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Abstract

Dung’s abstract Argumentation Framework (AF) has been ex-
tended in several directions to make knowledge representa-
tion and reasoning more intuitive and expressive. In this pa-
per, we present the Knowledge-based Argumentation Frame-
work (KAF), an extension of AF with a Knowledge Base
(KB) expressed in DL-Lite , which includes concept and role
instances describing the topology of an AF, besides additional
knowledge on the domain. The KAF semantics is given by a
set of KAF extensions, each consisting of an extension of the
underlying AF together with a “pertinent” subset of the orig-
inal KB, which is obtained by discarding assertions referring
to arguments that have been ruled out in the AF extension.
Then, the framework is further expanded into the Constrained
KAF (CKAF), where a set of restricted relational calculus
formulae is used for reasoning over ‘feasible’ subframeworks
that satisfy the formulae and minimally differ from the origi-
nal framework. We thoroughly investigate the computational
complexity of classical reasoning problems under popular ar-
gumentation semantics, and show that well-known AF-based
frameworks are special cases of CKAF.

1 Introduction
Formal argumentation has become a prominent research
field in the area of knowledge representation and rea-
soning (Gabbay et al. 2021), with potential applications
in several contexts, including, e.g., modeling dialogues,
negotiation (Amgoud, Dimopoulos, and Moraitis 2007;
Dimopoulos, Mailly, and Moraitis 2019), and persua-
sion (Prakken 2009), thus promoting promising cross-field
connections (Gabbay et al. 2024). At the heart of this
field lies Dung’s abstract Argumentation Framework (AF), a
foundational yet expressive formalism for representing dis-
putes among agents (Dung 1995). An AF consists of a set of
abstract arguments and a binary attack relation that defines
how arguments interact: intuitively, if argument a attacks
argument b, then b is considered acceptable only if a is not.
Arguments themselves are treated as abstract entities whose
acceptability essentially depends on the attack relation. This
framework can be naturally represented as a directed graph,
where nodes represent arguments and edges denote attacks.

The formal meaning of an AF is given in terms of ar-
gumentation semantics, which intuitively tell us the sets of
arguments (called extensions) that can collectively be ac-
cepted. Several (argumentation) semantics have been in-
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Figure 1: AF Λ of Example 1 (highlighted in blue), and (represen-
tation of the) assertions of the (C)KAF of our running example.

troduced, such as grounded (gr), complete (co), preferred
(pr), and stable (st) (Dung 1995), each defining a set of
σ-extensions, with σ ∈ {gr,co,pr,st}.

To enhance the expressive power of Dung’s framework,
various extensions of the original framework have been pro-
posed. These extensions include: Bipolar argumentation
frameworks, adding supports alongside attacks (Nouioua
and Risch 2011; Nouioua 2013; Villata et al. 2012); Frame-
works with recursive attacks and supports (Cohen et al.
2015; Gottifredi et al. 2018; Cayrol et al. 2018; Alfano et al.
2024b); Dialectical frameworks (Brewka and Woltran 2010;
Brewka et al. 2013); AFs with preferences (Amgoud and
Cayrol 1998; Modgil and Prakken 2013; Alfano et al. 2023)
and constraints (Coste-Marquis, Devred, and Marquis 2006;
Arieli 2015; Alfano et al. 2024a); Claim-based AF (Dvorák,
Rapberger, and Woltran 2020; Dvorák and Woltran 2020;
Dvorák et al. 2023), where claims are associated to argu-
ments and become the objects of reasoning.

Another important extension of AF concerns allowing the
possibility of representing uncertainty about the existence of
arguments and attacks. This has been carried out by either
considering quantified uncertainty, thus combining formal
argumentation with probability theory in the Probabilistic
Argumentation Framework (PrAF) (Dung and Thang 2010;
Li, Oren, and Norman 2011; Hunter 2012), or considering
unquantified uncertainty by explicitly denoting the elements
(arguments and attacks) which are uncertain (Baumeister et
al. 2018; Baumeister et al. 2021), leading to the Incomplete
Argumentation Framework (iAF).

Although significant advancements have been made in ex-
tending AF, there still remain situations where supplemen-
tary but potentially valuable information is neglected.

Example 1. Assume that there is a debate with
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several participants expressing opinions about climate
change. Opinions and their relationships are repre-
sented by means of AF Λ1 = ⟨{a, b, c, d, e}, {(a, b),
(b, a), (c, b), (c, d), (d, c), (e, c)}⟩ shown in Figure 1. We
also know that the opinions synthesized by arguments
a, b, c, and d are expressed by john, mary, frank, and
anne, respectively; we do not know who expressed opin-
ion e. AF Λ1 has three complete extensions: E1 = {d, e}
(which is also grounded), and E2 = {a, d, e} and E3 =
{b, d, e} (which are also stable and preferred). □

By modeling a problem through a plain AF, we may ne-
glect important information that can be very useful. In our
example, AF Λ1 disregards useful information about the text
associated with each argument, the author (and her gender
and age), etc. Generally, a concrete argument is associated
with a sentence with a proper meaning and with several addi-
tional information that could be very important in answering
queries and making informed decisions.

This means that, in adopting the abstraction of AF, a large
amount of relevant information may be lost, such as the ar-
gument’s text, the author’s id and gender, the date it has been
introduced, the topic (e.g., what the argument is about), the
polarity (e.g., whether the sentence conveys a positive, neg-
ative or neutral sentiment), the polarity rating, the sentence
style (e.g., veracity, sarcasm, irony), the city and national-
ity of the author, and much more. An argumentation system
should also carry auxiliary yet important information that
could be very useful for users. That is, an argumentation
framework should be coupled with a Knowledge Base (KB)
containing information related to arguments. Prominent
(families of) languages for such kind of KBs are those in
Description Logics (DLs) (Brachman and Levesque 2004),
where a KB is a pair consisting of the ABox component,
containing the data, and the TBox component, containing
axioms (enabling further information to be derived).

Example 2. Continuing with Example 1, assume now
to have a KB containing in the ABox information on the
topology of the AF (i.e., arg(a), att(a, b), and so on)
as well as additional information such as authorship (i.e.,
author(a, john), author(b, mary), author(c, frank),
and author(d, anne)), the city of authors (i.e., resi-
dent(john, paris), resident(mary, paris), resi-
dent(frank, bath), and resident(anne, bath)), and
the nation cities are in (e.g., nation(paris, france) and
nation(bath, uk)).

Assume that the TBox contains two axioms (expressed
according to the DL-Lite syntax) of the form: i)
arg ⊑ ∃ author (equivalent to the first-order logic for-
mula ∀ x . arg(x) ⇒ ∃ y . author(x, y)), stating that ev-
ery argument must have an author, and ii) ∃ author− ⊑
∃ resident (equivalent to the first-order logic formula
∀ x, y . author(x, y) ⇒ ∃z .resident(y, z)), stating that
every author must be resident in some place.

Using such a DL-Lite KB, the (certain) answer of
the query author(x, john), asking for the arguments au-
thored by john, gives as output argument a. Because
of the axioms in the TBox, the answer of the query
∃ y, z . author(e, y), resident(y, z) is true, even if the

ABox does not contain the author of e. □

Example 2 shows a possible integration of AF and KBs.
However, as argumentation semantics are not leveraged dur-
ing the reasoning process, the information on the AF’s topol-
ogy is not adequately exploited, although it is encoded into
the ABox component. Thus, the classical reasoning loses
the potential of AF in managing conflicts and uncertainty.

In this paper, we present a novel framework called
Knowledge-based Argumentation Framework (KAF), aug-
menting AF with a DL-Lite KB (Calvanese et al. 2007),
where the semantics is given by a set of KAF σ-extensions,
each consisting of a σ-extension of the underlying AF to-
gether with a “pertinent” subset of the original KB. The
latter is obtained by discarding assertions referring to argu-
ments that have been ruled out in the AF extension. Notably,
a KAF σ-extension (with σ ∈ {gr,co,pr,st}) can be rep-
resented as a DL-Lite KB.

