Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Boolean Nearest Neighbor Language in the Knowledge Compilation Map

Ondiej Cepek! and Jelena Glisi¢>

'Department of Theoretical Computer Science and Mathematical Logic, Charles University
?Department of Applied Mathematics, Charles University
ondrej.cepek @mff.cuni.cz, glisic@kam.mff.cuni.cz

Abstract

The Boolean Nearest Neighbor (BNN) representation of
Boolean functions was recently introduced by Hajnal, Liu
and Turdn. A BNN representation of f is a pair (P, N) of
sets of Boolean vectors (called positive and negative proto-
types) where f(x) = 1 for every positive prototype = € P,
f(x) = 0 for every negative prototype € N, and the value
f(z) forz ¢ P U N is determined by the type of the clos-
est prototype. The main aim of this paper is to determine the
position of the BNN language in the Knowledge Compila-
tion Map (KCM). To this end, we settle the complexity status
of most standard queries and transformations (those listed in
KCM) for BNN inputs. We also compare the succinctness
of the BNN language with several languages considered in
KCM.

1 Introduction

Boolean functions constitute a fundamental concept in com-
puter science, which often serves as the backbone of com-
putation tasks and decision-making processes. Their signif-
icance extends across diverse domains including circuit de-
sign, artificial intelligence and cryptography. However, as
the complexity of systems increases, the need for efficient
representation and manipulation of Boolean functions be-
comes more important. There are many different ways in
which a Boolean function may be represented. Common
representations include truth tables (TT) (where a function
value is explicitly given for every binary vector), list of mod-
els (MODS), i.e., a list of binary vectors on which the func-
tion evaluates to 1, various types of Boolean formulas (in-
cluding CNF and DNF representations), various types of bi-
nary decision diagrams (BDDs, FBDDs, OBDDs), negation
normal forms (NNF, DNNF, d-DNNF), and other Boolean
circuits.

The task of transforming one of the representations of a
given function f into another representation of f (e.g. trans-
forming a DNF representation into an OBDD or a DNNF
into a CNF) is called knowledge compilation. This task
emerged as an important ingredient of modern computation,
aiming to transform Boolean functions into more compact
and tractable forms. This allows us to use techniques from
logic, algorithms, and data structures in order to bridge the
gap between the expressive power of Boolean functions and
the efficiency requirements of practical applications. For

240

a comprehensive review paper on knowledge compilation
see Darwiche and Marquis (2002), where the Knowledge
Compilation Map (KCM) is introduced. KCM systemat-
ically investigates different knowledge representation lan-
guages with respect to (1) their relative succinctness, (2) the
complexity of common transformations, and (3) the com-
plexity of common queries. The succinctness of the repre-
sentations describes how large the output representation in
language B is with respect to the size of the input represen-
tation in language A when compiling from A to B. A precise
definition of this notion will be given later in this text. Trans-
formations include negation, conjunction, disjunction, con-
ditioning, and forgetting. The complexity of such transfor-
mations may differ dramatically from trivial to computation-
ally hard depending on the chosen representation language.
The same is true for queries such as consistency check, va-
lidity check, clausal and sentential entailment, equivalence
check, model counting, and model enumeration.

The number of knowledge representation languages in the
Knowledge Compilation Map gradually increases. In Berre
et al. (2018) the authors included Pseudo-Boolean con-
straint (PBC) and Cardinality constraint (CARD) languages
into KCM by showing succinctness relations among PBC,
CARD, and languages already in the map, and by proving
the complexity status of all queries and transformations in-
troduced in Darwiche and Marquis (2002). The same goal
was achieved for the switch-list (SL) language in Cepek and
Chromy (2020). In this paper, our aim is to solve the same
task for Boolean Nearest Neighbor (BNN) representations
introduced recently in Hajnal, Liu, and Turan (2022). Let us
denote B = {0, 1} and dp the Hamming distance on B".

Definition 1 (Hajnal, Liu, and Turdn (2022)). A Boolean

nearest neighbor (BNN) representation of a Boolean func-

tion f in n variables is a pair of disjoint subsets (P, N) of

B" (called positive and negative prototypes) such that for

every a € B"

o if f(a) = 1 then there exists b € P such that for every
¢ € N it holds that dg (a,b) < dp(a,c),

o if f(a) = O then there exists b € N such that for every
¢ € P it holds that dg (a,b) < dg(a,c).

The Boolean nearest neighbor complexity of f, BNN(f),
is the minimum of the sizes of the BNN representations of f.
Thatis, BNN(f) = MiN(p, N) represents f(|P] 4+ |NJ).

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

BNN representations of Boolean functions were intro-
duced in Hajnal, Liu, and Turdn (2022) as a special case
of a more general Nearest Neighbor (NN) representations
where the prototypes are not restricted to Boolean vectors
but instead can be any real-valued vectors from R”. In this
case, Euclidean distance dg is used instead of the Ham-
ming distance dg. Since for any two vectors xz,y € B",
dg(z,y) = \/du(z,y), any BNN representation, is also
an NN representation. NN representations of Boolean func-
tions were studied already more than thirty years ago Wil-
fong (1991), but there are also many recent works Banerjee,
Bhore, and Chitnis (2018); Gottlieb, Kontorovich, and Nis-
nevitch (2018); Kilic, Sima, and Bruck (2023).

NN representations of Boolean functions are a special
case of an even more general concept of NN classifica-
tion problems in which prototypes can be of several classes.
Such problems are studied in the areas of machine learn-
ing, learning theory, and computational geometry Luxburg
and Bousquet (2004); Klenk, Aha, and Molineaux (2011);
Anthony and Ratsaby (2018). When dealing with a nearest
neighbor representation, the objective is usually to minimize
the number of prototypes.

