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Abstract

We introduce linear-time temporal logics with past operators
featuring a simple assignment modality that performs local
changes on the models. Such structures are infinite sequences
of valuations interpreting variables by elements from a possi-
bly infinite data domain. We study several fragments as well
as the case with the Boolean domain, for which we estab-
lish that it is actually as expressive as first-order logic over
infinite sequences of propositional valuations. For the logics
over concrete domains N, Z and Q equipped with the respec-
tive linear ordering and equality tests, we show the satisfia-
bility problem is decidable, and that the logics are as expres-
sive as the version without the assignment operator. Interest-
ingly, this entails such assignments provide a huge concise-
ness, which is then helpful for succinct specifications.

1 Introduction

Temporal logics with concrete domains. Enriching mod-
els with data values is a natural process that has led to the
study of logics over the so-called concrete domains. In
such logics, constraints about the data values are part of the
formulae. Prominent examples include description logics
with concrete domains, see e.g. (Lutz 2002a; Lutz 2002b;
Labai, Ortiz, and Simkus 2020; Baader and Rydval 2022),
temporal logics with concrete domains, see e.g. (Balbiani
and Condotta 2002; Carapelle 2015), and more recently
the so-called LTL modulo theories, see e.g. (Felli, Montali,
and Winkler 2022; Cimatti et al. 2022; Geatti et al. 2023;
Geatti, Gianola, and Gigante 2025; Beutner and Finkbeiner
2025). Considering data values is a natural perspective to
reason about concrete information (like a person’s age or
the distance between two locations), see the seminal pa-
per (Baader and Hanschke 1991), and about data struc-
tures in general (a string, a record, etc). This frame-
work hosts many decision problems such as satisfiability,
model-checking, realizability and runtime monitoring, to
cite a few examples, see e.g. (Bhaskar and Praveen 2024;
Faella and Parlato 2024; Rodriguez and Sanchez 2024;
Gianola, Montali, and Winkler 2025).

Changing models. While the generalisation of proposi-
tional variables to constraints interpreted on domains better
reflects the ubiquity of data structures, other investigations
deal with the ability to modify the models, such as in public
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announcement logics (Lutz 2006), in sabotage modal log-
ics (Aucher, van Benthem, and Grossi 2018), in alternating-
time temporal logics (Catta et al. 2024; Galimullin et al.
2025) or in modal logics with graph modifiers (Aucher et
al. 2009; Areces, Fervari, and Hoffmann 2015). Other ap-
proaches focus on updating the value of a variable, as e.g. in
formalisms with the freeze binding mechanism. Typically,
a formula |,._, ¢ states that freezing the current value of
x in the register 7, makes ¢ true. This mechanism can be
traced back to works about real-time logics, see e.g. (Alur
and Henzinger 1994), modal hybrid logics, see e.g. (Areces
and ten Cate 2007), logics for data trees, see e.g. (Figueira
2010), and modal logics with A-abstraction (Fitting 2002).

Our motivations. In this paper, we aim at understanding
logical formalisms that combine theory reasoning with the
ability to update the model atomically and locally by replac-
ing a value at the current position by a local value (available
at bounded distance). Typically, we would like to handle
properties of the form “after replacing the current value of x
by the previous value of y, the formula o holds true.” From
the perspective of formal verification of programs, it is nat-
ural to consider methods in which explicit assignments to
variables are allowed. With a similar goal in mind, differ-
ent approaches on this problem have been proposed, such
as the Dynamic Logics with Propositional Assignments, a
family of logics designed to reason about different men-
tal/cognitive attitudes, including planning scenarios (Herzig,
Maris, and Vianey 2019), and belief revision models (Herzig
2014). Another example is that of (Belardinelli et al. 2023;
Belardinelli et al. 2025), extending Epistemic Logic with
program assignments, tailored to modelling the global state
of a (partially observed) set of variables, unlike here in
which changes are local. Herein, we would like the assign-
ment operators to perform local changes in the models made
of w-sequences of valuations Var — D, where D is a do-
main equipped with relations. Unlike most assignments in
the literature with global effects, see e.g. (van Ditmarsch,
Herzig, and de Lima 2012; Galimullin et al. 2025), only
one value is changed at once. In our case, computational
difficulties arise because the domain D is possibly infinite
and the position ¢ € N where the replacement is performed
is not stored. We would like to design linear-time tempo-
ral logics modulo theories in which the assignment operator
leads to a decidable satisfiability problem. More generally,



Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

we investigate decidability, complexity and expressivity is-
sues for these logics. Consequently, while we aim at study-
ing formalisms that cannot be captured by Boolean abstrac-
tions (for instance with the domain N), we wish to express
concisely non-trivial model changes that inherently concern
data values and not the structure of the models as it is usu-
ally done, see e.g. (Aucher et al. 2009). By way of example,
to express the property “The formula ¢ does not hold but
changing somewhere the value of x by 0 and the value of y
by 1 leads to a model satisfying ¢”, the formula

—¢ A F((x:=0) (E(y:=1) P(=X'T A ©)))

could do the job assuming that E1) stands for Py v Fi), the
connective F is the standard sometimes operator from LTL
and P s its past counterpart. Above, =X T holds true only
at the origin of the model. As far as we know, no logical
formalism related to LTL modulo theories can express natu-
rally this simple property. Still, this can be encoded within
constraint PLTL (LTL with past) if the number of variables
is doubled by considering the original model and the variant
model after the two assignments. This works fine for this
property but it may happen that the number of changes to
be considered is unbounded, typically with a pattern of the
form G(x:=t). Moreover, doubling the number of variables
corresponds to an implicit existential second-order quantifi-
cation and we would like to express the property directly in
the native language (see a similar situation in (Wolper 1983,
Sec. 4) with the even property).

Our contributions. Concrete domains D) are defined as sets
equipped with relations. We introduce the logic PLTL-A(D)
(parameterised by D) that extends past-time linear-time tem-
poral logic PLTL(DD) (where atomic formulae are made of D-
constraints between local values), by adding unary modali-
ties as in (x:=X"y) ¢. The latter is read as “after the value
of the variable x is replaced by the local value for X"y (past
or future values of y depending whether n < 0), the formula
@ holds”. The variables are interpreted on the domain D.
We focus here on domains of the form (D, =, <, (=4)den),
where =, < are the corresponding equality and ‘less than’
relations, and =, is an equality test with respect to the con-
stant d. So typically, D € {{0,1},N,Z,Q}. Modalities of
the form (x:=d) for some d € D are also allowed. To the
best of our knowledge, data updates in logics with concrete
domains have been seldom investigated, see an interesting
example in (Bansal, Brochenin, and Lozes 2009) involving
separation logic and dynamic data structures.

