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Abstract

Reasoning with minimal models has always been at the
core of many knowledge representation techniques, but we
still have only a limited understanding of this problem in
Description Logics (DLs). Minimization of some selected
predicates—letting the remaining predicates vary or be fixed,
as proposed in circumscription—has been explored and ex-
hibits high complexity. The case of ‘pure’ minimal models,
where the extension of all predicates must be minimal, has
remained largely uncharted. We address this problem in pop-
ular DLs and obtain surprisingly negative results: concept
satisfiability in minimal models is undecidable already for
EL. This undecidability also extends to a very restricted frag-
ment of tuple-generating dependencies. To regain decidabil-
ity, we impose acyclicity conditions on the TBox that bring
the worst-case complexity below double exponential time and
allow us to establish a connection with the recently studied
pointwise circumscription; we also derive results in data com-
plexity. We conclude with a brief excursion to the DL-Lite
family, where a positive result was known for DL-Litecore, but
our investigation establishes ExpSpace-hardness already for
its extension DL-Litehorn.

1 Introduction
Reasoning with minimal models has always been at the
core of many Knowledge Representation (KR) languages.
It is most prominent in formalisms for non-monotonic rea-
soning, from default logic (Reiter 1980) and circumscrip-
tion (McCarthy 1980) to answer set programming (Gel-
fond and Lifschitz 1988) and it plays a crucial role in clas-
sical KR problems like abduction and diagnosis (Reiter
1987). Finding minimal models and reasoning about them
has been a recurring topic in the KR literature for many
years; see (Ben-Eliyahu and Dechter 1996; Ben-Eliyahu-
Zohary and Palopoli 1997; Lackner and Pfandler 2012;
Angiulli et al. 2014; Pfandler, Pichler, and Woltran 2014).

When reasoning from a knowledge base, minimal mod-
els provide a natural and intuitive counterpart to traditional
open-world semantics and classical entailment, which can
easily exclude some expected consequences (e.g., a query
may be not entailed due to a counter-example model that in-
cludes unexpected and unjustified facts). In contrast, consid-
ering only those models in which all facts are strictly neces-
sary and justified may lead to more intuitive reasoning. We
illustrate this in a very simple example.

Example 1. Under the standard semantics, the inclusion
ScandCountry v NatoMember is not entailed by the fol-
lowing six assertions, since there may be unknown Scandi-
navian countries that are not in NATO: ScandCountry(no),
ScandCountry(se), ScandCountry(dk), NatoMember(no),
NatoMember(se), NatoMember(dk). However, the entail-
ment does hold under the minimal model semantics; equiv-
alently, the concept ScandCountry u ¬NatoMember is not
satisfiable in the minimal models.

Despite the strong motivation, there are still big gaps
in our understanding of minimal model reasoning in De-
scription Logics (DLs). Predicate minimization has been
explored in the context of circumscription in DLs, but
most existing results spell out the high complexity that re-
sults from combining minimized predicates with varying or
fixed predicates; see, e.g., (Bonatti, Lutz, and Wolter 2009;
Lutz, Manière, and Nolte 2023). Specifically, when vary-
ing predicates are allowed (e.g. satisfiability of a concept
for general circumscription in ALC), reasoning becomes
quickly undecidable. But the case of purely minimal mod-
els, where nothing can be removed from the extension
of any predicate while preserving modelhood, remained
largely unexplored. It was however established recently that
for the DL ELIO—a relatively expressive DL with EXP-
TIME-complete concept satisfiability problem for classical
semantics—basic minimal model reasoning becomes unde-
cidable (Di Stefano and Šimkus 2024). A positive result was
established for DL-Litecore: here minimal model reasoning
exhibits the same worst-case complexity as in the classi-
cal case (Bonatti et al. 2023). It is thus natural to explore
whether similar positive or negative results can be obtained
for other lightweight DLs like EL or other DL-Lite variants.

In this paper we investigate these questions, and provide
the following contributions:

• We show that concept satisfiability in a minimal model
is undecidable for the DL EL. The decidability status of
minimal model reasoning has been open for several years,
and the negative outcome is somewhat surprising. It con-
trasts with the complexity of the classical semantics for
EL, which supports tractable reasoning for basic reason-
ing tasks. Our undecidability proof does not use the >-
concept, and it carries over to guarded tuple generating
dependencies (TGDs) of very restricted shapes.
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• To regain decidability, we impose two types of acyclic-
ity conditions on the TBox, which are defined in terms
of a dependency graph on the predicates of a knowl-
edge base. If we restrict our attention to strongly acyclic
TBoxes, we can import results from pointwise circum-
scription of (Di Stefano, Ortiz, and Simkus 2023) to show
that ELIO not only becomes decidable, but is feasible in
non-deterministic exponential time. We also explore weak
acyclicity, a common notion in the setting of TGDs in
database theory (Fagin et al. 2005; Alviano, Morak, and
Pieris 2017; Grau et al. 2013). Weakly acyclic EL and
ELIO remain decidable; we get tight NExpNP bounds on
combined complexity, and ΣP

2 on data complexity.
• We conclude the paper with a minor excursion into DL-

Lite, but even there we find a challenging panorama: sat-
isfiability in minimal models is already ExpSpace-hard
for DL-Litehorn.

An appendix with full proofs can be found in the long ver-
sion of this paper (Di Stefano et al. 2025).

2 Preliminaries
We briefly recall the syntax and semantics of DLs studied in
this paper and refer to (Baader et al. 2017) for more details.
We consider countably infinite pairwise disjoint sets NC, NR

and NI of concept, role and individual names, respectively,
and use N±R to denote the set NR∪{r− | r ∈ NR}. Concepts
in ALCIO follow the syntax C := A | {a} | > | ¬C |
C u C | ∃r.C, where A ∈ NC, r ∈ N±R and a ∈ NI. By re-
moving negated concepts ¬C from this grammar, we obtain
concepts in ELIO; by removing nominals {a} and requir-
ing r ∈ NR we obtain ALC. The intersection of the ELIO
and ALC concept languages is called EL. In ELIO⊥ and
EL⊥ we extend ELIO and EL with negation, but only in
concepts of the form ¬>, which we equivalently write⊥. In
ALCIO we use C tD as a shortcut for ¬(¬C u ¬D) and
∀r.C as a shortcut for ¬(∃r.¬C).

