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Abstract

Explainable systems expose information about why certain
observed effects are happening to the agents interacting with
them. We argue that this constitutes a positive flow of in-
formation that needs to be specified, verified, and balanced
against negative information flow that may, e.g., violate pri-
vacy guarantees. Since both explainability and privacy re-
quire reasoning about knowledge, we tackle these tasks with
epistemic temporal logic extended with quantification over
counterfactual causes. This allows us to specify that a multi-
agent system exposes enough information such that agents
acquire knowledge on why some effect occurred. We show
how this principle can be used to specify explainability as a
system-level requirement and provide an algorithm for check-
ing finite-state models against such specifications. We present
a prototype implementation of the algorithm and evaluate it
on several benchmarks, illustrating how our approach distin-
guishes between explainable and unexplainable systems, and
how it allows to pose additional privacy requirements.

1 Introduction

Contemporary autonomous systems are increasingly com-
plex and opaque, yet also deployed in consequential applica-
tions such as hiring (Dastin 2018), healthcare (Thomas and
Ravi 2019), and criminal sentencing (Angwin et al. 2016).
This tension has led to an extensive inquiry into methods
that provide explanations for the behavior of these systems,
such that agents interacting with, e.g., a hiring system may
know why their application is rejected (Mersha et al. 2024).
Although an explanation may provide critical and action-
able recourse to one agent, it may also reveal private infor-
mation about another (Nguyen et al. 2025). For instance, a
rejected job application may be explained by the applicant’s
pay requirement being over a certain threshold, but if the ap-
plicant observes a sufficiently similar application being ac-
cepted, they can infer the future salary of the other agent.
This line of reasoning leads to an inherent tradeoff between
explainability and privacy, which we study in this paper.
Privacy requirements are commonly formalized as
information-flow policies (Goguen and Meseguer 1982;
Kozyri, Chong, and Myers 2022), i.e., a system must not
only restrict direct access to private information but also re-
strict propagation of this information through indirect chan-
nels. We approach the formalization of explainability re-
quirements from the same perspective and express them as
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end-to-end information-flow policies in a specification lan-
guage for multi-agent systems. On a high level, such an
explainability requirement defines the necessary flow of in-
formation in the following way: It specifies what needs to
be explained (the explanandum), how it needs to be ex-
plained (the explanans), and when it needs to be explained,
to whom. We propose a verification algorithm that can then
check whether a given system ensures sufficient flow of in-
formation to meet a requirement in our specification lan-
guage. With the same language, we can also express privacy
requirements, such that we can similarly check that explain-
ability does not come at the expense of security.

Our specification language extends epistemic temporal
logic (Fagin et al. 1995). Epistemic and temporal logics have
been popular frameworks for studying information-flow se-
curity (Halpern and O’Neill 2008; Balliu, Dam, and Guer-
nic 2011; Clarkson et al. 2014; Coenen et al. 2019). This
inspires us to study the flow of information in explainable
systems through the same lens. We build on the popu-
lar framework of counterfactual explanations (Halpern and
Pearl 2005; Wachter, Mittelstadt, and Russell 2018) and in-
strument our logic with operators to reason about temporal
causes (Finkbeiner et al. 2024). These are based on a tem-
poral variant of actual causation (Halpern 2016), which uses
counterfactual reasoning (Lewis 1973) to explain a given
execution and has received significant attention in the lit-
erature on explainable AI (Miller 2019). A temporal cause
can for instance be described symbolically by the formula
@a, N\ € az, which means that action a; at the previous
time point and action a9 at any earlier time point have jointly
caused some effect: The cause needs to be satisfied and de-
scribe the minimal changes necessary to obtain a counter-
factual execution where the effect does not happen.

The combination of counterfactual, epistemic and tem-
poral reasoning allows us to express explainability require-
ments of the following form:

O = 3X.Ka(X ~5% )
which states that the explanandum 1 is explainable to agent
a whenever 1 occurs, via the temporal cause X serving as
explanans. The cause X is constrained to reason only over
the actions Act(a) of agent a, which is why we term this
requirement Internal Causal Explainability (ICE). The re-
quirement uses the temporal operator [] to enforce its con-
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straint on every time point of an execution, and the epistemic
operator X, to express its key epistemic component: The se-
mantics of this latter operator require that the same property
X causes ¥ on all executions that are indistinguishable to
agent a, which means that agent a has acquired knowledge
of the associated causal dependency.

Contributions and Outline. We give a detailed exam-
ple to illustrate how ICE encodes explainability in an
information-flow sense in Section 3, after establishing nec-
essary preliminaries in Section 2. The motivating example
highlights how explainability requirements, such as ICE, re-
quire tradeoffs when juxtaposed with privacy requirements
placed on the same system. We then introduce the formal
details of our logic in Section 4, where we discuss other ex-
plainability requirements beside ICE, and outline an algo-
rithm to verify whether a given system satisfies a require-
ment specified in our logic. The main challenge for the al-
gorithm is the second-order quantification that ranges over
sets of traces, as related logics with unrestricted quantifiers
of this kind cannot be verified automatically (Beutner et al.
2023a). We show how to exploit the fact that causes are
uniquely determined to encode the second-order quantifiers
over sets of traces into the decidable satisfiability problem of
a temporal logic with first-order quantification over atomic
propositions only. We then report on experiments with a
prototype implementation of our approach in Section 5. Our
prototype can verify both explainability and privacy require-
ments as introduced throughout the paper, on multi-agent
systems with up to several thousand states. We use classic
games and an auction system for these experiments. Last,
we discuss related work in Section 6 and close with a short
summary and outlook on future work in Section 7.

2 Preliminaries

We recall the formal background on transition systems as
models of multi-agent systems, temporal logics for specify-
ing system requirements, and temporal causality for defining
counterfactual dependencies between temporal properties.

