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Abstract

ASPIC+ is one of the main general frameworks for rule-based
argumentation for AI. Although first-order rules are com-
monly used in ASPIC+ examples, most existing approaches
to reason over rule-based argumentation only support propo-
sitional rules. To enable reasoning over first-order instances,
a preliminary grounding step is required. As groundings can
lead to an exponential increase in the size of the input theo-
ries, intelligent procedures are needed. However, there is a
lack of dedicated solutions for ASPIC+. Therefore, we pro-
pose an intelligent grounding procedure that keeps the size of
the grounding manageable while preserving the correctness
of the reasoning process. To this end, we translate the first-
order ASPIC+ instance into a Datalog program and query a
Datalog engine to obtain ground substitutions to perform the
grounding of rules and contraries. Additionally, we propose
simplifications specific to the ASPIC+ formalism to avoid
grounding of rules that have no influence on the reasoning
process. Finally, we performed an empirical evaluation of a
prototypical implementation to show scalability.

1 Introduction
Rule-based argumentation formalisms such as AS-
PIC+ (Prakken 2010) and the closely related Assumption-
based Argumentation (ABA) (Bondarenko, Toni, and
Kowalski 1993; Bondarenko et al. 1997) provide a means
to model and reason about complex scenarios involving
conflicting information (see also (Besnard et al. 2014)
for an overview). While ASPIC+ is a general abstract
framework, a particularly relevant instance is what we
refer to as (concrete) rule-based ASPIC+, also known
as the logic-programming or Horn variant of ASPIC+.
As the name suggests, in this variant, conflicts within
knowledge bases composed of strict and defeasible Horn
rules are resolved by inspecting arguments and counterar-
guments constructed using these rules. In particular, since
rule-based ASPIC+ captures Answer Set Programming
(ASP) (Marek and Truszczynski 1999; Niemelä 1999)
under the stable semantics, it also offers an argument-
based characterization of ASP (Modgil and Prakken 2018;
Bondarenko et al. 1997). On the other hand, rule-based
ASPIC+ supports a more expressive syntax than (normal)
ASP—such as a generalized contrary relation and the in-
clusion of defeasible rules—and it relies on argumentation

semantics (Dung 1995) rather than distinguished Herbrand
models.

Although ASPIC+ and ASP share overlapping conceptual
roots, ASPIC+ lags behind ASP in terms of the modelling
constructs available in practical systems (see e.g. (Gebser
and Schaub 2016)). In particular, a key advantage of ASP
systems is their support for first-order variables in Horn
rules, enabling concise representations through universal
quantification—a crucial feature for knowledge represen-
tation and reasoning. It is similarly natural for ASPIC+
instances to make use of first-order logic-programming-
like rules, which support more compact and general mod-
eling (Modgil and Prakken 2018). Nevertheless, a con-
crete syntax for first-order ASPIC+ is often left unspecified.
More critically, most existing computational techniques for
reasoning in rule-based ASPIC+ assume that all rules are
ground instances, i.e., propositional Horn rules (Lehto-
nen, Wallner, and Järvisalo 2020; Odekerken et al. 2023;
Lehtonen et al. 2024a).

Relatedly, recent years have seen growing interest
in developing sophisticated solvers for argumentation-
exemplified by the International Competition on Compu-
tational Models of Argument (ICCMA), which has been
held biennially since 2015 and in 2023 included, for the
first time, a structured argumentation track focused on
(flat) ABA frameworks (Järvisalo, Lehtonen, and Niska-
nen 2025), which can be captured in ASPIC+ (Modgil
and Prakken 2018). Nevertheless, there remains a lack
of benchmarks for rule-based instances derived from real-
world problems. This gap may be partly due to the ab-
sence of effective methods for converting first-order rule
knolwedge bases into their propositional counterparts.

For all these reasons, support for grounding—i.e., re-
placing variables with constants—is essential to broaden
the applicability of rule-based ASPIC+. However, as is
well known from related fields, grounding can be a ma-
jor computational bottleneck: naive grounding strategies
may cause exponential blow-up by generating numerous ir-
relevant propositional rules (see e.g. (Besin, Hecher, and
Woltran 2023)). In ASP, this problem has been exten-
sively addressed, resulting in efficient grounders such as
Gringo (Gebser et al. 2015) and i-DLV (Calimeri et al.
2017). In contrast, no comparable solutions exist specifi-
cally for rule-based argumentation.
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In this work, we address this gap by proposing a ground-
ing approach for ASPIC+ that leverages engines for Data-
log—a declarative language widely used for database query-
ing and reasoning, which can also be seen as the fragment
of ASP that excludes negation-as-failure (see e.g. (East and
Truszczynski 2000)). Specifically, our contributions are:

1. We define a first-order syntax for rule-based argumenta-
tion within the ASPIC+ framework.

2. We propose an intelligent grounding procedure for first-
order rule-based ASPIC+ that minimizes the grounding
size while preserving the outcomes of the reasoning pro-
cess. Our approach builds upon query answering in
the context of Datalog, albeit incorporating optimizations
specific to ASPIC+.

3. We present a prototype grounder, ANGRY, which utilizes
the Datalog engine Nemo (Ivliev et al. 2024).

4. We demonstrate the feasibility of our approach
through empirical evaluation in three distinct sce-
narios. In particular, we evaluate ANGRY as part of a
ground+solve pipeline for ASPIC+, using the system
ASPforASPIC (Lehtonen, Wallner, and Järvisalo 2020),
and compare it to Arg2P (Calegari et al. 2022), the only
existing system supporting a first-order ASPIC+-like syn-
tax. To assess its efficiency in the context of ASP, we also
compare ANGRY—used as an ASP grounder—against the
state-of-the-art ASP grounder Gringo.

Related Work. The main system we are aware of that
supports a first-order ASPIC+-like syntax is Arg2P (Cale-
gari et al. 2022), implemented in TUProlog (Ciatto, Cale-
gari, and Omicini 2021). However, it has been shown to
be impractical for large instances (Robaldo et al. 2024).
Another notable logic programming-inspired argumentation
formalism that supports first-order variables is DeLP (Garcı́a
and Simari 2004). However, DeLP employs a different se-
mantics (Garcı́a, Prakken, and Simari 2020), and to our
knowledge, no recent systematic empirical evaluations of
DeLP systems exist. Regarding ASPIC+, and similarly
for ABA, existing computational work primarily focuses on
propositional instances (e.g. also (Craven and Toni 2016;
Diller, Gaggl, and Gorczyca 2021; Lehtonen, Wallner, and
Järvisalo 2021; Popescu and Wallner 2023; Lehtonen et al.
2023; Lehtonen et al. 2024b) for ABA).