Let L be a DL. A TBox T (in L) is a finite set of concept
inclusions C v D where C and D are concepts in L. An
ABox A is a finite set of assertions of the forms A(a) and
r(a, b) with A ∈ NC, r ∈ N±R and a, b ∈ NI. A pair K =
(T ,A) of a TBox and an ABox is a knowledge base (KB).

The semantics of DLs is defined using interpretations I =
(∆I , ·I), where ∆I is a non-empty domain and the inter-
pretation function ·I maps each A ∈ NC to a set AI ⊆ ∆I ,
each r ∈ NR to a set of pairs rI ⊆ ∆I × ∆I , and each
a ∈ NI to an element aI ∈ ∆I . The interpretation function
extends to all concepts as usual, and we call I a model of a
concept C if CI 6= ∅. For α a concept inclusion, assertion,
TBox, ABox or KBs, modelhood I |= α is standard. We say
that I makes the unique name assumption (UNA) if aI 6= bI

for every a, b ∈ NI with a 6= b. When considering EL and
ELIO, we make the UNA unless stated otherwise. In DLs
containing EL⊥ this assumption is irrelevant since the UNA
can be simulated in the usual way.
Definition 1. For interpretations I and J , we let I ⊆ J if

(i) ∆I = ∆J and aI = aJ for all a ∈ NI;
(ii) pI ⊆ pJ for all predicates p ∈ NC ∪ NR.

We write I ( J if I ⊆ J and pI ( pJ for some p ∈
NC ∪ NR. We call I a minimal model of a KB K, if (a)
I |= K, and (b) there exists no J ( I such that J |= K.

Interpretations with different domains are not comparable
according to this definition, which coincides with the prefer-
ence relation induced by a circumscription pattern where all
predicates are minimized (Bonatti, Lutz, and Wolter 2009).

The reasoning task that we focus on is concept satisfia-
bility in a minimal model (MINMODSAT for short) defined
as follows: Given an L KB K and an L concept C, decide
whether there exists a minimal model I of K with CI 6= ∅.
Example 2. Take a TBox T stating that (movie) fans must
like some movie, while critics always dislike something:

Fan v ∃likes.Movie Critic v ∃dislikes.>

Consider also ABoxes as follows:

A1 = {Fan(ann)} A2 = {Fan(ann),Critic(bob)}

We are interested in the satisfiability of the concept C =
Movie u ∃dislikes−.>, i.e. the existence of a movie that is
disliked by someone. Observe that C is not satisfiable in a
minimal model of K1 = (T ,A1), because K1 has no justi-
fication of an object (person) that dislikes something. How-
ever, C is satisfiable in a minimal model of K2 = (T ,A2)
(in this model ann likes a movie that bob dislikes).

Since traditional reductions between basic reasoning tasks
do not directly apply to minimal model reasoning, we do not
study them here and we focus on concept satisfiability only.

3 Undecidability of MINMODSAT
Before we present our main results, we first provide as a
‘warm-up’ a proof of ΣP

2 -hardness in data complexity of
MINMODSAT in ALC. The proof is not presented for the
complexity result, which is subsumed by tighter bounds in
the following sections, but to provide a gentle introduction
to the flooding technique that will be used heavily in the later
reductions. This technique, known as saturation in disjunc-
tive logic programming (Eiter and Gottlob 1995), simulates
the universal quantification required for minimization, i.e.,
testing that all substructures are not models. Intuitively, a
“flooded” interpretation contains objects that satisfy a given
disjunctive concept in more than one way. At the core of
this are cyclic dependencies between some concept names
A1, A2 that may appear together in some disjunctionA1tA2

on the right-hand-side of a concept inclusion. Intuitively,
verifying that e ∈ (A1 u A2)I holds in a minimal model
I may require a case analysis: we may need to check that
e ∈ AI1 implies e ∈ AI2 , and that e ∈ AI2 implies e ∈ AI1 .
Such case-based verification can be used for testing for cru-
cial properties (errors in a coloring, in a grid construction,
etc.), and a flooded minimal model implies that every possi-
ble way of avoiding the flooding failed, thus implicitly quan-
tifying over the domain of the structure.
Example 3. We show a reduction from (the complement of)
CERT3COL, a ΠP

2 -hard problem (Stewart 1991), to MIN-
MODSAT. As in (Bonatti, Lutz, and Wolter 2009), we de-
fine an instance of CERT3COL (of size n) as an undirected
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Figure 1: The structure of an ABox A in Example 3. Roles p1, p2
indicate that the first and second literals in the labeling of the edge
(6, 3) are v1,3 and v2,4, respectively. The figure also indicates an
interpretation where v1,3 and v2,4 are respectively true and false,
while the vertices 6 and 3 are colored with colors C1 and C2. The
presence of Sel indicates that the disjunctions of literals at edges
{3, 5} and {6, 3} evaluate to true in the given interpretation.

graph G with vertices {0, 1, . . . , n − 1} where each edge is
labeled with a disjunction of two literals over the Boolean
variables {Vi,j | i, j < n}. G is a positive instance of
CERT3COL if for every truth assignment t, the subgraph Gt

of G that contains those edges whole labels evaluate to true
under t is 3-colorable.

We represent G as an ABox A. We then provide a fixed
TBox T and concept D such that D is satisfiable in a min-
imal model of (T ,A) iff G is not a positive instance of
CERT3COL. The stucture of A is illustrated in Figure 1.
Creating the individuals. To represent the vertices of G, we
add the assertions N(u0), . . . , N(un−1) to A. Similarly, to
represent the propositional variables, we include the asser-
tion V (vi,j) for all 0 ≤ i, j < n. To represent the edges of
G, we add to A the assertion E(ei,j), for all 0 ≤ i, j < n.
Connecting the individuals. We use two roles `1, `2 to
connect each ei,j to the individuals that represent the ver-
tices i and j: we add `1(ei,j , ui) and `2(ei,j , uj) for all
0 ≤ i, j < n. Similarly, using the roles p1, p2, we con-
nect each ei,j to the two individuals that represent the lit-
erals in the label between i and j: we add p1(ei,j , vk1,k2)
and p2(ei,j , vk3,k4), where vk1,k2 and vk3,k4 are the first and
second variables in the label of the edge between i and j, re-
spectively. In addition, if vk1,k2

occurs positively (resp., neg-
atively) in the label, we add pos1(ei,j) (resp., neg1(ei,j)) to
A. The second literal is treated similarly, adding pos2(ei,j)
or neg2(ei,j) depending on whether vk3,k4

is positive or
negative in the edge represented by ei,j . Finally, we use a
role s to connect each individual uk to all the individuals
ei,j representing an edge: we add s(uk, ei,j) to A, for all
0 ≤ k, i, j < n. This completes the construction of A.
Building the TBox. T consists of the following inclusions;
note that these do not depend on the instance G. We intro-
duce two disjunctions that enforce in each interpretation a
‘guess’ of a truth value for each individual representing a
propositional variable, and a ‘guess’ of a color assignment

for each individual corresponding to a vertex.