Another way of looking at BNN representations is to view
them as a special case of partially defined Boolean functions
(pdBf) Crama, Hammer, and Ibaraki (1988); Boros, Ibaraki,
and Makino (1998) with an explicit way in which the func-
tion is extended to all unclassified vectors.

In the wide range of different knowledge representation
languages, BNN representations belong to the group of lan-
guages based on lists of Boolean vectors. Other such lan-
guages are TT (truth table), MODS (list of models), IR
(interval representations) Schieber, Geist, and Zaks (2005);
éepek, Kronus, and Kucera (2008) and SLR (switch list rep-
resentations) éepek and Husek (2017); éepek and Chromy
(2020).

In this paper we shall concentrate on the time complexity
of standard transformations (Section 3) and queries (Section
4) for the BNN language. We also establish several succinct-
ness results that relate BNN to other knowledge representa-
tion languages in Section 5. First, we need to define several
notions and recall few results in Section 2.

2 Preliminaries
We will use the following notation and notions:

* the symbol B denotes the set {0,1} and B”
denotes the Boolean hypercube;

{0, 13"

* by dy(x,y) for z € B™ we denote the Hamming distance
in the Boolean hypercube, i.e., the number of coordinates
in which z and y differ;

* by du(x,A) for z € B™ and A C B" we denote
min{dy (z,y) [y € A}

* by |z| for x € B™ we denote the weight of z, i.e., the
number of coordinates of x which are equal to 1;
Given a Boolean function f : B” — B in n variables, we

say that z € B" is a positive vector or a model of f (resp.
negative vector or a non-model of f) if f(x) 1 (resp.

f(z) = 0).

241

Definition 2. We call a Boolean function f in n variables a
symmetric function if there exists a set Iy C {0,1,...,n}
such that f(x) = 1 if and only if |z| € I;. We consider the
following special cases of symmetric functions:

1. PAR,, (parity function) with I; = {iisodd | 1 < i <n}

2. M AJ, (majority function) with Iy = {i | i > n/2}

3. TH! (threshold function with unit weights and threshold
twithly ={i|i>t}forl1 <t<n.

Definition 3. The Boolean hypercube graph B,, = (V, E)

is an undirected graph with vertex set V.= B" and edge set

E = {(z,y) | du(x,y) = 1}. Finally, for a set of Boolean
vectors S C B™ we define its neighborhood by

5(S) = {z € B" | dy(,S) = 1}.

In the following sections, we will often use the terms
Boolean hypercube (denoted by ™) and Boolean hyper-
cube graph (denoted by B,,) interchangeably. In particular, a
neighbor of a vector x in the Boolean hypercube will be any
vector that is adjacent to it in the Boolean hypercube graph.
Now we present two recent results which we will frequently
use in the rest of this paper.

Theorem 1 (Hajnal, Liu, and Turan (2022)). The following
statements hold:

(a) BNN(PAR,) = 2",
(b) If nis odd then BNN (M AJ,) = 2 and if n is even then

BNN(MAJ,) <% +2,
(c) BNN(TH"?) = 29(m),

Lemma 1 (DiCicco, Podolskii, and Reichman (2024)). Let
f be a Boolean function on n variables. If the subgraph
of B, induced by the models of f has m connected com-
ponents, then any BNN representation of [has at least one
positive prototype in each connected component (and hence
at least m positive prototypes in total). In particular, if x
is a positive vector such that all of its neighbors have the
opposite function value (i.e., x is isolated), then x must be a
positive prototype in any BNN representation of f.

Note that Lemma 1 holds by a symmetric argument also
for non-models and negative prototypes.

3 Transformations

In this section we shall show that the BNN language un-
fortunately does not support any standard transformation
from Darwiche and Marquis (2002) except negation (de-
noted —C), which is a trivial transformation for BNN, and
singleton forgetting (denoted SFO), for which the complex-
ity status remains open.

Observation 1. BNN supports —C.

Proof. Since no ties are allowed, i.e., for every z € B"™ all
prototypes nearest to x must be of the same type, then it
follows that f is represented by BNN (P, N) if and only
if =f is represented by BNN (V, P). Thus we may per-
form negation by outputting (N, P), which takes polyno-
mial time. O

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Now we shall consider conditioning on a set of variables
(denoted CD) which transforms a given BNN by fixing a set
of variables to constants, and forgetting a set of variables
(denoted FO) which transforms a given BNN by existen-
tially quantifying a set of variables. The fact that BNN does
not support CD and FO can be proved using the exponential
lower bound for threshold functions from Theorem 1.

Theorem 2. BNN does not support CD.

Proof. Let (P, N) be the smallest BN N representing the
Boolean majority function on n = 4k variables, for some
k € N. That is, (P, N) represents the function THZ and
|(P,N)| < % 42 = 2(k + 1) holds by Theorem 1. Let
z1,...,x, denote the variables of the threshold function.
Notice that by setting some variable x; to 1, i.e., condition-
ing on term 1" = x; we obtain a threshold function that has
one variable fewer and threshold smaller by one.

Let T, = x1 A xo A --- A x1 be a consistent term. We
denote by THZF | T}, the function resulting from TH:¥ by
setting all literals in T}, to 1. Then (THZF | T},) = THE,.
It follows from Theorem 1 that in order to represent such a
function, we need a BN N of size 223k) = 292(") and thus
cannot produce it in polynomial time from the input (P, N)
of size O(n).

The following lemma shows that for threshold functions
conditioning (by a positive term) and forgetting work the
same way producing the same result.

Lemma 2. For m,n € N, m < n consider the threshold
function f = TH!™ and let i € {1,2,...,n} be arbitrary.
Then

f|l‘z = ﬂxi.f(xl,mg, . ,l’n) .