Existing translations between ABA and ASPIC+ (Heyn-
inck 2019), as well as between ASP and ABA (Cami-
nada and Schulz 2017), suggest an alternative approach to
grounding ASPIC+ frameworks. This would involve: (1)
translating an ASPIC+ framework into an ASP program, (2)
applying an ASP grounder, and (3) translating the result-
ing grounded ASP program back into an ASPIC+ theory.
However, this translation-based method faces several lim-
itations. Regarding step (1): existing translations assume
propositional ASPIC+. Regarding step (2): ASP grounders
are tailored for the stable model semantics, whereas ASPIC+
reasoning may require alternative semantics. For instance,
the translations in (Caminada and Schulz 2017) utilize not
only stable but also 3-valued stable, well-founded, regular,
and ideal semantics. These ASP grounders (e.g., Gringo)

often include hard-coded optimizations for stable models,
which are not easily configurable or extensible. Regarding
step (3): ASP grounders are typically designed with the aim
of ultimately producing sets of ground atoms (answer sets,
via an ASP solver), while ASPIC+ often requires sets of
ground arguments (extensions). Optimizations targeted at
the former may hinder the latter—as we show in our study.
Perhaps most importantly, even if translation-based ground-
ing approaches for ASPIC+ could be developed, our method
offers a simpler, more transparent, and modular alternative.

The main goal of this work is to lay the theoretical foun-
dation for grounding ASPIC+, and to demonstrate its prac-
ticality through our prototype grounder, ANGRY. The sys-
tem is built on top of the Datalog engine Nemo (Ivliev
et al. 2024), though in principle, any of the several sys-
tems supporting Datalog on offer could be used (see e.g.
also (Nenov et al. 2015; Jordan, Scholz, and Subotic 2016;
Urbani, Jacobs, and Krötzsch 2016)), including also ASP
grounders like Gringo and i-DLV. This underlines our
motivation for choosing Datalog as a foundation: it offers
a simpler and more focused computational model than full
ASP, and our method does not require the additional features
ASP provides.

At the same time, several of the techniques we propose
for optimizing ASPIC+ grounding via Datalog are inspired
by established ASP grounding techniques. As previously
mentioned, since rule-based ASPIC+ subsumes ASP under
stable semantics, our grounding procedure also offers a vi-
able alternative for grounding ASP programs via translation
to ASPIC+. However, this remains a secondary benefit. Our
primary objective is to enable effective grounding for rule-
based ASPIC+. Finally, we note that the ASP literature also
explores alternative grounding mechanisms as those that in-
terleave grounding and solving (e.g. (Weinzierl, Taupe, and
Friedrich 2020)), which fall outside the scope of this work.

2 Background

2.1 Propositional Rule-Based Argumentation in
the ASPIC+ Framework

As we indicated in the introduction, among the various in-
stantiations of ASPIC+, the most widely used is arguably
that capturing logic programming-style argumentation. We
call it concrete rule-based ASPIC+ or simply rule-based AS-
PIC+ for short (see also (Dung and Thang 2014)). Based
on (Modgil and Prakken 2018) we start by defining a con-
venient syntax for the propositional variant of this instance.
We assume as given a countably infinite set of propositional
atoms, denoted by L0.

Definition 1. An argumentation theory is a tuple T =
( ,Rs,Rd,Kn,Kp). is a finite set of expressions s =
{s1, . . . , sl} mapping an s ∈ L0 to its set of contraries
{s1, . . . , sl} ⊆ L0. Rs is a finite set of strict rules, hav-
ing the form B → h with B ∪ {h} ⊆ L0. Rd is a finite set
of defeasible rules, which have the form n : B ⇒ h with
B ∪ {n, h} ⊆ L0. Finally, Kn ⊆ L0 and Kp ⊆ L0, for
which Kn ∩ Kp = ∅, are the set of facts and assumptions
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respectively1. Both Kn and Kp are also finite. The set of
rules of T is then R = Rs ∪ Rd and the knowledge base
K = Kn ∪ Kp.

By minor abuse of notation, we will treat both as a set of
expressions as well as the obvious (partial) function L0 7→
2L0 it induces. For simplicity we will also often represent
rules r = n : B ⇒ h ∈ Rd as r′ = B ⇒ h ∈ Rd, with the
name n of a defeasible rule (often implicitly) associated to r′
via a naming function N : Rd 7→ L0, i.e. N(r′) = n. Then,
in particular, we can use r = B  h to denote an arbitrary
rule r ∈ R. We will often also omit the curly braces for
sets and rather list their elements, e.g. r = b1, . . . , bm  h
for the rule above with B = {b1, . . . , bm}. Arguments in
ASPIC+ involve deriving claims from facts and assumptions
via the strict and defeasible rules:
Definition 2. The set of arguments of an argumenta-
tion theory T = ( ,Rs,Rd,Kn,Kp) is defined induc-
tively as follows: i ) if s ∈ Kn ∪ Kp, then a = s is
an argument with conclusion Conc(a) = s, premisses
Prem(a) = s, and rules Rules(a) = ∅; ii) if a1, . . . , am
are arguments and r = Conc(a1), . . . ,Conc(am)  
h ∈ R, then a = a1, . . . , am  h is an argument
with Conc(a) = h, Prem(a) =

⋃
1≤i≤m Prem(ai),

Rules(a) =
⋃

1≤i≤m Rules(ai) ∪ {r}, and top-rule
TopRule(a) = r. There are no other arguments than those
defined by i) and ii).
Note that by definition arguments are always finite, i.e. they
are constructed by finite application of rules. In this work we
will often also extend notation to sets in the obvious manner
and without explicit definition; then, e.g. for a set of argu-
ments A, Conc(A) =

⋃
a∈A Conc(a). Conflicts between

arguments are captured by the notion of attack:
Definition 3. Let T = ( ,Rs,Rd,Kn,Kp) be an argumen-
tation theory. An argument a of T attacks an argument a′ of
T iff a undercuts, rebuts, or undermines a′ where i) a under-
cuts a′ (on r) iff Conc(a) ∈ N(r) for a r ∈ Rules(a′)∩Rd,
ii) a rebuts a′ (on B ⇒ h) iff Conc(a) ∈ h for a B ⇒
h ∈ Rules(a′) ∩ Rd, and iii) a undermines a′ (on s) iff
Conc(a) ∈ s for a s ∈ Prem(a) ∩ Kp.
Note that attacks are always on some defeasible element
from Def (a′) = (Prem(a′) ∩ Kp) ∪ (Rules(a′) ∩ Rd).
On the other hand, if we define Def (r) = {n, h} and
r = Def (r) = n ∪ h for a r = n : B ⇒ h ∈ Rd, while
r = Def (r′) = Def (r′) = ∅ for r′ ∈ Rs, then attacks are
always through some element in Def (a′) =

⋃
u∈Def (a′) u.

To evaluate ASPIC+ theories, these are traditionally trans-
lated into argumentation graphs (Dung 1995):
Definition 4. An (abstract) argumentation framework (or
graph) (AF) is tuple (V, E) where V is a set of (abstract)
arguments and E ⊆ V × V the attack relation.
Definition 5. For an AF (V, E), a set V ⊆ V is i) conflict-
free iff there are no v, v′ ∈ V s.t. (v, v′) ∈ E , ii) admissible

1These are called axiom and ordinary premisses in the ASPIC+
framework; we use the notions “facts” and “assumptions” to denote
the concrete case in which they are propositional atoms.

(shorthand: adm) iff V is conflict free and every v ∈ V is
defended by V , where V defends v if for every (v′, v) ∈ E ,
V also attacks v′, i.e. there is a v′′ ∈ V s.t. (v′′, v′) ∈ E , iii)
complete (com) iff V is admissible and includes every v ∈ V
it defends, iv) grounded (grd ) iff V is subset-minimal among
the complete sets, v) preferred (prf ) iff V is subset-maximal
among the complete sets, vi) stable (stb) iff V is admissible
and attacks every v ∈ V \ V .