After providing reductions from the satisfiability prob-
lem for PLTL-A(D) to the problem for interesting strict
fragments of PLTL-A(D) (typically by bounding the num-
ber of variables, or by restricting the shape of t in
(x:=t)), we start our investigations on the simple extension
PLTL-A({0,1}) of PLTL (also written PLTL™). We show
that PLTL™ is as expressive as PLTL by providing a transla-
tion into FO(w) and then evoking Kamp’s Theorem (Kamp
1968; Diekert and Gastin 2008; Rabinovich 2014). We show
that PLTLT is significantly more succinct than PLTL as we
prove that for every D € {{0,1},N, Z, Q}, the satisfiability
problem for PLTL-A(D) is Tower-hard (see (Schmitz 2016)
for the definition of the complexity class Tower). Indeed,
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the problem is PSpace-complete for PLTL(D). Moreover,
we show that for every D € {{0,1},N,Z,Q}, the satis-
fiability problem for PLTL-A(DD) is decidable. To do so,
we introduce a new first-order logic on multi-attributed data
words (that we actually believe interesting for its own sake,
see landmark logical formalisms in (Bojanczyk et al. 2011;
Jurdzinski and Lazi¢ 2011; Decker et al. 2014)) that can
express ‘local’ domain constraints from D (see Sec. 4.1).
We establish that the satisfiability problem for this logic
is decidable. The semantics for PLTL-A(ID) can be inter-
nalised in this new first-order logic, thus obtaining decid-
ability. It is worth noting that handling the concrete do-
mains N and Z is already notoriously difficult without as-
signment operators, see e.g. (Segoufin and Torunczyk 2011;
Labai, Ortiz, and Simkus 2020). Our results allow us to con-
clude that the new assignment operators add conciseness but
not expressivity. Finally, our results easily apply to variants
of PLTL-A(D), e.g. on finite traces, and for other concrete
domains including RCC8 and Allen’s interval algebra, just
to name a few examples.

2 PLTL With Constraints and Assignments

We start by introducing linear-time temporal logics extend-
ing LTL (Pnueli 1977; Gabbay et al. 1980) where propo-
sitional variables are replaced by symbolic constraints.
Herein, the models are w-sequences of valuations interpret-
ing variables by elements in the domain D, see e.g. (Balbiani
and Condotta 2002). Furthermore, modalities (x:=t) are
used to build formulae whose semantical counterpart is to
perform a local change in the models.

2.1 The logics PLTL-A(D)

Concrete domains. In what follows, a concrete domain is a
tuple (D, =, <, (=4)dep)> where ID is a non-empty set of el-
ements, = is the equality relation on D, and < is a total strict
ordering on . Moreover, =4 is interpreted as the singleton
set {d}, which is helpful to perform equality tests with re-
spect to the constant d. We often simply write D instead of
(D7 =, <, (:d)dE]D))~
Syntax. Let Var = {x,y,z,...} be a countably infinite set
of variables. The set of formulae for the logic PLTL-A(D) is
defined by the following grammar:
e, = X"~ Xy [ X"z =d | —p | o v | Xe | X
| U [ @S¢ | =Xy | (xi=d) o,
where x,y € Var, n,m € Z, ~ € {=,<},and d € D (el-
ements of the concrete domains N, Z, Q and {0, 1} are en-
coded in binary, and similarly for any other arbitrary domain
D considered in this paper). The expression X" (resp. X™)
with n > 0 stands for the sequence of length n made of the
symbol X (resp. X™) only. This corresponds to a unary en-
coding. Expressions of the form X"x are sometimes called
terms. Sometimes, we simply write Xx if n = 1, or just x

if n = 0, both in terms and assignments. Other operators

are defined as usual, in particular X"x # t £ —(X"x = t)

(with t € {X™y,d}), Fo £ TUy and Gy & —F—¢. Fi-
nally, for all n > 0, we write X" ¢ (resp. X" ) to denote a
sequence made of n temporal operators X (resp. xX1.
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Semantics. A model for PLTL-A(D) is amap o : N —
(Var — D). We write o(i)(x) to denote the value assigned
to the variable x at the position ¢. Let o be a model, and let
1 = 0, the satisfaction relation |- between o, 7 and formulae
is inductively defined as follows (below ~ € {=, <}):

def

il X"x ~X"y < i+n>=0,i+m>0and
o(t+n)(x) ~o(i +m)(y)
oilFX"x=d & i+n=0ando(i+n)(x)=d
7,0 I~ £ ity
ol @ vy o o,il-porao,il-y
0,1 IF X L si+tllirg
o0 - X1 < i>0ando,i—1IF¢
0,1 - Uy & 0,7 I ¢ for some j = i s.t.
o,klFeforalli <k <j
0,1 - @Sy & 0,7 |- forsome 0 < j < is.t.
o,klFeforallj <k <1
o,i - (x:=X"y)¢ & i+n>0and
olx =i o(i+n)(y)l il
ot - (xi=dy ¢ £ olx i d],il- e,

where o[x —; d](j)(y) = o(j)(y) if j # i or x is syntacti-
cally different from y, and o[x —; d](x)(i) = d. Note that
data values at distinct positions can therefore be compared.
A formula ¢ is satisfiable iff there is a model o such that
0,0 |- ¢. The interesting formulae (x:=X"y) ¢ are those
containing past-time operators in ¢ as the current position
may be revisited after the change of the value x.

Example 1. We provide here some examples of formulae.

1. The formula (x = 0 = G—p) A (x:=Xx) Fy states that
the current value of x equals 0 implies in the future ¢
never holds, but after updating the value of x by the value
of x at the next position, p holds eventually in the future.

2. The formula XG((x:=X"'x) ) states that always in the
future, changing the value of x to its previous value makes
© true.

3. Atomic formulae of the form X"x ~ X"y and X"x = d
are handy to express certain properties but we could re-
strict the language while keeping the same expressive
power. Indeed, X"x ~ X"y (resp. X"x = d) is logi-
cally equivalent to X" T A X™T A X" (x ~ X" "y) with
n < m(resp. X" (x = d)).

The satisfiability problem of PLTL-A(D) without assign-
ments, written PLTL(ID), has been well-studied.

Proposition 1. (Sistla and Clarke 1985; Balbiani and
Condotta 2002; Demri and Gascon 2008; Segoufin and
Toruriczyk 2011) For all the domains D € {{0,1},N, Z, Q},
the satisfiability problem for PLTL(D) is PSpace-complete.