V v T t F N v C1 t C2 t C3

With the following pair of inclusions we select the edges of
G that are labeled with a disjunction that evaluates to true:

(posi u ∃pi.T ) t (negi u ∃pi.F ) v Sel for i ∈ {1, 2}

Now comes the interesting part: if a selected edge is wrongly
colored (i.e. the same color is found at both ends), then all
vertices are “flooded” with all colors.

∃s.(Selu∃`1.Ciu∃`2.Ci) v C1uC2uC3 for i ∈ {1, 2, 3}

Finally, we takeC1uC2 as our goal concept, which is meant
to detect ‘flooding’ of the structure. It can be easily verified
that (C1 u C2) is satisfiable in a minimal model of (T ,A)
iff G is not a positive instance of CERT3COL.

This reduction will be adapted below to show ΣP
2 -

hardness in data complexity for weakly acyclic EL KBs.
However, we want to stress that there are no existential con-
cepts on the right-hand-side of inclusions in Example 3,
and that all these inclusions can be written in Disjunctive
Datalog (DD) using rules where all relations have arity
≤ 2. Thus we (slightly) strengthen the ΣP

2 -hardness proof
for data complexity of DD in (Eiter, Gottlob, and Mannila
1997), which uses a relation of arity 5.

We now show our first and most surprising major result:
minimal model reasoning is undecidable already in EL.
Theorem 1. MINMODSAT in EL is undecidable. This
holds even if the >-concept is disallowed.

We reduce from RECTTILE, the rectangular tileabilty
problem, known to be undecidable (Yang 2014): given a set
T of Wang tiles (a.k.a. dominos) and a special color b, decide
whether T tiles some finite rectangle with b on its sides.

Consider an instance (T, b) of RECTTILE. We construct
an EL KB K = (T ,A) such that (T, b) ∈ RECTTILE iff the
concept Goal is minimally satisfiable w.r.t. K.

Our main challenge is to guarantee that every minimal
model satisfying Goal features a rectangular grid represent-
ing a tiling of some rectangle. Elements in the grid, further
referred to as nodes, are identified by the concept Node. We
distinguish nine types of positions in the grid, identified us-
ing abbreviations of north, south, east and west: being one
of the four corners (NE, NW, SE, SW), lying on one of the
four borders (S, N, E, W), or lying in the central part of the
grid (C). The following displays an example of how nodes
(denoted by their positions) are intended to be arranged:

NW N N N N NE
W C C C C E
W C C C C E
SW S S S S SE

We set Pos := {C, S,N,E,W, SE, SW,NE,NW} the set of
those nine concept names. We say that p admits p′ as a valid
horizontal successor, denoted p  h p′ if, in the above ex-
ample, p appears on the same row and more to the left than
some p′ (e.g. W  h C and W  h E, but W 6 h SE). Sim-
ilarly, we say that p admits p′ as a valid vertical successor,
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denoted p  v p
′ if, in the above example, p occurs on the

same column and below some p′. Each of these concepts
is made available on a dedicated individual in the ABox by
adding an assertion p(ap) for each p ∈ Pos.

A node e having position p is represented by a connection
from e to ap by the role pos. Each node justifies such a con-
nection using the axiom Node v ∃pos.Any, where Any is an
auxiliary concept name that is used in place of >. Note that
there is no guarantee that a node connects to one of the indi-
viduals ap. However, such a connection is required to justify
further nodes in the grid. Indeed, only the south-west corner
is provided as part of the ABox, with assertions Node(a),
Any(a) and pos(a, aSW). Further nodes are generated by
existing nodes with a valid position and as horizontal or ver-
tical neighbors, which is represented by respective roles h
and v. To this end, we add the following axioms:

Node u ∃pos.p v ∃h.Node for p ∈ Pos \ {SE,E,NE}
Node u ∃pos.p v ∃v.Node for p ∈ Pos \ {NW,N,NE}.

With only these axioms, it should be clear that, in a minimal
model, every instance of the Node concept in I is gener-
ated following a path of roles h and v from a and has at
most one h-successor and at most one v-successor that is
a node. Given an interpretation I, we say that a sequence
d0, r1, d1 . . . , rn, dn is an h-v-path of nodes from a to dn if:

• d0 = aI and for every 0 ≤ i ≤ n, we have di ∈ NodeI ;

• for every 1 ≤ i ≤ n, ri ∈ {h, v} and (di−1, di) ∈ rIi .

The following claim holds, also in the presence of the re-
maining inclusions that we add further in this construction:

Claim 1. Let I be a minimal model of K. If d ∈ NodeI ,
then there exists an h-v-path of nodes from a to d. Further-
more, there exists at most one element e ∈ NodeI such that
(d, e) ∈ hI . The same holds for role v.

Using the same mechanism as to ‘choose’ positions, we
ask each node to choose a tile with the following axiom
Node v ∃tile.Any and assertions t(at) for each t ∈ T .

We now require the assignments of positions and tiles
to be consistent in a minimal model to satisfy respective
subgoal-concepts Subgoal1 and Subgoal2. More formally,
regarding positions, we aim for the following claim:

Claim 2. Let I be a minimal model ofK s.t. aI ∈ SubgoalI1 .
Then, for every d ∈ NodeI , there exists a unique p ∈ Pos,
that we denote pos(d), such that (d, ap) ∈ posI . Further-
more, for every d, e ∈ NodeI , the following properties hold:

1. if (d, e) ∈ hI , then pos(d) h pos(e);
2. if (d, e) ∈ vI , then pos(d) v pos(e);
3. for every h-v-path d0, r1, d1 . . . , rn, dn of nodes

from a, there exists (a potentially longer) one
d0, r1, d1 . . . , rn, dn, . . . , rn+k, dn+k, with k ≥ 0,
and such that pos(dn+k) = NE;

4. if pos(d) = NE, then d /∈ (∃h)I and d /∈ (∃v)I .