Proof. The proof of Theorem 2 implies f|z; = TH™ '
Thus it suffices to show that also Jz;.f(z1,22,..., 2,
TH™ . By definition:

)

-axi71707xi+17"'

Jz,.f(x1, 22, . ..
flz1,za, ..
flzr, o, .. i1, 1, T4, ..

TH™,vTH™ !

s Ty)V

) Tn)

Notice now that models of T'H]" ; form a subset of mod-
els of TH™,'. We may then omit TH™ ; and hence

Jz;.f(z1, 22, ..., 2n) = THrlel, as desired. O
Theorem 3. BNN does not support FO.
Proof. We combine Theorem 2 and Lemma 2. Again,

TH'? can be represented by a BNN of size O(n), but we
need a BNN of size 2°2(") after forgetting the first n/4 vari-
ables. O

Finally, we shall show that the BNN language does not
support conjunction (denoted AC) and disjunction (denoted
VC) even in the bounded cases (denoted ABC and VBC)
in which only two conjuncts (disjuncts) are considered.

Theorem 4. BNN does not support ABC.

242

Proof. Consider the function M AJs,,. This function has a
BNN representation of size O(n) by Theorem 1. Further-
more, we may consider the minority function on 2n vari-
ables M INs, with Inrry,, = {i | ¢ < n}. Clearly, this
function again admits a BNN representation of size O(n).
Now consider the function f = M AJs, A MINs,. This
function has exactly (*") = 2%(" isolated models. It fol-
lows by Lemma 1 that any BNN representation of f has size
29(n) O

The next corollary follows by considering the disjunction
of ~M AJo, and ~MINa, (which has (*") = 29" jso-
lated non-models).

Corollary 1. BNN does not support VBC.

The above results show that the set of supported trans-
formations is very small. The biggest drawback is (in
our opinion) the fact that unlike all other knowledge rep-
resentation languages considered in Darwiche and Marquis
(2002), Berre et al. (2018), and Cepek and Chromy (2020)
the BNN language does not support conditioning. Condi-
tioning is an essential transformation that is needed in many
applications. In particular, if some of the variables are ob-
servable (and the others are decision variables) then queries
are often asked after some (or all) of the observable variables
are fixed to the observed values (which amounts to condi-
tioning on this set of variables and only then answering the
query).

In this context, we note that aside from singleton forget-
ting (SFO), i.e., forgetting a single variable rather than a set
of variables, singleton conditioning (SCD) is also a trans-
formation with an unknown complexity status. SCD was
not listed among standard transformations in Darwiche and
Marquis (2002) since all languages considered there satisfy
even general conditioning (CD), but it makes sense to con-
sider SCD for the BNN language. We conjecture that both
SCD and SFO can be performed in polynomial time. This
property (if true) together with the reasonably large set of
supported queries (see the next section) would justify the
usefulness of the BNN language as a target compilation lan-
guage. Indeed, if SCD is supported, then any conditioning
on a constant number of variables could lead to only a poly-
nomial blow-up of the resulting BNN representation, while
the current proof of hardness for CD requires conditioning
on Q(n) variables.

The complexity status of all standard transformations for
BNN and selected standard languages is summarized in Ta-
ble 1.

4 Queries

In this section, we show that the BNN language supports a
reasonably large subset of standard queries from Darwiche
and Marquis (2002). We begin with the trivial observation
that both consistency (i.e., existence of a model, denoted
CO) and validity (i.e., every vector is a model, denoted VA)
can be checked in constant time.

Observation 2. BNN supports CO and VA.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning

Main Track

L CD FO SFO AC ABC VC VBC -C ie.
NNF vV oo v v v v v Y . .
UNNF | v o0 v v v v v . dge N :Vpe P:dy(p,projg(q)) > du(q,projs(q))
DNNF | v v v o o v v o then either there exists another negative prototype which is
d-DNNF | v o o o o o o ? strictly closer to projg(g) than g, or g is the closest nega-
BDD Voo v vV tive prototype to projg(¢) in which case the above inequality
FBDD | v ¢ o e o e oV must be strict for every positive prototype by the definition
OBDD v . v . o ° o v . .
CNF e v v e v . of BNN representation. In both cases f(projg(q)) = 0 fol-
DNF v v e vy v . lows, we have found a negative vector of f in S, and thus we
PI Vv v e e e v e can again. cpnclude that T is not an impli.can.t of f. .Note, that
P VY e e e v e e e this condition can be tested in polynomial time with respect
MODS V v v e v e e e to the size of P for any fixed g.

Let us now assume the opposite, namely that for every
CARD oeoe v Y ° projg(q) € N’ there exists a positive prototype p € P which
PBC v] . v v . ° . A . .

is strictly closer to it than g:

SL v v v . . . ° v
BNN ‘ ° ° 9 ° ° ° ° v vq S N . 3l) S P : dH(p) prO]S(Q)) < dH(Q7pr0JS(Q))

Table 1: The languages introduced in Darwiche and Marquis
(2002), Berre et al. (2018), and éepek and Chromy (2020) and
the corresponding complexity of standard transformations. Here v*
means “satisfies”, @ means “does not satisfy”, o means “does not
satisfy unless P=NP”, and ? corresponds to an open problem.

Proof. For a BNN representation (P, N') consistency check
is equivalent to checking that P is non-empty while validity
check is equivalent to checking that NV is empty. Both of
these checks can be done in constant time. O

Next, we consider the implicant check query (denoted
IM) which for a given term (conjunction of literals) 7" and a
given BNN representing function f checks whether 7" is an
implicant of f.

Theorem 5. BNN supports IM.