2.2 Bounding syntactic resources

We present our decidability/complexity/expressivity results
by considering different fragments. We restrict the syntactic
resources in at least two ways, seldom simultaneously.

1. Bounding the number of variables is quite natural
(see Lemma 1), similarly to restricting the number of
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propositional variables in modal and temporal logics, see
e.g. (Halpern 1995) and (Spaan 1993, Thm. 5.4.6).

2. Bounding the term depth (i.e., the values n, m) in expres-

sions of the form X"x ~ X"y or X"x = d, or in assign-
ment operators (x:=X"y) allows us to compare or assign
values that are very close to the current position. Typi-
cally, the renaming technique can be used to reduce term
depth n to a value in {—1, 0, +1}, at the cost of introduc-
ing new auxiliary variables. If n € {—1,0, +1}, then we
say that (x:=X"y) is an adjacent assignment.

It is easy to eliminate assignments of the form (x:=d)
by adding a new variable y4, to require the satisfaction of
G(yq = d) and to replace (x:=d) by (x:=y4). In the se-
quel, whenever the number of variables is not bounded, we
do not need to make use of assignments of the form (x:=d) .

The following results state that we can restrict the number
of variables, without affecting complexity bounds.

Lemma 1. There is a logspace reduction from the satisfia-
bility problem for PLTL-A(DD) to its restriction to formulae
with one variable only.

The proof follows a standard pattern: we encode n vari-
ables into a sequence of length n with only one variable.
Thus, each position in a model for an arbitrary formula is
encoded as a sequence. The main challenge is to uniquely
identify where each sequence starts. This is done by “mark-
ing” each of such sequences with a prefix d"*2d’, where
d™*2 stands for n + 2 times the value d, and d’ # d. The
encoding of a valuation at a particular position has the fol-
lowing shape:

d" 2 d o(i)(x1) o(i)(x2) ... o(i)(xn)-
Thus, the only way of finding a sequence of n + 2 consecu-
tive values, followed by a value that is different from them,
is at the beginning of each sequence. It is worth noticing
that for this encoding, we only need the concrete domain D
to have at least two values, slightly improving the encoding
from (Demri, Lazi¢, and Nowak 2007, Prop. 4).

Example 2. Let us consider the following encoding, and
show how the translation works. Suppose we have three
variables x1, X2, X3, i.e., n = 3. Thus, o is encoded as:

asd df [agdga® d'al djs cT15d’d§d§ .

where the leftmost subsequence corresponds to position 0,
d; stands for o(i)(x;) qr'ld ds is a sequence made of five
copies of d. At each position, the single variable x stores the
respective value d;-. Suppose we want to perform the update
(x9:=X?x1) at position 2. This position is marked in the
encoding with an | below. The encoding of the assignment
results as X" (x:=X1%%) . It is easy to check that the involved
values are those inside a box.

Below, we consider another syntactic restriction by ad-
mitting only adjacent assignments but at the cost of allowing
two variables (instead of a single one earlier). The second
variable is used to carry a value over adjacent assignments.

Lemma 2. There is a logspace reduction from the satisfia-
bility problem for PLTL-A(D) to its restriction to formulae
at most two variables and adjacent assignments only.
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Observe that Lemmas 1 and 2 also hold for any concrete
domain D equipped with the equality relation and not neces-
sarily for domains of the form (D, =, <, (=4)4ep)- Indeed,
the proofs can be slightly adapted.

To conclude this section, after having manipulated
PLTL-A(D) formulae and the satisfaction relation for
PLTL-A(ID), it should be clear that the assignments of the
form {(x:=X"y) are only performed locally and the modi-
fied local value for x cannot be accessed directly all over
the models, unlike the effect of the freeze operator, see
e.g. (Figueira and Segoufin 2009).

3 Satisfiability Problem for PLTL-A({0, 1})

In this section, we investigate the decidability/complexity
status of the satisfiability problem for the logic
PLTL-A({0,1}) whereas Sec. 4 is devoted to the more
general case PLTL-A(D) with an arbitrary concrete do-
main . We provide elementary reductions between
PLTL-A({0,1}) and the first-order logic over w-words,
known to admit a Tower-complete satisfiability problem
and to be expressively equivalent to the linear-time temporal
logic PLTL (Kamp 1968). The class Tower introduced
in (Schmitz 2016) is closed under elementary reductions
and Tower-hardness captures non-elementarity. In order
to stick to the notations about PLTL, first we present the
logic PLTL™ defined as a syntactic variant of the logic
PLTL-A({0,1}) in which we directly manipulate proposi-
tional variables and where the assignment operator updates
their truth values. Hence, all the results presented below
about PLTL™ can be easily rephrased for PLTL-A({0, 1}).

Introducing PLTL™. Let Prop be a countably infinite set
of propositional symbols. The set of PLTL™ formulae is
defined by the following grammar:

e u=plov | —p|Xe| X o | pU | ¢Sy
| p:=X"p [ {p:=T)¢ | {p:=L),

where p,q € Prop and n € Z. A model for PLTL™ is a
map o : N — (Prop — {0,1}). Let o be a model and
1 = 0. The satisfaction relation |- between o and formulae
is inductively defined as follows:

def

0,i IFp < o(i)(p) =1

o, i l-<{p:=T)ep & olp—il],i -
cilk =Ly & alpri0lilkg
o,i - (p:=X"qd¢p & i+n>0and

olp =i o(i+n)(Q)]i - .

3.1 Hardness and first-order logic over w-words

In order to analyse the decidability/complexity status of
PLTL™, we need to introduce first-order logic over w-words.
Then, we will rely on results from (Stockmeyer 1974).

First-order logic FO(w). We use a signature containing
Prop (used as a countable set of unary predicate symbols),
two binary symbols < and = (standing for ‘less than’ and
‘equal’, respectively) and a function +1 standing for succes-
sor function. Models in FO(w) are models as for PLTL™.
The syntax of FO(w) is given by the following grammar:
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ppu=x=ylx<ylx=y+1|-plpvY|px)|Ixp.

Let o be a model, and let g : Var — N be a function that
assigns to each variable a position (called environment),
the satisfaction relation |- for FO(w) is defined as follows
(Boolean cases are omitted):

def

Ol-gxxy < g(x)xg(y) (forxe{=,<})
def

clhgx=y+1 < g(x)=g(y) +1
def

o I P(x) = o(g(x))(p) =1

o kg Ixp S thereis k = 0 such that & g @,

where ¢’ is exactly as g except that ¢’(x) = k. An FO(w)
formula ¢ is satisfiable iff there are a model o and a function
g such that o |-, .