Example 3. Continuing again with our running ex-
ample, the (grounded) KAF extension yielded by
E1 = {d, e} consists of the ABox containing arg(d),
arg(e), author(d, anne), resident(john, paris),
resident(mary, paris), resident(frank, bath),
resident(anne, bath), nation(paris, france), and
nation(bath, uk), that is the original ABox except asser-
tions referring to arguments which are not in the extension
E1, while the TBox is the one of the original KB. □

Similarly to classical reasoning in AF, credulous and
skeptical acceptance in KAF are defined over the set of
KAF σ-extensions, consisting of DL-Lite KBs, each of
them queried according to the usual notion of certain an-
swer (Calvanese et al. 2007). For instance, the query
∃ x, y . author(x, y) ∧ resident(y, bath), asking whether
there exists an author of an argument resident in bath, is true
under both credulous and skeptical reasoning, w.r.t. all the
aforementioned argumentation semantics (as argument d,
whose author is anne who is from bath, is a certain answer
in every KAF σ-extension, with σ ∈ {gr,co,pr,st}, and
the set of σ-extensions is non-empty). On the other hand,
under complete semantics, the query ∃x . author(x, john),
asking if john is author of some argument, is true under
credulous reasoning and false under skeptical reasoning (as
john’s argument a belongs to E2 only).

Consider now the case where there are two people from
France and UK and they are interested in opinions expressed
by people resident in their respective countries. That is,
the subframeworks of interest are those where only opin-
ions of French and UK people, respectively, are consid-
ered. This can be achieved by extending KAF with con-
straints expressed by means of restricted relational calcu-
lus formulae (Abiteboul, Hull, and Vianu 1995). The safe,
range restricted relational calculus provides adequate power
for many applications and at the same time can be imple-
mented efficiently.

Example 4. The KAF subframework containing only opin-
ions from UK people can be selected by using the fol-
lowing constraint: ∀x.arg(x) ⇒ ∃y, z.author(x, y) ∧
resident(y, z) ∧ nation(z, uk). □
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The Constrained KAF (CKAF) is a KAF where a set of
restricted relational calculus formulae is used for reasoning
over the subframeworks that satisfy the formulae and min-
imally differ from the original framework. Two minimal-
ity criteria are considered, set and card minimality. Hence,
a subframework is obtained by deleting a minimal set or a
minimal number of arguments and attacks, as well as the re-
lated information in the KB, so that the set of constraints is
satisfied w.r.t. the resulting KAF.

Intuitively, a CKAF concisely represents a set of KAFs
that could be obtained by extracting ‘feasible’ subframe-
works. Then, its semantics can be defined in terms of the
semantics of its subframeworks. This means that, similarly
to other frameworks previously introduced in the literature
(e.g., iAF, PrAF), the subframeworks can be seen as possi-
ble worlds. Thus, classical verification and acceptance prob-
lems (i.e., credulous and skeptical acceptance) need to be re-
considered in light of the presence of possible worlds, lead-
ing to the concepts of possible and necessary verification,
as well as possible and necessary credulous/skeptical accep-
tance (cf. Definitions 11 and 12).

Contributions. Our main contributions are as follows. 1

• We introduce KAF, a framework where AF is comple-
mented with a DL-Lite KB containing additional informa-
tion related to arguments. KAF extensions are defined in
terms of argumentation semantics and consists of DL-Lite
KBs, over which union of conjunctive queries are posed.
• We show that the complexity of acceptance problems in

KAF does not increase with respect to that of AF.
• We introduce CKAF, which extends KAF with con-

straints, expressed by means of restricted relational calculus
formulae, allowing reasoning over selected subframeworks
(i.e., KAFs) satisfying the formula and differing from the
original framework by a minimal set (or a minimal number)
of elements, in terms of arguments and attacks.
• We introduce the verification and acceptance problems

for CKAF and thoroughly investigate the complexity of
these problems. A summary of our results for the verifica-
tion and possible/necessary credulous/skeptical acceptance
under semantics σ ∈ {gr, co, pr, st} and under set and
cardinality subframework semantics are reported in Table 1
and Table 2, respectively. It turns out that those problems in
CKAF are harder than corresponding ones in iAF (Baumeis-
ter et al. 2021), correlated iAF (Fazzinga, Flesca, and Fur-
faro 2021) and constrained iAF (Mailly 2024).
• Consistently with our complexity results, we show that

iAF, correlated and constrained iAF can be viewed as special
cases of CKAF, in the sense that each of them can be rewrit-
ten into an extensions-equivalent CKAF, under both set and
cardinality subframework semantics.

Integrating AF with DLs addresses a crucial need in
knowledge representation: managing structured reasoning
under uncertainty and conflicts in expressive, ontology-
based systems. While DLs provide a formal foundation
for representing and reasoning about conceptual knowledge

1We assume the reader is familiar with basic concepts of com-
putational complexity.

in a decidable and often tractable way, they are inherently
monotonic, meaning they cannot naturally handle conflict-
ing or defeasible information. In contrast, AF offers a non-
monotonic reasoning mechanism that evaluates conflicting
arguments and supports decision-making based on accept-
ability semantics. Combining these paradigms leverages the
strengths of both: DLs handle structured domain knowledge,
such as medical ontologies, legal codes, or taxonomies,
while AFs manage conflicts, priorities, and justifications
among inferences derived from this knowledge. For exam-
ple, in medical diagnosis, DLs can encode clinical guide-
lines and taxonomies of symptoms and conditions, whereas
argumentation can evaluate competing diagnostic hypothe-
ses, especially when guidelines or observations conflict.

2 Preliminaries
In this section, after briefly recalling the Dung’s framework,
we review basic concepts underlying Description Logics.

2.1 Argumentation Framework
An abstract Argumentation Framework (AF) (Dung 1995) is
a pair ⟨A,R⟩, where A is a set of arguments and R ⊆ A×A
is a set of attacks.

Given an AF Λ = ⟨A,R⟩ and a set S ⊆ A of arguments,
an argument a ∈ A is said to be i) defeated w.r.t. S iff there
exists b ∈ S such that (b, a) ∈ R, and ii) acceptable w.r.t. S
iff for every argument b ∈ A with (b, a) ∈ R, there is c ∈ S
such that (c, b) ∈ R. The sets of arguments defeated and
acceptable w.r.t. S are as follows (where Λ is fixed):

• Def(S)={a ∈ A | ∃b ∈ S . (b, a) ∈ R};

• Acc(S)={a ∈A | ∀b ∈ A . (b, a) ∈ R ⇒ b ∈ Def(S)}.

Given an AF ⟨A,R⟩, a set S ⊆ A of arguments is said to
be conflict-free iff S ∩ Def(S) = ∅. Moreover, S ⊆ A is
said to be a complete (co) extension iff it is conflict-free and
S = Acc(S). A complete extension S ⊆ A is said to be:

• preferred (pr) iff it is ⊆-maximal;
• stable (st) iff it is a total preferred extension, that is, a

preferred extension such that S ∪ Def(S) = A;
• grounded (gr) iff it is ⊆-minimal.

In the following, if not specified otherwise, σ denotes
any semantics in {gr, co, st, pr}. For any AF Λ and se-
mantics σ, σ(Λ) denotes the set of σ-extensions of Λ. All
the above-mentioned semantics except the stable admit at
least one extension (i.e., σ(Λ) ̸= ∅), and the grounded ad-
mits exactly one extension (i.e., |gr(Λ)| = 1) (Dung 1995;
Caminada 2006). For any AF Λ, it holds that st(Λ) ⊆
pr(Λ) ⊆ co(Λ), and gr(Λ) ⊆ co(Λ).