To achieve the above, we add the rules in Figure 2. In-
tuitively, we ensure that Subgoal1 can only be obtained if a
concept GoodP is seen at the root a, which is identified with

a dedicated assertion Root(a). To derive GoodP at a given
node e, we require all its node successors (there are at most
two, due to Claim 1) to already satisfy GoodP and for their
respective positions to be valid successors of the position of
e. In particular, nodes with position NE trivially satisfy this
condition as they expect no successors. Note that this also
guarantees Point 3 in the above claim, as nodes along ar-
bitrary long h-v-path of nodes starting from a need not to
satisfy GoodP.

We denote H the set of pairs of tiles (t, t′) ∈ T × T such
that the right color of t is the same as the left color of t′, so
that (t, t′) ∈ H iff t is a valid immediate left-neighbor of t′.
Similarly, we denote V the set of pairs of tiles (t, t′) ∈ T×T
such that the top color of t is the same as the bottom color
of t′. With rules similar to those on Figure 2, we can ensure
consistency of the tiling if the concept Subgoal2 is satisfied,
which is summarized in the following claim:

Claim 3. Let I be a minimal model ofK s.t. aI ∈ SubgoalI2 .
Then, for every d ∈ NodeI , there exists a unique t ∈ T , that
we denote tile(d), such that (d, at) ∈ tileI . Furthermore,
for every d, e ∈ NodeI , the following properties hold:

1. if (d, e) ∈ hI , then (tile(d), tile(e)) ∈ H;

2. if (d, e) ∈ vI , then (tile(d), tile(e)) ∈ V ;

3. if pos(d) ∈ Pos \ {C}, then tile(d) has color b on the
corresponding pos(d)-border(s).

It now remains to address the main problem that is how
to guarantee that, in minimal models satisfying Goal, the h-
v-paths of nodes from a collapse into an actual grid. The
idea is to force the satisfaction of a concept X somewhere
along one of these h-v-paths. If this instance of X is placed
on a node e where paths are forming the intended grid, that
is e is both the h-v- and the v-h-successor of an element d,
then it triggers a flooding concept Flood. The concept Flood
then propagates along all h-v-paths and makes the concept
X also satisfied everywhere, following the intuition already
highlighted in Example 3. If a model does not feature a
proper grid, then the flooding can be avoided by placing X
somewhere the paths are not closing as a grid. Thus, a min-
imal model that does not feature a grid is not flooded. On
the other hand, if a minimal model features a proper grid,
then it is impossible to avoid the flooding and in particular,
Flood holds at a. We can thus use the conjunction of Root
and Flood as the final goal.

We now explain how to force the placement of X by
‘guessing’ an h-v-path of nodes from the root. Being along
that path is represented by a concept PX, and we force the
root a to satisfy this concept as soon as the previous subgoals
are satisfied with the axiom:

Root u Subgoal1 u Subgoal2 v PX

Now, if a node satisfies the concept PX, and depending on
its own position, it either satisfies X or propagates the con-
cept PX either horizontally or vertically. Three of the corner
positions actually have no choice (e.g. the north-east corner
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∃pos.p v HGoodP for p ∈ {SE,E,NE} ∃pos.p u ∃h.(GoodP u ∃pos.p′) v HGoodP for p, p′ ∈ Pos s.t. p h p
′

∃pos.p v VGoodP for p ∈ {NW,N,NE} ∃pos.p u ∃v.(GoodP u ∃pos.p′) v VGoodP for p, p′ ∈ Pos s.t. p v p
′

HGoodP u VGoodP v GoodP GoodP u Root v Subgoal1

Figure 2: Additional rules to guarantee consistent positions.

cannot propagate any further thus must satisfy X):

PX u ∃pos.NE v X

Node u PX u ∃pos.NW v ∃h.(Node u PX)

Node u PX u ∃pos.SE v ∃v.(Node u PX)

For the remaining positions, the possible options are repre-
sented by dedicated s-successors as follows:

∃pos.p u PX v ∃s.isX for p ∈ {C,N,E}
∃pos.p u PX v ∃s.H for p ∈ {C,N, S,W, SW}
∃pos.p u PX v ∃s.V for p ∈ {C,E, S,W, SW}.

The choice is then made via an extra s-successor that may
or may not collapse with the possible options: for p ∈ Pos \
{NE,NW, SE}, consider the axioms:

∃pos.p u PX v ∃s.Ch
∃s.(Ch u isX) v X

Node u ∃s.(Ch u H) v ∃h.(Node u PX)

Node u ∃s.(Ch u V) v ∃v.(Node u PX)

Note that the two latter axioms could justify additional in-
stances of roles h and v. However, due to Node u PX being
more specific than Node, Claim 1 still holds.

It is crucial that the (up to 3) s-successors above, carrying
the different possibilities isX, H, V, do not collapse together.
To prevent this, we use an error-detection mechanism that
reports back to the root a, via the following axioms:

∃s.(isX u H) v Err ∃s.(isX u V) v Err ∃s.(H u V) v Err

∃h.Err v Err ∃v.Err v Err.

If the error concept holds at a, we force the model to col-
lapse in a way that cannot satisfy the final goal predicate.
This is achieved by introducing an auxiliary element c that
could act as an horizontal and vertical successor node for a,
except that c misses the concept name Node. Consider the
following assertions:

h(a, c), v(a, c),PX(c), pos(c, c), tile(c, c),Any(c), spy(c, a).

Now the trick is to promote c to be a node whenever Err
holds on a, which is achieved by the axiom ∃spy.Err v
Node. Notice that the interpretation I0 obtained by in-
terpreting every predicate as in the ABox, except for
NodeI0 := {a, c}, is a model of K. Therefore, in a min-
imal model I, if the error predicate is to be seen along a
h-v-path of nodes from a, then it triggers the concept Err on
a, thus c is an instance of Node and therefore I0 ⊆ I , thus
I = I0 by minimality of I. We summarize this latter trick
in the following claim:

a
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Root

◦V,Ch
◦H
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Figure 3: A part of the South-West corner of a model. Dashed
arrows represent the role pos. Instances of the concept Node are a
and the •-anonymous elements. This small portion fails to collapse
as a proper 3×2 grid. Instances of PX can thus follow the defective
v-h-h-path to place concept X in a way that avoids flooding.