It is shown in (Stockmeyer 1974, Thm. 5.2) that the
nonemptiness problem for star-free regular expressions can
be reduced in polynomial time to the satisfiability problem
for FO(w). By (Schmitz 2016, Sec. 3.1), the equivalence
problem SFEQ for star-free expressions (that can be reduced
to the nonemptiness problem) is Tower-complete. Con-
sequently, satisfiability problem for FO(w) is Tower-hard.
Moreover, FO(w) is a fragment of the monadic second-order
logic MSO over w-words and MSO formulae can be turned
into equi-expressive Biichi automata (Biichi 1962) with an
effective automaton construction. This entails a Tower-
membership for MSO satisfiability, and thus for FO(w).
Tower-hardness of FO(w) is used to show Tower-hardness
of the satisfiability problem of PLTL™.

Lemma 3. There is a logspace reduction from the satisfia-
bility problem for FO(w) to the one for PLTL™.

Proof. Let ¢ be an FO(w) sentence built over the
unary predicates pi,...,pg and the individual variables
X1, ...,Xq. Without any loss of generality, we can assume
that distinct quantifier occurrences use distinct variables. We
define a translation map t into PLTL™ using the auxiliary
propositional variables qi,...,q, such that ¢ is FO(w)-
satisfiable iff G(/A\j_, —q;) A t(p) is PLTL™ -satisfiable.
The role of each propositional variable q; is to hold true
at most at one position k, in order to encode the fact that the
variable x; is interpreted by the position k. Initially, q; does
not hold anywhere, which means that no value is assigned
to the variable x;. The translation t is homomorphic for
Boolean connectives and satisfies the clauses below.

e t(3x; ¢) “ E{q;:=T) t(¢) (Ex shortcut for Fx v Py),
* t(x = x;) S E(@ A qy)s b(x; = % +1) E E(q A Xay)-
* t(xi < x;) € E(as A XFay): t(pi(x;)) = E(pi A qy)-

In order to prove the correctness of the reduction, we intro-
duce a relation 0,g ~ o’ between an FO(w)-model o and
an environment g : {x1,...,%,} — N (partial function) and
an PLTL™ model ¢/ : N — ({p1,...,pg:q1,---,9a} —
{0,1}) satisfying the following clauses.

e Foralli e Nand j € [1, 3], o(i)(p;) = o'(3)(p;)-

e Let j € [1,a]. If the map g is defined on x;, then

o'(g(x;))(q;) = 1 and for all i # g(x;), 0'(i)(q;) = O.
Otherwise, forall i € N, ¢/(i)(q;) = 0.
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The following properties can be easily established and are
useful to complete the proof.

(P1) Given o and g : {x1,...,%o} — N, there is a unique
model ¢’ such that o, g ~ ¢’.

(P2) Giveno’ : N — ({p1,...,ps,q1,---,9a} — {0,1})
such that for all j € [1, «], there is at most one position
i € N such that ¢/(i)(q;) = 1, there are a unique model &
and environment g such that o, g ~ o’.

By structural induction, one can show that if 0,9 ~ o,
then for all subformulae v of  such that g is defined for the
free variables in v, we have o I, ¥ iff (for all i € N, we
have o', I+ t(¢)). O

Notice that the reduction in the proof of Lemma 3 is
logspace because the size of formulae is assumed to be the
cardinality of its set of subformulae. Any other reasonable
definitions for sizes would lead anyhow to elementary re-
ductions, which is sufficient to get Tower-hardness. By us-
ing Lemmas 1 and 2, as well as Lemma 3 and the Tower-
hard of FO(w), we get the following results.

Lemma 4. The satisfiability problem of PLTL™ restricted to
formulae with a single propositional variable (resp. with at
most two propositional variables and adjacent assignments
only) is Tower-hard.

3.2 Introduction to symbolic assignments

In order to show that the satisfiability problem for PLTL™ is
in Tower, we define a faithful and polynomial-space reduc-
tion to FO(w) (see Sec. 3.3).

First, let us identify a fragment of PLTL™ to which the sat-
isfiability problem for PLTL™ can be reduced in logspace,
and from which the forthcoming translation to FO(w) be-
comes smoother. The flat fragment of PLTL™ is defined as
the fragment of PLTL™ in which the only authorised modal-
ities of the form (p:=X"q) satisfy n = 0, i.e., no strict past
or future truth values are involved.

Lemma 5. There is a logspace reduction from the satisfia-
bility problem for PLTL™ to the one for its flat fragment.

Proof. (sketch) Let ¢ be a PLTL™ formula and M € N be
the minimal value such that for all modalities (p:=X"q) oc-
curring in ¢, we have |[n| < M. Let py,...,pn be the
propositional variables occurring in . To define the tar-
get formula in the flat fragment, we introduce the variables
pj with i € [~ M, +M] so that pj plays the role of the term

Xipj. The formula ¢, s defined below specifies unambigu-
ously what is expected from the new propositional variables.

G( /\ (p;ic)ij_(iH) /\pj-+1<:>Xp§-)/\ /\

0
P;<D;)-
1€[0,M-1],5€[1,N] je[1,N]

Furthermore, we define a translation map t that is homomor-
phic for Boolean and temporal connectives, for modalities of
the form (p;:=T) and (p;:=_L1), and is equal to identity for
propositional variables. The new variables that are part of
the renaming techniques play their full role for the transla-
tion of formulae whose outermost connective is of the form
(p;:=X"pi,. However, after performing local changes, we
need to maintain the satisfaction of ¢y ps (with the new
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value), which causes some complications in the definition of
the map t. Typically, changing the value of p; at position i,
requires to update the variable p’" at position ¢ + m, for all
m € [—M, M] such that i + m > 0. Below, n € [-M, M].

def

t((;:=X"pr)¥)) = X"T A
Pj=pr) ((Bj=¥7) A (—Pj=11)),
where the formulae Y+ and ) are defined below.
Given a truth value b € {L, T} and v € [1,M],
we write OY(7,11,1,) to denote the formula X'T =
X p)i=byipy A =X T = X1~ .

vy = (p=by (X(p; H=b)) - (X M=) )X
O(1, (), 0°(2,t(1h), 0°(3, (¢)), . ..

O (M, £(4), XM t(1)) )
It is easy to check that ¢y ar A t(p) belongs to the flat
fragment of PLTL™ and assuming that the size of a for-
mula is its number of subformulae, it can be computed in
logspace in the size of . One can show that ¢ is satisfiable
iff o A t(p) is satisfiable. O

For the translation into FO(w), we can assume that the
source formula belongs to the flat fragment of PLTL™. Fur-
thermore, before defining the translation, we introduce aux-
iliary notions such as symbolic assignments and symbolic
contexts. Such syntactic objects are designed so that an
argument of the translation map (to be defined) contains a
symbolic context that corresponds to the sequence of sym-
bolic assignments that have been performed so far.