For any AF Λ = ⟨A,R⟩, semantics σ, and argument
a ∈ A, we say that a is credulously (resp. skeptically) ac-
cepted (under semantics σ), denoted as CAσ(a,Λ) (resp.
SAσ(a,Λ)) if a belongs to at least one (resp. every) σ-
extension of Λ. Moreover, we use CAσ (resp. SAσ), or CA
(resp. SA) whenever σ is understood, to denote the credu-
lous (resp. skeptical) acceptance problem, that is, the prob-
lem of deciding whether an argument is credulously (resp.
skeptically) accepted. Clearly, for the grounded semantics,
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which has exactly one extension, these problems are identi-
cal (i.e., CAgr ≡ SAgr).
Example 5. Consider the AF Λ = ⟨{a, b, c, d}, {(a, b),
(b, a), (a, c), (b, c), (c, d), (d, c)}⟩. Λ has 4 complete ex-
tensions: E0 = ∅,E1 = {a, d},E2 = {b, d} andE3 = {d}.
That is, co(Λ) = {E0, E1, E2, E3}. E0 is the grounded ex-
tension, E1 and E2 are stable (and preferred) extensions.
Thus, a, b, d are credulously accepted for all semantics ex-
cept for the grounded; only d is skeptically accepted under
stable and preferred semantics. □

2.2 Description Logics
Syntax. A DL knowledge base (KB), hereafter simply
called a knowledge base, consists of an Assertional Box
ABox (database) and a Terminological Box TBox (ontol-
ogy), which are constructed from a set NC of concept names
(unary predicates), a set of NR of role names (binary predi-
cates), and a set NI of individuals (constants). Specifically,
an ABox is a finite set of concept assertions of the form A(a),
where A ∈ NC and a ∈ NI, and role assertions of the form
R(a, b), where R ∈ NR and a, b ∈ NI. A TBox is a finite
set of axioms whose form depends on the considered DL. In
DL-Litecore , TBox axioms are only concept inclusions of
the form B ⊑ C formed using the following syntax (where
A ∈ NC and R ∈ NR):

B := A | ∃Q; Q := R | R−;

C := B | ¬B; S := Q | ¬Q.

Several extensions of DL-Litecore have been proposed in the
literature, including DL-LiteR, which additionally allows
role inclusions of the form Q ⊑ S, and DL-LiteF , which
allows expressing functional dependencies on roles. In this
paper, we consider DL-LiteR, which provides the logical
underpinnings of the OWL 2 QL profile (W3C 2012) and
whenever we use the term DL-Lite we mean DL-LiteR, al-
though our results hold for all (query rewritable) DL-Lite
fragments (Calvanese et al. 2007; Cima, Lenzerini, and
Poggi 2020; Bienvenu 2016; Artale et al. 2009; Bienvenu
and Ortiz 2015). For a given TBox, we partition its (concept
or role) names into derived ones, which appear on the right-
hand side of (concept or role) inclusions in the TBox, and
base ones, which are the remaining names. Such terminol-
ogy is borrowed from the deductive databases field, where
predicates are partitioned into base and derived.
Semantics. An interpretation is of the form I = (∆I , ·I),
where ∆I is a non-empty set called interpretation domain
and ·I is an interpretation function mapping each A ∈ NC

to AI ⊆ ∆I , each R ∈ NR to RI ⊆ ∆I × ∆I , and each
a ∈ NI to aI ∈ ∆I , with a ̸= b implying aI ̸= bI (the last
condition is the well-known Unique Names Assumption).
The function ·I is extended to general concepts and roles as
follows: (∃Q)I = {c | ∃d.(c, d) ∈ QI}, (¬B)I = ∆I \ BI ,
(R−)I = {(c, d) | (d, c) ∈ RI}, (¬Q)I = (∆I ×∆I) \ QI .
An interpretation I satisfies an inclusion G ⊑ H if GI ⊆ HI ;
it satisfies A(a) (resp. R(a, b)) if aI ∈ AI (resp. (aI , bI) ∈
RI). An interpretation I is a model of a KB ⟨T ,A⟩ iff I
satisfies all inclusions in T and all assertions in A. A KB is
consistent if it has a model, otherwise it is inconsistent.

Querying. A conjunctive query (CQ) is an expression of
the form: q(x⃗) := ∃y⃗. φ(x⃗, y⃗), where φ(x⃗, y⃗) is a conjunc-
tion of atoms of the forms A(t) or R(t, t′), where A ∈ NC,
R ∈ NR, t, t′ are variables or individuals from NI, x⃗ denotes
the set of free variables, y⃗ denotes the set of existentially
quantified variables. A CQ is Boolean if all of its variables
are existentially quantified (and thus x⃗ is empty); in such a
case the query is denoted as q() or simply q. A Boolean CQ
q is entailed by a knowledge base K, denoted K |= q, iff
q holds in all models of K. A (certain) answer to a non-
Boolean CQ q(x⃗), where x⃗ = (x1, . . . , xk), w.r.t. a knowl-
edge base K is a tuple of individuals c⃗ = (c1, . . . , ck) such
that K |= q(c⃗), where q(c⃗) is the Boolean CQ query obtained
from q(x⃗) by replacing each xi by ci. We use Ans(q(x⃗),K)
to denote the set of all answers to q(x⃗) w.r.t. K.

A union of conjunctive queries (UCQ) allows the disjunc-
tions of multiple CQs and is an expression of the form:

q(x⃗) := q1(x⃗) ∨ · · · ∨ qn(x⃗),

where each qi(x⃗) is a CQ. A UCQ q is Boolean if all of
its variables are existentially quantified, and it is entailed
by a knowledge base K, denoted K |= q, iff q holds in
all models of K. The set of all answers to a non-Boolean
UCQ q(x⃗) w.r.t. a knowledge base K is Ans(q(x⃗),K) =⋃n

i=1 Ans(qi(x⃗),K).
To express constraints (introduced in Section 4) we will

use the safe, range restricted relational calculus; we refer to
(Abiteboul, Hull, and Vianu 1995) for details on it.

3 Knowledge-based AF
We now introduce an extension of Dung’s AF that con-
sists in combining an AF with a knowledge base (defined
in DL-Lite). The derived framework is called Knowledge-
based Argumentation Framework (KAF).

Syntax. From now on, we will assume that NI contains a set
NA of distinguished individuals used to refer to arguments.
We will also assume the existence of a built-in concept name
arg , taking values from NA, and a built-in role name called
att , taking values from NA × NA. We also impose that for
any TBox, arg and att are base names (cf. Section 2.2). For
an ABox A, we define Arg(A) = {a | arg(a) ∈ A} and
Att(A) = {(a, b) | att(a, b) ∈ A}.

Definition 1 (KAF). A Knowledge-based AF (KAF) is a
quadruple Ω = ⟨A,R, T ,A⟩ where ⟨A,R⟩ is an AF and
⟨T ,A⟩ is a consistent KB s.t. Arg(A)=A and Att(A)=R.

Thus, arguments and attacks are included by default in
the ABox A, whereas the limitation to the form of asser-
tions states that arguments and attacks (referring to the AF
component) cannot be defined by means of inclusions in T .

Example 6. The scenario of Example 1 can be encoded in
the KAF Ω = ⟨A,R, T ,A⟩, where:
A = {a, b, c, d, e};
R = {(a, b), (b, a), (c, b), (e, c), (c, d), (d, c)};
T = {(arg ⊑ ∃ author), (∃ author− ⊑ ∃ resident)};
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A = {arg(x) | x ∈ A} ∪ {att(x, y) | (x, y) ∈ R}∪
author(a, john), resident(john, paris),
author(b, mary), resident(mary, paris),
author(c, frank), resident(frank, bath),
author(d, anne), resident(anne, bath),
nation(paris, france), nation(bath, uk)


The assertions of KAF Ω are illustrated in Figure 1. □

Given a KAF Ω = ⟨A,R, T ,A⟩ and a set of arguments
S ⊆ A, we denote by R↓S

= R ∩ (S × S) and with
A↓S

= A \ ({p(a) ∈ A | a ∈ A \ S} ∪ {p(a, b) ∈
A | {a, b} ∩ (A \ S) ̸= ∅}) the projections over S of
R and A, respectively. Moreover, we denote with Ω↓S

=
⟨S,R↓S

, T ,A↓S
⟩ the projection of Ω over S. Finally, we de-

fine af (A,R) = {arg(a) | a ∈ A}∪{att(a, b) | (a, b) ∈ R}
as the ABox consisting of the assertions that describe the AF
⟨A,R⟩. We next define the concept of subframework, that is
the projection of a KAF over a set of arguments, that will be
used in Section 4 for defining CKAF semantics.
Definition 2 (Subframework). Given a KAF Ω = ⟨A,R,
T ,A⟩ and a set of arguments S ⊆ A, we say that Ω↓S

=
⟨S,R↓S

, T ,A↓S
⟩ is a subframework of Ω.