Multi-Agent Systems. We consider fransition systems as
the fundamental model of the logics we will study in this
paper. A transition system is a tuple 7 = (.5, Sp, A, AP, A),
where S is a finite set of states, Sy is a set of initial states,
A : S+ 2% is a transition function such that A(s) # ()
for all states s € S, AP is a set of atomic propositions, and
A 2 S xS +— 24P is a labeling function marking edges
with atomic propositions. Executions of a system are mod-
eled as follows. A path p = p[0]p[l]... € S¥ of T is
an infinite sequence of states following the transition func-
tion: p[i + 1] € A(pl[é]) for all rime points i € N. The trace
7 = m0]n[1]... € (28F) of a path p is the sequence of cor-
responding labels, i.e., we have w[i] = A(pl[i], p[¢ + 1]) for
all i € N. Let II(7") denote the set of traces of initial paths,
i.e., of p such that p[0] € Sy. For some trace m, 7[0, n] € S*
is its prefix of length n + 1. For two traces w,7 € S“ and
A C APwewritem =4 « if w[i]NA = 7'[{]N A for all time
points i € N. We model a multi-agent system as an extended
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transition system € = (T, ), Act) that includes an observa-
tion map Q : AG — 24P to reason about the observations
of a set of agents AG and an action map Act : AG + 24P
to reason about their controllable actions. We will use the
shorthand Act for the image of AG under Act, i.e., the set
of all actions. We call every atomic proposition that is not
an action a system output. For some agent a € AG, Q(a)
describes the set of atomic propositions that are observable
to agent a, and Act(a) describes which actions are control-
lable by a. We assume Act(a) C Q(a). For some trace 7 of
T, Qu(m) € (2AP)« are the partial observations of a along
the trace: Qg (m)[i] = w[i] N Q(a). We further assume that
all actions are possible from every state (although they may
have no effect): For all s € S and A C Act, there is an
s’ € S suchthat s’ € A(s) and A = A(s,s’) N Act. We
say that a multi-agent system is deterministic if there exists
exactly one such s’ forall s € S and A C Act. The set of
traces of £ = (7, €2) is denoted II(E) = II(T).

Example 1. Consider the multi-agent system Acupiain
shown in Figure 1. It models an explainable auction between
three bidders. Nodes and edges depict states and the tran-
sition function, respectively. The single initial state is indi-
cated through an incoming edge without a source state. For
brevity, edge-labels use symbolic notation for actions (left of
the bar) and explicit sets for the outputs (right of the bar). If
there are no outputs, we only depict the action constraints. A
trace of this system is m = {0, by, ba, e} ({0, b1, b2})%, which
corresponds to path p1 = init (winy )* or py = init (wing)¥,
since the set {0,b1, b} satisfies o A by as well as o A ba. The
w-superscript denotes infinite repetition of the subsequence.

Temporal Logics. The basis of our logic is the epistemic
temporal logic KLTL, which extends Linear Temporal Logic
(LTL) with a knowledge modality. We defer KLTL and start
with a definition of LTL (Pnueli 1977). We include past op-
erators, which do not increase expressive power (Lichten-
stein, Pnueli, and Zuck 1985), but will make some formulas
more readable. The syntax is given as follows:

pi=plp[eVe|Op|eUe | @[l ¢, (1)
where p € AP is an atomic proposition. Additionally, LTL
includes the following derived operators: Boolean constants
(true, false) and connectives (V, —, <), the temporal op-
erator ‘Eventually” (O = trueUep) as well as its dual,
‘Globally’ (¢ = <), and the derived past opera-
tors ‘Once’ (@ = trueU~ ) and ‘Historically’ (llyp =
-4 ). The semantics of an LTL formula ¢ is defined
with respect to a trace 7 and a time point ¢ as follows:

miEp iff p € i,
w1 E - iff 7,1 F ¢,
Tt FE @1 Vs iff miFE @ orm ik oo,
Tt EQep iff m,94+1F ¢,
T,iF@p iff m,i—1F andi >0,
miFE 1 Upe iff 3k >1: 7 kFE @9 and
Vi<ji<k:mjFE e,
w0 F 1 U o iff g <i:m,gF ¢ and

Vg< h<i:mhE .
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Figure 1: A multi-agent system modeling a Dutch auction with
three agents bidding through actions b1, b2, b3 and one auctioneer
opening and closing the auction with action o. The winner is an-
nounced through outputs w1, w2, ws. We consider three versions
of the auction in this paper. In the first version A;nq an agent i ob-
serves only their own action, output, and the auctioneer: b;, w;, 0.
In the second version A,.sic an agent ¢ additionally observes all
actions Act. For both of these versions, the explanatory output
is empty, while we have E = {e} for the third version Acspiain,
which otherwise is like Ap;nq €xcept e is observable by all agents.

We call the combination of trace and time point an anchor
point. System-level satisfaction is based on a universal ap-
plication of the trace semantics: T satisfies ¢, denoted by
T E o, iff for all traces w € II(T) : 7,0 E . The language
L(p) is the set of all traces satisfying the LTL formula .

The epistemic temporal logic KLTL (Fagin et al. 1995)
extends LTL with a knowledge modality that expresses the
knowledge of an agent a € AG, i.e., it adds the rule X, ¢
to Grammar 1. The semantics of a KLTL formula is as for
LTL, but additionally refers to an extended transition system
& = (T, ). For the epistemic operator K,, we have:

E,mi EKyp iff Vo' € II(T) : (Qa(m)[0,4] =
Qa(7[0,i]) = E, 7' i E @ .

Hence, agent a has knowledge of some property ¢ on a
trace 7 at point %, expressed through the formula X, ¢, if this
property holds on all traces that are indistinguishable for a
from 7 up to this point. This corresponds to the so-called
synchronous perfect recall semantics (van der Meyden and
Shilov 1999; Halpern, van der Meyden, and Vardi 2004),
since the agents can distinguish prefixes of different length
and based on divergence at any point in the past. Similar to
LTL, we have £ F piff forall tracesm € II(T) : €, 7, 0F .