Definition 6. The AF defined by the argumentation the-
ory T is the argumentation graph (Args(T ), Atts(T ))
where Args(T ) are all the arguments of T and Atts(T )
is the attack relation among arguments induced by T .
S ⊆ L0 is credulously (skeptically) acceptable for θ ∈
{adm, com, grd , prf , stb} iff there exists a θ-extension2 (for
all θ-extensions) A ⊆ Args(T ), S ⊆ Conc(A).

Example 1. Consider the argumentation theory T =
( ,Rs,Rd,Kn,Kp) with Kn = {f(1, 2)}3, Kp =
{a(1), a(2)}, Rs = {f(1, 2) → b(1), c(1) → e(1), c(2) →
e(2)}, Rd = {nd(1) : a(1) ⇒ c(1), nd(2) : a(2) ⇒ c(2)},
and = {a(1) = b(1), a(2) = b(2), c(1) = d(1), c(2) =

d(2), nd(1) = e(1), nd(2) = e(2)}. The set of arguments
(A1-A8) of T and the attacks (arrows) between them is
shown in Fig. 1a. The AF defined by T is depicted in Fig.
1b. For this framework, the unique complete extension is
{A1, A2, A6}, while the admissible sets are all of the sub-
sets of {A1, A2, A6}. This means that the three arguments
(A1, A2, A6) are all credulously accepted under the admis-
sible semantics, whereas they are skeptically accepted under
the complete semantics. In terms of claims, this implies that
the conclusions (f(1, 2), b(1), a(2)) of the three arguments
are all credulously (resp. skeptically) accepted under the
admissible (resp. complete) semantics. Since the complete
extension is unique in this case, the grounded and preferred
extensions coincide with the complete extension. In contrast,
there is no stable extension in this framework.

f(1,2)

 b(1)

 a(1)

 c(1)

 a(2)

 c(2)

 e(1)  e(2)

A1

A2

A3

A4

A5

A6

A7

A8

nd(1) nd(2)

(a) Argumentation theory

A1

A2

A3

A4

A5

A6

A7

A8

(b) Argumentation graph

Figure 1: Argumentation theory and induced AF from Example 1.

2.2 Datalog
To define Datalog (see, for instance, (Abiteboul, Hull, and
Vianu 1995)) we extend the language of atoms L0 to a lan-
guageL to be built from mutually disjoint, countably infinite
sets of constants C, variables V, and predicates P. A term
t is an element t ∈ C ∪ V. We represent a list of terms

2An extension is a set of arguments that satisfies the criteria of
the semantics.

3In this section we treat an expression like f(1, 2) as a propo-
sitional atom; later we define how such atoms are obtained via
grounding of first-order atoms.
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t1, . . . , tm as ~t, and we treat such lists as sets, if appropriate.
An (extended) atom is then an expression p(~t) where p ∈ P.
An atom is ground if no variables occur in the atom (i.e. all
terms are constants). For an expression φ (usually an atom
or set of atoms), we denote by φ( ~X) that φ uses (exactly) the
variables ~X . Throughout this work we will use upper-case
letters for variables and lower-case letters for constants.
Definition 7. A Datalog program is a finite set of (Data-
log) rules of the form B( ~X) → h(~Y ) where h(~Y ) ∈ L and
B( ~X) ⊆ L. The rule is safe iff ~Y ⊆ ~X .

Datalog programs are evaluated by grounding the rules
and then computing their consequences:
Definition 8. For a Datalog program P , the Herbrand uni-
verse UP is the set of all constants occurring in P . The
Herbrand literal base BP is the set of all ground atoms
p(~t) with p occurring in P and ~t ⊆ UP . The ground-
ing of a rule r = B( ~X) → h(~Y ) ∈ P is defined as
gr(r,P) = {rσ | σ : ~X ∪ ~Y 7→ UP}. The grounding
of the program P , gr(P), is the union of the grounding of
all of its rules.

Definition 9. The immediate consequence operator TP for
a Datalog program P and a set of ground atoms I ⊆ BP
is TP(I) = {h | B → h ∈ gr(P), B ⊆ I}. The least
fixed-point of TP is T∞P =

⋃
i≥0 T

i
P , where T 0

P = ∅ and
T i+1
P = TP(T

i
P). A ground atom p(~t) is derived from P iff

p(~t) ∈ T∞P . A query 〈P , q〉 asks for all atoms q(~t) that can
be derived from P .

Datalog can be extended to include a limited form of
negation:
Definition 10. Datalog with stratified negation extends Dat-
alog by allowing negated atoms ∼p(~t) in rule bodies of a
Datalog program P as long as P has a stratification. The
latter is a function l that assigns each predicate occurring
in P a natural number such that for every rule r ∈ P with
p ∈ P occurring in the head of r, if p′ ∈ P occurs in the
body of r, then l(p) ≥ l(p′), while if p′ ∈ P occurs in a
negated atom in the body of r, then l(p) > l(p′).

Stratified Datalog programs are partitioned into strata based
on predicate dependencies, with each stratum containing
rules defining predicates at the same level. Evaluation pro-
ceeds bottom-up: at each stratum, rules are applied using
facts derived so far—negated atoms are evaluated as true
(and, thus, can be essentially deleted from rules) if no match-
ing positive fact is derived in the prior lower stratum.

3 Grounding Rule-Based Argumentation
3.1 First-Order Rule-Based Argumentation in

the ASPIC+ Framework
Although a first-order (F.O.) syntax for rule-based ASPIC+
is often used, it has, to our knowledge, not been formally
defined. We provide one following common definitions of
logic-programming (see e.g. (Faber 2020)). For this we
again make use of a language L of atoms as in Section 2.2,
while L0 ⊆ L denotes the ground atoms.

Definition 11. A (first-order) argumentation theory is a tu-
ple T = ( ,Rs,Rd,Kn,Kp). is a finite set of (safe)

contrary expressions s( ~X) = S( ~X) with s( ~X) ∈ L,
S( ~X) ⊆ L. Moreover, no constants occur in either s( ~X)

or S( ~X). Rs is a finite set of (safe) strict rules, having the
form B( ~X) → h(~Y ) with h(~Y ) ∈ L, B( ~X) ⊆ L, ~Y ⊆ ~X .
Rd is a finite set of (safe) defeasible rules, which have the
form n(~Z) : B( ~X) ⇒ h(~Y ) with n(~Z) ∈ L, h(~Y ) ∈ L,
B( ~X) ⊆ L, ~Y ⊆ ~X , ~Z ⊆ ~X . Finally, Kn ⊆ L0 and
Kp ⊆ L0, for which Kn ∩ Kp = ∅, are the set of facts and
assumptions respectively. Both Kn and Kp are also finite.

Example 2. An example of a first-order argumentation the-
ory is T = ( ,Rs,Rd,Kn,Kp) where = {a(X) =

b(X), nd(X) = e(X), c(X) = d(X)}, Rs = {f(X,Y ) →
b(X), c(X) → e(X)}, Rd = {nd(X) : a(X) ⇒ c(X)},
Kp = {a(1), a(2)}, Kn = {f(1, 2)}. As will be shown
in the following sections, the grounding of this first-order
theory is equivalent, in terms of induced AFs, to the propo-
sitional theory of Example 1 depicted in Fig 1a.