Example 7. Consider the KAF Ω = ⟨A,R, T ,A⟩ of
Example 6, and the set S = {a, d, e}. We have that
Ω↓S

= ⟨{a, d, e}, ∅, T ,A\({arg(b), arg(c)}∪{att(x, y) |
(x, y) ∈ R}∪{author(b, mary), author(c, frank)})⟩. □

Semantics. We first extend the concept of extension previ-
ously defined for AF, and then consider query acceptance.
Definition 3 (KAF Semantics). Given a KAF Ω =
⟨A,R, T ,A⟩ and an argumentation semantics σ ∈
{gr, co, st, pr}, a σ-extension for Ω is a KB ⟨T ,A↓E

⟩ such
that E ∈ σ(⟨A,R⟩).

The set of σ-extensions for a KAF Ω is denoted by σ(Ω).
As an example, for the KAF Ω of Example 6 and S =

{a, d, e} of Example 7, K = ⟨T ,A↓S
⟩ is a stable (and also

preferred) extension, that is K ∈ st(Ω).
Querying. In the following, we use the letter α to denote
the type of acceptance, that is α = cr means that we refer
to credulous acceptance, whereas α = sk means that we are
referring to the skeptical acceptance.
Definition 4 (Query answer). Let Ω = ⟨A,R, T ,A⟩ be a
KAF, σ ∈ {gr, co, st, pr} an argumentation semantics,
q(x⃗) a UCQ, and α ∈ {cr, sk} a type of acceptance. Then,
the set of answers to the query q(x⃗) over Ω under semantics
σ and acceptance α, denoted by Ansασ(q(x⃗),Ω), is:
• Anscrσ (q(x⃗),Ω) = {a⃗ | ∃K ∈ σ(Ω).⃗a ∈ Ans(q(x⃗),K)};
• Ansskσ (q(x⃗),Ω) = {a⃗ | ∀K ∈ σ(Ω).⃗a ∈ Ans(q(x⃗),K)}.
Definition 5 (Acceptance). For any KAF Ω = ⟨A,R, T ,A⟩,
argumentation semantics σ ∈ {gr, co, st, pr}, tuple of
individuals a⃗, and UCQ q(x⃗), we say that a⃗ is:
• credulously accepted if a⃗ ∈ Anscrσ (q(x⃗),Ω);
• skeptically accepted if a⃗ ∈ Ansskσ (q(x⃗),Ω).

We use CAσ (resp. SAσ), to denote the credulous (resp.
skeptical) acceptance problem in KAF under semantics σ,
that is, the problem of deciding whether a tuple of individu-
als is credulously (resp. skeptically) accepted.

Example 8. Consider the KAF Ω = ⟨A,R, T ,A⟩ of Exam-
ple 6, and the query q(x) = author(x, john), asking for the
arguments authored by john. Under stable semantics, we
have that Anscrst(q(⃗x),Ω) = {a} and Ansskst (q(⃗x),Ω) = ∅.
Thus, under stable semantics, a is credulously accepted, but
not skeptically accepted. □

Proposition 1. For KAF, it holds that:
• CAσ is i) in PTIME for σ = gr, and ii) NP-complete for
σ ∈ {co, st, pr};

• SAσ is i) in PTIME for σ ∈ {gr, co}, ii) coNP-complete
for σ = st, and iii) Πp

2-complete for σ = pr.
Therefore, the complexity of acceptance problems in

KAF and AF coincides. That is, from the computational
standpoint, adding the auxiliary information in the DL KB
comes at no additional cost. We will show that this is not the
case of CKAF, formally introduced in the next section.

4 Constrained Knowledge-based AF
We now introduce the Constrained Knowledge-based AF
(CKAF), that extends KAF with constraints expressed by
means of restricted relational calculus formulae.
Syntax. Constraints are introduced to pose restrictions over
a CKAF framework and are used to define the subframe-
works the user is interested in.
Definition 6 (CKAF). A Constrained Knowledge-based AF
(CKAF) is a quintuple ∆ = ⟨A,R, T ,A,Γ⟩ where Ω∆ =
⟨A,R, T ,A⟩ is a KAF and Γ is a set of logic formulae (de-
noting constraints) of the form ∀x⃗.ψ(x⃗) ⇒ φ(x⃗), where
ψ(x⃗) and φ(x⃗) are either i) a safe, range restricted re-
lational query using base (concept or role) names, or ii)
a union of conjunctive queries using arbitrary (concept or
role) names.

Clearly, variables in x⃗ occur as free variables in ψ(x⃗)
and φ(x⃗). Moreover, when x⃗ is empty the two queries
are Boolean. To make more explicit our constraints, we
sometimes write constraints of the form true ⇒ φ() (resp.
ψ() ⇒ false), where true (resp. false) stands for a Boolean
query always returning the truth value true (resp. false),2
which intuitively expresses that φ() must be true (resp. ψ()
must be false). In the following, whenever Γ consists of a
single formula f , we will write Γ = f instead of Γ = {f}.

Notice that the constraints in Γ are trivially satisfied
whenever the sets of base concepts and roles are empty.
Semantics. As said above, Γ contains constraints posing
restrictions on the form of Ω∆. We start by defining the sat-
isfaction of the formulae in Γ with respect to the underlying
KAF framework. A constraint ∀x⃗.ψ(x⃗) ⇒ φ(x⃗) is satisfied
by a KB K iff Ans(ψ(x⃗),K) ⊆ Ans(φ(x⃗),K). Γ is satis-
fied by K iff every constraint in Γ is satisfied by K. A KAF
Ω = ⟨A,R, T ,A⟩ satisfies a set of constraints Γ, denoted as
Ω |= Γ, iff ⟨T ,A⟩ |= Γ.

As we are considering UCQs and DL-Lite knowledge
bases, as well as safe, range restricted relational calculus

2Observe that it does not make sense to write constraints with
the truth value false in the body of implication and with the truth
value true in the head.
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queries over the ABox, query answers are computable in
AC0 and are finite (Calvanese et al. 2007; Cima, Lenzerini,
and Poggi 2020; Bienvenu 2016). The role of the logical
formulae Γ in ∆ is to express constraints to be satisfied by
the underlying Ω∆. Intuitively, if some of the logical for-
mulae in Γ is not satisfied, then the underlying KAF should
be revised by computing subframeworks, that is, by (mini-
mally) modifying the topology of the underlying AF through
the deletion of arguments, so that the formula is satisfied.
Clearly, when deleting arguments, incident roles (and, thus,
also attacks) are deleted as well.

Given a preorder ⪯ over all subframeworks of a KAF Ω,
a subframework Ω′ = ⟨A′,R′, T ,A′⟩ of Ω is ⪯-maximal
iff there is no subframework Ω′′ = ⟨A′′,R′′, T ,A′′⟩ of Ω
such that Ω′≺Ω′′. Hereafter, we consider two classical pre-
orders (over the subframeworks of the same KAF):
• Ω′ ⪯c Ω′′ iff |A′|+|R′| ≤ |A′′|+|R′′|;
• Ω′ ⪯s Ω′′ iff A′ ∪ R′ ⊆ A′′ ∪ R′′.