Temporal Causality. Since multi-agent systems are se-
quential processes where the timing of actions is causally
relevant, we adapt temporal causality (Finkbeiner et al.
2024) to express causal dependencies between temporal
properties. This utilizes counterfactual reasoning based on
similarity (Lewis 1973). Similarity is defined with a trace-
wide extension of the symmetric difference A ® B = (A \
B)U(B\A) of two sets A, B. For two traces 7, 7’ € (24F)«
and some A C AP, we define 7 &4 ' = {(a,i) € A x N |
a € 7li] ® 7'[i]}. For three traces m, 7', 7" € (2AP)* and
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A C Act we say 7 is at least as similar to 7’ as 7' over A,
denoted with m <2 7", iff (n ©a 7') C (7" ©a 7).

We now have everything we need to define temporal
causality: The cause for some temporal property ¢ at time
point ¢ on a trace 7 of system & = (7,€2) with respect to
A C Act is the following temporal property:

Cause(y, i, A) = {n' € (2)* | vr" € I(T).
(7_(// Sﬁ 7T/ AT =(Act\A) 7TH)
= En"iEY} .

A temporal cause describes the largest set of action se-
quences satisfying the effect ¢ that is downward closed in
(TI(T), <2), i.e., all sequences with traces that satisfy the
effect ¢ such that all at least as similar traces also satisfy
1. Causes capture semantically what actions of a trace need
to be changed to negate the effect. The parameter A allows
to constrain which actions can be changed and which actions
are fixed between the traces. A cause may be described sym-
bolically as the language of a temporal logic formula.

Example 2. Consider again system Acypiqin in Figure 1, ef-
Sectp = Own and trace m = {o, b1, e}{o}{o, by H{wr H{}*.
We have that Cause(1,m,0,{b1}) is the language L(by V
OQWby). This is because all traces that have action by at
either the first or third point and are equal to 7 on all other
actions satisfy the effect 1. Other traces that satisfy 1 such
as ' = {o}{o, by, e}{o}{w1 }{}* are less similar to w with
respect to {b1} than {o}{o}{o}{}*, which does not satisfy
), and hence these are not included in Cause(, w, 0, {b1 }).

3 From Explanations to Explainability

In this section, we give a high-level overview of this work.
We particularly focus on delimiting the concepts of (indi-
vidual) explanations, the information flow-based system re-
quirement we call explainability, and how our work allows
to identify tradeoffs between explainability and privacy.

We illustrate these concepts with the multi-agent systems
modeling several versions of a Dutch auction depicted in
Figure 1. In a Dutch auction, there are a number of bidders
that compete for a resource, and an auctioneer that opens
and closes the auction. The auctioneer sets an initial price
and decrements the price in every time step until reaching
a lower limit price. Participants can place their bids at any
time point, with the first bidder in a given auction cycle win-
ning the resource. The systems are nondeterministic for the
case that multiple agents place the first bid in a given round.
The different versions of the auction differ with respect to
the explainability and privacy guarantees that they provide,
as we outline in the following.

3.1 Explanations

In case a bidder does not win an auction, they may be in-
terested in an explanation for this outcome. We consider
explanations that answer counterfactual queries, e.g.: What
did the agent need to do differently to obtain the desired out-
come? The answer to such a query may include the temporal
behavior of the agent, e.g., bidding earlier. Hence, we use
temporal causes (cf. Section 2) as the semantic content of an
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answer, i.e., as explanantia. Consider a trace 7 of the system
Apiing where Bidder 1 loses the first cycle to Bidder 2.

Auctioneer: {0} | {o} | {o} [
Bidder 1:  {} | {} [{b}| {} |{}¥
Bidder2:  {} | {ba} | {} | {we} | {}*
Bidder3: {} | {} [{»s} | {3 | {}¥

The auction cycle is open while the auctioneer chooses the
opening action o, in this way modeling them setting the ini-
tial and limit prices. During these first three time points,
Bidder 2 bids at the second time point with action by and the
remaining agents bid one step later with actions b; and b3.

If we restrict counterfactual actions to range only over the
actions of Bidder 1 themselves, it is easy to see that bid-
ding at either the first or second time point would have al-
lowed them to win the auction cycle, although the latter only
through an advantageous resolution of nondeterminism on
the action sequence. We express the counterfactual depen-
dency between —w; and its cause as follows:

Yof = (@ (—by A @—by)) ~~>—wy .

The formula states that the minimal changes to the execu-
tion to flip the truth of outcome —w; at the fourth time
point with all actions fixed but {b;} also flip the truth of
@’ (—b; A@—by), i.e., Bidder 1 not bidding at two and three
time points before. We use an ¢ superscript to shorten se-
quences of length ¢ of the same operator.

The goal of an explanation for —w is to change the epis-
temic state of Bidder 1 from not knowing ¢, to knowing
©cf, 1.e., we want to ensure that Kgidger1 (¢ ¢f) holds. This
knowledge depends on the observations Bidder 1 can make
during the execution of 7: They have knowledge only of
formulas that hold on all indistinguishable executions at this
time point. In the blind auction Ajy,q Where Bidder 1 can
only see their own bids and the auctioneer, the execution of
7 is indistinguishable from the execution of ©’ where Bid-
der 2 bids with the following sequence.

Bidder2:  {b2} | {} | {} | {w2} | {}¥

On this execution, the cause for —w; at the fourth time point
is reduced to @° —b;. Hence, Bidder 1 does not know the
cause for —wy in Aping at this point, i.e., Kpigder 1 (¢ cr) does
not hold. What can the auction system do such that Bidder 1
gains knowledge of the cause for —w; ? The key lies in pro-
viding additional observations to the agent that serve as ex-
planations. One possible set of explanatory observations for
—w; is {bs, b3}, i.e., the bidding actions of all other agents.
In system A5, Where they are observable, Bidder 1 can
distinguish 7 from all other traces and hence Kgiqder1(¢cf)
holds on 7 at the fourth time point.