As to the restrictions in Definition 11, safety of rules is a
common restriction from logic-programming to ensure ter-
mination when solving. The restriction of facts and assump-
tions to be ground is to distinguish these from strict rules
and defeasible rules (i.e. if non-ground assumptions, for in-
stance, are needed, they can be defined via defeasible rules).
As to the restriction for contrary expressions, this is for sim-
plicity; if a contrary expression like p(X) = q(X,Y, c)
is needed, it can be defined via the contrary expression
p(X) = q′(X) and the rule q(X,Y, c)→ q′(X).

To obtain a ground (i.e. propositional) theory from a F.O.
argumentation theory the same approach as for Datalog
(Section 2.2) can be used. I.e. for a theory T , the Herbrand
universe UT is the set of all constants occurring in T . Then,
the grounding of T , gr(T ), is obtained by grounding each
of the contrary expressions and rules in T , i.e. replacing all
variables for elements of UT in all possible ways. The se-
mantics of T is then obtained by evaluating gr(T ) via the
induced AF as explained in Section 2.1.

3.2 Grounding via Datalog: The Basics
Naively grounding argumentation theories as described at
the end of Section 3.1 will often produce rules that do not
form part of any argument.

Example 3. Consider the argumentation theory T of Ex-
ample 2 and let us focus on the strict rule f(X,Y ) →
b(X). A naive grounding produces gr(Rs) = {f(1, 1) →
b(1), f(1, 2)→ b(1), f(2, 1)→ b(2), f(2, 2)→ b(2)}. The
only arguments derived by these rules and included in the
AF for T use f(1, 2) as a premise and b(1) as a conclusion,
via the rule f(1, 2) → b(1) (i.e. the arguments A1 and A2
depicted in Fig 1a). The same set of arguments would be
produced with a more efficient grounding that only produces
the rule f(1, 2)→ b(1).

We thus now introduce a transformation of an ASPIC+ the-
ory T that generates a set of Datalog rules, which helps
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to produce a smaller grounding that excludes unnecessary
rules, while preserving the extensions of T .
Transformation 1. Let T = ( ,Rs,Rd,Kn,Kp) be an
argumentation theory. For a rule r = B( ~X) → h(~Y ) ∈
Rs or r = n(~Z) : B( ~X) ⇒ h(~Y ) ∈ Rd we denote the
transformation into Datalog rules by r̂ as the set of rules
consisting of the following:

B( ~X)→nr( ~X) (1)

nr( ~X)→h(~Y ) (2)

where nr is a fresh predicate that is unique for the rule. For
the defeasible rule r ∈ Rd we also need the following addi-
tional Datalog rule:

nr( ~X)→n(~Z) (3)

Facts and assumptions are transformed into Datalog rules
with empty bodies. In particular, for any ground atom b ∈
Kn ∪ Kp we define b̂ =→ b. Then, the transformation of
T to the respective Datalog program is PT = {R̂s ∪ R̂d ∪
K̂n ∪ K̂p}.

Once we have created the Datalog program PT by ap-
plying Transformation 1 for a theory T , we ground T by
querying a Datalog engine for each strict and defeasible rule
r ∈ R with the respective query (PT , nr) for the intro-
duced auxiliary predicates. For all obtained ground atoms
nr(~ai), with 0 ≤ i ≤ l, we make the ground substitutions
{rσi | σi : ~X 7→ ~ai} as described in Algorithm 1. The
union over all ground substitutions of a rule r for the Data-
log program PT is defined as grDL(r,PT ) =

⋃l
i=0 rσi.

Algorithm 1 Grounding of an ASPIC+ rule

Input: A theory T , r ∈ R, PT with nr( ~X) ∈ PT
Output: grDL(r,PT )

1: grDL(r,PT )←− ∅
2: for all 0 ≤ i ≤ l answers nr(~ai) to 〈PT , nr〉 do
3: // each nr(~ai) gives rise to a ground instance of r
4: {σi : Xk 7→ ak | 1 ≤ k ≤ | ~X|}
5: grDL(r,PT )←− grDL(r,P) ∪ {rσi}
6: end for
7: return grDL(r,PT )

Grounding of a contrary expression c : s( ~X) = S( ~X) is ob-
tained in an analogous way (thus, we will often say that we
also ground a contrary expression following Algorithm 1).
We query the Datalog engine with the query (PT , s) and for
each answer s(~ai) with 0 ≤ i ≤ l we make the substitution
{cσi | σi : Xk 7→ ak | 1 ≤ k ≤ | ~X|}. Then, the union over
all ground substitutions of a contrary expression c for the
Datalog programPT is defined as grDL(c,PT ) =

⋃l
i=0 cσi.

For T = ( ,Rs,Rd,Kn,Kp) we thus obtain the ground-
ing grDL(T ) = (grDL( ), grDL(Rs), grDL(Rd),Kn,Kp),
with grDL( ) =

⋃
c∈ grDL(c,PT ) and analogously for

grDL(Rs) and grDL(Rd).

Example 4. In this example we show how a propositional
argumentation theory grDL(T ) is obtained by grounding
the F.O. theory from Example 2 using the Datalog program
PT and Algorithm 1. To obtain PT , we first transform
f(1, 2) ∈ Kn, a(1) ∈ Kp and a(2) ∈ Kp into the Data-
log rules→ f(1, 2),→ a(1) and→ a(2), and add them to
PT . Next, we apply Transformation 1 to strict and defeasi-
ble rules. For instance, f(X,Y )→ b(X) results in the Dat-
alog rules f(X,Y ) → nr(X,Y ) and nr(X,Y ) → b(X),
both of which are added to PT . Similarly, the defeasible
rule nd(X) : a(X) ⇒ c(X) results in a(X) → n′r(X) and
n′r(X) → c(X), along with the additional rule n′r(X) →
nd(X). Now, we ground T by invoking Algorithm 1 for
each rule of the theory. For example, consider the rule
f(X,Y ) → b(X). First, we execute the query (PT , nr),
producing the ground atom nr(1, 2) and the substitution
{σ : X 7→ 1, Y 7→ 2}. Then, we apply this substitution
to the rule obtaining f(1, 2) → b(1). By applying the same
procedure to the other rules (c(X) → e(X) and nd(X) :
a(X) ⇒ c(X)) we obtain: c(1) → e(1); c(2) → e(2);
nd(1) : a(1) ⇒ c(1) and nd(2) : a(2) ⇒ c(2). Now, let
us consider the contrary relation a(X) = b(X). We execute
the query (PT , a) obtaining the substitutions {σ1 : X 7→ 1}
and {σ2 : X 7→ 2}, resulting in the propositional contrary
relations a(1) = b(1) and a(2) = b(2). The obtained propo-
sitional rules and contrary relations, together with the ini-
tial facts and assumptions (Kn andKp), forms the grounded
argumentation theory grDL(T ), which, as anticipated, coin-
cides with the propositional argumentation theory in Exam-
ple 1.

Lemma 1 expresses that the AFs defined by gr(T ) and
grDL(T ) are the same, from which it clearly follows (Theo-
rem 1), that T and grDL(T ) have the same extensions.