Claim 4. If I is a minimal model of K, then (isX u H)I =
(isX u V)I = (H u V)I = ∅.

We now trigger the flooding as previously described, with
the axiom: ∃h.∃v.Xu∃v.∃h.X v Flood. Figure 3 illustrates
how X can be placed to avoid triggering this latter rule if
the model does not close as a grid. Now, propagating Flood
back to a is easily performed by the axioms:

∃h.Flood v Flood ∃v.Flood v Flood.

This propagates the flooding predicate to nodes along the h-
v-path back to a, but not to all nodes along all h-v-paths. To
achieve this latter part, recall that Point 3 of Claim 2 guaran-
tees that, wherever we are on a path, there is always a further
node with position NE, i.e. a node that is connected to aNE

by role pos. We can thus ensure that Flood propagates to
every node by adding the following assertion and axiom:

aux(aNE, a) ∃pos.(∃aux.Flood) v Flood.

As announced, we now require Flood to “flood” the model
by making all the X-related concepts and choices satisfied:

Flood v X u PX

∃pos.p u Flood v ∃s.(isX u Ch) for p ∈ {C,N,E}
∃pos.p u Flood v ∃s.(H u Ch) for p ∈ {C,N, S,W, SW}
∃pos.p u Flood v ∃s.(V u Ch) for p ∈ {C,E, S,W, SW}
We conclude the construction of the KB K by adding the
axiom Flood u Root v Goal. Before proceeding to prove
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the reduction, it is useful to state one last property that sum-
marizes some basic properties of minimal models of K and
highlights the effect of the latter flooding axioms:

Claim 5. Let I be a minimal model of K. Then concept
names from {Root}∪Pos∪T , as well as role names spy and
aux are interpreted as specified in the ABox. Furthermore, if
aI ∈ GoalI , then SubgoalI1 = SubgoalI2 = GoalI = {aI}
and NodeI = FloodI .

We can now prove that the reduction is correct.

Claim 6. (T, b) ∈ RECTTILE iff there exists a minimal
model of K that satisfies Goal.

Proof sketch. The (⇒) direction is the easier one. From the
tile assignment σ of a finite rectangle, one can define a corre-
sponding model I that satisfies concept Goal and features an
actual grid, with in particular NodeI = FloodI . The mini-
mality of I, and notably the necessity of NodeI = FloodI ,
is then established by arguing that the flooding cannot be
avoided due to I encoding a proper grid. Thus, wherever X
is placed, it always triggers the flooding.

The (⇐) direction is more involved. From a minimal
model I that satisfies Goal, we identify in I a valid tile as-
signment on a finite rectangle. To do so, we say that an
element d ∈ NodeI has coordinate (i, j) if there exists a
h-v-path d0, r1, d1 . . . , rn, dn of nodes from a with dn = d
and such that there are exactly i−1 occurrences of h and j−1
of v in r1, . . . , rn. Note that, by Claim 1, each d ∈ NodeI

has at least one such coordinate. We then check that if two
elements in I share a coordinate, then they are equal, which
is the key of our construction. This is argued by contradic-
tion: assume there are two h-v-paths d0, r1, d1 . . . , rn, dn
and e0, s1, e1 . . . , sn, en of nodes from a, that both take the
same numbers i of h-edges and j of v-edges, but dn 6= en.
We prove there is a 1 ≤ k ≤ n such that, placing the one
necessary instance of X at dk, we obtain a model J ofK that
avoids flooding, thus contradicting the minimality of I.

4 Acyclicity to the Rescue
In the light of Theorem 1, is there any hope for minimal
model reasoning in DLs? In our search for positive results,
we look for inspiration in pointwise circumscription, where
decidability results have been obtained for rather expressive
fragments of ALCIO known to be undecidable in classi-
cal circumscription, notably including cases where roles are
minimized. Pointwise circumscription coincides with stan-
dard circumscription for large classes of acyclic TBoxes,
suggesting that terminological cycles may play a key role
in the infeasibility of minimization. This is also supported
by the heavy use of cyclic inclusions in our undecidability
proof. We thus turn our attention to acyclicity notions, and
find that the excursion is fruitful: minimal model reasoning
becomes much more manageable for acyclic TBoxes.

4.1 Strong Acyclicity
Following (Di Stefano and Šimkus 2024), for an ALCIO
concept C in negation normal form (NNF), we define the

sets Occ+(C) and Occ−(C) of predicates that occur in C
positively and negatively, respectively:

Occ+(A) = Occ−(¬A) = {A} with A ∈ NC

Occ+(¬A) = Occ−(A) = ∅ with A ∈ NC

Occ+({a}) = {{a}} Occ−({a}) = ∅ with a ∈ NI

Occ±(C ◦D) = Occ±(C)∪Occ±(D) ◦ ∈ {t,u}
Occ+(∃r.C) = {r} ∪Occ+(C)

Occ−(∃r.C) = Occ−(C)

Occ+(∀r.C) = Occ+(C)

Occ−(∀r.C) = {r} ∪Occ−(C)

We let Occ±(C v D) = Occ±(NNF (¬C tD)) for a con-
cept inclusion C v D and ± ∈ {+,−}. The dependency
graph DG(T ) of an ALCIO TBox T has as nodes all the
concept names and role names and all concepts of the form
{a} or > that appear in T , and there is an edge from P1 to
P2 if P1 ∈ Occ−(α) and P2 ∈ Occ+(α) for some α ∈ T .
We say that T is strongly acyclic if DG(T ) is acyclic and
no node is reachable from >.

This notion can be seen as a generalization of the one usu-
ally considered for terminologies (Baader and Nutt 2003)
which is satisfied, for example, by the well-known medi-
cal terminology SNOMEDCT. Under the classical seman-
tics, terminologies often rely on concept-equivalences and
are therefore cyclic TBoxes. If we take the definitions in a
terminology A .