3.2 Explainability

The previous section has outlined how explanations can
transport knowledge about counterfactual causes at a spe-
cific time point in a given execution. To go from explana-
tions to explainable systems we need to define under which
circumstances this knowledge should be available to which
agents. In the Dutch auction system, we may for instance
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require that Bidder 1 knows the cause for a loss whenever
the auction closes. We can again use temporal operators to
express these timing requirements, as we already did in the
previous section to describe that the temporal behavior of
Bidder 1 is a causal antecedent for their loss at the fourth
time point. A complicating factor is that a given effect can
have an arbitrary number of causes at different time points.
For instance, shifting 7 by duplicating its first time point
includes an additional action in the cause for the loss of
Bidder 1, which can be spun arbitrarily further. Hence, it
does not suffice to use a finite number of explicit causal an-
tecedents in a system-wide explainability requirement. We
solve this by extending the logic with second-order quanti-
fiers that allow to quantify over sets of traces. Such a set can
be instantiated with different causes at different time points.
Our considerations on timing and cause quantification result
in the following requirement for the Dutch auction systems:
{b1}

O ((—\wl VAT AN ’0) — dX. KBidderl(X A _‘wl)) .
The requirement states that at all future time points (en-
forced through the temporal operator []), whenever the auc-
tion was open in the previous time point, is now closed, and
Bidder 1 has not won the cycle, then there is a property X
such that Bidder 1 knows that X is the cause for their loss,
i.e., X is the cause on all traces that are indistinguishable
for Bidder 1. The cause X is constrained to action b; of
Bidder 1. It is an instance of ICE as introduced in Section 1.

It is easy to see that the auction system Ay;,4 does not
satisfy ICE, since the fourth time point on execution 7 as
discussed in Section 3.1 is a counterexample to the system-
wide requirement. In A4, Bidder 1 observes everything
about an execution except how nondeterminism is resolved
when multiple agents bid first simultaneously. In these in-
stances, the empty set is a valid causal antecedent on all in-
distinguishable traces and hence X can be instantiated with
it. This effectively means that Bidder 1 either knows which
actions would have resulted in them winning the auction,
or knows that their actions were already optimal and their
loss is attributable to unmodeled actions such as random-
ness. Hence, we have that A,/ satisfies ICE.

3.3 Balancing Explainability and Privacy

Although A, satisfies the explainability requirement,
this comes at the cost of exposing all actions of the other
agents. This is clearly unsatisfactory, as systems may place
privacy requirements alongside explainability. For instance,
we may require that Bidder 1 never knows whether Bid-
der 2 places a bid at a given time point. We can express
this system-wide requirement utilizing as [ (—Kgiader1(b2)).
which formally requires that Bidder 1 should never be able
to distinguish a given execution from another where the
value of b5 is flipped. We call this parametric privacy notion
ba-privacy. In terms of privacy, the desirability of A, ypiic
and Aping is now exactly opposite as for explainability:
Apubiic clearly does not satisty it as Bidder 1 can directly
observe by. Aping does satisfy it because Bidder 1 cannot
distinguish between the actions of Bidders 2 and 3.

It turns out that making the set {b2, b3} observable was
too impetuous and a smaller set would have been sufficient
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without sacrificing privacy: System Aczpiqin adds the out-
put e, which gets broadcast to all agents whenever the first
bid of an open auction comes in. On the one hand, this still
provides the information flow required to identify the cause
for a loss of Bidder 1, such that ICE is satisfied by the sys-
tem. On the other hand, this hides who placed the highest
bid, such that the system also satisfies by-privacy.

4 A Logic for Explainability Requirements

In this section, we dig deeper into the formal details of our
logic for expressing explainability requirements, which we
call YLTL?. We start with outlining its syntax and seman-
tics in Section 4.1. We then illustrate how the logic can be
used to specify a number of different explainability require-
ments in Section 4.2. Last, we describe a model-checking
algorithm for the logic in Section 4.3.

4.1 Syntax and Semantics of YLTL?

YLTL? is an extension of KLTL, i.e., linear temporal logic
with the knowledge modality K,. Hence, the syntax and se-
mantics of all shared operators are as described in Section 2.

Syntax. YLTL? extends KLTL with second-order quantifi-
cation over sets of traces and allows these sets to be used in
causal predicates X A, , which require X to be the cause
for ¢ over a set of actions A at the current time point of a
given trace. We assume a set of second-order variables SO
be given with the set of atomic propositions AP and agents
AG. The syntax of YLTL? is as follows:

pu=plop|pAp|Op|elp | @p| el ¢|
A
Kap | X 0| X >,

where p € AP is an atomic proposition, a € AG is an agent,
X € SO is a second-order variable, and A C AP is a subset
of atomic propositions. YLTL? includes the same derived
operators as LTL (cf. Section 2), as well as universal second-
order quantification derived as V.X. ¢ = -3X. ~p. We say
a YLTL? formula is well-formed iff all of its subformulas
X 4  are in the scope of an existential quantifier 3.X, that
is, all second-order variables are bound to a quantifier.

Semantics. The semantics of all operators shared between
YLTL? and KLTL are as defined in Section 2, but they ad-
ditionally refer to a second-order assignment © : SO +—
P(X%), which is a mapping from second-order variables to
sets of traces. This assignment plays a central part in the
semantics of the new operators in YLTL?:

E,mi,0F3X.p iff IV C (2°7)¥ st
E,m,1,0[X = Y] E ¢,

E,mi,OF X~éﬂp iff O(X) = Cause(p,7,i, A).

Hence, the semantics of the second-order quantification
3X. ¢ requires that there exists a set of traces, assigned to
the second-order variable X, such that the subformula ¢ is
satisfied. In the subformula, this second-order variable may
be used in an arbitrary number of causal predicates X ~~ ¢
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and it has to qualify as a cause in all of them. This essentially
allows to succinctly specify equality of causes at an arbi-
trary (even infinite) number of anchor points in the scope of
a single quantifier. For an extended transition system &£ and
a well-formed YLTL? formula ¢, we have & F ¢ iff for all
tracesm € II(T) : £, 7,0, € F ¢, where € denotes an empty
second-order assignment that maps all variables to L. The
YLTL? model-checking problem is to decide whether £ E
for such an £ and ¢.