Lemma 1 (?4 ). Let T be an argumentation theory and
grDL(T ) the grounding via the Datalog program PT as per
Transformation 1. Then, Args(gr(T )) = Args(grDL(T ))
and Atts(gr(T )) = Atts(grDL(T )).
Theorem 1 (?). Let T be an argumentation theory and
grDL(T ) the grounding via the Datalog program PT as per
Transformation 1. Then, θ(T ) = θ(gr(T )) = θ(grDL(T ))
for θ ∈ {adm, com, grd , prf , stb}.

3.3 Improvements
Non-Approximated Predicates. In Transformation 1 we
ignore the distinction between defeasible and non-defeasible
elements (assumptions and defeasible rules on the one side,
facts and strict rules on the other). To obtain all possible ar-
guments of an argumentation theory this is fine. But we can
further simplify the grounding by generating rules that will
be used only in acceptable arguments (i.e. those included in
some extension).

Example 5. Consider the propositional theory obtained in
Example 4 (via grounding the F.O. theory from Example 2
via the procedure described in Section 3.2) and depicted in
Figure 1a. Any argument using a(1) as a premise (namely

4See arXiv version of this paper for proofs.
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A3,A4, andA5) is undermined byA2, which is itself not at-
tacked by any argument. As a result, neither A3, A4 nor A5
will be included in any extension for any of the semantics we
consider in this work. Hence, the assumption and rules that
generate such arguments (i.e. a(1), nd(1) : a(1) ⇒ c(1),
and c(1)→ e(1)) can also be excluded from the grounding,
further reducing the size of the grounding while preserving
the extensions.

We introduce the notion of approximated and non-
approximated predicates to help us formalise when rules and
assumptions can be removed from the grounding in Defini-
tion 12. The intuition behind the distinction between these
different predicates is as follows: non-approximated pred-
icates are those for which grounding can fully determine
derivability of the ground instances within some extension.
Approximated predicates leave determination of this to the
solver.

Definition 12. Let T = ( ,Rs,Rd,Kn,Kp) be an argu-
mentation theory and let p first be a predicate and r ∈ R a
rule whose head is an atom containing p. Then, predicate p
depends positively on a predicate p’ if the body of r contains
an atom containing p’. The predicate p depends negatively
on p′ if p′ appears in the contrary expression of one of the
defeasible elements of r (Def (r)). Let now p be a predicate
occurring in an assumption atom l (l ∈ Kp). Then, p de-
pends negatively on p′ if p′ occurs in the contrary expression
of l. The set of approximated predicates is the minimal set
containing a predicate p if one of the following cases holds:
i) p depends on an approximated predicate, or ii) there is a
circular sequence of dependencies p = p1, p2, . . . , pn = p,
where each pi+1 depends on pi and there is a pi+1 that de-
pends negatively on pi. Any predicate that is not approxi-
mated we call non-approximated.

Example 6. Consider the argumentation theory of Exam-
ple 2. To compute the approximated and non-approximated
predicates of the theory, we analyze the positive and neg-
ative dependencies between predicates. For example, con-
sider the rules r1 = nd(X) : a(X) ⇒ c(X) and r2 =

c(X)→ e(X), and the contrary expression nd(X) = e(X).
We consider the predicates appearing in the heads of the
rules, namely c and e. First, from the rule r2, we see that
e depends positively on c. Next, rule r1 shows that c de-
pends negatively on e. This is because e appears in the con-
trary expression of nd(X), which is a defeasible element of
r1. Therefore, there exist circular sequences of dependen-
cies with at least one negative relation: e, c, e and c, e, c.
This indicates that both e and c are approximated predi-
cates. In contrast, all other predicates in the theory are non-
approximated predicates.

Using the knowledge of which predicates are non-
approximated, we can simplify the grounding:

Transformation 2. Let T = ( ,Rs,Rd,Kn,Kp) be an
argumentation theory. A rule r = B( ~X) → h(~Y ) ∈
Rs or r = n( ~X) : B(~Y ) ⇒ h(~Z) ∈ Rd, given
{l1( ~X1), . . . , ln( ~Xn)} ⊆ Def (r) where the li are exactly
the non-approximated predicates in Def (r), gives rise to the

set r̂ consisting of the following Datalog rules:

B( ~X),∼ l1( ~X1), . . . ,∼ ln( ~Xn)→nr( ~X) (1)

nr( ~X)→h(~Y ) (2)

where nr is a fresh predicate that is unique for the rule. For
the defeasible rule r ∈ Rd the following rule also is part of
r̂ as in Transformation 1:

nr( ~X)→n(~Z) (3)

Facts are also transformed as in Transformation 1: for
any b ∈ Kn, b̂ =→ b. Assumptions are transformed
analogously to defeasible rules. I.e. for a ground atom
b ∈ Kp with {l1(~t1)), . . . , ln(~tn)} ⊆ b where li are exactly
the non-approximated predicates appearing in b, we define
b̂ = ∼l1(~t1), . . . ,∼ln(~tn)→ b. Then, the transformation of
the argumentation theory T to the respective Datalog pro-
gram is PT = {R̂s ∪ R̂d ∪ K̂n ∪ K̂p}.
We observe that, because only non-approximated predicates
appear negated in bodies of rules of PT as per Transforma-
tion 2, PT uses stratified negation as defined in Section 2.2.
The grounding of T via PT as per Transformation 2 is
then obtained by grounding the contrary relation and rules
of T by querying PT as in Section 3.2. The difference is
that now also assumptions are queried, i.e. grDL(Kp) =

{b(~t) ∈ Kp ∩ 〈PT , b〉}. For T = ( ,Rs,Rd,Kn,Kp)
we thus obtain the grounding grDL(T ) =
(grDL( ), grDL(Rs), grDL(Rd),Kn, grDL(Kp))

5.
Example 7. We ground the argumentation theory from Ex-
ample 2 using the Datalog program PT obtained via Trans-
formation 2. As to the facts and strict rules, Transforma-
tion 2 is exactly as Transformation 1, i.e. as in Example 4
(since, in particular, Def (r) = ∅ for r ∈ Rs). Thus, we
focus on the transformation of defeasible rules and assump-
tions. Consider the defeasible rule nd(X) : a(X)⇒ c(X),
which includes two defeasible elements (c(X) and nd(X)),
whose contraries are e(X) and d(X). As discussed in Ex-
ample 6, e is an approximated predicate, and therefore it
does not appear in the Datalog rules generated by Trans-
formation 2. The resulting rules are a(X),∼d(X) →
n′r(X) and n′r(X) → c(X), along with the additional rule
n′r(X) → nd(X). The assumptions a(1) and a(2) are
translated into ∼b(1) → a(1) and ∼b(2) → a(2) respec-
tively, since the contrary of a(1) (resp. a(2)) is b(1) (resp.
b(2)) and b is a non-approximated predicate.