Proof. Let f be a Boolean function and (P, N) its BNN rep-
resentation. Let 7" = [; A- - - Alj, be a consistent term. With-
out loss of generality, we may assume that V1 < ¢ < k :
l; € {x;,—x;}, since otherwise we may relabel the vari-
ables. We aim to design a polynomial-time algorithm that
checks whether T = f. Let us denote by y € B*
the (partial) vector satisfying 7, i.e., defined by y;, = 1 if
l; = x; and y; = 0 if [; = —x;. Furthermore, let S denote
the sub-cube of B™ determined by the vector y. That is,

S={zeB"|V1<i<k:z;, =y}

Notice that I = f if and only if there is no negative
vector of f inside S (i.e., after fixing the values in y the
resulting function is constantly 1). We shall show that this
condition can be tested efficiently.

If there is a negative prototype in .S, we are done and 7" is
not an implicant of f. If all negative prototypes are outside
of S, let us denote by N’ the set of projections of all negative
prototypes into .S:

Nl = {Projs(Q):(yla-n aqn)|q€N}7

If there exists a negative prototype ¢ which is at most as
far from its projection projg(g) than any positive prototype,

s Yks Qk+15 - - -

243

We claim that in this case there are no negative vectors of
f inside S, and we can conclude that 7" is an implicant of
f. Let us assume for contradiction that there exists such a
vector z € S for which f(z) = 0. Let g be a closest negative
prototype to = and let ¢’ = projg(g) be its projection on S.
Furthermore, let p be the positive prototype closest to ¢'.
Then

du(q,2) =du(q,q') +du(d,)
>dy(p,q') +du(qd') > du(p, x).

The first equality holds because dp(q,q’) depends only
on the first k& coordinates while dg (¢,) depends only on
the remaining coordinates. The first inequality follows from
the assumption and the second from the triangle inequality
for Hamming distance. However, dg (¢, x) > dg(p, x) im-
plies f(x) = 1 which is a contradiction.

The above discussion is summarized in Algorithm 1. The
algorithm runs in time O(n|P||N|) (which is polynomial in
the size of the input n(| P|+|N|)), as its main part consists of
two nested for loops. In the worst case, the algorithm con-
siders projections of all negative prototypes and calculates
their distances to each of the positive prototypes. O

Algorithm 1 Implicant check for a BNN representation

Input: (P, N) representing f and a consistent term 7'
Output: IM(f,T)
for g € N do
if ¢ € S then
return 0
q' < projg(q)
d + +o0
for p € Pdo
d < min{d, dn(p,q')}
if dy(q,¢') < dthen
return 0
return 1

Since negation is trivial for the BNN language by Obser-
vation 1, we immediately get the following result for clausal
entailment (denoted CE).

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Corollary 2. BNN supports CE.

Proof. Let f be a Boolean function and (P, N) its BNN rep-
resentation. Let C' = [y V- - - V[, be a consistent clause. Our
aim is to design a polynomial-time algorithm that checks
whether f = C. Clearly (f = C)=(-C = —f).
Moreover, — f is readily available (recall Observation 1), and
by DeMorgan laws the negation of a clause C is a term 7.
Solet T = —C. Now, we may check whether f entails C' by
calling Algorithm 1 for inputs —~f = (N, P) and -C = T,
getting the correct answer in polynomial time. O

It is interesting to note that for most standard languages
which support CE this property stems from the fact that such
languages support CD and CO. In these cases, the CE al-
gorithm first performs the required conditioning, then tests
consistency, and then outputs yes if and only if the partial
function is not consistent. This is not the case for BNN, as it
supports CE despite not supporting CD. We are not aware of
any other knowledge representation language that supports
clausal entailment without supporting conditioning'.

The fact that BNN supports clausal entailment also di-
rectly implies that BNN supports model enumeration.

Corollary 3. BNN supports ME.

Proof. Models can be enumerated using a tree search such
as the simple DPLL algorithm by Davis, Logemann, and
Loveland (1962) where at every step before a value is as-
signed to a variable and a branch to a node on the next level
is built, it is first tested whether the current partial assign-
ment of values to variables plus the considered assignment
yields a subfunction which is identically zero (and if yes
then the branch is not built). This amounts to a clausal en-
tailment test. Therefore, all branches of the built tree have
full length (all variables are fixed to constants) and terminate
at models. Thus, both the size of the tree and the total work
required is upper bounded by a polynomial in the number of
models. O

In the rest of this section, we shall prove that BNN
does not support the remaining standard queries, i.e., that
there are no polynomial-time algorithms for equivalence
check (denoted EQ), sentential entailment (denoted SE),
and model counting (denoted CT) queries unless P=NP. To
do so, we consider the following decision problem:

Half-Size Independent Set (HSIS)

Input: An undirected graph G = (V, E') with n vertices.
Question: Does there exist an independent set with exactly
n/2 vertices in G?

Although IS, the general independent set problem (in
which a parameter k is part of the input and the question
asks for the existence of an independent set of size k), is
widely known to be NP-complete, we have to argue that also
the restricted version HSIS is hard. To see this, consider the

'Tt is possible that compressed SDDs (sentential decision dia-
grams) do not support unbounded conditioning while supporting
clausal entailment. This was remarked in Bova (2016), but we are
not sure if this question was ever resolved.

244

textbook reduction from 3-SAT to IS which for every cubic
clause creates a clique of size three and then connects ver-
tices that correspond to complementary literals (one edge
for each such pair). It is easy to see that the input 3-SAT in-
stance (with m clauses) is satisfiable if and only if the con-
structed graph on 3m vertices contains an independent set
of size exactly m. Modifying this construction by adding m
isolated vertices yields a reduction in which the input 3-SAT
instance is satisfiable if and only if the constructed graph on
4m vertices contains an independent set of size exactly 2m,
which is an instance of HSIS.
Now we are ready to prove the first hardness result.

