = α}.
Notice that {b1, . . . , bℓ} ⊆ S \ EA

k [a]. Moreover, any ℓ-
tuple of distinct element from S \ EA

k [a] realises the same
a-configuration as the bi’s. Hence, select ℓ minimal ele-
ments c1, . . . , cℓ from the set S \ EA

k [a]. Because ℓ ≤ M ,
we have that {c1, . . . , cℓ} ⊆ Vα. Now, crucially among the
2 ·M minimal elements of the set Vα, in addition to the ele-
ments c1, . . . , cℓ, there are at most M additional “bad” ele-
ments from the set S ∩EA

k [a]. In consequence, we have that
{c1, . . . , cℓ} ⊆ extr2·M (Vα), which is a subset of WI.
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Naturally, elements of WI require witnesses themselves,
which is why, as announced above, we define WII :=⋃

m∈[M ] fm[WI]. Similarly, elements of WII need witnesses,
so we define WIII :=

⋃
m∈[M ] fm[WII].

We do not introduce further sets WIV,WV, . . . , as ele-
ments of WIII \ (WI ∪ WII) can be assigned C-witnesses
again in WI. This step resembles the construction of the ex-
ponential model property for FO2 by Grädel, Kolaitis, and
Vardi (Grädel, Kolaitis, and Vardi 1997), where three sets of
elements provide witnesses for each other in a circular fash-
ion. Our setting is slightly more intricate, but the general
idea remains: WII provides C-witnesses forWI,WIII forWII,
and, to close the cycle, we adjust the 2-types so that WI pro-
vides C-witnesses forWIII\(WI∪WII). Moreover,WI needs
to provide C-witnesses for elements outsideWI∪WII∪WIII.
We ensure all of this in the subsequent steps of the proof.

We define the set D (from the statement of Lemma 6) as:

D :=
⋃

a∈(WI∪WII∪WIII)∩C

EA
k [a].

This choice of D satisfies the first item of Lemma 6:

Claim 8. The set D is a union of at most 12 ·M3 · |α| many
Ek-classes of C/EA

k .

Proof. We have that |WI| ≤ 4 ·M · |α|, |WII| ≤ M · |WI|,
and |WIII| ≤ M · |WII|. Therefore, each of the sets WI, WII
and WIII is of size at most 4 · M3 · |α|. We conclude, as
|D| ≤ |WI ∪WII ∪WIII| ≤ 12 ·M3 · |α|.

To conclude this proof, it remains to establish also the
second item of Lemma 6: the sentence φ has a model B
over the domain B := (A \ C) ∪ D. In this structure, the
1-types, the linear order <, and the relations Ek are induced
from A, yet some 2-types will be redefined in a specific way.

In particular, this redefinition will ensure the elements of
B \ (WI ∪WII) to have C-witnesses in WI.

Let N denote |B \ (WI ∪WII)|. We fix an enumeration
a1, . . . , aN of the set B \ (WI ∪WII). We inductively con-
struct a sequence of structures B0,B1, . . . ,BN : B0 is the
induced structure A↾B, and, for each n ∈ [0, N−1], Bn+1

is obtained from Bn by modifying some 2-types between
an+1 and WI \ EA

k [an+1] in the way described below.
Let WC(an+1) denote the set of C-witnesses of an+1 sug-

gested by the witness functions fm:

WC(an+1) := {fm(an+1) | m ∈ [M ]} ∩ (C \ EA
k [an+1]).

We set b1, . . . , bℓ as the distinct elements of WC(an+1),
with ℓ ≤ M . From Claim 7, there are distinct elements
c1, . . . , cℓ from WI realising the same an+1-configuration
as b1, . . . , bℓ. We define the structure Bn+1 almost as Bn,
except that for each cj (which is in WI ⊆ B), the 2-type
between an+1 and cj is defined as the 2-type between an+1

and bj , i.e., tpBn+1 [an+1, cj ] := tpBn [an+1, bj ].
The following claim summarises the properties of Bn+1.

Claim 9. Suppose that the numbers n and N , the elements
a1, . . . , aN of B \ (WI ∪WII), and the structure Bn+1 are
all defined as above. Then:

1. Bn+1 realises only the 1-types and 2-types from A.
2. The linear order <Bn+1 and the equivalence relations
E

Bn+1

j , for every j ∈ [K], are all inherited from A ↾B.
3. For all distinct a, b ∈ B, tpA[a, b] = tpBn+1 [a, b] unless

(a, b) or (b, a) is in ({a1, . . . , an+1} ×WI) \ EA
k .