Next, we ground T by invoking Algorithm 1 for each
rule of the theory, as already shown in Example 4. No-
tably, we obtain fewer propositional rules compared with
the previous example. For instance, consider again the rule
nd(X) : a(X) ⇒ c(X), which we ground by perform-
ing the query (PT , n′r) and obtaining the single substitution
{σ1 : X 7→ 1}, instead of the two substitutions obtained in
Example 4. In fact, the second substitution {σ2 : X 7→ 2}
can not be derived due to the negative terms introduced by
Transformation 2. The grounding of contrary relations is

5We use the same notation, i.e. PT and grDL(T ), for the differ-
ent versions of the Datalog program and groundings we introduce.
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also impacted by the introduced optimization. For exam-
ple, grounding the contrary relation a(X) = b(X) now
results in a single propositional expression, a(2) = b(2),
instead of the two previously derived. On the other hand,
a(1) 6∈ grDL(Kp) as a(1) 6∈ 〈PT , a〉. Finally, the ob-
tained assumptions, rules and contrary relations, together
with the initial facts, forms the grounded argumentation the-
ory grDL(T ), depicted in Fig 2 together with the induced
AF. Note that, although the arguments A3, A4, A5 from the
theory of Example 1 are lost, the unique complete (as well
as grounded and preferred) extension is still {A1, A2, A6}
(while there is also no stable extension) and, thus, also the
acceptable conclusions are the same as in Example 1. In this
example the admissible extensions are also the same but we
show in Example 8 that this is not guaranteed when ground-
ing via Transformation 2.

f(1,2)

 b(1)

 a(2)

 c(2)

 e(2)

A1

A2

A6

A7

A8

nd(2)

(a) Argumentation theory

A1

A2

A6

A7

A8

(b) Argumentation graph

Figure 2: Argumentation theory and induced AF from Example 7.

Lemma 2 expresses the relation between the AFs induced
by gr(T ) and the improved grDL(T ). For this, for an ar-
gumentation theory, we define the certain arguments to be
those that are included in every complete extension of the
theory. If, on the other hand, an argument is not attacked
by a certain argument we call it tentative. For a set of argu-
ments A, we then denote Args !(A) to be the certain argu-
ments in A, while Args?!(A) are the tentative arguments in
A. Note, in particular, that certain arguments are also ten-
tative. We also define Args(A) �P to be those arguments
in A with conclusions making use of predicates in a set
of predicates P . Similarly, Atts(gr(T )) �Args(grDL(T ))=
{(a, a′) ∈ Atts(gr(T )) | {a, a′} ⊆ Args(grDL(T ))}.
Then, Lemma 2 indicates that the AFs induced by gr(T )
and grDL(T ) coincide on the certain arguments. That these
are the arguments that count for all semantics that produce
complete extensions is expressed in Theorem 2.
Lemma 2 (?). Let T be an argumentation theory and
grDL(T ) the grounding via the Datalog program PT
as per Transformation 2. Then, Args?!(gr(T )) ⊆
Args(grDL(T )) ⊆ Args(gr(T )) and Atts(grDL(T )) =
Atts(gr(T ))�Args(grDL(T )).
Theorem 2 (?). Let T be an argumentation theory and
grDL(T ) the grounding via the Datalog program PT as per
Transformation 2. Then, θ(T ) = θ(gr(T )) = θ(grDL(T ))
for θ ∈ {com, grd , prf , stb}.
Example 8. Note, on the other hand, that it is not the case
that adm(gr(T )) = adm(grDL(T )). This can be seen by
considering the simple (ground) argumentation theory T
with Kn = {a}, Kp = {b, c}, R = ∅, and = {b =
{a}, c = {b}}. Then, gr(T ) = T . On the other hand,

PT = {→ a,∼a → b,∼b → c} and, hence, grDL(T )
is formed by K′n = Kn = {a}, R′ = R = ∅, while
K′p = {c} and ′

= {c = {b}} (but b 6∈ K′p). Then,
adm(gr(T )) = {∅, {a}, {a, c}}, while adm(grDL(T )) =
adm(gr(T )) ∪ {{c}}.
Facts. In the previous section we simplified the grounding
by excluding rules appearing only in arguments that do not
appear in any extension. We now look at what is, to some
extent, the dual view.
Example 9. Consider the propositional theory obtained in
Example 7 (via grounding the F.O. theory from Example 2
using the procedure described in the previous section) and
depicted in Figure 2. Consider the fact f(1, 2) and the strict
rule f(1, 2) → b(1) of Example 2, which together make up
the argument A2. This argument, as it is made up only of
facts and strict rules, is immune to attacks, which means
that the argument A2 appears in all extensions for all the
semantics we consider in this work. This means also that
the grounding can be simplified by adding the claim b(1) to
the fact base and, as a consequence, removing the strict rule
from the set of rules as it becomes redundant.

Towards simplifying the grounding along the lines of the
idea explored in Example 9, note that the dependency rela-
tions between predicates of an argumentation theory from
Definition 12 can be extended to rules. In particular, for the
positive dependency relation: a rule r depends positively on
r′ if the predicate p appearing in the head of r depends pos-
itively on the predicate p′ occurring in the head of r′ (i.e. p′
occurs in the body of r as well as the head of r′). The posi-
tive dependency graph G+

R for the set of rulesR of an argu-
mentation theory T is then a directed graph having rules as
nodes and an edge from r′ to r indicating that r depends pos-
itively on r′. Given the dependency graph G+

R, the strongly
connected components of G+

R form a topological ordered
partition into sub-graphs LT = (C1, C2, . . . , Cn). Algo-
rithm 2 then improves on the previous groundings by also
(in lines 3-18) iterating over the strongly connected com-
ponents of G+

R and collecting facts, while removing strict
rules, as illustrated in Example 96.
Example 10. We ground the argumentation theory from Ex-
ample 2 using the Datalog program PT obtained via Trans-
formation 2 and Algorithm 2, which incorporates the opti-
mization described above. Since this optimization does not
affect assumptions or defeasible rules, we only focus on the
strict rules. Consider the rule f(X,Y ) → b(X). At line 4
of Algorithm 2, we call Algorithm 1, which generates the
propositional rule f(1, 2) → b(1). Then, at line 9, we re-
move the fact f(1, 2) from the body of the rule, resulting
in the rule → b(1). Because this is now a strict rule with
an empty body, at lines 11–12 we add b(1) to grDL(Kn)
and remove → b(1) from grDL(Rs). The resulting argu-
mentation theory and argumentation graph is depicted in
Figure 3. In this case, the unique complete extension is
{A1, A2, A9}, that differs from the one obtained in Exam-
ple 2. It is worth noting that, although extensions are not

6In the algorithm B(r) denotes the body of a rule r, and h(r)
the head.
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Algorithm 2 Grounding of an ASPIC+ theory

Input: A theory T = ( ,Rs,Rd,Kn,Kp), LT , the Data-
log program PT obtained via Transformation 2.

Output: grDL(T ).
1: grDL(Kn)← Kn

2: grDL(R)← ∅
3: for all C ∈ LT do
4: // Ground rules in C via Algorithm 1.
5: grDL(C)←

⋃
r∈C grDL(r,PT )

6: repeat
7: grDL(Kn)

′ ← grDL(Kn)
8: for all r ∈ grDL(C) do
9: // Delete facts from bodies of rules.