Theorem 6. EQ is co-NP complete for BNN.

Proof. First, observe that the equivalence query for BNN
belongs to co-NP. A certificate for a negative answer is a
vector on which the two input BNNs give opposite function
values.

For the hardness part, let G = (V, E) with n = 2k ver-
tices be an instance of HSIS. We assume without loss of gen-
erality that £ > 2. We define two input BNN representations
for the EQ query as follows:

1. F = (Py, Ny) is a BNN representation of the majority
function f = M AJyi,. We assume that F' is the represen-
tation of f from the proof of Theorem 1, namely:

e Py = {x € B | |z| = 2k — 1}, i.e all® vectors of
weight 2k — 1, and
* Ny ={(0,0,...,0)}.

2. H = (P, Ny) is a BNN representation of function h
defined as follows:

* P, = {p}U{p®| e € E}, wherep = (1,1,...,1)
and for every e = (i,j) € E the vector p¢ has weight
2k — 2 with p7 = p§ = 0.

o N = {z € B | |2| = 1}. Let us denote these
vectors by n', ... n?* with n! = 1.

First, we shall show that h(z) = f(z) holds for all vectors
with weight different from £.

s Let z € B?F be a vector with |x| < k — 1. If we pick
any index i with z; = 1 then the negative prototype n’
of weight 1 satisfies dg (z,n') < k — 2 (and if x is the
all-zero vector then dpy (x,n') =1 < k — 2 as k > 2 was
assumed). On the other hand, all positive prototypes are
at a Hamming distance at least £ — 1 from x since at least
that many zero-bits in x have to be flipped to get a vector
of weight 2k — 2 or more. Thus h(z) = 0 = f(z).

o Let z € B2%* be a vector with |z| > k + 1. In this case,
we have dy(x,p) < k — 1. All negative prototypes are
at a Hamming distance of at least k& from z since at least

that many one-bits in x have to be flipped to get a vector
of weight 1. Thus h(z) =1 = f(x).

We now investigate the middle level of the Boolean lattice.

>The proof of Theorem 1 in fact uses only arbitrarily chosen
k + 1 vectors of weight 2k — 1, however, we do not need a minimal
representation here and taking all vectors of weight 2k — 1 does
not change the represented function.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

» Assume that there are no independent sets of size k in G
and let z € B?* be a vector with |z| = k. Vector z has
exactly k coordinates with z; = 0 and by our assumption,
this index set cannot be an independent set of G. Thus
there must exist e = (¢,j) € E such that z; = z; = 0
and hence dy(z,p?) = k — 2 since only k — 2 zero-
bits in = have to be flipped to arrive to p®. On the other
hand, all negative prototypes are at a Hamming distance
at least k — 1 from z since exactly that many one-bits in
x have to be flipped to get a vector of weight 1. Thus
h(z) =1 = f(x) for every vector x of weight k.

* Now assume that there exists an independent set of size
k in G, defined by an index set S. Let 2° € B2 be a
vector with [#°| = k where S defines the zero-bits of
2. Clearly, dg (z°, p) = k and also dg (2, p¢) > k for
every e € E. To see the latter, notice that if |eN S| = 1 we
need to flip k& — 1 zero-bits and one one-bit in z° to arrive
to p°, and if |e N S| = 0 we need to flip all k& zero-bits
and two one-bits in 2° to arrive to p°. On the other hand,
if we pick any index i with ¥ = 1 then the negative
prototype n' of weight 1 satisfies dy (z°,n') = k — 1.
Thus h(2°) = 0 while f(z°) = 1.

If we summarize the above observations we get that h = f
if and only if there exists no independent set of size k in G.
In other words, the answer to the equivalence query on BNN
representations F' and H is yes if and only if the answer to
the input HSIS instance G is no. Since both F' and H can
be constructed from G in polynomial time, this finishes the
proof of NP-hardness of EQ. O

Theorem 6 immediately gives us the following corollary.
Corollary 4. SE is co-NP complete for BNN.

Proof. 1t is again easy to see that the sentential entailment
query for BNN belongs to co-NP. Given a query F' = H,
a certificate for a negative answer is a vector « such that F’
classifies x as a positive vector while H classifies x as a neg-
ative vector (both properties can be checked in polynomial
time).

The hardness part is a direct consequence of Theorem 6
since F = H ifand only if F = H and H = F, so any
equivalence query can be answered by asking two sentential
entailment queries on the same pair of input BNN represen-
tations®. O

Finally, the proof of Theorem 6 implies the following.
Corollary 5. CT is NP-hard for BNN.

Proof. Notice that the number of models for F' = M AJyy
is easy to compute, in particular, this number equals half of
all vectors plus half of the middle level. That is, CT(F') =

P (),

3While the reduction from EQ to SE requires two SE queries,
the reduction from HSIS to SE in fact requires a single check F' |=
H, because the models of H always form a subset of models of
F, and therefore H |= F holds by the construction in the proof of
Theorem 6.

245

It follows from the proof of Theorem 6 that CT(H) =
CT(F) if and only if H = F (recall that the models of H
always form a subset of models of F'), and hence the abil-
ity to compute CT(H) in polynomial time would answer
the EQ query for F' and H and thus decide the input HSIS
instance G. O

We remark that the reduction in the proof of Theorem 6
is number preserving: any two distinct independent sets of
size k in G correspond to two distinct non-models of h of
weight k. Therefore, CT(F') — CT(H) equals the number
of independent sets of size k in G. This means that if the
counting version of the HSIS problem is #P hard (which we
do not know, but it likely is), then the model counting query
for BNN is also #P hard.

The complexity status of all standard queries for BNN and
selected standard languages is summarized in Table 2.