A symbolic assignment is defined as an expression of the
form (p, e, y), where p is a propositional variable, y is an in-
dividual variable, and e is either a truth constant or a propo-
sitional variable q. By way of example, (p,q,y) encodes
the process of updating the truth value of the propositional
variable p at the position y with the truth value of the propo-
sitional variable q at the position y. For such a statement to
be formally correct, we still need an environment g to inter-
pret the variable y so that we can really specify a position
in N. Given a sequence S of symbolic assignments, written
(Piy, €1,¥1)s - - (Pins €N, YN ), We write S[7, j'] to denote
its subsequence (pi;,€;,y;),-- - (Pi,»€j,y; ). Sucha se-
quence S is called a symbolic context.

Given a symbolic context S, to be able to apply the se-
quence of symbolic assignments from S to a given model
o, we need an environment g to interpret the individual vari-
ables occurring in S. That is why we define below the model
update(o, S, g) that is intended to be the model o on which
the local changes from the symbolic context S are performed
but under the environment g. Assuming that S is of the form
(pil ) €1, y1)7 RN (p’LN yEN, YN)’ the model update(a, 87 g)
is defined according to the clauses below.

* update(o, €, g) &,

def

o if N > 0, then update(o, S, g) =
update(o,S[1,N — 1], 9)[Pin —g(yn) V]
)

where Vy = update(o,S[1,N — 1],9)(9(yn))(q) if
eEN = Q, VN =1 ifeN = T, and VN = OifeN =1.
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The last preliminary property that we need to establish is
related to the value update(o, S, g)(i)(p) for some position i
and some propositional variable p. Indeed, Lemma 6 below
shall be essential to translate propositional variables.

Lemma 6. Let 0 be a model, g be an environment, S be
a symbolic context (pi,,€1,¥1),---, (Pin,eN,YN), @ € N
and p € Prop. The value update(o, S, g)(4)(p) is obtained
among the three disjoint cases below.

@) If there is no k such that p =
update(o, S, g)(i)(p) = o(i)(p)-

(ID) If (1) does not hold and for all k such that p = p;,, we
have g(yy) # i, then update(a,S, 9)()(p) = 7(i)(p).
(1Y) If both (I) and (I) do not hold and k = max{k' |
9(yw) = i, Py, = ph then update(s,S, 9)(i)(p) —
update(o,S[1, k—1],9)(i)(q) with e, = q. If ey, takes the
value L or T, then update(o,S, g)(i)(p) takes the value

0 or 1, respectively.

Pi,, then

3.3 The translation map

We define a translation map t from the flat fragment of
PLTL™ to FO(w) that generalises the translation from PLTL
into first-order logic (Kamp 1968). Instead of having only
two arguments, namely the formula ¢ to be translated and
an individual variable y interpreted as the position on which
the formula ¢ is evaluated, we add a third argument that
encodes the succession of assignments, namely a symbolic
context. The new cases are those for propositional variables
and for assignments.

s t(Y v ¥y, S8) < t(1,y,S) v t(¢,y,S). The trans-
lation for other Boolean cases is similar. Moreover,
t(T,y,8) < T, t(L,y,S) “L and t(vSy/,y,S) <
Wy ¢ <y Aty ) A (W <y <y) =
t(¢,y",S)). The translation of formulae with another
outermost temporal connective, is defined similarly based
on the internalisation of PLTL semantics into FO(w).

e The new cases are handled now. To start with,
def

t(Pr=a)9,5,8) = (13,5 (p,qy)) and for 5 € {1
,THtp=B)1,y, S) = t(v,y,S - (p, B,y)).

* Ifthereis no j such thatp = p;, from S, thent(p,y, S) =
p(y) (which is the usual definition for PLTL, say with S =
€). This corresponds to case (I) in Lemma 6. Otherwise,

te.y. )= ( AN i #y) ApE)v

J st Pi; =P
J st pi;=p

4’ st pij,=p and j'>j

t(ej, ij S[Lj — 1])
The first (resp. second) line corresponds to case (II) (resp.
(IIT)), concluding the definition of t.

It is also possible to use shortcuts, for instance to translate
E-formulae with the clause t(Ey,y,S) = Iy t(v,y,S).
By way of example, the translation of E(p:=q) E(xr:=p)ris
provided below (after a few propositional simplifications):

(yir #9) A (v =y)A

Iy1 3y ((y2 = y1) A~ aly1)) v ((y2 # v1) A p(y2))-
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Lemma 7. ¢ is PLTL™ satisfiable iff 3y (—3y' ' < y) A
t(p,y,¢) is FO(w) satisfiable.

In Lemma 7, we do not only use t(p, y,€) as a target for-
mula in FO(w) because satisfiability of PLTL™ formulae is
defined from the origin position. Then, we get:

Lemma 8. There is a polynomial-space reduction from the
satisfiability problem for PLTL™ to the one for FO(w).

We designed a reduction to FO(w) leading to the decid-
ability of the satisfiability problem for PLTL™. We also get
Tower-membership since the map t induces a polynomial-
space reduction to the satisfiability problem for FO(w).

Variants of symbolic contexts. The idea of using a con-
text made of the symbolic representation of a finite set of
assignments to perform the translation into FO(w) is rem-
iniscent of the translation from sabotage modal logic and
from other relation-changing logics into first-order logic,
see e.g. (Aucher, van Benthem, and Grossi 2018, Sec. 2.3)
and (Areces, Fervari, and Hoffmann 2015, Sec. 3.2). There,
a context made of the symbolic representation of a finite set
of edges is carried along the translation. Indeed, the two
types of context encode different pieces of information but in
both cases, there is some record of a finite amount of infor-
mation about the modifications made on the original model.
As far as assignments are concerned, the ordering is impor-
tant; that is why sequences of the symbolic representation of
assignments are involved. It is also worth noting that in (Be-
lardinelli et al. 2023, Sec. 3), a program-epistemic logic ad-
mitting assignments is translated into FO but it is based on
principles different from ours, though it obviously shares the
idea of internalising the semantics of the source logic.

Extension to arbitrary formula assignments. In PLTL™,
it is possible to assign constant truth values or the values
of propositional variables. However, we may wish to allow
expressions of the form {p:=) 1), where ¢ is an arbitrary
formula of PLTL™ (as done globally in e.g. (van Ditmarsch,
Herzig, and de Lima 2012; Galimullin et al. 2025)). The
formula (p:=¢) 1) can be internalised in PLTL™ by:

p=P=T)Y A ~p=(p=L)y).
Thus, we directly obtain:

Theorem 1. The satisfiability problem for PLTL™ extended
with arbitrary assignments is Tower-complete.