4. For each i ∈ [n+1] and each b ∈ WC(ai), there exists
c ∈WI such that tpA[ai, b] = tpBn+1 [ai, c].
From the items of Claim 9, we conclude that the structure

B, defined as the final structure BN , is a model of φ over
the domain (A\C)∪D. This finishes the proof of the second
item of Lemma 6.

4 How to show Theorems 2 and 4
Theorems 2 and 4 follow by similar arguments as Theo-
rem 1. We sketch them here; details are in the full version.
Theorem 2. We proceed via a reduction to FO2[<, EQ⊆].
Let A0 be a finite FO2[⪯⊆]-model of φ. We expand it to
an FO2[<, EQ⊆]-structure A by: (i) setting EA

k := ⪯A0

k ∩
(⪯A0

k )−1 for all k; and (ii) interpreting <A as a linear order
derived from ⪯1

A0 by resolving ties within E1-classes arbi-
trarily. Applying Lemma 6 to A yields a model B over the
domain B = (A \ C) ∪ D with D ⊆ C. Item 2 of Claim 9
implies that⪯B

k =⪯A↾B
k for all k. Since nested preorders are

preserved under taking substructures, B respects the seman-
tics of ⪯k-symbols, and thus it can be naturally transformed
back into an FO2[⪯⊆]-model of φ. Since the size bound
analysis from the proof of Theorem 1 still applies, we get a
small model and thereby establish Theorem 2.
Theorem 4. The argument proceeds analogously to that for
Lemma 6 and Theorem 1, but now starting from a possibly
infinite model A. In the absence of the linear order, we may
choose arbitrary realisations of 1-types into r-extremal sub-
sets (rather than the maximal and minimal ones). The rest
of the reasoning carries over directly, with the only mod-
ification being that, due to the possible infinity of A, it is
sometimes necessary to work with natural limit structures.

5 Proof of Theorem 3
In this section, we establish our second main result.
Theorem 3. Finitely satisfiable sentences of FO2[⪯⊆succ] ad-
mit models of doubly exponential size. The finite satisfiabil-
ity problem for FO2[⪯⊆succ] is EXPSPACE-complete.

For this section, we fix a sentence φ of FO2[⪯⊆succ], and
assume that it is in Scott Normal Form, i.e., in the shape of
∀x, y. ψ0(x, y)∧

∧M
m=1 ∀x. ∃y. ψm(x, y), whereM denotes

the number of Skolem conjuncts. As explained in Subsec-
tion 2.2, the problem of transforming any FO2 sentence into
Scott Normal Form, satisfiable over the same domains, is in
polynomial-time. Hence, this assumption is without loss of
generality. By convention, φ uses the first K special sym-
bols ⪯k for k ∈ [K], and the corresponding derived sym-
bols Ek and Sk; moreover we interpret the symbols E0 and
EK+1 as the identity and universal relations, respectively.
Small model property. We begin with the first part of Theo-
rem 3, establishing that every finitely satisfiable sentence of
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Algorithm 1: Finite Satisfiability for FO2[⪯⊆succ]
Input: A sentence φ in Scott Normal Form
Output: Decides whether φ is finitely satisfiable

1 guess the domain size N ∈ N;
2 for i← 1, 2, . . . , N do
3 guess the number ri ∈ [K+1];
4 guess the 1-type αi ∈ α;
5 if αi ̸|= ψ0(x, x) then reject;
6 Wi ← {m ∈ [M ] | αi |= ψm(x, x)};
7 for j ∈ {1, . . . , i−1} do
8 if qj ≤ ri then
9 pj ← qj ;

10 qj ← ri;
11 guess the 2-type βj,i ∈ β[αj , αi, pj , qj ];
12 if βj,i ̸|= ψ0(x, y) ∧ ψ0(y, x) then reject;
13 Wj ←Wj ∪ {m ∈ [M ] | βj,i |= ψm(x, y)};
14 Wi ←Wi ∪ {m ∈ [M ] | βj,i |= ψm(y, x)};
15 pi ← 1; qi ← 1;
16 if Wi = [M ] for every i ∈ [N ] then accept;
17 else reject;

FO2[⪯⊆succ] has a model of doubly exponential size. The key
ingredient is the following lemma, analogous to Lemma 6;
its proof is deferred to the full version of the paper.
Lemma 10. Let A be a finite model of φ. Fix k ∈ [0,K],
and let C be an Ek+1-class in A/EA

k+1. Then there exists a
subset D ⊆ C such that:

1. D is the union of 22
O(|φ|)

many Ek-classes from C/EA
k .