L ‘ CO VA CE IM EQ SE CT ME
NNF o o o o o o o o
d-NNF o o o o o o o o
DNNF v o v o o o o v
d-DNNF v v v v ? o Vv v
BDD o o o o o o o o
FBDD v v v v ? o Vv v
OBDD v v v v v o Vv v
CNF o v o v o o o o
DNF v o v o o o o v
PI v v v v v v o v
P v v v v v v o v
MODS v v v v v v v v
CARD o v o v o o o o
PBC o v o v o o o o
SL v v v v v v v v
BNN |v v v v o o o v

Table 2: The languages from Darwiche and Marquis (2002), Berre
et al. (2018), and Cepek and Chromy (2020) and the complexity
of standard queries. Here v/ means “satisfies”, o means “does not
satisfy unless P=NP”, and ? corresponds to an open problem.

5 Succinctness

In this section, we partially establish the position of the BNN
language in the succinctness diagram presented in Darwiche
and Marquis (2002). Let us start with the formal definition
of succinctness.

Definition 4. Let L.y and Lo be two knowledge representa-
tion languages. We say that L, is at least as succinct as Lo,
denoted Ly < Lo, if and only if there exists a polynomial p
such that for every sentence o € Lo, there exists an equiv-
alent sentence 3 € Ly where |B| < p(|al|). Furthermore,
L is strictly more succinct than Lo, denoted L1 < Lo, if
Ly < Lo but Lo f L.

We show a diagram representing the known succinctness

results as per Cepek (2022) in Figure 1. In this paper we re-
strict our attention to the seven relations that connect BNN
with standard KCM languages in the diagram in Figure 2.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Figure 1: Diagram representing known succinctness results. The
languages included are from Darwiche and Marquis (2002), Berre
et al. (2018) and Cepek and Chromy (2020) An edge L1 — Lo
indicates that L, is strictly more succinct than Lo.

These results determine the position of the BNN language in
the original succinctness diagram from Darwiche and Mar-
quis (2002).

It should be noted that the BDD language (BDD = bi-
nary decision diagram) is missing in Figure 1, so we should
also argue about the relations that concern BDD. The rela-
tion NNF < BDD follows from the fact that BDD is a strict
subset of NNF (Darwiche and Marquis (2002)). To show the
relations BDD < CNF and BDD < DNF we utilize the fact
that any Boolean formula with negations at the variables,
which uses only conjunction and disjunction as connectives,
can be compiled into a BDD with only a linear blowup (We-
gener (2000)) (which proves <), and the fact that CNF and
DNF are incomparable (proving the strict relation). We be-
gin our study of the relations concerning the BNN language
by comparing it to BDD.

Theorem 7. BDD < BNN.

Proof. For the non-strict relation BDD < BNN it suffices to
show that there exists a polynomial p such that for every
sentence @ € BINN, there exists an equivalent sentence
8 € BDD where |5| < p(|a]). For any o = (P, N),
we will construct such a binary decision diagram /. Let us
assume that PU N = {p',... p*} and let z € B". We
build $ in two steps:

1. We construct a gadget which for two fixed prototypes p
and p? decides which one is closer to input z.

2. We put a number of these gadgets together so that a pro-
totype closest to z is found and its value outputted.

We begin by building the BDD gadget. For a fixed
p',p’ € P U N, we construct a diagram Gi.,j, as shown
in Figure 3 for n = 3. The gadget first compares each co-
ordinate of 2 with the corresponding coordinate of p?. Thus

246

—MODS

Figure 2: A solid directed edge from L; to L2 indicates that L
is strictly more succinct than Lo. A dotted directed edge from L,
to Lo indicates that [is at least as succinct as Lo. A dashed
undirected edge between L; and L, means that L, and Lo are
incomparable.

the n + 1 nodes on level n + 1 of the gadget reflect the
value dy(z,p') from dy(z,p') = 0 on the right (in this
case # = p') to dy(z,p') = n on the left (both vectors
differ in every coordinate).

Figure 3: The gadget G; ; for n = 3. For a description of what
each comparison node looks like, see Figure 4.

In the next n levels (starting at level n + 1), the gad-
get sequentially compares coordinates of x with the cor-
responding coordinates of p’. The comparisons stop as
soon as it is decided which of dg (x,p?) and dy(x,p’) is
smaller (e.g. dy(z,p') = n and x; = p] already implies
dg(z,p') > dg(x,p’) without testing the remaining coor-
dinates). As soon as the gadget determines which of the two
prototypes p’, p’ is closer, it points either to the root node of
anext gadget G, i, (i p’ is closer to z) or G, 1, (if p/ is closer
to) for some k, or to one of the terminals 0, 1 if the closest

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Figure 4: Decision nodes that correspond to the comparison node
xo = py if py = 0 (left) and if p5 = 1 (right).

prototype was already determined. In Figure 3 the corre-
sponding directed edges go to the index of the closer pro-
totype. The gadgets can break ties dg (z,p') = dg(x,p’)
arbitrarily (tie is achieved at the two edges in the center of
the bottom level), since the aim is to find one of the near-
est prototypes, and those must all necessarily belong to the
same class, by the definition of BNN.

Since our aim is to construct a BDD, we must convert the
comparison nodes in the gadget to standard decision nodes.
Each gadget is defined for fixed prototypes, so there is a nat-
ural way to convert the Y and N labels on the outgoing edges
from a z;, = pﬁ; node into 0 and 1 labels from a decision
node on variable xj, as depicted in Figure 3 for k = 2.