4.2 Formalizing Explainability Requirements

Besides ICE, YLTL? can be used to define other explainabil-
ity requirements. We establish some results on entailment
between these requirements and other notions.

Outcomes may not only be explainable to an agent by
their own actions, but also through the actions of other
agents: For instance, Bidder 1 losing an auction cycle also
depends causally on the actions of the other bidders. Infor-
mation flow about such causes can be specified as follows.

Definition 1 (External Causal Explainability). An effect i
is explainable for agent a according to External Causal Ex-
plainability (ECE) in some system &, iff £ satisfies the fol-
lowing property:

Act\ Act(a)
AAANAANANAANS

O(¢Y — 3X. Ko (X V) .

Hence, ECE requires simply changing the actions that
a cause must range over from Act(a), i.e., the actions of
agent a, to the actions of all other agents: Act \ Act(a).

Example 3. Consider the auction system Acqpiqin (cf- Fig-
ure 1) and the following trace:

{o} [ {o,b2,e} | {o,b2,b3} | {0,b1} | {w2} | {}*
The temporal cause for ~w; at the fifth time point is now

composed of Bidder 2 bidding at the second and third time
point and Bidder 3 bidding at the third time point:

{b2,b3,0}
(@%(by V bs V @by)) ~minsts

Next, the combination of ICE and ECE requires full
knowledge about any causal dependencies.

Definition 2 (Full Causal Explainability). An effect v is ex-
plainable for agent a according to Full Causal Explainabil-
ity (FCE) in a system E, iff £ satisfies the following property:

¥)) -

Intuitively, adding additional atomic propositions to the
causal predicates effectively requires more information to
flow to agent a. We can show formally this formally.

Proposition 1. /ICE and ECE are weaker criteria than FCE,
i.e., we have for all systems & that £ E FCE implies £ £ ICE
and £ F ECE.

wy .

O (% — 3X.Kq (X <5

Proof. 1t suffices to show that for any sets A C B and usual
semantic parameters, (1) £,7,4,0 F AX. K, (X B, ¥) im-
plies (2) £, m,4,0 F 3X. K, (X 4, ). From the definition
of temporal cause (cf. Section 2) it follows for any trace 7’
that (3) Cause(y,n’,i, A) = {x" € Cause(v,n’,i,B) |
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7' =(ac\a) 7'}, i.e., the cause over A is exactly the sub-
set of the cause over B that is fixed over the larger action
set Act \ A. From (1) we know that Cause(y, 7, i, B) =
Cause (v, p, i, B) for any trace p indistinguishable to 7 up
to 4, i.e., where Q,(m)[0,7] = Q4(p)[0,i]. With (3), we
then also have for the same trace p that Cause(¢, 7,1, A) =
Cause (v, p, i, A) and (2) follows.

Explanations Imply Knowledge. The previously intro-
duced definitions of explainability such as FCE (cf. Defi-
nition 2) do not explicitly require agent a to know that the
effect ¢ holds. This is a deliberate design decision to keep
the specifications succinct, as knowledge of the outcome is
implied by knowledge of the counterfactual dependency, ex-
cept in the case of nondeterminism on the action sequence.

Proposition 2. If a deterministic system &, a trace m €
II(&), a time point i € N, some A C AP, and an arbitrary
second-order assignment © satisfy

Y ATX . K (X ECN ) , thenalso K,(¢) .

Proof. From the left side of the implication we know there is
a set 7" that can instantiate X, such that K, (X ~= 1)) holds on
7 at . We have assumed 7 F 1, and since £ is deterministic
there is no 7’ such that 7/ <4 7, '’ =(Act\4) ™ and 7 ¥
1 (only a trace with the same action sequence could be as
similar to 7 as 7 itself). Hence, we have w|4 € T, where
7| a[é] is the projection 0f7r to A such that 7| 4[i] = w[i]NA
forall n € N. Now, let 7’ be any trace 1ndlst1ngulshable to
up to 4, i.e., 2, (7)[0,4] = Qu(7")[0,4]. From K, (XM¢)
we know that T = C’ause(w,w’,i,A) > 7|4, and since
we trivially have that 7/ <2, 7|4 and 7' =(acp\a) 7, it
holds that 7/ & 1) from the definition of a temporal cause
(cf. Section 2), hence the claim follows. O

Thus, in a deterministic system an agent can only explain
present facts that they have knowledge of, while in a nonde-
terministic system an agent may know that some fact could
be caused by nondeterminism, in which case they may not
be sure whether it actually holds on a given trace.

The resolution of nondeterminism can be included more
directly in explanations. This requires modeling nondeter-
minism as an additional agent n, which intuitively flips a
number of coins that then determine which previously non-
determinisitc transition is taken. By including the actions
Act(n) of this agent in the respective counterfactual pred-
icates of the explainability requirements such as ICE, an
explainable system is then required to transmit information
about the outcomes of these coin flips. Notably, the system
resulting from such a construction is deterministic, such that
Proposition 2 applies.

4.3 Model Checking YLTL?

We now outline an algorithm for model checking finite-
state multi-agent systems against YLTL? formulas. The
central challenge is the second-order quantification rang-
ing over sets of traces. Logics with unrestricted quanti-
fiers of this kind are known to have an undecidable model-
checking problem (Beutner et al. 2023a). YLTL? restricts
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usage of second-order variables to causal predicates. The
solution to such a causal predicate is uniquely determined
for every anchor point, and this allows us to frame second-
order quantification in YLTL? less as a search for a solu-
tion and more as a check for equality between the unique
solutions at different anchor points. If a causal predicate
appears in the scope of an epistemic or temporal opera-
tor, there may be an infinite number of such anchor points
that need to be compared, which makes such a check non-
trivial to achieve. In the proof of the following Theorem 1,
we show that the check can essentially be encoded through
quantification over individual traces. We express this trace
quantification in a logic that can quantify over fresh atomic
propositions by restricting these to follow the dynamics of
the system at hand. This idea has been used in a number
of related results on model-checking logics with trace quan-
tification, i.e., so-called hyperlogics (Clarkson et al. 2014;
Bozzelli, Maubert, and Pinchinat 2015). However, none of
these include second-order quantifiers.