2. φ has a model B with domain B = (A \ C) ∪ D.
The argument for deriving the small model bound from

Lemma 10 is parallel to that of Theorem 1 from Lemma 6.
Let A be a minimal-size finite model. By Lemma 10, for

each k ∈ [0,K], every Ek+1-class of A is partitioned into at
most 22

O(|φ|)
manyEk-classes. Since eachE0-class is a sin-

gleton and EA
K+1 has a single equivalence class, it follows

that A is indeed of doubly exponential size:

|A| ≤
(
22

O(|φ|)
)K+1

= 2(K+1)×2O(|φ|)
= 22

O(|φ|)
.

Satisfiability-checking procedure. We now turn to the
second part of Theorem 3, establishing an EXPSPACE
procedure deciding the finite satisfiability problem for
FO2[⪯⊆succ]. A preliminary version of this procedure, op-
erating in 2-EXPSPACE, is given in Algorithm 1.

We call a 1-type or 2-type proper if it interprets all the
special symbols ⪯k, Ek, and Sk in a manner consistent
with the semantics of FO2[⪯⊆succ]. In other words, proper
types are exactly those that can occur in actual models of
FO2[⪯⊆succ]. In particular, they respect the natural compat-
ibility conditions between equivalences and preorders, e.g.,
if Ek(x, y) holds, then x ⪯k y and y ⪯k x must both hold
as well. For 2-types, we additionally require that they entail
x ⪯k y for the relevant k; this condition guarantees com-
patibility with the fixed ordering alignment assumed in the

algorithm. Denote by α and β the sets of proper, respec-
tively, 1-types and 2-types over the signature of φ.

In the procedure, we use a table β[∗, ∗, ∗, ∗]. In this table,
the entry β[α1, α2, p, q], for every α1, α2 ∈ α and 1 ≤ p ≤
q ≤ K+1, stores a set of 2-types. We put a 2-type β ∈ β
into the set β[α1, α2, p, q] if the following conditions hold:

(i) tpβ [x] = α1 and tpβ [y] = α2.

(ii) For each k ∈ [K], Ek(x, y) ∈ β iff q ≤ k.

(iii) For each k ∈ [K], Sk(x, y) ∈ β iff p ≤ k < q.

Algorithm 1 attempts to verify the existence of a model
A for φ over the domain {1, . . . , N}, for some N ∈ N. We
assume that the preorders ⪯A

k are aligned with the natural
order ≤ on N (i.e., i≺kj → i<j). In the ith iteration of the
outer loop, the algorithm examines how the new element i
interacts with all previous elements 1, . . . , i−1, denoted by
j in the inner loop. The variable qj stores the smallest index
k such that j and i belong to the same Ek-class; and K+1
is a sentinel value. If pj<qj , then pj records the smallest
index k for which j and i lie in ⪯k-consecutive Ek-classes;
if instead pj=qj , then no such consecutive Ek-classes exist.

To illustrate better the idea of Algorithm 1, we visualise
the structure in the following schematic, each horizontal
brace groups together the elements of one Ek-class, and ⪯k
linearly orders the Ek-classes from left to right:

1 2 3 4 5︸ ︷︷ ︸
E1︸ ︷︷ ︸
E2

6 7︸ ︷︷ ︸
E1

8 9 10︸ ︷︷ ︸
E1︸ ︷︷ ︸

E2︸ ︷︷ ︸
E3

11 12︸ ︷︷ ︸
E1

13 14 15︸ ︷︷ ︸
E1

16 17 18︸ ︷︷ ︸
E1︸ ︷︷ ︸

E2︸ ︷︷ ︸
E3︸ ︷︷ ︸

E4

Consider now the 18th iteration of the outer loop, that is,
i = 18. The values of the variables pj and qj for selected j
are: p5 = 3, q5 = 4; p9 = 2, q9 = 4; p12 = 2, q12 = 2.