It now remains to build the output BDD [using the gad-
gets. We can sequentially test pairs of prototypes until the
closest one is found. We do so by making a rooted acyclic
directed graph of gadgets with k —1 levels. At level i, proto-
type p't! is compared with every p’ for j < 4, and directed
edges are pointed to appropriate gadgets on the next level.
After level k£ — 1, a closest prototype has been determined,
and so the directed edges going out of these gadgets point to
terminal 1 (resp. 0) depending on whether the found closest
prototype is positive (resp. negative). The output BDD g for
a function with & prototypes is shown in Figure 5.

rk—2) T(k) t(k—1) 7(k)

Figure 5: BDD of a function with k prototypes, where T(1) = 1if
prototype p’ is positive and 7(z) = 0 if prototype p* is negative.

We now show that the constructed BDD g is of polyno-

247

mial size with respect to || = kn. For vectors of length
n, each gadget consists of (n + 1)? — 1 = O(n?) decision
nodes. As there are k prototypes in «v, BDD 3 consists of
1(k — 1)k = O(k?) gadgets. Hence the size of the con-
structed BDD f3 is O(n?k?) = O(|a|?), as desired.

To show that the inequality is strict, it suffices to consider
the parity function f on n variables. It has a unique BNN
representation with 2™ prototypes by Theorem 1. On the
other hand, it is well-known Wegener (2000) that f admits a
BDD representation of size O(n). O

We now continue with proving the remaining two strict
inequalities in Figure 2 which tie the BNN language to lan-
guages MODS (all models) and =MODS (all non-models).

Proposition 1. BNN < MODS.

Proof. We first show that BNN < MODS. Consider a
Boolean function f with a set of models M C B™ where
|[M| = m. Define (P,N) = (M,6(M)). We claim that
(P, N) is a BNN representation of f with size polynomial
in mn, which is the number of bits to store M.

Since all models of f are prototypes in P it suffices to
check non-models to verify that (P, N) indeed represents f.
Let x be an arbitrary vector such that f(z) = 0. If z € N,
then x is classified correctly. Consider z ¢ N (which im-
plies dg(x, M) > 2) and let z € P be a positive proto-
type closest to x. Any shortest path from z to z must pass
through some y € 6(M) and thus through a negative pro-
totype which is closer to x than z which means that z is
classified correctly.

In the worst case, all n neighbors of every model need to
be picked as negative prototypes. Thus the constructed BNN
(P, N) has at most m + nm prototypes.

To see that the inequality is strict it suffices to consider the
constant 1 function on n-dimensional vectors which has 2"
models but can be represented by a single positive prototype.

An immediate consequence follows by an entirely sym-
metric argument.

Corollary 6. BNN < —-MODS.

Now we are ready to show that BNN is incomparable to
both CNF and DNF.

Lemma 3. BNN £ CNF.

Proof. Tt suffices to show that there is a Boolean function
with CNF representation of size polynomial in the number
of variables, which cannot be represented by a BNN of poly-
nomial size. We will prove that the family of functions de-
fined by

n

~ayn) = /\(iz@yz)

i=1

fn(ifl, ..

5 Tnsy YL, -

(where & is the XOR operator) has the desired property.
Clearly, each f,, has a CNF representation F,, of size O(n)

F, = (mi\/yi)/\(ﬁxi\/—'yi).

~.

i=1

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

On the other hand, f, has 2" models (for each i we can
decide whether to satisfy x; or y;) and every model of f,
is isolated (flipping a single bit falsifies the corresponding
XOR). Therefore any BNN representation of f;, has at least
2™ prototypes by Lemma 1. It should be noted that this
construction is a special case of the more general construc-
tion in DiCicco, Podolskii, and Reichman (2024) (Theorem
11). O

Lemma 4. CNF £ BNN.

Proof. Consider the majority function M A.J,, on n vari-
ables which can be represented by a BNN of size O(n) by
Theorem 1. On the other hand, any CNF of this monotone
function must contain at least as many clauses as is the num-
ber of its maximal false vectors Crama and Hammer (2011),
and so the claim follows. O

Theorem 8. BNN is incomparable with CNF.

Proof. We combine Lemma 3 and Lemma 4 and obtain the
result. O

Corollary 7. BNN is incomparable with DNF.

Proof. To show that BNN £ DNF consider the function - f,,
where f, is as defined in the proof of Lemma 3. After an
application of DeMorgan laws, we obtain a DNF formula of
linear size representing the function — f,,. However, we may
repeat the argument from Lemma 3 for the negative vectors
of = f which are all isolated and conclude that an exponen-
tial number of negative prototypes is required. To show that
DNF £ BNN it again suffices to consider the majority func-
tion. Any DNF of this monotone function must contain at
least as many clauses as is the number of minimal true vec-
tors Crama and Hammer (2011). O

The last two relations for BNN which tie it to languages
IP (all prime implicants) and PI (all prime implicates) al-
ready follow for free.

Corollary 8. BNN is incomparable with both IP and PI.

Proof. Consider the function f,, and its CNF F;, from the
proof of Lemma 3. Notice that no two clauses in F}, are re-
solvable. Hence, F, is the PI representation of f,, (consist-
ing of all prime implicates of f,), and BNN «£ PI follows.
The opposite relation PI £ BNN follows from the fact that
CNN £ BNN because PI CCNF. By symmetric arguments,
the result can also be shown for the IP language. O

The following succinctness relation (which does not ap-
pear in Figure 2) also holds.

Proposition 2. BNN < OBDD.

Proof. Tt suffices to show that there is a Boolean function in
n variables with OBDD representation of polynomial size
in n which cannot be represented by a BNN of polynomial
size in n. This property is satisfied by the threshold function
TH%"/ 3 which is true if and only if at least one third of its
inputs are set to one. This is a symmetric Boolean function
and it is long known that every such function can be rep-
resented by an OBDD of polynomial size in the number of

248

variables Wegener (2000). On the other hand, TH}L”/ 3] can
only be represented by a BNN of exponential size in n by
Theorem 1. O

The above result also implies BNN £ FBDD since the
OBDD language is a subset of the FBDD language. We con-
jecture that FBDD £ BNN also holds (which would imply
OBDD « BNN) but finding a family of functions necessary
for such a statement remains an open problem.