Thus, ⪯s compares subframeworks on the basis of the set
of arguments and attacks, whereas ⪯c compares them by
focusing on the number of arguments and attacks.
Definition 7 (⪯-Subframework). A ⪯-subframework for a
CKAF ∆ = ⟨A,R, T ,A,Γ⟩ is a subframework Ω′ of Ω∆

such that i) Ω′ |= Γ and ii) there is no subframework Ω′′ of
Ω∆ such that Ω′′ |= Γ and Ω′ ≺ Ω′′.

Thus, a ⪯s-subframework (s-subframework for short) is
obtained by deleting a minimal (w.r.t. set-inclusion) set
of arguments and attacks, whereas a ⪯c-subframework (c-
subframework) is obtained by deleting a minimum number
of arguments and attacks.

Given a preorder ⪯δ with δ ∈ {s, c}, the set of δ-
subframeworks for a CKAF ∆ is denoted by Sδ(∆). The
semantics of ∆ is given by the set of δ-subframeworks of ∆.
Example 9. Consider the CKAF ∆ = ⟨A,R, T ,A,Γ⟩
where Ω = ⟨A,R, T ,A⟩ is the KAF of Example 6, and
Γ = ∀x.arg(x) ⇒ ∃y, z.author(x, y) ∧ resident(y, z) ∧
nation(z, uk) is the formula of Example 4 whose aim is to
restrict to opinions expressed by people resident in the UK
only. The only δ-subframework for ∆, with δ ∈ {s, c}, is
Sδ(∆) = {Ω↓{c,d}}. □
Querying. To answer queries we must consider the sub-
frameworks of interest and, therefore, the type of preorder.
Definition 8 (Query answer). Let ∆ = ⟨A,R, T ,A,Γ⟩ be a
CKAF, σ ∈ {gr, co, st, pr} an argumentation semantics,
q(x⃗) a UCQ, α ∈ {cr, sk} the type of acceptance, and δ ∈
{s, c} a subframework semantics. Then, the set of possible
(resp. necessary) δ-subframework answers to the query q(x⃗)
over ∆ under semantics σ and acceptance type α is:
• (possible-subframework) δ-Ansp,ασ (q(x⃗),∆) =

{a⃗ | ∃Ω ∈ Sδ(∆).⃗a ∈ Ansασ(q(x⃗),Ω)};
• (necessary-subframework) δ-Ansn,ασ (q(x⃗),∆) =

{a⃗ | ∀Ω ∈ Sδ(∆).⃗a ∈ Ansασ(q(x⃗),Ω)}.
Definition 9 (Acceptance). Let ∆ = ⟨A,R, T ,A,Γ⟩ be a
CKAF, σ ∈ {gr, co, st, pr} an argumentation semantics,
q(x⃗) a UCQ, α ∈ {cr, sk} the type of acceptance, δ ∈ {s, c}
a subframework semantics, and a⃗ tuple of individuals. We
say that a⃗ is:

• possibly credulously accepted if a⃗ ∈ δ-Ansp,crσ (q(x⃗),∆);
• possibly skeptically accepted if a⃗ ∈ δ-Ansp,skσ (q(x⃗),∆);
• necessary credulously accepted if a⃗ ∈ δ-Ansn,crσ (q(x⃗),∆);
• necessary skeptically accepted if a⃗ ∈ δ-Ansn,skσ (q(x⃗),∆).

Example 10. Consider the CKAF ∆′ = ⟨A,R, ∅,A,Γ′⟩
derived from the CKAF ∆ of Example 9 by re-
placing i) T with an empty set of axioms (so that
author and resident become base roles), and ii)
Γ with Γ′ = {∀x1, x2.∃y1, z1, y2, z2.author(x1, y1) ∧
resident(y1, z1)∧author(x2, y2)∧resident(y2, z2) ⇒
z1 = z2}.3 Let Ω = ⟨A,R, ∅,A⟩, for ∆′ there are two s-
sub-frameworks: Ω1 = Ω↓{a,b,e} (containing the arguments
whose authors reside in paris or not authored by anyone),
and Ω2 = Ω↓{c,d,e} (containing only the arguments whose
authors reside in bath or not authored by anyone). Only
Ω2 is also a c-subframework, as it is obtained by deleting
two arguments and three attacks, whereas to obtain Ω1 two
arguments and four attacks must be deleted.

Take now the query q1(x, y) = author(x, y) over ∆′,
under ⪯c-preorder. As Ω2 is the only c-subframework for
∆′, whose underlying AF has exactly one complete exten-
sion {e, d}, under all semantics σ ∈ {gr, co, st, pr} and
acceptance type α ∈ {cr, sk} we have that:
c-Ansp,ασ (q1(x,y),∆

′)=c-Ansn,ασ (q1(x,y),∆
′)={⟨d, anne⟩}.

Taking now the ⪯s preorder, both Ω1 and Ω2 are s-
subframeworks of ∆′. Under stable semantics, Ω1 has two
extensions, whereas Ω2 has only one extension. Therefore:

• s-Ansp,crst (q1(x,y),∆
′) = {⟨a,john⟩,⟨b, mary⟩,⟨d, anne⟩};

• s-Ansp,skst (q1(x,y),∆
′) = {⟨d, anne⟩};

• s-Ansn,crst (q1(x,y),∆
′) = s-Ansn,skst (q1(x,y),∆

′) = {}. □

Note that a CKAF without base predicates is similar to
a correlated/constrained incomplete AF (Fazzinga, Flesca,
and Furfaro 2020; Mailly 2020), though the formulae de-
fined in those works are propositional and allow only built-
in predicates. Moreover, even the aim is different, as we are
interested in dealing with subframeworks (which minimally
differ from the original framework), whereas in the above-
mentioned works all (valid) completions are first-class citi-
zens, that is, they do not rely on minimal changes.

5 Computational Complexity
We investigate the complexity of fundamental reasoning
problems for CKAF. In particular, we study the verifica-
tion, existence, and credulous/skeptical acceptance prob-
lems, that are usually considered for analyzing the complex-
ity of argumentation frameworks. Our complexity results
refer to data complexity, where the TBox component, the
constraints and the query are assumed to be fixed.

We start with a lemma stating that the satisfaction of the
logical formulae in Γ can be checked in PTIME in the size
of the active domain consisting of constant values.

3Although Γ′ is not formulated according to the syntax of Def-
inition 6, it can be rewritten in a standard Boolean relational calcu-
lus query by moving the head of the implication into the body and
rewriting the universal quantifier by negating the formula twice.
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AF iAF ciAF CKAF
σ Vσ PVσ NVσ PVσ NVσ c-PVσ s-PVσ c-NVσ s-NVσ

gr P P P NP-c coNP-c Θp
2-c Σp

2-c Θp
2-c Πp

2-c
co P P P NP-c coNP-c Θp

2-c Σp
2-c Θp

2-c Πp
2-c

st P P P NP-c coNP-c Θp
2-c Σp

2-c Θp
2-c Πp

2-c
pr coNP-c Σp

2-ccoNP-c Σp
2-c coNP-c Θp

2-h, Σp
2 Σ

p
2-c Θp

2-c Πp
2-c

Table 1: Complexity of the verification problems for AF, iAF, ciAF,
and CKAF under semantics σ ∈ {gr, co, pr, st}. For any com-
plexity class C, C-c (resp. C-h) means C-complete (resp. C-hard).
An interval C-h, C′ means C-hard and in C′.

Lemma 1. Given a CKAF ∆=⟨A,R, T ,A,Γ⟩ and a sub-
framework Ω′ = ⟨A′,R′, T ,A′⟩ of Ω = ⟨A,R, T ,A⟩, check-
ing whether Ω′ |= Γ can be done in PTIME.

Observe that a given CKAF may admit zero, one, or mul-
tiple KAF subframeworks. Subframework existence, ver-
ification, and acceptance problems can be defined analo-
gously to those defined for iAF (Baumeister et al. 2018;
Baumeister et al. 2021). In fact, roughly speaking, sub-
frameworks correspond to iAF completions which, however,
must satisfy a minimality criteria (either set or cardinality
subframework semantics).