Intuitively, these pairs (pj , qj) capture the relative posi-
tion of j with respect to i in the hierarchy of equivalence
classes, allowing the algorithm to determine which 2-types
between elements j and i are admissible.

The algorithm maintains, for each element i ∈ [N ], a set
Wi ⊆ [M ] recording which Skolem conjuncts are already
satisfied for i, and accepts precisely when every element has
all its witnesses secured, i.e., when Wi = [M ] for all i.

We formalise the above explanations in the following
claim, establishing completeness of the procedure.

Claim 11. Suppose that φ has a finite model A. Then there
exists a sequence of guesses of Algorithm 1 such that, after
i iterations, where i ∈ [N ], the following invariants hold:

• For j ∈ [i], tpA[j]=αj , and for j<k≤i, tpA[j, k]=βj,k.
• If i > 1, then, for k ∈ [K], (i−1, i) ∈ EA

k iff ri ≤ k.
• For j ∈ [i] and k ∈ [K], (j, i) ∈ EA

k iff qj ≤ k.
• For j ∈ [i] and k ∈ [K], (j, i) ∈ SAk iff pj ≤ k < qj .
• For j ∈ [i], Wj indicates witnesses of j located in A ↾ [i].

Soundness follows as well. Given a transcription of an
accepting run, we reconstruct a finite model of φ as follows.
Take the domain to be {1, . . . , N}, assign to each element i
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the 1-type αi, and for each ordered pair (j, i) assign the 2-
type βj,i. Since each pair is processed exactly once, and all
2-types are determined consistently with both the preorder
relations and their successors, no conflicts can arise. The
resulting structure therefore satisfies φ.
Corollary 12. Algorithm 1 is sound and complete.

Algorithm 1 operates in space proportional to N . By the
already established small model property,N can be assumed
doubly exponential in |φ|, yielding a 2-EXPSPACE bound.

However, we note that the precise identities of the previ-
ously processed elements j < i are irrelevant: all informa-
tion needed about such an element j is captured by the tuple
⟨αj ,Wj , pj , qj⟩. Consequently, after the ith iteration, the al-
gorithm’s configuration can be represented compactly as a
counting function, recording the number of such tuples:

Fi : α× 2[M ] × [K+1]× [K+1]→ N.
It is straightforward to adapt the procedure to work directly
with this representation. Storing Fi explicitly as a table re-
quires O

(
|α| · 2M ·K2 · logN

)
bits of space. Since |α| is

2O(|φ|), M and K are O(|φ|), and N is doubly exponential
in |φ|, the overall space usage is singly exponential in |φ|.
Corollary 13. Algorithm 1 can be implemented to operate
in exponential space.

Lower bound. The final part of the proof of Theorem 3 is
to show the matching EXPSPACE-hardness lower bound for
the finite satisfiability problem for FO2[⪯⊆succ].

Here we give a short proof sketch; full details are deferred
to the full version. We reduce from the corridor tiling prob-
lem, which is EXPSPACE-complete. An instance consists
of a set of colours C, horizontal and vertical adjacency con-
straints, colours for the top-left and bottom-right cells (ini-
tial conditions), and a number n in unary. The decision ques-
tion is whether there exists a number m and a labelling with
colours from C of a 2n×m grid that satisfies all constraints.

The reduction is realised by a conjunction of FO2[⪯⊆succ]
sentences that enforce the structure to encode such a grid.
Introduce unary predicates Bj for 0 ≤ j < n together with
unary predicates Pc for each colour c ∈ C. Interpretation:
each domain element is a grid cell; the predicatesBj encode
the horizontal coordinate in binary (yielding width 2n), and
each E1-equivalence class represents a full row. Within a
row, Pc marks the colour of the cell at the horizontal position
given by the bits. The successor relation S1 links consecu-
tive E1-classes, so rows form a vertical chain of length m.
Expressing the horizontal and vertical adjacency constraints,
as well as the initial conditions, in FO2[⪯⊆succ] is routine.
Corollary 14. The finite satisfiability problem for
FO2[⪯⊆succ] is EXPSPACE-hard.