6 Conclusions

We study the properties of the BNN language with respect
to its position in the Knowledge Compilation Map. First,
we study the complexity status of standard transformations
and queries. Although the BNN language supports a decent
subset of queries in polynomial time and hence it passes the
necessary condition for a target compilation language for-
mulated in Darwiche and Marquis (2002)*, the lack of sup-
ported transformations makes the BNN language less ap-
pealing at this moment. However, we conjecture single-
ton conditioning and singleton forgetting to be polynomial
time transformations, and if this conjecture turns out to be
true, then it will be easier to argue that the BNN language
is in fact a good target language for knowledge compilation.
In such a case, designing a compiler into BNN may make
sense. Although the complexity of queries and transforma-
tions for BNN is the main subject of this paper, we have also
established several succinctness relations of this language
to standard languages. The most interesting questions with
respect to succinctness that remain open are the relations of
BNN to OBDD and FBDD. We conjecture that in both cases
the languages are incomparable. Another subject of future
study are the succinctness relations of BNN to knowledge
representation languages, which were added to KCM later,
in particular to the CARD, PBC, SDD, and SL languages.

Acknowledgments

We are grateful to Petr Kucera for several helpful sugges-
tions and for the construction that is used in the proof of
Theorem 4.

References

Anthony, M., and Ratsaby, J. 2018. Large width nearest pro-
totype classification on general distance spaces. Theoretical
Computer Science 738.

Banerjee, S.; Bhore, S.; and Chitnis, R. 2018. Algorithms
and hardness results for nearest neighbor problems in bicol-
ored point sets. In Bender, M. A.; Farach-Colton, M.; and
Mosteiro, M. A., eds., LATIN 2018: Theoretical Informat-
ics, 80-93. Cham: Springer International Publishing.

Berre, D. L.; Marquis, P.; Mengel, S.; and Wallon, R. 2018.
Pseudo-Boolean Constraints from a Knowledge Representa-
tion Perspective. In IJCAI, 1891-1897. ijcai.org.

“Here we refer to the following sentence from Darwiche and
Marquis (2002): “For a language to qualify as a target compilation
language we will require that it permits a polytime clausal entail-
ment test.”

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

Boros, E.; Ibaraki, T.; and Makino, K. 1998. Error-Free and
Best-Fit Extensions of Partially Defined Boolean Functions.
Information and Computation 140(2):254-283.

Bova, S. 2016. SDDs are exponentially more succinct than
OBDDs. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence (AAAI-16), 929-935. Association
for the Advancement of Artificial Intelligence.

éepek, 0., and Chromy, M. 2020. Properties of Switch-List
Representations of Boolean Functions. J. Artif. Intell. Res.
69:501-529.

éepek, O., and Husek, R. 2017. Recognition of tractable
DNFs representable by a constant number of intervals. Dis-
crete Optimization 23:1-19.

Cepek, O.; Kronus, D.; and Kucera, P. 2008. Recognition
of interval Boolean functions. Annals of Mathematics and
Artificial Intelligence 52(1):1-24.

Cepek, 0. 2022. Switch lists in the landscape of knowledge
representation languages. In FLAIRS.

Crama, Y., and Hammer, P. L. 2011. Boolean Func-
tions: Theory, Algorithms, and Applications. Encyclopedia
of Mathematics and its Applications. Cambridge University
Press.

Crama, Y.; Hammer, P. L.; and Ibaraki, T. 1988. Cause-
effect relationships and partially defined Boolean functions.
Annals of Operations Research 16(1):299-325.

Darwiche, A., and Marquis, P. 2002. A knowledge compi-
lation map. J. Artif. Intell. Res. 17:229-264.

Davis, M.; Logemann, G.; and Loveland, D. W. 1962.
A machine program for theorem-proving. Commun. ACM
5(7):394-397.

DiCicco, M.; Podolskii, V.; and Reichman, D. 2024. Near-

est Neighbor Complexity and Boolean Circuits. Electron.
Colloguium Comput. Complex. TR24-025.

Gottlieb, L.-A.; Kontorovich, A.; and Nisnevitch, P. 2018.
Near-optimal sample compression for nearest neighbors.
IEEE Transactions on Information Theory 64(6):4120—
4128.

Hajnal, P; Liu, Z.; and Turdn, G. 2022. Nearest neighbor
representations of Boolean functions. Inf. Comput. 285(Part
B):104879.

Kilic, K. M.; Sima, J.; and Bruck, J. 2023. On the informa-
tion capacity of nearest neighbor representations. In ISIT,
1663-1668. 1IEEE.

Klenk, M.; Aha, D. W.; and Molineaux, M. 2011. The case
for case-based transfer learning. Al Mag. 32(1):54-69.
Luxburg, U. v., and Bousquet, O. 2004. Distance-Based

Classification with Lipschitz Functions. J. Mach. Learn.
Res. 5:669-695.

Schieber, B.; Geist, D.; and Zaks, A. 2005. Computing the
minimum DNF representation of Boolean functions defined
by intervals. Discrete Applied Mathematics 149:154-173.

Wegener, 1. 2000. Branching Programs and Binary Decision
Diagrams. SIAM.

249

Wilfong, G. 1991. Nearest neighbor problems. In Proceed-
ings of the Seventh Annual Symposium on Computational
Geometry, SCG 91, 224-233. New York, NY, USA: Asso-
ciation for Computing Machinery.

	Introduction
	Preliminaries
	Transformations
	Queries
	Succinctness
	Conclusions