As a consequence, the satisfiability problem for
PLTL-A({0,1}) is also Tower-complete. It is worth not-
ing that we would get a similar complexity with the model-
checking problem. Indeed, given a set of propositional vari-
ables pi, ..., pn, the set of models for PLTL™ can be gen-
erated by some one-state transition system with 2™ edges la-
belled by assignments on py, ..., p,. Consequently, the ex-
istential model-checking problem for FO(w) is also Tower-
hard (by an exponential-time reduction from the satisfiabil-
ity problem). Using the encoding of Lemma 3, we conclude
that the existential model-checking problem for PLTL-A is
also Tower-hard. For concrete domains handled in Sec-
tion 4, we can get a similar conclusion.
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4 How to Decide Satisfiability for PLTL-A(DD)

In this section, we consider the satisfiability problem for the
linear-time temporal logic PLTL-A(D) with D € {N, Z, Q}.
To do so, we rely on the proof methods from Sec. 3 dedi-
cated to PLTL-A({0, 1}) though we generalise them in sev-
eral directions. Recall that in the case of PLTL-A(DD), in the
formula (x:=Xx") ¢, the variable x takes the next value of
x’ that belongs to a potentially infinite set . The reduction
from PLTL-A({0,1}) to FO(w) in Sec. 3 can be extended
to PLTL-A(ID). However, we need a target logic interpreted
over w-sequences of tuples in D? and therefore it is neces-
sary to consider the appropriate decidable logic on multi-
attributed data words if it exists. We know that first-order
logic over multi-attributed data words with two data values
per position is undecidable (even restricted to two variables),
as well as over data words with one data value per position
and three quantified variables (Bojaficzyk et al. 2011) (see
also other logics over multi-attributed data words in (Decker
et al. 2014; Bollig, Sangnier, and Stietel 2024)).

Additionally, the satisfiability problem for FO2 with one
datum per position and data equality only is shown equiv-
alent to the reachability problem for Petri nets (Bojaiczyk
et al. 2011). This problem is shown Ack-complete (Ler-
oux and Schmitz 2019; Czerwinski and Orlikowski 2021;
Leroux 2021). To aim for decidability here, it is necessary
to devise appropriate syntactic restrictions. This is precisely
what we perform in Sec. 4.1 to design the logic FO* ().

To start with, we establish Tower-hardness by using the
Tower-hardness of PLTL-A({0, 1}), and requiring that every
data value at every position is either 0 or 1.

Theorem 2. For all D € {N,Z,Q}, the satisfiability prob-
lem for PLTL-A(D) is Tower-hard.

In order to prove that PLTL-A(ID) is decidable, we intro-
duce a new first-order logic interpreted on multi-attributed
data words whose satisfiability problem is shown decidable.

4.1 A new logic on multi-attributed data words

Given 3 > 1, we define the first-order logic FO™ () inter-
preted on multi-attributed data words in (D?)“. Observe
that our multi-attributed data words do not use any addi-
tional finite alphabet because this can be simulated by in-
creasing the dimension 3 and using equality constraints. The
dimension /3 is intended to capture the number of variables
in the PLTL-A(D) formula to be translated.

Quantifications in FO*(3) range over positions of the
infinite multi-attributed data word as in FO(w). The lan-
guage for FO*(3) includes comparison predicates for po-
sitions = and <, as well as the successor relation +1. To
access the (3 data values at a given position, we introduce
the unary symbols fi,..., fz (as concrete features in de-
scription logics with concrete domains, see e.g. (Borgwardt,
Bortoli, and Koopmann 2024)). Recall that to get decid-
ability, syntactic restrictions are necessary. This is precisely
what we perform below to define FO'* () by requiring that
data constraints of the form f;(x + k1) ~ f;(x' + k2) and
fi(x+ k1) < f;(x' + ko) (with shifts k1, ks € Z) are autho-
rised only if x is equal to x’ syntactically.
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The syntax of FO(3) is defined by the grammar:

ppu=x=y|lx<ylx=y+1|[-p|lov
| filx + k1) ~ fij(x+ka) | fi(x+ k1) ~d
| fi(x + k1) < fi(x + ko) | Ixep,

with x,y € Var, k1, ke € Z, 1,5 € [1, 5] and d € D. Models
are of the form (D?)“. Given w € (D?)¥ and g : Var — N,
the relation |- is defined as follows (Boolean cases omitted).

Wy x*y S g(x) *g(y) <*e{—<}>
wlkgx=y+1 < g(x) =g(y)+
Wiy fi(x + k1) > fi(x+ ko) &

g(x )—|—m1n(k k2) =0 and

w(g(x) + k1)(i) = w(g(x) + k2)(j)

def

Wlkg fi(x+ k1) < fij(x+ k) &
g(x )—|—m1n(k‘1,k2) 0 and
w(g(x) + k1) (i) < w(g(x) + k2)(j)
Wiy filx+k)~d & g(x)+k >0and
wlgx) + k() = d

there is k >

\\/

Wy Ix @ b= > 05t w kg @,

where ¢ is exactly as g except that ¢'(x) = k. It is worth
noting that the logic FO(3) contains two types of atomic
formulae, those expressing constraints between positions
(e.g. x = y + 1) and those expressing constraints between
data values (e.g. f1(x) ~ f5(x + 2)).

4.2 Symbolic assignments and translation

Below, we smoothly generalise what is done in Sec. 3.2 and
in Sec. 3.3. Since D is infinite, we cannot take advantage of
the existence of Lemma 5 and therefore the translation map
and its correctness proof are a bit more complicated. Any-
way, we rely on such previous sections whenever possible
since the general idea of the translation that internalises the
semantics of PLTL-A(D) is very similar.