5.1 Existence Problems
We start by introducing the existence problems under set and
cardinality subframework semantics, i.e., δ ∈ {c, s}.

Definition 10. Let δ ∈ {c, s} be a subframework semantics,
δ-EX is the problem of checking whether there exists a δ-
subframework for a given CKAF.

In our running example, both problems are true. However,
deciding subframework existence is hard.

Theorem 1. s-EX and c-EX are NP-complete.

5.2 Verification Problems
We now characterize the complexity of the verification prob-
lems for CKAF, which are formally defined in what follows.

Definition 11. Let ∆ = ⟨A,R, T ,A,Γ⟩ be a CKAF, A∗ ⊆
A, σ ∈ {gr, co, pr, st} an argumentation semantics, and
δ ∈ {c, s} a subframework semantics. Then:

• the δ-possible verification problem, denoted as δ-PVσ , is
the problem of checking whether ⟨T ,A∗⟩ is a σ-extension
in any δ-subframework for ∆;

• the δ-necessary verification problem, denoted as δ-NVσ ,
is the problem of checking whether ⟨T ,A∗⟩ is a σ-
extension in all δ-subframeworks for ∆.

Observe that for a CKAF of the form
⟨A,R, ∅, af(A,R), ∅⟩, that semantically coincides with
the AF ⟨A,R⟩, s-PVσ = c-PVσ = s-NVσ = c-NVσ , which
in turns coincide with the standard verification problem
for AF, that is checking whether a given set S ⊆ A of
arguments is a σ-extension of AF ⟨A,R⟩.

The following theorem states that the complexity of the
verification problem for CKAF is generally harder than that

for AF, whose complexity is summarized in the second col-
umn of Table 1 (Dvorak and Dunne 2017). Moreover, the re-
sults for the cardinality-based semantics are generally lower
than those for the set-based semantics.
Theorem 2.
• c-PVσ is i) Θp

2-complete for σ ∈ {gr, co, st}, and
ii) Θp

2-hard and in Σp
2 for σ = pr;

• s-PVσ is Σp
2-complete for σ ∈ {gr, co, st, pr};

• c-NVσ is Θp
2-complete for σ ∈ {gr, co, st, pr};

• s-NVσ is Πp
2-complete for σ ∈ {gr, co, st, pr}.

Notably, the verification problem for CKAF is computa-
tionally harder than that for constrained iAF (ciAF) (Mailly
2020) (and thus iAF) under all the considered (argumenta-
tion and subframework) semantics, except for δ-PVpr (with
δ ∈ {c, s}) for which the verification problems for CKAF
and ciAF belong to the same class (Σp

2). On the other side,
it can be shown that the complexity of verification for KAF
is as that of AF, as any KAF Ω = ⟨A,R, T ,A⟩ can be seen
as a CKAF ⟨A,R, T ,A,Γ = ∅⟩, whose set of constraints is
empty, and ⟨T ,A∗⟩ ∈ σ(Ω) iff Arg(A∗) ∈ σ(⟨A,R⟩).

5.3 Acceptance Problems
For AFs, the complexity of the credulous and skeptical ac-
ceptance problems has been investigated in (Dung 1995) for
the grounded semantics, in (Dimopoulos and Torres 1996)
for the stable semantics, and in (Dimopoulos and Torres
1996; Dunne and Bench-Capon 2002) for the preferred se-
mantics. The complexity results for AFs are summarized in
the second and third column of Table 2.

The following definition generalizes that of the credulous
and skeptical acceptance problems for AF to the case of
CKAF, analogously to what is done for (c)iAF.
Definition 12. Let ∆ = ⟨A,R, T ,A,Γ⟩ be a CKAF, σ ∈
{gr, co, pr, st} an argumentation semantics, q(x⃗) a UCQ,
δ ∈ {s, c} a subframework semantics, and a⃗ a tuple of indi-
viduals. Then:
• the δ-possible credulous acceptance problem, denoted as
δ-PCAσ , is the problem of deciding whether a⃗ is possibly
credulously accepted;

• the δ-possible skeptical acceptance problem, denoted as
δ-PSAσ , is the problem of checking whether a⃗ is possibly
skeptically accepted;

• the δ-necessary credulous acceptance problem, denoted
as δ-NCAσ , is the problem of checking whether a⃗ is nec-
essary credulously accepted;

• the δ-necessary skeptical acceptance problem, denoted as
δ-NSAσ , is the problem of checking whether a⃗ is neces-
sary skeptically accepted.
The next theorem provides a tight characterization of the

complexity for all the above-defined acceptance problems.
Theorem 3.
• c-PCAσ is Θp

2-complete for any σ ∈ {gr, co, st, pr};
• s-PCAσ is Σp

2-complete for any σ ∈ {gr, co, st, pr};
• c-NCAσ is i) Θp

2-complete for σ = gr, and
ii) Πp

2-complete for any σ ∈ {co, st, pr};
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AF/KAF iAF/ciAF CKAF
σ CAσ SAσ PCAσ NCAσ PSAσ NSAσ c-PCAσ s-PCAσ c-NCAσ s-NCAσ c-PSAσ s-PSAσ cNSAσ sNSAσ

gr P P NP-c coNP-c NP-c coNP-c Θp
2-c Σp

2-c Θp
2-c Πp

2-c Θp
2-c Σp

2-c Θp
2-c Πp

2-c
co NP-c P NP-c Πp

2-c NP-c coNP-c Θp
2-c Σp

2-c Πp
2-c∗ Πp

2-c Θp
2-c Σp

2-c Θp
2-c Πp

2-c
st NP-c coNP-c NP-c Πp

2-c Σp
2-c coNP-c Θp

2-c Σp
2-c Πp

2-c∗ Πp
2-c Σp

2-c∗ Σp
2-c Θp

2-c Πp
2-c

pr NP-c Πp
2-c NP-c Πp

2-c Σp
3-c Πp

2-c Θp
2-c Σp

2-c Πp
2-c∗ Πp

2-c Σp
3-c∗ Σp

3-c∗ Πp
2-c∗ Πp

2-c

Table 2: Complexity of possible and necessary credulous/skeptical acceptance under σ ∈ {gr, co, pr, st} for AF, KAF, iAF, ciAF, and
CKAF. For any complexity class C, C-c means C-complete. All results for CKAF (and KAF) are new. The results with asterisk (∗) refer to
cases where the complexity of CKAF is the same as that of (c)iAF; for the other cases, the complexity of CKAF is higher than that of (c)iAF.

• s-NCAσ is Πp
2-complete for any σ ∈ {gr, co, st, pr};

• c-PSAσ is i) Θp
2-complete for any σ ∈ {gr, co}, and

ii) Σp
2-complete for any σ ∈ {st, pr};

• s-PSAσ is i) Σp
2-complete for any σ ∈ {gr, co, st}, and

ii) Σp
3-complete for σ = pr;

• c-NSAσ is i)Θp
2-complete for any σ ∈ {gr, co, st}, and

ii) Πp
2-complete for σ = pr.

• s-NSAσ is Πp
2-complete for any σ ∈ {gr, co, st, pr}.

In brief, except for the 7 cases highlighted with an aster-
isk (∗) in Table 2 for which the complexity of CKAF is the
same as that of (c)iAF, for all the other 25 cases considered
the complexity of CKAF is higher than that of (c)iAF, even
under cardinality semantics whose complexity is systemati-
cally lower than or equal to that of the set semantics.