Theorem 1 (YLTL? Model Checking). There is an algo-
rithm to decide whether a given extended transition system
= (T,Q) satisfies a YLTL? formula o, i.e., £ F .

Proof. The claim follows from a reduction to the satisfia-
bility problem of Quantified Propositional Temporal Logic
(QPTL) (Sistla, Vardi, and Wolper 1987). QPTL extends
LTL with quantifiers over fresh atomic propositions p € AP:

pr=p|l-0leVe[Op|@pleUp el ¢|3p.o,
The semantics of the shared fragment are exactly as for LTL.
The propositional quantification semantics are as follows:

7, E Ip. @ iff 3n’ € (28F7)« . T =ap\{p} T and 7’ i E @.

The satisfiability problem of such a QPTL formula ¢ asks
whether there is a trace m € (2AP)“ such that 7,0 F ¢ and
is decidable (Sistla, Vardi, and Wolper 1987).

We can reduce the YLTL? model checking to QPTL sat-
isfiability via a translation function enc that encodes the ex-
tended transition system £ = (7,2) and the YLTL? for-
mula ¢ into a QPTL formula. We combine several transla-
tions from Bozzelli, Maubert, and Pinchinat (2015) for the
KLTL-fragment of YLTL?. The second-order quantification
requires a novel, non-trivial approach that we outline after-
ward. The translation models different paths of the tran-
sition system through distinct atomic propositions. There-
fore, the resulting formula ranges over an augmented set
AP = {p, |p € (APU S) Am € PV}, where PV denotes
a set of path variables. For a YLTL? formula , it suffices
to introduce one such path variable for every knowledge op-
erator K, and causal predicate, two for every second-order
quantifier, and one initial variable « that encodes the univer-
sal application of the trace semantics. Hence, AP’ is finite.
We can enforce that these new propositions in AP’ evolve

according to the transitions of £ = (7,):
H(W,T):‘((ﬁ.—r (s0)a AO N [s2 = N ~ta
ses teS\{s}
AV ©OtA N e N wd)])
teA(s) PEA(s,t) PEAP\A(s,t)
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In the end, our proof establishes the following equivalence,
where 0(c, T) is used to quantify over all initial traces of T:
The model £ satisfies the formula ¢ iff

VAP, US,.0(a,T) — enc(a, ¢, ve) 2)
is satisfiable. The third parameter of enc is a mapping from
second-order variables to trace variables, where vg denotes
the empty mapping. The third parameter will play a cen-
tral role later in the translation of second-order quantifiers,
which we discuss after the simple cases.

Temporal Operators: Since QPTL has the same temporal
operators as YLTL?, the translation in these cases is straight-
forward. We define enc through recursion on ¢:

enc(m, p,v) = px
enc(m, =), v) = —enc(m, ¥, v)
enc(m, 1 A e, v) = enc(m, P1,v) A enc(m, 9, v)
enc(m, O, v) =Qenc(m, ,v) .
The other operators follow analogously. Intuitively, 7 is the

currently scoped trace variable and corresponds to 7 in the
semantics of KLTL and YLTL? (cf. Sections 2 and 4.1).

Epistemic Operator: For the epistemic operator K,, the
translation exploits that quantification over paths m € T can
be encoded through QPTL quantifiers as outlined already
with Formula 2. We additionally need to constrain these ini-
tial paths to be observation equivalent for agent a as follows:

enc(m,Kqa 1), v) =VAP, U S,.(0(p, T) AB(T =0(a) p))

_> enc(p7 w? U) ?
where observation equivalence =g, for an agent a at a cer-
tain time point is translated as follows:

T =Q(a) P = /\ Pr <> Dp -
pEQ(a)

Second-Order Quantifiers & Causal Predicates: The
second-order quantifiers for causes require a more complex
encoding than X,, since they quantify over sets of traces and
not single traces. The main idea of our encoding is that
for any existentially quantified causal set, all initial system
traces have to either satisfy all associated causal predicates
or none of them. In the former case the trace is in the cause
at all anchor points, while in the latter case the trace is in the
complement at all anchor points. This ensures that there are
no traces that are in the cause at some anchor points and not
in the cause at others, which would mean these causes are
not equal and no single set qualifies at every anchor point.
Note that this connection exploits that causes are uniquely
determined at every anchor point, if they exist. We can en-
code these requirements with:

enc(m,3X. 1, v) = (VAPP US,.enc(m,v,v1)  (3)
\Y; enc(w,w,vg)) . )

The variable mappings v; and v, encode whether the subfor-
mula refers to the causal set or its complement, respectively:

(p, T) fY=X,
Y =
n(Y) {U(Y) otherwise, and
(p, 1) ifY=X,
Y
v2(Y) {U(Y) otherwise.
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Intuitively, Subformula 3 encodes that the trace of p is in
the cause X at all causal predlcates X4 , while Subfor-
mula 4 encodes that the trace is in no such cause. The map-
pings v; and vy track the location of subformulas, i.e., by
mapping second-order variables to T and _L, respectively. It
remains to encode the (non-)membership in X at the loca-
tion of the causal predicates:

wcause

_'ql)cause

if u(X).

enc(m, X % 0,0) = { if v(X).

Where v(X).2 stands for the second component of the tu-
ple (and v(X).1 for the first), and where we encode mem-
bership in Cause (v, m, i, A) via quantifying over individual
traces to express that v(X).1 is in the downward-closed set
as defined in Section 2:

wcause ZVAPG U Sg.e(()" T) —
(0 <2 v(X).1— enc(o,p,v)) .