10: if r ∈ grDL(Rs), B(r) \ grDL(Kn) = ∅, and
h(r) 6∈ Kp then

11: grDL(Kn)← grDL(Kn) ∪ {h(r)}
12: grDL(C)← grDL(C) \ {r}
13: end if
14: end for
15: // Repeat until no new facts are produced.
16: until grDL(Kn) = grDL(Kn)

′

17: grDL(R)← grDL(R) ∪ grDL(C)
18: end for
19: // Ground assumptions and contraries as before.
20: grDL(Kp)← {b(~t) ∈ Kp ∩ 〈PT , b〉}
21: grDL( )←

⋃
c∈ grDL(c,PT )

22: // Form the grounded theory.
23: grDL(T )← (grDL( ), grDL(Rs),
24: grDL(Rd), grDL(Kn), grDL(Kp))
25: return grDL(T )

preserved, when considering the conclusions of the argu-
ments in the extensions of both examples these coincide. In
fact, the conclusions (f(1, 2), b(1), and a(2)) are skeptically
accepted under the complete semantics, just as in the previ-
ous example.

f(1,2)

 b(1)

 a(2)

 c(2)

 e(2)

A1

A9

A6

A7

A8

nd(2)

(a) Argumentation theory

A1

A9

A6

A7

A8

(b) Argumentation graph

Figure 3: Argumentation theory and induced AF from Example 10.

Lemma 3, and as a consequence Theorem 3, follow from
the fact that the groundings obtained in the previous section
and the one obtained via Algorithm 2 differ only on the sim-
plifications on the fact base and strict rules, from whence the
AFs induced by both groundings are equivalent when con-
sidering acceptable claims. The equivalence is not w.r.t. ar-
guments since, as we have seen in Example 10, adding new
facts and removing strict rules in the grounding via Algo-
rithm 2 clearly affects the arguments that can be constructed.

Lemma 3 (?). Let T be an argumentation theory,

grdDL(T ) the grounding of T via Algorithm 2, and
grd2DL(T ) the grounding via the Datalog program PT
as per Transformation 27. Then, {Conc(E) | E ∈
θ(grd2DL(T ))} = {Conc(E) | E ∈ θ(grdDL(T ))} for
θ ∈ {com, grd , prf , stb}.
Theorem 3 (?). Let T be an argumentation theory,
grdDL(T ) the grounding of T via Algorithm 2. Then,
{Conc(E) | E ∈ θ(T )} = {Conc(E) | E ∈
θ(gr(T ))} = {Conc(E) | E ∈ θ(grDL(T ))} for θ ∈
{com, grd , prf , stb}.

4 Evaluation
To demonstrate feasibility of our grounding approach we
conducted experiments on three distinct datasets (Mon-
terosso et al. 2025b). To evaluate the feasibility of rea-
soning, we used in scenario S1 F.O. ASPIC+ instances in-
spired by (Robaldo et al. 2024), and in scenario S2 F.O.
ASPIC+ instances with increasing number of atoms, rules
and variables. In scenario S3 we assess the quality of the
groundings by translating well known ASP instances (Geb-
ser, Maratea, and Ricca 2015) to ASPIC+ instances. The ex-
periments were conducted on an Intel(R) Xeon(R) Platinum
8470, 3.5-GHz, 1.0-TB RAM. For each instance we impose
a 20-minute time limit for grounding and in scenarios S1 and
S2 additionally 20 minutes for reasoning. Additionally, we
impose a memory limit of 32G.
Solvers. The proposed approach (including the simplifica-
tions) has been implemented in the prototypical grounder
ANGRY (Monterosso et al. 2025a), which is written in
Rust and makes use of the Datalog engine Nemo (Ivliev
et al. 2024). To evaluate the use of ANGRYas part of a
ground+solve pipeline for F.O. ASPIC+ instances we com-
bine ANGRY with ASPforASPIC (Lehtonen, Wallner, and
Järvisalo 2020), an ASP-based reasoner for propositional
ASPIC+. For the backend of ASPforASPIC we make use
of Clingo v5.7.1. (Gebser et al. 2016). As a reference sys-
tem for scenario S1 we use Arg2P (Calegari et al. 2022), the
only argumentation tool we are aware of that handles an F.O.
ASPIC+-like syntax. For scenario S3 we compare against
the well-known grounder Gringo (Gebser et al. 2015).
Scenario S1. The primary goal is to evaluate the use of
our grounding approach as part of a ground+solve strat-
egy for reasoning over F.O. ASPIC+ instances. This in-
volves first grounding ASPIC+ instances and in a second
step solving the obtained propositional argumentation the-
ory. More precisely, we focus on the enumeration of claim
sets under the complete semantics, as this is the reasoning
task the two solvers ASPforASPIC and Arg2P are ca-
pable of. The instances consist of ASPIC+ encodings de-
noted by Legal bench (inspired by (Robaldo et al. 2024)).
We generated 20 instances with an increasing number of
atoms in the knowledge base for each domain. We compare
our grounder ANGRY together with ASPforASPIC against
Arg2P. Specifically, we compare the execution time of each
system to complete the enumeration of claim sets under
complete semantics. Additionally, we compare the claim

7i.e. without the further simplifications in Algorithm 2.
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sets obtained by the two system to verify the correctness of
our grounding.
Scenario S2. Here we to evaluate the scalability of ANGRY.
To this end we randomly generated F.O. ASPIC+ instances
with increasing number of atoms, rules and variables. In
each generated instance, some parameters are fixed. Con-
stants appearing in the instances are randomly selected in-
tegers in the range [0, 300]. The arity of the literals, both
in rules and in the atom base, is randomly chosen between 1
and 5, with a probability of 80% to fall between 1 and 3. The
number of literals appearing in each rule is randomly picked
from 1 to 10, with 80% probability assigned to values be-
tween 1 and 4. The number of literals involved in contrary
relations is randomly selected between 1 and 3.

Based on this fixed set of parameters, we define four dif-
ferent configurations by varying the number of strict (str.)
and defeasible (def.) rules, as well as the number of con-
trary relations included in the encoding. The configurations
are defined as follows:

c1: 10 rules (5 str. and 5 def.) and 7 contrary relations
c2: 20 rules (10 str. and 10 def.) and 15 contrary relations
c3: 40 rules (20 str. and 20 def.) and 25 contrary relations
c4: 80 rules (40 str. and 40 def.) and 30 contrary relations
c5: 160 rules (80 str. and 80 def.) and 90 contrary relations

For each configuration, we generate 7 sets of instances, each
with a maximum number of variable symbols per rule, incre-
menting from 3 to 13 for each set. For every configuration
and number of variable symbols, we generate 20 instances,
where the number of atoms in the atom base increases from
43200 to 655584. This setup allows us to systematically an-
alyze the scalability of ANGRY under increasing structural
complexity of the instances.
Scenario S3. Here the aim is to study the extent to which
our grounder meets the performance baseline of existing
ASP grounders when used on ASP programs, translated to
ASPIC+ theories. We compare the size of the grounding
produced by Gringo in the ASP domain, with those ob-
tained by ANGRY for the corresponding ASPIC+ instances,
which are derived by translating the ASP instances used
for Gringo into ASPIC+. The instances consist of three
problem classes from the sixth ASP competition (Gebser,
Maratea, and Ricca 2015), namely StableMarriage, VisitAll
and GraphColouring. In particular, we use all of the 20 in-
stances of each problem class. We apply the existing transla-
tions (Caminada and Schulz 2017) and (Heyninck 2019) on
the ASP encodings, obtaining the argument theories given as
input to ANGRY. These translations were originally designed
for propositional programs, therefore we slightly adapted
them to handle variables. Since the default output format
for the two systems Gringo and ANGRY is different, the
groundings were generated using the text option, which pro-
duces the groundings in a human-readable format and is
very similar for both systems. Additionally, we measure and
compare the grounding times of both systems. In this case,
the output format used is the standard one.
Expectations.