6 CKAF versus iAF-based Frameworks
As observed earlier, there are some connections between
CKAF and iAF-based Frameworks (Baumeister et al. 2021;
Fazzinga, Flesca, and Furfaro 2020; Mailly 2020). Accep-
tance problems are defined similarly, in the sense that the
semantics of iAF-based frameworks is defined by the set of
(valid) completions, whereas that of CKAF is defined by the
set of subframeworks (that can be viewed as a subset of com-
pletions by assuming arguments/attacks of CKAF to be un-
certain). We investigate the relationship between CKAF and
constrained iAF (ciAF) (Mailly 2020), showing that ciAF,
as well as its restrictions iAF and correlated iAF (Fazzinga,
Flesca, and Furfaro 2020), are special cases of CKAF.4

6.1 Constrained iAF
A constrained incomplete (abstract) Argumentation Frame-
work (ciAF) is a tuple Ψ = ⟨A,B,R,T, C⟩, where A and
B are disjoint sets of arguments, and R and T are disjoint
sets of attacks between arguments in A ∪ B. Arguments in
A and attacks in R are said to be certain, while arguments
in B and attacks in T are said to be uncertain (Baumeister

4While correlated iAF considers different fragments of propo-
sitional logic (PL), with the aim of studying complexity and ex-
pressivity of those fragments, constrained iAF considers general
PL formulae. As PL formulae can be rewritten using minimal sets
of operators (e.g., ∧ and ¬), the two proposals are equivalent in
the sense that, although constrained iAF is more general, there are
fragments of correlated iAF that have the same expressivity of gen-
eral PL. Finally, an iAF is a special ciAF without constraints.

a b c d

Figure 2: ciAF of Example 11 (dashed elements are uncertain).

et al. 2018). Moreover, C ∈ ℓA∪B is a propositional for-
mula (called constraint), defined over the propositional lan-
guage ℓA built over the propositional atoms in {arg(a) | a ∈
A} ∪ {att(a, b) | a, b,∈ A}. A ciAF compactly represents
alternative AF scenarios, called valid completions.

Definition 13 (Valid Completions). A valid completion for a
ciAF Ψ = ⟨A,B,R,T, C⟩ is an AF Λ = ⟨A′,R′⟩ where A ⊆
A′ ⊆ A∪B, R∩ (A′×A′) ⊆ R′ ⊆ (R∪T)∩ (A′×A′), and
Λ satisfies C. The set of valid completions of Ψ is denoted
by valid-comp(Ψ).

Verification and acceptance problems, originally in-
troduced in (Baumeister, Neugebauer, and Rothe 2018;
Baumeister et al. 2021) for iAF, are defined analogously to
the ones of CKAF, with the only difference that instead of
considering subframeworks and general UCQs, valid com-
pletions and single goal arguments are taken into account.

Example 11. Consider the ciAF Ψ= ⟨A = {b, c, d},B =
{a}, R = {(a, c), (b, c), (c, d)}, T = {(a, b)}, C =
arg(a) ⇒ att(a, b)⟩ shown in Figure 2, where argu-
ments b, c, d and attacks (a, c), (b, c) and (c, d) are certain,
whereas argument a and attack (a, b) are uncertain.
Ψ has 2 valid completions, that are:
• Λ1 = ⟨{a, b, c, d}, {(a, b), (a, c), (b, c), (c, d)}⟩; and
• Λ2 = ⟨{b, c, d}, {(b, c), (c, d)}⟩.

For σ ∈ {gr, co, st, pr}, Λ1 (resp. Λ2) has only one ex-
tension E1 = {a, d} (resp. E2 = {b, d}). Thus, a, b, d are
possibly credulously/skeptically accepted, while only d is
necessarily credulously/skeptically accepted. □

6.2 Relationship between CKAF and ciAF
We start by showing that every ciAF can be rewritten into an
extensions-equivalent CKAF, modulo meta-elements. The
equivalence between a ciAF Ψ = ⟨A,B,R,T, C⟩ and a
CKAF ∆ = ⟨A′,R′, T ,A,Γ⟩ derived from Ψ is in the
sense that (i) A ∪ B ⊆ A′ and R ∪ T ⊆ R′ (i.e., argu-
ments and attacks in Ψ also occur in ∆, but ∆ may con-
tain additional meta-arguments and meta-attacks), and (ii)
for every valid completion Λ ∈ valid-comp(Ψ) there ex-
ists an s-subframework ⟨A′′,R′′, T ,A′′⟩ ∈ Ss(∆) (resp. c-
subframework ⟨A′′,R′′, T ,A′′⟩ ∈ Sc(∆)) such that σ(Λ) =
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{E ∩ (A ∪ B) | E ∈ σ(⟨A′′,R′′⟩)}, and vice versa. Such
equivalence under the set subframework (resp. cardinality
subframework) semantics between a ciAF Ψ and a (derived)
CKAF ∆ is denoted by Ψ ≊s ∆ (resp. Ψ ≊c ∆).
Theorem 4. For any ciAF Ψ = ⟨A,B,R, T, C⟩, it holds that
Ψ ≊s ∆Ψ, where ∆Ψ = ⟨AΨ,R∪T, ∅, af (AΨ,RΨ), true ⇒
c1 ∧ c2 ∧ c3 ∧ C⟩ is the CKAF obtained from ∆ as follows:
AΨ = A ∪ B ∪ B ∪ R, where B = {b | b ∈ B}; R = {ab |
(a, b) ∈ R ∧ (a ∈ B ∨ b ∈ B)} ∪ {ab | (a, b) ∈ T}; and

c1 :
∧

a∈A arg(a) ∧
∧

(a,b)∈(R∩(A×A)) att(a, b)

c2 :

∧
a∈B

(arg(a)⊕ arg(a)) ∧
∧

(a,b)∈T
att(a, b)⊕ arg(ab)

∧
∧

(a,b)∈R∧({a,b}∩B̸=∅) att(a, b)⊕ arg(ab)

c3 :

∧
(a,b)∈(R∩(B×A))(arg(a) ≡ att(a, b))∧∧
(a,b)∈(R∩(A×B))(arg(b) ≡ att(a, b))∧∧
(a,b)∈(R∩(B×B))(arg(a) ∧ arg(b) ≡ att(a, b))∧∧
(a,b)∈T (att(a, b) =⇒ arg(a) ∧ arg(b)).

Example 12. Consider the ciAF Ψ = ⟨A,B,R,T, C⟩ of
Example 11. The CKAF derived from Ψ is ∆Ψ = ⟨AΨ=A∪
B ∪ {a, ab, ac}, RΨ=R ∪ T, ∅, af (AΨ,RΨ),Γ⟩ where:
Γ = true ⇒ c1 ∧ c2 ∧ c3 ∧ C, with
c1 = arg(b) ∧ arg(c) ∧ arg(d) ∧ att(b, c) ∧ att(c, d);
c2 = (arg(a)⊕ arg(a)) ∧ (att(a, b)⊕ arg(ab))

∧(att(a,c)⊕ arg(ac));
c3 = arg(a) ≡ att(a, c);

Intuitively, (i) c1 states that certain arguments and cer-
tain attacks, whose end vertices are certain, must belong to
all subframeworks; (ii) c2 states that for the uncertain ar-
gument a (resp. uncertain attack (a, b) and (a, c)) exactly
one between a and a (resp. between att(a, b) and arg(ab),
att(a, c) and arg(ac)) appears in any subframework) (in
the formula, ⊕ denotes the XOR operator); (iii) c3 states
that the certain attack (a, c) must belong to a subframework
iff a (which is uncertain in the iAF) belong to it.
∆Ψ has two s-subframeworks (also c-subframeworks)

Ωi = ⟨Ai,Ri, ∅, af (Ai,Ri)⟩ (with i ∈ {1, 2}), where:
• A1={a,b,c,d}, and R1={(a, b),(b, c),(a, c),(c, d)}⟩;
• A2={a,b,c,d, ab, ac}, and R2={(b, c), (c, d)},
which one-to-one correspond to the valid completions of
ciAF Ψ, modulo meta-elements. Also, the set of σ-
extensions (with σ ∈ {gr, co, st, pr}) of Ωi is the same
as that of Λi (of Example 11), modulo the meta-arguments
a, ab, and bc, introduced in the rewriting, for i ∈ {1, 2}. □

The result of Theorem 4 can be viewed in the context
of realizability in that realizability has also been used to
compare the expressiveness of two frameworks (Linsbich-
ler, Pührer, and Strass 2016; Dunne et al. 2015; Baumann et
al. 2014; Strass 2015; Pührer 2020). Following the approach
of (Gogic et al. 1995), where it is stated that a framework F
is at least as expressive as framework G if and only if every
knowledge base in G has an equivalent knowledge base in
F (obtainable from G in polynomial time), Theorem 4 states
that CKAF is at least as expressive as ciAF. Under the re-
alizability viewpoint, our result entails that the set of exten-
sions of a given ciAF can be modelled by means of a CKAF

(obtainable from the ciAF in polynomial time), regardless
of the specific semantics. Moreover, it is worth noting that,
using the terminology introduced in (Brewka, Dunne, and
Woltran 2011), we can say that ciAF can be simulated in
CKAF. However, it is important to note that the inverse does
not hold, that is, CKAF is strictly more expressive than ciAF.
In fact, as also backed by our complexity results, several
CKAF reasoning problems (e.g., credulous/skeptical accep-
tance) cannot be reduced to their counterparts in ciAF.