The similarity relation §;§ can be translated into temporal

logic as follows:
/\ Po < Px

pEAct\A

AN o #02) = 0y $ 92)]) -

peEA

US,‘?pEQ((—\.T /\|:|

This concludes the description of enc. The equivalence
of the model-checking problem to the satisfiability of For-
mula 2 can be shown through structural induction on ¢. [

Complexity. It is easy to see that the translation function
enc may double the size of the formula when encoding a
second-order quantifier (cf. Equations 3 and 4). Less ob-
vious is an added propositional quantifier alternatlon intro-
duced by translating causal predicates X A, @ in the sec-
ond disjunct (cf. Equation 4); these predicates are trans-
lated to —.quse by adding a negated universal quantifier.
This results in a non-elementary (tower-exponential) space
complexity of model-checking YLTL? formulas, where the
tower grows with any nesting of second-order quantifiers in
the scope of causal predicates and with nesting of knowl-
edge operators and negations. Previous results suggest that
this complexity is close to optimal: YLTL? subsumes KLTL,
which has a similar non-elementary lower bound scaling
with nested epistemic operators (Bozzelli, Maubert, and
Murano 2024). Constructing temporal causes as automata
has a doubly exponential lower bound, in the size of the
consequent (Carelli, Finkbeiner, and Siber 2025), which
matches with nested causal predicates growing the expo-
nents of the model-checking complexity.

In practice, the specifications we considered, such as ICE,
ECE and FCE, all only contain one propositional quanti-
fier alternation in their encodings, and model-checking them
with the algorithm outlined for Theorem 1 therefore scales
exponentially in the size of the effect ¢ and polynomially in
the size of the system. Our experiments confirm that these
specifications can be verified for systems of nontrivial size.
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Type |IB| ICE ECE FCE Priv.I
2 X085 X/0.88 X/0.96 v/0.25
Bunp 3 XLST XILTT X173 /1027
4 X342 X3.68 X3.61 /10.27
5 X785 X945 X103 //0.22
2 /078 V087 /081 X/0.30
pupLic 3 V/L4T V/180 /163 X/0.30
4 V319 V3T3 /348 X/0.50
5 V17124 /1952 /1103 X121
2 V086 X/1.02 X/1.02 X/0.24
ExpLan 3 /139 X189 X/182 //0.25
4 V340 X3.82  X/4.03 //0.29
5 V1803 X/9.92 X104 //0.29

Table 1: Verification results and runtime in seconds for checking
the Dutch auction model introduced in Section 3 with a set of bid-
ders B against the explainability requirements introduced in Sec-
tions 4.2 and be-privacy (Priv. I, cf. Section 3).

5 Experiments

We report experiments on verifying explainability and pri-
vacy requirements specified in YLTL?. Although we de-
scribe an encoding into QPTL satisfiability in Theorem 1
for brevity, there is no satisfiability checker for QPTL.
Hence, our evaluation uses the model-checking tool Auto-
Hyper (Beutner and Finkbeiner 2023a) as a backend proce-
dure, because QPTL satisfiability can be encoded in Hyper-
LTL model checking (Finkbeiner, Rabe, and Sanchez 2015).
The evaluation was conducted on MacOS with an M3 Pro
4.05 GHz processor and 36GB of memory.'

5.1 Dutch Auction

We conducted experiments with all three versions of the
Dutch auction system introduced in Section 3 and the ex-
plainability requirements introduced in Secion 4.2. We also
checked by-privacy as introduced in Section 3. In Table ??,
we list whether the respective auction version satisfies a re-
quirement and how much time the model checker required
to produce this verdict. We consider a scaling number of
bidders B, which increases the size of the transition system
exponentially, and this scaling is mirrored in the runtimes.

The verification verdicts match the intuition described in
Section 3: The blind auction is not explainable but private,
while the public auction naturally ensures sufficient flow of
information to achieve all three explainability requirements,
but also reveals the private bids. The explainable auction
transports enough information on the causal dependencies
over the actions of the bidders themselves, but does not en-
sure ECE or FCE. An interesting case is the privacy of the
explainable auction in the case of two bidders. In this sce-
nario, revealing the value of the highest bid allows an agent
to infer that the other agent placed the bid in case they did
not bid themselves, in this way violating the privacy con-
straint. Hence, explainability and bo-privacy can only be
achieved with more than two bidders.

'Code: https://doi.org/10.5281/zenodo.16421482
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5.2 Rock Paper Scissors

To differentiate ICE and ECE in more detail, we model the
classic game of Rock Paper Scissors, where every round two
players select between the three eponymous objects (r, p,
and s). Matching objects result in a draw, otherwise p beats
r, s beats p, and r beats s. An agent ¢ does not see the selec-
tion of the other, but only the outcome draw (d) or loss (I;).
We consider explainability of /1, i.e., the loss of Agent 1.
Since an agent knows what action their picked one looses
to, and which action would have won instead, even this blind
version of the game is fully explainable according to all three
requirements. The verification times are as follows.

Type ICE ECE FCE  Priv. II
STANDARD V/0.49 //0.53 V//0.55 X/0.24
X/1.02 //093 X/1.08 //0.29

+ WELL

We also consider a popular variant with a fourth action,
Well (w), which beats s and r but looses to p. This ver-
sion does not satisfy ICE because, e.g., when loosing with
rock (r1) Agent 1 does not know whether scissors (against
p2) or paper (against wy) would have been their winning
move. ECE is still satisfied because the agent knows against
which moves they would have won, i.e., p; would have
won if the other agent had played 7o or ws (the cause is
then —r2 A —wy). We also verified the following condi-
tional privacy specification (results reported under Priv. II):
O(—-d — —Ki(p2)), i.e., whenever the outcome is not a
draw, an agent does not know whether the other agent played
p. This is only satisfied in the extended version of the game,
because an agent cannot discern between wy and ps except
in case of a draw with their own picked action.