(E1) ANGRY+ASPforASPIC will outperform Arg2P (which
has struggled on larger instances in the evaluation

in (Robaldo et al. 2024));
(E2) ANGRY+ASPforASPIC and Arg2P output the same

claim sets for the same instance;
(E3) grounding time increases with the size of the grounding;
(E4) ANGRY can handle instances of realistic size;
(E5) ANGRY will produce slightly larger groundings compared

to Gringo, due to additional rules needed for the trans-
lation from ASP to ASPIC+;

(E6) ANGRYwill not outperform Gringo on ASP instances as
Gringo is a very efficient system that introduces several
extra optimizations for the ASP domain.

Figure 4: Results of scenario S1 comparing
ANGRY+ASPforASPIC vs. Arg2P.

Figure 5: Results of scenario S3 comparing ANGRY vs Gringo,
where GC, VA and SM stand for GraphColouring, VisitAll and
StableMarriage.

Observations and Results. Figure 4 confirms (E1). We
use a cactus plot, which shows the time that is at least re-
quired to solve a specific number of instances. Thus, the
first bar shows the time for the fastest solving, the second
bar the sum of the solving time for the two fastest instances,
and so on. We report the time required by both the sys-
tem ANGRY+ASPforASPIC and Arg2P to process the in-
stances of scenario S1. From the plot, it is evident that
ANGRY+ASPforASPIC outperforms Arg2P in terms of
efficiency for these instances. In fact, our system solves
16 instances from LEGAL BENCH, whereas Arg2P only
solves 6 instances within the time limit. For these instances
we were able to confirm (E2) by assessing equivalence of
the results.

Table 1 shows the results of scenario S2, where we report
the number of grounded and solved instances in the given
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Config 3v 4v 5v 7v 9v 11v 13v

c1
grounded / solved 16 / 16 16 / 16 15 / 15 15 / 13 9 / 7 7 / 7 5 /4
TO / MO 4 / 0 4 / 0 5 / 0 3 / 2 7 / 4 7 / 6 5 / 10
mean time (s) 261.1 181.4 187.0 228.1 313.8 181.5 406.4
median time (s) 117.5 81.8 71.3 141.9 129.7 139.6 278.4

c2
grounded / solved 16 / 16 15 / 15 15 / 15 9 / 7 7 / 5 4 / 3 2 / 0
TO / MO 4 / 0 5 / 0 5 / 0 9 / 2 11 / 2 9 / 7 7 / 11
mean time (s) 284.3 259.1 336.1 418.6 488.4 580.8 731.2
median time (s) 107.4 79.4 147.5 313.6 632.2 665.8 731.2

c3
grounded / solved 14 / 13 13 / 13 11 / 11 5 / 4 2 / 2 2 / 2 0 / 0
TO / MO 6 / 0 7 / 0 9 / 0 12 / 3 8 / 10 9 / 9 8 / 12
mean time (s) 238.6 258.1 250.9 409.4 557.0 336.7 –
median time (s) 144.7 237.9 231.7 353.1 557.0 336.7 –

c4
grounded / solved 15 / 15 13 / 13 8 / 8 0 / 0 – – –
TO / MO 5 / 0 7 / 0 9 / 3 6 / 14 – – –
mean time (s) 274.6 360.2 503.4 – – – –
median time (s) 54.3 237.6 215.3 – – – –

c5
grounded / solved 10 / 7 6 / 5 3 / 3 0 / 0 – – –
TO / MO 6 / 4 9 / 5 6 / 11 9 / 11 – – –
mean time (s) 170.2 373.2 576.4 – – – –
median time (s) 127.3 331.7 486.9 – – – –

Table 1: Results of scenario S2. Configurations c1, . . . , c5 are as described in S2; the columns 3v, 4v, . . . denote up to 3 (4, . . . ) variables
per rule; TO stands for time out and MO for memory out, both refer to the grounding step. Mean time and median time both refer to the
execution time of the grounding step, reported in seconds.

time, as well as the mean and median time for the ground-
ing step. For those instances where the grounding step did
not finish, we report if they run into a time out or ran out of
memory. We can observe that in general the number of vari-
ables in the rules has the largest influence on the grounding,
which is not a big surprise. Increasing the number of rules
and contraries, is not a big problem, as long as the number
of variables is low. For challenging instances we observe
more instances failing due to memory outage than due to
time out. Concluding on scenario S2 we see (E4) confirmed
as ANGRY is able to ground instances of reasonable size and
with a reasonable number of variables in rules. We assume
that most real world instances would not require to use more
than 4 or 5 variables within one rule.

Finally, Figure 5 confirms (E3), (E5) and (E6). There,
we report the grounding size obtained by both ANGRY and
Gringo for each instance from scenario S3. The ground-
ing size obtained by ANGRY is, as expected, comparable and
slightly larger than that by Gringo. This outcome confirms
the quality of ANGRY’s grounding, as it does not contain un-
necessary information. Additionally, the grounding time is
reported via a color scale. As anticipated, our system is less
efficient than Gringo. In this regard, further efforts will be
made in the future to improve the system’s efficiency.

5 Conclusion
We proposed a novel grounding approach for rule-based ar-
gumentation that makes use of a Datalog engine. Opti-
mizations performed in the grounding avoid the construc-
tion of unnecessary parts and thus produces an intelligent
grounding that preserves acceptable claims. Our experi-

mental analysis demonstrates feasibility of our prototype
grounder ANGRY, which makes use of the Datalog engine
Nemo (Ivliev et al. 2024). In particular, the use of ANGRY to-
gether with the system ASPforASPIC (Lehtonen, Wallner,
and Järvisalo 2022) as part of ground+solve approach for
reasoning over ASPIC+ instances clearly outperforms the
only existing argumentation-based system that we are aware
of that supports a first-order ASPIC+-like syntax. On the
other hand, the use of our grounder as an ASP grounder (via
translations from ASP to ASPIC+ (Heyninck 2019; Cami-
nada and Schulz 2017)) shows that our grounder meets the
performance baseline of the ASP grounder Gringo (Gebser
et al. 2015), although there is also some loss of performance
due to the translations and given the additional optimizations
of Gringo for ASP.

Future Work. We plan to extend our approach to ground-
ing to also handle preferences, which are a further crucial
aspect of frameworks for rule-based argumentation such as
ABA (see e.g.(Cyras and Toni 2016; Wakaki 2017)) and AS-
PIC+ (Modgil and Prakken 2018). On the other hand, we
want to study to what extent additional constructs that are
commonly used in ASP such as conditional literals, external
atoms or aggregates (Gebser and Schaub 2016) can mean-
ingfully be incorporated. Additional efforts will also be de-
voted to improving the system’s efficiency. This includes,
evaluating the use of different Datalog and ASP (used as
Datalog) grounders as the back-end of our system as well
as the combination of our grounder with different reason-
ing approaches also for ABA (e.g. (Lehtonen, Wallner, and
Järvisalo 2021; Diller, Gaggl, and Gorczyca 2022)).
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