= C as inclusions C v A, we may regain
acyclicity (and may enjoy lower complexity). Example 4 il-
lustrates that, under the minimal model semantics, keeping
only one of the two directions might be innocuous since the
other inclusion is enforced by predicate minimization.
Example 4. A patient has been diagnosed with pneumoco-
niosis, which can be caused by various organic dust types;
some types are very serious. Baritosis is caused by barium
dust, as stated in the following Snomed CT definition:1

Pneumoconiosis u ∃caus agent.Barium Dust v Baritosis

Under the classical semantics, there are models where the
patient is diagnosed with baritosis due to a causative agent,
barium dust, that is not justified in a real finding but simply
made true to cause the baritosis diagnosis. In the minimal
models, in contrast, baritosis can only be diagnosed on the
basis of justified clinical findings.

Standard circumscription has been studied for acyclic ter-
minologies (Bonatti, Lutz, and Wolter 2009), but unlike in
our setting, acyclicity does not help reducing the complex-
ity. Reasoning about general ALCIO KBs can be reduced
to acyclic ones, but the reduction uses varying predicates.

Despite their restrictions, acyclic TBoxes are quite ex-
pressive, and strongly acyclic EL can force minimal models
satisfying a concept of interest to have an exponential size,
as illustrated by Example 5. We later show that this expo-
nential size is also sufficient, in the sense that every concept
satisfiable in a minimal model also is in one with exponential
size, and this even for the relaxed notion of weak acyclicity.

1Based on https://pmc.ncbi.nlm.nih.gov/articles/PMC4422531/
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Example 5. To generate a binary tree with 2n leaves, con-
sider the assertion L0(a) and axioms Li v ∃ri.Li+1 u
∃li.Li+1 for all 0 ≤ i < n. We want to enforce all leaves to
be different objects in minimal models that satisfy a concept
of interest. For this, we add axioms that attempt to produce a
second tree starting from its leaves. The latter are identified
by concept L′0, which is made available at leaves of the first
tree via Ln v L′0. Further levels of the second tree, towards
its root, are generated with the two assertions Left(o) and
Right(o′) and the following axioms for 0 ≤ j < n:

L′j v ∃pick.> L′j u ∃pick.Left v ∃l′j .L′j+1,l

L′j+1,l u L′j+1,r v L′j+1 L′j u ∃pick.Right v ∃r′j .L′j+1,r

A minimal model of this strongly acyclic EL KB can only
satisfy the concept L′n (representing the root of the second
tree) if its interpretation of the first tree produces at least 2n

instances of Ln, i.e. of L′0.
Before moving to the complexity results, we provide an-

other illustrative example: in strongly acyclic EL we can as-
sign truth values to objects and compare these assignments.
This trick will be useful in the hardness proofs below.
Example 6. Consider the ABox with assertions N1(a),
N2(b), T(v1), F(v2), and the strongly acyclic EL TBox with
the following axioms, for i ∈ {1, 2} and C ∈ {T,F}:

Ni v ∃val.TV N1 v ∃read.>
∃val.C v C ′ C ′ u ∃read.(N2 u C ′) v Goal

The nodes a and b each pick a truth value via role val, which
is copied to the node as T′ (resp. F′) only if it is T (resp.
F). The node a then reads the value at some object via role
read, and the Goal concept is satisfied exactly when a reads
the value at b (the only instance of N2 in a minimal model is
b) and they both picked the same truth value.

Strongly Acyclic EL and Pointwise Circumscription.
To show the decidability of strongly acyclic ELIO⊥ we rely
on results on pointwise circumscription (Di Stefano, Ortiz,
and Simkus 2023), a local approximation of standard cir-
cumscription where minimization is allowed only locally, at
one domain element. In our definition of minimal models,
predicates are minimized globally, across the entire interpre-
tation. In pointwise circumscription, we refine the relation⊆
by only considering pointwise comparable interpretations.
Definition 2 (Pointwise Comparison). Given interpretations
I and J , we write I ∼• J if there exists e ∈ ∆I such that:
(i) for all A ∈ NC, AI ∩∆ = AJ ∩∆, and
(ii) for all r ∈ NR, rI ∩ (∆×∆) = rJ ∩ (∆×∆),

where ∆ = ∆I \ {e}.
Definition 3 (Pointwise Minimal Model). Given a KB K, a
model I is pointwise minimal if there exists no J ( I such
that J |= K and J ∼• I.

To emphasize the difference, we sometimes refer to min-
imal models in the sense of this paper as globally minimal
models. In general, the set of pointwise minimal models
does not coincide with the set of globally minimal models.

Example 7. Let K := ({∃r.A v A}, {r(a, b), r(b, a)}). The
interpretation I such that ∆I = {d, e}, aI = d and bI = e,
AI = {d, e} and rI = {(d, e), (e, d)} is a pointwise mini-
mal model of our EL KB K that is not globally minimal.

Pointwise circumscription has better computational prop-
erties than standard circumscription. The modal depth of a
KBK, denoted with md(K), is defined as the maximal num-
ber of nested quantifiers occurring in K. When all roles are
minimized, concept satisfiability is complete for NExp in the
fragmentALCIOd≤1 ofALCIO with modal depth one (Di
Stefano, Ortiz, and Simkus 2023). In contrast, the problem
is undecidable for full ALCIO.

Standard normalization techniques (Baader et al. 2017)
do not preserve minimal models ofALCIO KBs in general,
but they do for ELIO⊥ KBs.
Proposition 1. Any KBK in ELIO⊥ can be transformed in
polynomial time into an KBK′ in ELIO⊥ with md(K′) ≤ 1
such thatK′ is a conservative extension ofK under the mini-
mal model semantics; moreoverK′ preserves strong acyclic-
ity and weak acyclicity (the latter is defined in Section 4.2).

For strongly acyclic KBs in ALCIOd≤1, minimal mod-
els and pointwise minimal models coincide (Di Stefano and
Šimkus 2024). We thus inherit the following result.

Theorem 2. MINMODSAT in strongly acyclic ALCIOd≤1

is in NExp.
The complexity result of Theorem 2 applies to strongly

acyclic ELIO⊥ without restrictions on the modal depth.
Theorem 3. MINMODSAT in strongly acyclic ELIO⊥ is
in NExp.

Proof. Let ELIOd≤1
⊥ be the fragment of ELIO⊥ where

concept expressions have modal depth at most one. Point-
wise minimal satisfiability in ELIOd≤1

⊥ is in NExp. In
strongly acyclic ELIO⊥, the set of pointwise minimal mod-
els coincides with the set of minimal models. The claim then
follows from Proposition 1.

Theorem 4. MINMODSAT in strongly acyclic EL is NExp-
hard.