A symbolic assignment is defined as an expression of the
form (x, e,y), where x is a variable in PLTL-A(DD), y is an
individual variable in FO' “(8), and e is either adatum d € D
or a term of the form X"x’. The shift of e, written shift(e),
is n if e is of the form X"x’, otherwise it is 0. A symbolic
context S is defined as a finite sequence of symbolic assign-
ments (possibly empty). Given an environment g, we say
that S is compatible with ¢ iff for every symbolic assign-
ment (x, e, y) occuring in S, we have g(y) + shifi(e) = 0

Lemma 6 can be easily generalised. The only substan-
tial difference rests on the requirement that S is compatible
with g. Assuming that S is a symbolic context of the form
(Xays€1,51)5- -+, (Xan,en,yn) and g is an environment
such that S is compatible with g, the model update(o, S, g)
is defined according to the clauses below.

o update(c,c,9) £ o,
« if N > 0, then update(c, S, g) £
update(o, S[1, N — 1], 9)[xin = g(yn) VN,

where Vy = update(a,S[l, N —1],9)(g9(yn) + n)(x),
ifey = X"x/, and Vy = dif ey = d. By compatibility,
we have g(yN) +n=0.
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We define a translation map t from PLTL-A(D) to
FO“(B) generalising that from PLTL into FO(w) (Kamp
1968) and what is done in Sec. 3.3. The new cases are for
atomic formulae and for assignments.

def

* Again’ t(<x::xnxl>w7Y78) = t(d)?y’S . (X»anlay))'
Similarly, t((xi=d) ¢, y,S) = (4,3, S - (x,d,y)).

* Let us focus on the translation of X"x; = X"'x;. If there
is no k such that oy, = 7 or g, = j, then

t(X"x; = X"x;,5,8) & fi(y +n) = fi(y +m).
Otherwise, the translation distinguishes three cases. In-
deed, either the variables x; and x; may be present in the
Xq, s but not at the “positions” y + n and y + m, respec-

tively; or the last update is for x; at position y+n (resp. x;
def

at position y +m). Then, define t(X"x, = X"'x;,y,S) =
( AN\ Gezry+ma N\ Ge#y+m)a

kst ap=1 kst ap=j
fily +n) = fi(y + m))v
Voo A (Yo #y+n)A

kst ap=1 k' st o= and k' >k

A (yw #y+m))A

k' st o =37 and k' >k

(ye =y +n) A ti(ex, S[1,k —1])

Vo

kst ap=j

Vv

A

k' st o =i and k' >k

A (yw #y+m))A
k' st opr=j and k' >k
(Yk =y+ m) A tg(@k,S[l, k— 1]),

where t1(ex, S[1,k — 1]) and to(eg, S[1, k — 1]) are de-
fined as follows. If e, = d then t1(ex,S[1,k — 1]) is
equal to f;(y +n) ~ d and ta(eg, S[1, k —1]) is equal to
fij(y + m) = d. Otherwise, if e, = X" x,, then

t1 (er, S[1, k—1]) € 6(X" "' x, = X™x;,y,8[1, k—1]),
to(en, S[1,k—1]) & (X x; = X" x,,y, S[1, k—1]).
Above, first-order terms of the form y + ¢ with £ € Z are
used. By adding the prefix 3xg ... 3x¢(x0 = x) A (x1 =
X0+ 1) A ... A (x¢ = x4—1 + 1) into the formula right
after every quantification of x, and replacing atomic for-
mula using x + ¢ by x,, we capture the intended effect
in FOI"C(ﬁ), assuming ¢ > 0. Hence, we can assume
FO(3) admits such terms without increasing its expres-
sive power; negative shifts are handled in a similar way.
The translation is defined by cases just as in Lemma 6.
Apart from the two cases in which no update affects x;
nor x;, the last part of the translation states that whenever
k is the last position of interest (e.g., it is the position of
S where the last update of x; appears w.r.t. the relative
position y + n), a recursive call is performed. In such a
call, the value of X"x; is replaced as indicated by ¢, (if

(yp #y +n)A

er = X" xy, then a shift of n + n’ from y is needed).
The translation of X"x; < X"™x; is as above, except that
occurrences of ~ must be replaced by <.
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* The translation of X"x; = d is a simplified version of the

previous case. If there is no k such that ap = i, then
def

t(X"x; =d,y,S) = fi(y + n) ~ d. Otherwise,

tX"xi =d,y,8)E (AN (r#y+n)Afily+n) ~ d)
kst oap=1

vV A

kst oap=1 k' st o =i and k' >k
(yk =y+ TL) A t,(elﬁs[lvk - 1])7
with t'(ex, S[1, k — 1]) defined as follows. In case that
e, = d,if d = d, then t'(ey, S[1,k — 1]) is equal to T,
otherwise it is equal to L. If ¢, = X" x4, then
t/ (e, S[1,k —1]) € (X" x, = d,y,S[1, k — 1]).
Again, it is also possible to use shortcuts, for instance
to translate E-formulae with the clause t(Ey,y,S) =
Iy’ t(v,y',S). By way of example, the translation of
E(x1:=Xxg) E(x3:=Xx1) Xx1 = XXx3
is provided below (after simplifications):
Iy1dyz ((y2 # y2+2) A(y1 # y2+ D) A fi(ya+1) = fa(y2+2))
V(G2 #y2+2) A (1 =32+ 1) A fa(yz +2) = fa(y2 +2)).
Thus, we can establish the following crucial result with a
proof generalising the proof of Lemma 7.

(Yo 2y +7n))A

Lemma 9. Assuming that ¢ contains at most 8 variables,
we have p is PLTL-A(D) satisfiable iff 3y (—3y' v <y) A
t(p,y,¢) is FO(B) satisfiable.

Thus, the satisfiability problem for FO™(3) with 8 > 1
is Tower-hard. Indeed, by combining Lemma 1, Thm. 2 and
Lemma 9, we get Tower-hardness of FO*(1).

4.3 How to decide FO"*(3) satisfiability
Below, we characterise the satisfiability status of some
FO‘°°(6) formula by taking advantage of decision proce-
dures to solve the satisfiability problem for PLTL(D).
Given an FO*(3) formula ¢, typically built over atomic
formulae of the form f;(x + k1) ~ f;i(x+ka), fi(y+ k1) <
fi(y + k2) and f;(z + k1) ~ d, we start by viewing it as an
FO(w) formula. Indeed, such atomic formulae can be un-
derstood as FO(w) atomic formulae of the form p(x), q(y)
and r(z). Here, the unary predicate p (resp. g, r) is parame-
terised by ~, ¢, k1, j, ko (resp. by <, ¢, k1,7, ke and d, 7, k1).
By way of example, below we Write P~ ; ky j.ko» P<,i k1 ,5,ks
and pg,; 1, to denote such unary predicate symbols to relate
atomic formulae in FO*(3) and their reading in FO(w).
Kamp’s Theorem (Kamp 1968; Rabinovich 2014) states
that, given an FO(w) formula o(y) with free variable y, one
can effectively construct an PLTL formula ¢ such that for all
models o : N — (Prop — {0,1}) and for all i € N, we have
o,i I ¢ iff 0 I ©(y). Given an PLTL formula )
built over propositional variables of the form p~ ; r, j k>
P<,i,k1,j,k» and P ; &, , We write t.. to denote the translation
map from PLTL to PLTL(ID) such that t..(t) is homomor-
phic for Boolean and temporal connectives, and
toe(Paihigiks) = XPx = XFxj,
Xklxi < kuXj,

def
tee(P<yiki k) =
Xk, = d.

tee(Pd.iky) =
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We say that t..(1)) is the concretisation of .