5.3 Matching Pennies

To further explore the scalability of our algorithm we con-
sider a blind version of the game Matching Pennies, played
collaboratively: Each player chooses heads or tails for their
coin and all players win together when their choices match.
A player 7 only sees their coin ¢; and the outcome w, as
well as an explanatory blaming output b;, which is enabled
if their coin was the only mismatch. Without the blaming
output, the setup satisfies all three explainability require-
ments only in the 2-player case. With the blaming output,
it additionally satisfies ICE for any number of players. Run-
time results for the latter experiments are shown in Figure 2.
They confirm that model-checking the three explainability
requirements scales polynomially with an increasing system
size. The plot also shows that the time needed to verify the
conditional privacy requirement (J(—w — —Kj(c2)) stays
practically constant (cf. Priv. IIT). This property states that
when Player 1 does not win, they do not know the value of
Player 2’s coin. This is satisfied only by the non-blaming
version with more than two players. We suspect this prop-
erty allows the model checker to fully abstract away from
the coins of the other players, while this is not possible for
the explainability specifications, which place constraints on
these coins in the encoding of §;§ (cf. proof of Theorem 1).
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Figure 2: Runtime results for verifying explainability and privacy
requirements of blind Matching Pennies games with blaming out-
put. Note that system size scales exponentially with the number of
players, i.e., the 12-player game has 4096 transitions.

6 Related Work

Explanation Generation: Our work is concerned with for-
malizing explainability as a system property and not with
generating explanations like other literature on explainable
Al (Ribeiro, Singh, and Guestrin 2016; Lundberg and Lee
2017; Shih, Choi, and Darwiche 2018). Nevertheless, these
generation methods are a central motivation for us because
the systems resulting from their implementation will need to
tread the fine line between explainability and privacy that we
study here. Applying our insights may be easier for model-
based approaches that deal with descriptive systems such as
decision trees (Darwiche and Ji 2022; Arenas et al. 2021;
Arenas et al. 2024; Carbonnel, Cooper, and Marques-Silva
2023) than for black-box methods based on, e.g., abduc-
tion (Ignatiev, Narodytska, and Marques-Silva 2019) or
heuristics (Angelino et al. 2017; Li et al. 2018).

Formal Explanations: Logical reasoning techniques to
compute explanations are widely studied (Darwiche 2023;
Wu, Wu, and Barrett 2023; Leofante, Botoeva, and Ra-
jani 2023). Khan and Lespérance (2021) combine epis-
temic and causal reasoning in the situation calculus, which
has been extended to explain agent behavior (Khan and
Rostamigiv 2023). Temporal properties are used as ex-
planations in Al planning (Kim et al. 2019; Eifler et al.
2020); another popular framework in planning is model rec-
onciliation (Chakraborti et al. 2017). Planning with ex-
planatory actions (Chakraborti et al. 2019; Sreedharan et al.
2019) follows a similar goal as us in effecting the epistemic
state through observations. Several works on axiomatizing
explainable classifiers (Amgoud and Ben-Naim 2022; Liu
and Lorini 2023) employ counterfactual reasoning and con-
sider partial knowledge. There are works on actual causal-
ity (Halpern 2016) for explanations (Chockler and Halpern
2024), as well as counterfactual modal logic (Aguilera-
Ventura et al. 2023), but we use temporal causes (Coenen et
al. 2022; Finkbeiner et al. 2024) to deal with the sequential
and possibly non-terminating nature of multi-agent systems.
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Logics for Information Flow: Logics for hyperproper-
ties (Clarkson and Schneider 2010) have been a popular
framework to study information flow and partly subsume
epistemic temporal logic (Bozzelli, Maubert, and Pinchi-
nat 2015; Rabe 2016), which has similarly been used for
information-flow control (Balliu, Dam, and Guernic 2011;
Halpern and O’Neill 2008). Counterfactual reasoning has
been encoded in such hyperlogics (Coenen et al. 2022;
Finkbeiner and Siber 2023; Beutner et al. 2023b) for check-
ing hypotheses. Several works study hyperlogics in multi-
agent systems without second-order quantifiers (Beutner and
Finkbeiner 2023b; Beutner and Finkbeiner 2024a; Beutner
and Finkbeiner 2024b). The closest work to ours considers
a second-order hyperlogic without decidable model check-
ing (Beutner et al. 2023a; Beutner et al. 2024).

Interdisciplinary Aspects: Our perspective on explain-
ability is rooted in logic and information-flow theory. Build-
ing self-explanatory systems from explainable system mod-
els is an intriguing interdisciplinary problem that lies out-
side the scope of this paper. There are user studies re-
garding which explanations are preferred by users and how
to visualize them (Seimetz, Eifler, and Hoffmann 2021,
Schlicker et al. 2021; Horak et al. 2022; Eifler et al. 2022;
Brandao et al. 2022; Delaney et al. 2023). We use temporal
causes, which capture the idea of minimally editing previ-
ous actions of the agents, but our information-flow perspec-
tive may also be applied to other explanantia such as pre-
senting counterfactual executions. This requires modifying
the encoding in the proof of Theorem 1. High-level tax-
onomies for explainability requirements (Kohl et al. 2019;
Langer et al. 2021) have inspired us to concretize them with
formal logic and multi-agent systems.

7 Summary & Conclusion

This paper presents a logic for multi-agent systems to for-
mally specify explainability requirements of the form: when
a certain outcome happens, an agent knows why, i.e., what
actions caused the outcome. This is expressed with a com-
bination of counterfactual, epistemic, and temporal opera-
tors, as well as second-order quantification over sets of ex-
ecutions. Privacy requirements can be encoded in the same
logic and we have described an algorithm to automatically
verify whether a system model satisfies such specifications.

Our theoretical and experimental results suggest that our
formal explainability specifications capture what it means
for a system to be explainable in a qualitative information-
theoretic sense: An explainable system needs to ensure suf-
ficient flow of information about causes via a number of
observations that serve as explanations. On an abstract
level, this means that in explainable systems observation-
equivalence needs to be finer than causality.

We discovered an inherent tradeoff between explainability
and privacy, which is an intriguing avenue for future work.
Automatic satisfiability checking of our logic may allow to
identify general rules for this tradeoff beyond analyzing a
given system, while repair algorithms may add a minimal
set of explanatory observations to a system model to achieve
explainability without sacrificing privacy.
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