7 Related Work
The concept of CKAF subframework shares some ba-
sic ideas with that of KB repairs (Arenas, Bertossi, and
Chomicki 1999; Bertossi 2011; Calautti et al. 2022a;
Calautti et al. 2022b). However, here we aim to select (max-
imal) subsets of the underlying AF that represent feasible
solutions consistently with the additional knowledge, rather
than identifying and rectifying inconsistencies in the data.
Computing repairs for AFs which are inconsistent, in the
sense that they do not have any accepted argument, has been
investigated in (Ulbricht and Baumann 2019), where restor-
ing consistency is achieved via dropping a minimal set of
arguments or attacks. A similar approach has been defined
for Assumption-Based Argumentation Frameworks in (Rap-
berger and Ulbricht 2024). In (Takahashi and Miwa 2023) it
is studied how to make an AF with no stable extensions into
one having it by adding a new argument (called ‘repair’).

The relationship between argumentation and repairs in in-
consistent databases (DBs) has been investigated in (Mah-
mood, Hecher, and Ngomo 2025) with the aim to show that
classical AF semantics can be reduced to the computation of
repairs over a DB inconsistent w.r.t. a set of functional and
inclusion dependencies. Moreover, in (Bienvenu and Bour-
gaux 2020), it has been shown that AF stable extensions cor-
respond to Pareto-optimal repairs. In contrast, our aim is to
first enrich AF with a KB, and then to provide means for
selecting subframeworks that are of interest to the user.

Further related approaches address the so-called enforc-
ing and minimal change problem dealing with the question
of whether it is possible to add (minimal) new informa-
tion so that a desired set of arguments becomes an exten-
sion or at least a subset of an extension (Baumann 2012;
Kim, Ordyniak, and Szeider 2013; Wallner, Niskanen, and
Järvisalo 2017). These works are all based on the addition of
new information. We do not allow modifications that result
in the addition of arguments and attacks, but we are inter-
ested in (minimal) removals ensuring satisfaction of user-
defined constraints. The impact of adding or removing an
argument on the set of extensions has been studied in (Cay-
rol, de Saint-Cyr, and Lagasquie-Schiex 2010).

Extending AF by associating a claim to each argument
representing its conclusion has been investigated in (Dvorák,
Rapberger, and Woltran 2020; Dvorák and Woltran 2020;
Dvorák et al. 2023) where claim-augmented AFs are intro-
duced. A claim-augmented AF can be modeled by a KAF
whose TBox is empty and whose ABox contains assertions
associating arguments to claims. Two approaches have been
considered for defining claim-augmented AF semantics.
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The inherited semantics considers the extensions of the un-
derlying AF before interpreting arguments by their claims,
while the claim-level semantics redefines argumentation se-
mantics in terms of the arguments’ claims. We follow the in-
herited approach in defining KAF semantics, as often done
in structured argumentation (Modgil and Prakken 2014;
Bondarenko, Toni, and Kowalski 1993). As a result, KAF
generalizes claim-augmented AF under inherited semantics,
as backed by our complexity analysis.

Interestingly, also Preference-based AF (PAF) under the
preference reduction approach (Amgoud and Cayrol 2002;
Amgoud and Vesic 2014; Kaci et al. 2021; Bernreiter et
al. 2024; Bernreiter, Dvorák, and Woltran 2024) can be
reduced to CKAF where PAF’s critical attacks are tack-
led similarly to VAF’s unsuccessful attacks (Dunne and
Bench-Capon 2004), as shown in what follows. Any
VAF ⟨A,R,V, VAL, VALPREF⟩ can be seen as a CKAF
⟨A,R, ∅, af(A,R) ∪ F ,Γ⟩ where F={val(x,VAL(x)) | x ∈
A} ∪ {pref(x, y) | {x, y} ⊆ V∧VALPREF(x, y)}, and Γ =
∀x,y,u,v. att(x, y)∧val(x, u)∧val(y, v)∧pref(v, u) ⇒
false. Here, the unique δ-subframework corresponds to an
AF without unsuccessful attacks, emulating VAF semantics.

While Dung’s framework is mainly concerned with ac-
ceptability of arguments, structured argumentation (Besnard
et al. 2014) includes an argument generation process or in-
stantiation, upon which semantics can be deployed to find
acceptable arguments or conclusions thereof. In particu-
lar, ASPIC+ (Modgil and Prakken 2014) and ABA (Bon-
darenko, Toni, and Kowalski 1993; Toni 2014) build the set
of all possible arguments from a KB and then rely on us-
ing one of the possible Dung semantics to decide on the ac-
ceptance of arguments, while Logic-Based Deductive Argu-
mentation (Besnard and Hunter 2014) and DeLP (Garcı́a and
Simari 2014) focus on building the arguments involved in
answering the query. Differently from structured argumenta-
tion approaches, where the internal logical structure of argu-
ments determines the relationship between them, KAF and
CKAF build on Dung’s framework, where the relationships
between arguments are explicit (not inferred from a KB),
and enrich it by DLs that handle structured domain knowl-
edge, leveraging AF semantics for management of conflicts.

8 Conclusion
We have introduced a new framework combining abstract ar-
gumentation with description logics. Although for the sake
of presentation we focused on DL-LiteR, it can be shown
that our results hold for all query rewritable DL-Lite frag-
ments (Calvanese et al. 2007; Bienvenu 2016), as they hold
as long as the query (and the constraints) can be evalu-
ated in polynomial time. Future work should be devoted
to the investigation of integrating AF with more general
DL knowledge bases, by considering both more powerful
query languages (Bienvenu, Manière, and Thomazo 2020;
Bienvenu, Manière, and Thomazo 2021) and more power-
ful DL languages for axioms’ definition (Cima, Lenzerini,
and Poggi 2020; Cima et al. 2025). The combination of
the two frameworks could develop interesting researches
as it has the potential to develop reasoning tasks not sup-
ported by single frameworks such as: (i) Defeasible reason-

ing over ontologies, enabling systems to withdraw conclu-
sions when new, contradictory evidence arises; (ii) Explain-
able AI, where arguments built over DL-based knowledge
can provide structured justifications for conclusions; (iii)
Interoperability in knowledge integration, managing incon-
sistencies when merging heterogeneous knowledge bases.

Although this paper primarily focuses on formal foun-
dations, bridging this theoretical framework with practical
implementations is important. While extending current AF
solvers to compute KAF semantics is not excluded from our
complexity results, the same does not hold for CKAF whose
underlying problems are strictly harder than AF. A possi-
ble solution would be that of hybrid solving approaches that
combine existing DL reasoners (e.g., Pellet, HermiT) for KB
reasoning and AF solvers (e.g., those of the ICCMA compe-
tition) for extensions computation. We believe that modular
integration of these tools—possibly via interleaved or lay-
ered reasoning—could offer an effective path forward. This
is a direction that we plan to explore in future work.
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