Proof sketch. We provide a reduction from the torus tiling
problem (Tobies 1999) to MINMODSAT. Using the con-
struction in Example 5, we construct a K and a goal concept
Goal such that the satisfaction of Goal in a minimal model
I ensures that: (1) in I we can embed a tree of depth 2n,
where each leaf encodes (in binary) a pair of coordinates
(x, y), with 0 ≤ x, y ≤ 2n − 1; (2) a torus is embedded in
the leaves of the tree in a way such that the horizontal and
vertical successors respect the tiling conditions. To achieve
the latter desiderata, we construct a subgoal concept G2n en-
suring that each leaf encoding the pair (x, y) has as horizon-
tal successor the pair (x+ 1, y) and as vertical successor the
pair (x, y+1). To check that G2n is satisfied at all the leaves,
we propagate a concept LeafGrid back to the root, using the
following axioms:

∃li.Gi+1 u ∃ri.Gi+1 v Gi with 0 ≤ i < 2n

G0 v LeafGrid
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where the roles li and ri are as in Example 5. In a minimal
model, LeafGrid is satisfied at the root of the tree if G2n is
satisfied at all the leaves.

4.2 Weak Acyclicity
We now define weak acyclicity, which is an important notion
for TGDs in the database literature. We refine the above
notion by annotating some edges in DG(T ) as ?-edges. For
a concept C in NNF , we define:

Occ+∃ (A) = Occ+∃ (¬A) = ∅ with A ∈ NC

Occ+∃ ({o}) = ∅ with a ∈ NI

Occ+∃ (C ◦D) = Occ+∃ (C)∪Occ+∃ (D) ◦ ∈ {t,u}
Occ+∃ (∃r.C) = {r} ∪Occ+(C)

Occ+∃ (∀r.C) = Occ+∃ (C)

We let Occ+∃ (C v D) = Occ+∃ (NNF (¬C t D)) for a
concept inclusion C v D. In DG(T ), there is a ?-edge
from P1 to P2 if for some α ∈ T , P1 ∈ Occ−(α) and
P2 ∈ Occ+∃ (α). Notice that for all C, we have Occ+∃ (C) ⊆
Occ+(C), and thus all ?-edges are also basic edges. We call
a TBox T weakly acyclic if there is no cycle in DG(T ) that
goes through an ?-edge and no node is reachable from > in
DG(T ). Clearly, every strongly acyclic TBox is also weakly
acyclic. The EL TBox in Example 7 is weakly acyclic but
not strongly acyclic.

Fortunately, even for weakly acyclic ELIO⊥, we can al-
ways find a model whose size is at most single exponential.

Lemma 1. Weakly acyclic ELIO⊥ has the small model
property: if a concept C is satisfied in some minimal model
of K = (T ,A), then it is satisfied in a minimal model J
whose domain has size bounded by |NI(K)|(|T |2|T |)|T |.

Proof sketch. Let I be a minimal model of K satisfying a
concept C. It suffices to prove that its active domain i.e. the
subset of elements from ∆I that occur in the interpretation
of at least one concept or role name, has the claimed size.
Since no node is reachable from > in DG(T ), every single
fact in I somehow stems from the individuals occurring in
K. We thus start from those and track which successors they
might require based on their types, i.e. the combinations of
concepts they satisfy in I. For example, an element a with
type {A} requires an r-successor with type containing B if
T has an axiom A v ∃r.B; since I is a model, there ex-
ists such a successor e. Now, instead of directly iterating the
above by looking at the type of e in I (say, {A,B}), we first
restrict this type to the concepts that are reachable from A
via at least one ?-edge of DG(T ) (for element e, we thus
restrict its type {A,B} to {B}). Indeed, no such concept
can further require A: it would form a cycle in DG(T ) go-
ing through the said ?-edge, contradicting T being weakly
acyclic. Therefore, the restricted types we successively con-
sider become empty after at most |DG(T )| iterations. In
particular, the number of reached elements is bounded as de-
sired; and the restriction of I to these elements is a model,
which must be the active domain of I as I is minimal.

This lemma is our key to deriving tight complexity bounds
for the weakly acyclic setting.

Theorem 5. MINMODSAT in weakly acyclic ELIO⊥ is
NExpNP-complete. The lower bound holds already for EL.

Proof sketch. The upper bound immediately follows from
Lemma 1. Indeed, we can use a naive procedure that
“guesses” an exponentially large candidate model I of the
input KB, and checks for the non-existence of a model
J ( I using an NP oracle.

For the lower bound, we provide a reduction from (the
complement of) succinct CERT3COL (Eiter, Gottlob, and
Mannila 1997) to MINMODSAT. Our reduction combines
the ideas behind Example 3, using flooding, and those il-
lustrated in Examples 5 and 6 that allow us to succinctly
represent the exponentially large graph. We construct a
weakly acyclic KB K in EL and define some subgoal con-
cepts which are needed for the goal concept to be satisfied,
and use them as in Example 5 to ensure that in every mini-
mal model we can find the following trees:
•A tree TC per each colorC ∈ {R,G,B} of depth n, where
each leaf corresponds to a vertex of the input graph with a
color assignment. Using a minimality argument, we ensure
that such trees have disjoint sets of leaves.
•A tree TG of depth nwhere each leaf corresponds to a node
of the input graph. We craft a subgoal concept Col that must
be satisfied at each leaf of TG. The subgoal Col ensures that
(a) each leaf in TG is connect to the leaf in TC corresponding
to the same node in the graph, for each C ∈ {R,G,B};
(b) at least one of the leaves is marked as the chosen color.
• A tree TV of depth 2n where each leaf corresponds to a
variable vi,j . By crafting a dedicated subgoal concept, that
must be satisfied at each leaf of TV , we ensure that each
variable has a unique truth assignment.
• A large tree TF , of depth 6n+ 2, where each leaf encodes
a tuple (u, v, x, y, σ1, σ2) where: u, v are vertexes in the in-
put graph G, x, y are variables and σ1, σ2 ∈ {0, 1} (polar-
ities of the variables). Each (u, v, x, y, σ1, σ2) represents a
possible edge in the input graph G. Simulating the compu-
tation of a family of circuits (following (Bonatti, Lutz, and
Wolter 2009)), we mark the leaves of TF corresponding to
real edges in the graph G.