6 Proof of Theorem 5
In this section, we establish our undecidability result.
Theorem 5. The satisfiability and finite satisfiability prob-
lems are undecidable for the constant-free, equality-free,
monadic fragment of FO2 extended with four special sym-
bols E1, E2, F1, F2, interpreted as equivalence relations
such that E2 is coarser than E1 and F2 is coarser than F1.

To the end of this section, we prove Theorem 5.
The idea demonstrated here is similar to Pratt-Hartmann’s

proof of the undecidability of FO2 with counting and two
equivalence relations (Pratt-Hartmann 2014). Hovewer, in
the absence of the equality symbol, additional technical re-
finements are required.

The undecidability is proven via a reduction from the halt-
ing problem for two-counter machines. Such a machine M
consists of a finite set S = {s0, . . . , sF } of states, one be-
ing initial (say s0) and one being final (say sF ); two coun-
ters c1 and c2 holding non-negative integers; and a set of
transitions δ ⊆ S × Op × S between states and opera-
tions over the counters; these operations are: increment a
counter, decrement a counter (if it is non-zero), or test if a
counter is zero. A configuration is a triple ⟨s, c1, c2⟩ hold-
ing the state s and the values of the two counters c1 and c2.
A run is a (potentially infinite) sequence of configurations
which starts with the initial state s0 and respects the transi-
tion function. The machine terminates if it ever reaches the
final state sF . As two-counter machines can simulate Turing
machines, the halting problem for two-counter machines is
undecidable (more precisely, it is r.e.-complete).

We encode a run of some two-counter machine M. Each
configuration will be contained within an equivalence class
of the intersection relation E2 ∩ F2. We write G2(x, y) for
the formula E2(x, y) ∧ F2(x, y). We partition the domain
with two unary predicates dE and dF , and axiomatise that
they are universal in each G2-class:

∀x. dE(x)↔ ¬dF (x) (1)

∀x, y. G2(x, y)→
(
dE(x)↔ dE(y)

)
(2)

If a configuration has its elements satisfying dE (resp.
dF ), we call it a dE-configuration (resp. dF -configuration).
We specify that each E2- and F2-class has at most one con-
figuration of each type:∧

α∈{E,F}

∀x, y.
(
E2(x, y)∧dα(x)∧dα(y)

)
→F2(x, y) (3)

∧
α∈{E,F}

∀x, y.
(
F2(x, y)∧dα(x)∧dα(y)

)
→E2(x, y) (4)

We define now that each configuration is in precisely one
state s from the set of states S of M:

∀x.
∨
s∈S
∀y. G2(x, y)→

(
s(y) ∧

∧
s′∈S : s′ ̸=s

¬s′(y)
)

(5)

We order configurations with a definable binary relation t:
among an E2-class (resp. F2-class), it links elements from
the dE-configuration to the successive dF -one (resp. from
the dF -one to the successive dE-one), see Figure 1:

t(x, y) :=
(
E2(x, y) ∧ dE(x) ∧ dF (y)

)
∨
(
F2(x, y) ∧ dF (x) ∧ dE(y)

)
We have discussed so far how to axiomatise the succes-

sion of configurations, we explain now how to implement
the counters with the help of the two thinner equivalence
relations E1 and F1. We write G1(x, y) for the formula
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F2 F2

E2 E2 E2

dF dE dF dE
t t t

Figure 1: A succession of configurations.

E1(x, y) ∨ F1(x, y), defining the union of E1 and F1; a pri-
ori not an equivalence relation. We require first that inside
any G2-class, E1 and F1 define the same relation:

∀x, y.
(
G2(x, y)∧G1(x, y)

)
→

(
E1(x, y)∧F1(x, y)

)
(6)

We introduce two unary predicates c1 and c2. Their in-
tended meaning is as follows: If E is a G2-class (repre-
senting a configuration), then, inside it, the value of the
counter ci is the number of equivalence classes of the re-
lation E1 ∩ E2 whose elements satisfy ci. In particular, if
no element of E satisfies ci, then the value of the counter
ci equals zero. We permit elements to satisfy only a state
predicate, without being marked by c1 or c2. This ensures
that configurations where both counters are zero can still be
represented.