Lemma 10. Let ©(y) be an FO™(B) formula with one
free variable y and 1) be some PLTL formula equivalent to
©(y) read in FO(w). Then, o(y) is FO*(B) satisfiable iff
Et..(v) is PLTL(D) satisfiable.

Proof. We write Prop’ to denote the finite set of proposi-
tional variables of one of the forms p~ ; ki, ks> P<,i k1,5, ks
and pg,; %, obtained from the atomic formulae occurring in
©(y). The following statements can be shown equivalent.

1. There are an FO* () model w € (D?)“ and an environ-
ment g such that w -, ¢(y) in FO™(3).

2. There are an FO(w) model o over the set Prop’ of propo-
sitional variables, an environment g such that o |-, ¢(y)
in FO(w) and an FO**(3) model w € (D?) such that

(@) if P~ ik, ke € Prop’, then () (Paiky jiky) = 1iff
w(a + k1)(4) ~ w(o + k2)(j), forall « e N,

(b) if P<.iki jks € Prop’, then o(a)(p~ ik, jks) = 1 iff
w(a+ k1)) < w(a + k2)(j), forall o € N,

(c) if Pd,ik1 € Prop', then U(Oé)(P:,i,kl,j,kz) = 1 iff
w(a+ k1)(i) = d, forall a € N,

3. There are an PLTL model o over Prop’ and a position -y
such that o,y |- 1 and an FO*(3) model w e (D)~
such that (a), (b) and (c) above.  (by Kamp’s Theorem)

4. There is an PLTL(D) model & such that o,0 |+ Et..(¢).
(by the semantics of PLTL(ID)) O

—— — —

By Prop. 1, Lemma 10 and the effective construction of ¢
from ¢(y) (see e.g. (Rabinovich 2014)), we can conclude.

Theorem 3. Satisfiability problem for FO* () is decidable.

If it is possible to build v in time exp(Q(|¢(¥)|), ¢ (¥)]),
for some elementary function @) and |¢(y)| denoting the size
of ¢(y), then FO*(f) is in Tower (Schmitz 2016). Here
exp is the function defined by induction on the first argu-
ment with exp(0,17) = n and exp(m + 1,n) = 20P(mn),
Currently, Tower-membership is open.

Interestingly, FO'*(3) can be viewed as a first-order logic
over the concrete domain I, following the terminology
from (Baader and De Bortoli 2024). By way of example, the
formula f(x + k) ~ f'(x + k') in FO*(5), corresponds to
the atomic formula = (succ® - f, succ®’ - f')(x, x) in FO(ID)
from (Baader and De Bortoli 2024, Sec. 2), with the inter-
pretation domain N (not understood as a concrete domain),
succ interpreted as the successor relation and the feature
symbols f’s having total interpretation. If the concrete do-
main D is either N or Z, then D is not homomorphism w-
compact and therefore we cannot take advantage of (Baader
and De Bortoli 2024, Thm. 3.1). Unfortunately, we cannot
also take advantage of the decidability result in (Baader and
De Bortoli 2024, Cor. 4.3) because D has a binary predicate.

4.4 PLTL-A(D) satisfiability is decidable

Now, we state the main corollaries of our previous results.

Corollary 1. The satisfiability problem for PLTL-A(D) is
decidable.
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From Lemmas 1 and 9 and Thm. 3 with § = 1, we get
decidability of PLTL-A(ID).  Thus, adding modalities of
the form (x:=X"y) to PLTL(D) preserves the decidabil-
ity (see Prop. 1) but at the cost of moving from PSpace
to Tower-hardness. The same argument applies if we con-
sider finite traces instead of infinites ones. All the decidabil-
ity/complexity results still hold true. We can also conclude
by a characterisation of the expressive power of PLTL-A(D).

Corollary 2. For every PLTL-A(D) formula o, there is a
PLTL(D) formula ¢’ logically equivalent to .

Since PLTL(D) is a syntactic fragment of PLTL-A(D), we
conclude that PLTL-A(D) and PLTL(ID) have the same ex-
pressive power. The reasoning chain is summarised below.

PLTL-A(D) Lemma 9 poyoe gy Abstraction £y )

Kamp’s Theorem

FO(OJ) PLTL Concretisation PLTL(]D)

Cor. 2 can be extended to other concrete domains, as
long as it is possible to define FO*() over symbolic mod-
els. This does not imply necessarily the decidability of
PLTL-A(DD), since the satisfiability problem for PLTL(D)
may not be decidable. However, the same techniques apply
for instance for PLTL-A(ID), where D is the concrete domain
RCCS with space regions in R? equipped with topological
relations between spatial regions, see e.g. (Wolter and Za-
kharyaschev 2000; Balbiani and Condotta 2002).

S Concluding Remarks

We introduced a version of LTL modulo theories with the
new modality (x:=t) performing local assignments, which
amounts to change locally the value of the variable x.
The concrete domains are of the form (D, =, <, (=4)den),
including D in {N,Z,Q} as well as any finite domain
{0,...,k — 1}, for some k > 2. We established the decid-
ability of the satisfiability problem by reduction into a new
first-order logic on multi-attributed data words. Decidabil-
ity of this instrumental logic is obtained by translation into
PLTL(D) and evoking Kamp’s Theorem. The addition of
such local assignments allows us to express concisely many
properties and the satisfiability problem is still decidable.
We have also shown how to restrict ourselves to syntactic
fragments, typically the one with a single variable. Using
Kamp’s Theorem (again), we show that PLTL(D) is as ex-
pressive as PLTL-A(ID). Our method can be used with finite
traces or with other concrete domains such as RCC8.

This work can be continued in many ways. First, the com-
plexity of PLTL-A(D) restricted to one variable and to ad-
jacent assignments is open. More interestingly, it would be
possible to have a change operator stating that there is a way
to change £ > 1 values in the model such that a given for-
mula ¢ holds afterwards. As far as we can judge, the tech-
niques developed herein cannot handle this and the decid-
ability status of such a variant is unclear. Last but not least,
it would be interesting to resolve the satisfiability problem
for PLTL-A(N) or fragments using SMT techniques, see
e.g. (Barrett and Tinelli 2018). This is already challenging
with PLTL(N) (without assignments) as the set of symbolic
models of formulae in PLTL(N) is not always w-regular.
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