We construct two subgoal concepts that are satisfied if
each leaf encoding (u, v, x, y, σ1, σ2) connects via dedi-
cated roles to the leaves corresponding to u, v (in TG) and
x, y (in TV ), as in Example 6. Using these role connections,
the leaves in TF import the color and truth assignments.
By evaluating the clause encoded in each (x, y, σ1, σ2), we
mark the leaves in TF corresponding to true edges in G. If a
bad color assignment is detected, the structure gets flooded
similarly to Example 3. In particular, all the leaves of TC ,
for each C ∈ {R,G,B} are marked as chosen. A concept
Flood is then propagated at all the leaves of TF . In particu-
lar, the satisfaction of Flood forces the leaves to be assigned
to all colors. Instead of checking the satisfaction of each
subgoal Goal at the (exponentially many) leaves, we trans-
fer the check to the root of the corresponding tree as follows:

∃lj .Goal u ∃rj .Goal v Goal for all 0 ≤ j ≤ tree depth
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In a minimal model, the subgoal Goal is satisfied at the root
of the tree if and only if Goal is true at each leaf. We con-
struct a final goal concept that is satisfied in a minimal model
if all the roots of the different trees satisfy their respective
goals. We emphasize that the propagation of the Flood con-
cept requires axioms that are not strongly acyclic.

Data Complexity We also look at the data complexity of
MINMODSAT under acyclicity restrictions.

Theorem 6. MINMODSAT for weakly acyclic ELIO⊥ is
ΣP

2 -complete in data complexity. The lower bound applies
already to EL.

Proof sketch. For the upper bound we use Lemma 1. As-
suming that the TBox is fixed, if there exists a minimal
model I of (T ,A) that satisfies a concept C of interest,
then there exists such an interpretation J whose domain is
bounded by c× |NI(K)|, where c is a constant that only de-
pends on T . In other words, the size of J that witnesses C
is polynomial in the size of A. Note that, given a candidate
J as above, we can use NP oracle to check whether J is
(non-)minimal. This yields the ΣP

2 upper bound.
For the lower-bound, we can mainly use the reduction that

was described in Example 3. Specifically, we need to simu-
late the inclusions V v T tF andN v C1tC2tC3, which
are not allowed in EL. Instead, we can use inclusions of the
form A v ∃r.B, which contain a “hidden” disjunction via
existential quantification.

5 Minimal Models in Related Formalisms
We make a very brief excursion into the DL-Lite family, and
briefly discuss our results in the setting of databases with
tuple-generating dependencies (TGDs). We also look at the
impact of the UNA on minimal model reasoning in EL.

5.1 DL-Lite
We did not study DL-Lite in this paper, and the feasibility of
MINMODSAT in this family of DLs remains an intriguing
question for future work. We only present one interesting
result that hints that the problem will not be easy. In very
stark contrast to the previously known NL-membership for
MINMODSAT in DL-Litecore (Bonatti et al. 2023), already
in DL-Litehornwe have ExpSpace-hardness.

Theorem 7. MINMODSAT in DL-Litehorn is ExpSpace-
hard.

We believe that this bound, proved by reducing the accep-
tance problem of a Turing machine with exponential space,
is likely to be tight, but leave the question for future work.

5.2 Tuple Generating Dependencies
EL without > can be seen as a small fragment of Tuple
Generating Dependencies (TGDs), which are prominent in
the Database Theory literature (see, e.g., (Fagin et al. 2005;
Calı̀, Gottlob, and Pieris 2012). Thus our lower bounds carry
over to minimal model reasoning in TGDs, for problems like
brave entailment of an atom, or for checking non-emptiness
of a relation in some minimal model of a database and input

TGDs. Specifically, an EL TBox without > can be con-
verted into the so-called guarded TGDs with relations of ar-
ity at most 2. Minimal model reasoning over TGDs has been
explored in (Alviano, Morak, and Pieris 2017), where an un-
decidability result was achieved using relations of arities up
to 4 in the context of the stable model semantics. Our Theo-
rem 1 implies that checking the existence of a stable model
for normal guarded TGDs is undecidable already for theo-
ries of the form Σ ∪ {¬g(~t) → ⊥}, where Σ has negation-
free guarded TGDs with relations of arity ≤ 2, and g(~t) is a
ground atom. Similarly, our ΣP

2 lower bound in data com-
plexity can be used to improve the ΠP

2 lower bound in (Al-
viano, Morak, and Pieris 2017), that relies on predicates of
arity > 2, for weakly acyclic TGDs with stable negation.

5.3 EL without the UNA

Finally, we make an interesting observation about the role
of the UNA in the presented results. Our hardness proofs all
rely on the UNA, and use at least two individuals that must
be interpreted as different objects in the domain. This is no
coincidence: if we drop the UNA, MINMODSAT in ELIO
and EL is not only decidable, it is even tractable.

Theorem 8. MINMODSAT in ELIO is P-complete; the
lower bound holds already for EL.

Even without the UNA, some concepts may not be satisfi-
able in a minimal model, but an ELIO KB now has a ‘rep-
resentative’ minimal model with just one element. This rep-
resentative model can be computed in polynomial time via a
fixpoint computation akin to building a minimal model of a
propositional definite Horn logic program. The lower bound
also follows easily from the latter setting.

6 Conclusion
We have explored the challenges of reasoning with mini-
mal models in description logics, and shown that enforc-
ing minimality across all predicates leads to undecidability
even in the lightweight EL. This directly implies that mini-
mal model reasoning in very restricted fragments of guarded
TGDs with predicate arities ≤ 2 is also undecidable. Strong
and weak acyclicity conditions allowed us to regain decid-
ability and establish tight bounds on combined and data
complexity in EL, ELIO, and even a fragment of ALCIO.
Some of these bounds are inherited for the recently studied
setting of pointwise circumscription, providing further ev-
idence that local, pointwise minimization is about the best
we can do if we are interested in minimal models in DLs.
It remains to be explored whether acyclicity conditions and
pointwise minimization might also be useful in the richer
setting of TGDs. One of the most intriguing avenues left
open for further investigation is DL-Lite: we know that
minimization is almost for free in DL-Litecore, but makes
reasoning ExpSpace-hard for its extension DL-Litehorn. We
hope that this variant and even more expressive extensions
like DL-Litebool may be decidable, and plan to look for tight
matching complexity bounds.
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