We require first that c1 and c2 are mutually exclusive:

∀x. ¬c1(x) ∨ ¬c2(x) (7)

We also state that c1 and c2 propagate within G1-connected
components (and hence they do not interact via E1 or F1):

2∧
i=1

∀x, y.
(
G1(x, y) ∧ ci(x)

)
→ ci(y) (8)

Then, the change of the counters is held as follows.
In a dE-configuration, E1 may extend to the successive
dF -configuration and F1 may extend to the preceding dF -
configuration. And, in a dF -configuration, the situation is
symmetric. This makes it possible to transfer the values of
counters to the neighbouring configurations.

We define the formula φ∃→(x) stating that the element x
admits a t-successor linked via G1:

φ∃→(x) := ∃y. t(x, y) ∧G1(x, y).

Notice that if two elements of two distinct configurations
are linked via t, then they are in particular linked via pre-
cisely one ofE2 and F2, which does not leave any ambiguity
whether they are linked via E1 or F1.

We also define the symmetric formula φ∃←(x) stating
that x admits a t-predecessor linked via G1.

We define now, for each i ∈ {1, 2}, a formula φ∀i∃→(x)
stating that every element y of the G2-class of x which sat-
isfies ci admits a t-successor via G1:

φ∀i∃→(x) := ∀y.
(
G2(x, y) ∧ ci(y)

)
→ φ∃→(y).

Because E1 and F1 are equivalence relations, we can see
that if φ∀i∃→(x) is true, then the configuration succeeding

that of x has a value of ci greater than or equal to the value
of ci in the configuration of x. In order to make sure that it
cannot increase by more than one, we add a condition stating
that each two elements of the same configuration that satisfy
ci and have no predecessor viaG1 are necessarily related via
E1, and hence at most one equivalence relation is added:

2∧
i=1

∀x, y.
(
G2(x, y) ∧ ci(x) ∧ ci(y)

∧ ¬φ∃←(x) ∧ ¬φ∃←(y)
)
→ E1(x, y) (9)

Symmetrically, we define φ∀i∃←(x) stating that every el-
ement y of the G2-class of x which satisfies ci admits a t-
predecessor via G1, and we also define the symmetric con-
dition making sure that each counter decreases by at most
one at every step:

2∧
i=1

∀x, y.
(
G2(x, y) ∧ ci(x) ∧ ci(y)

∧ ¬φ∃→(x) ∧ ¬φ∃→(y)
)
→ E1(x, y) (10)

We define below four auxiliary formulas φi,zero(x),
φi,eq(x), φi,incr(x) and φi,decr(x).

First, the formula φi,zero(x) states that no element of the
G2-class of x satisfy ci, and hence the counter ci is zero:

φi,zero(x) := ∀y. G2(x, y)→ ¬ci(y).
Then, the formula φi,eq(x) states that the counter ci stays

the same from the configuration of x to the next one:
φi,eq(x) := φ∀i∃→(x) ∧ ∀y. t(x, y)→ φ∀i∃←(y).

Finally, the formulas φi,incr(x) and φi,decr(x) state that the
counter ci, respectively, increments and decrements from the
configuration of x to the successive one:

φi,incr(x) := φ∀i∃→(x) ∧ ∀y. t(x, y)→ ¬φ∀i∃←(y)

φi,decr(x) := ¬φ∀i∃→(x) ∧ ∀y. t(x, y)→ φ∀i∃←(y)

Having the above formulas, as well as the unary state
predicates, we can easily axiomatise all the transitions of
the two-counter machine M together with its initial and fi-
nal configurations; we leave details to the reader.

Let ΘM be a sentence expressing the existence of a run
of M that reaches the final state sF . It is immediate to see
that this sentence ΘM is finitely satisfiable if and only if M
terminates. This allows us to conclude the undecidability
of finite satisfiability. For general (infinite) satisfiability, we
consider a sentence Θ′M expressing the existence of an infi-
nite run of M (i.e. never reaching the final state sF ). Hence,
the general satisfiability problem is also undecidable.

7 Conclusion
We analysed four extensions of FO2 that enable decidable
reasoning over nested equivalence relations: FO2[EQ⊆],
FO2[<, EQ⊆], FO2[⪯⊆], and FO2[⪯⊆succ], establishing the
precise complexity of the finite satisfiability problems and
bounds on the size of minimal finite models. Except
FO2[EQ⊆] that enjoys the finite model property, understand-
ing general (infinite) satisfiability remains open. Finally, we
demonstrated that extending FO2 with two independent fam-
ilies of nested equivalence relations leads to undecidability.
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