
How Lucky Are You to Know Your Way?
A Probabilistic Approach to Knowing How Logics

Pablo F. Castro1,3 , Pedro R. D’Argenio2,3 , Raul Fervari2,3,4
1Universidad Nacional de Rı́o Cuarto, FCEFQyN, Departamento de Computación, Argentina

2Universidad Nacional de Córdoba, FAMAF, Argentina
3Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Argentina

4Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, France

Abstract
We introduce a probabilistic version of knowing-how modal
logics. More precisely, our logics extend extant approaches
to model the ability of an agent to achieve a given goal with a
certain probability. On the semantic side, we enrich the mod-
els of the logic with probability distributions over the agent’s
actions. Then, we investigate different languages to describe
such structures. First, we consider a probabilistic version of
the linear plan-based logic of knowing how, and discuss its
properties. Then, we consider indistinguishability classes,
and obtain two logics, one that has ‘non-adaptative’ plans,
and another with ‘adaptative’ plans. In all cases we inves-
tigate the computational complexity of their model-checking
problem, obtaining undecidability results for the first and the
second logic, while for the last one the problem is decidable
in polynomial time. We also explore the semantics of the new
logics under non-probabilistic models to compare them to the
original non-probabilistic ones.

1 Introduction
Modern approaches in Epistemic Logic (Hintikka 1962)
have shifted focus from a single notion of knowledge (usu-
ally, the notion of knowing that) to a diverse palette of no-
tions, each of them tailored to specific purposes. In this
regard, the notion of knowing how has received significant
attention, since it captures scenarios related to intelligent
agents and its strategic behaviour. Logically, knowing how
is typically defined as the ability of an agent to achieve a cer-
tain goal. Knowing-how logics have direct applications to
planning problems (Russell and Norvig 2020), where plans
have to be constructed such that a collection of agents can
achieve a given goal. Examples of planning applications can
be found in e.g. self driving cars, robotics, conversational
agents, cybersecurity, risk management, etc.

Usually, the semantics for knowing-how logics can be
thought as a combination of operators that describe abil-
ities alongside standard epistemic operators for knowing
that. This is the approach introduced in, e.g. (McCarthy
and Hayes 1969; Moore 1985; Lespérance et al. 2000;
van der Hoek, van Linder, and Meyer 2000; Herzig and
Troquard 2006). As a result, knowing how reflects that
the agent knows that there is a course of action leading
to achieve the intended goal. However, as pointed out in
e.g. (Jamroga and Ågotnes 2007; Herzig 2015), this read-
ing is not entirely accurate. Instead, knowing how could

be read as there is a course of action, that the agent
knows how to apply, to bring about the goal. Thus, a
novel perspective emerged in (Wang 2015; Wang 2018a;
Wang 2018b), where a new modality is defined with the aim
of capturing the proper reading of knowing how.

More specifically, the new modality under considera-
tion is a binary modality Kh(ψ,φ) interpreted over Labeled
Transition Systems (LTS), where an LTS models the ac-
tions that are available to the agents as well as the effects
of these actions. Thus, the formula Kh(ψ,φ) holds if there
exists a sequence of actions π (i.e., a plan) such that, in
every situation where ψ holds, π can be executed, it never
aborts its execution, and it always leads to situations in
which φ holds. This new view of knowing how raised a
new family of logics refining the original one, witnessed by
the extensive related literature (see e.g. (Li and Wang 2017;
Li 2017; Fervari et al. 2017; Naumov and Tao 2019; Nau-
mov and Tao 2018)). Interestingly, in (Areces et al. 2021;
Areces et al. 2025) the original approach is enriched by
a notion of ‘epistemic indistinguishability’ between plans,
arguably closer to standard semantics of epistemic logics.
This indistinguishability relation indicates that all the related
plans are considered or perceived “equally good” from the
agent’s perspective (even if they are not), thus a plan π is
suitable for achieving a goal if this is also the case for all the
plans that are indistinguishable from π. The new semantics
arguably offers a more adequate view of knowing how from
an epistemic perspective, compared to the original approach.

The above-mentioned works investigate various logical
properties, including axiomatizations, expressivity, and the
complexity of the respective logics. In particular, the model-
checking problem results of interest, since it is ubiquitous in
software verification but also an important tool for controller
synthesis and planning. Moreover, as argued in (Demri and
Fervari 2023), the model-checking problem better reflects
the real power of the logics. This is because these logics of-
ten have a simple syntax combined with a rich semantics. In
model-checking, plans are part of the input, so the complex-
ity needs to be tamed (unlike in the satisfiability problem,
where other tricks can be used like guessing a proper plan).
Therein, the authors also discuss how to incorporate other
constraints into the plans, more precisely, the different se-
mantics of knowing how modalities are enriched with regu-
larity constraints (i.e., where plans are given by some regular

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

229

formalism) and numerical constraints (i.e., where actions in
knowing how are restricted by some budget).

The work in (Demri and Fervari 2023) paves the way for
studying additional constraints, particularly knowing how to
achieve a goal with a certain probability. This is of interest
in scenarios where plans might lead to unexpected results
due to a faulty behavior of actions, or because their execu-
tions lead to random outcomes. Just as (constrained) plan-
ning is connected to (constrained) knowing-how, the abil-
ity to handle probabilities in the context of knowing how
serves as the logical counterpart to probabilistic planning
(see, e.g., (Madani, Hanks, and Condon 1999)) and related
concepts. Moreover, there is a realm of logics featuring
probabilistic notions of strategic reasoning. For instance,
(Baier et al. 2018) discusses the idea of model-checking with
probabilities, while those specifically related to ATL are ex-
plored in (Bianco and de Alfaro 1995; Chen and Lu 2007;
Bulling and Jamroga 2009). Also, probabilistic strategy log-
ics are investigated in (Aminof et al. 2019), while (Berthon
et al. 2024) considers stochastic natural strategic abilities.

Here, we present extensions of knowing how logics with
probabilities. The new modality, written Khq(ψ,φ), will be
read as the agent knows how to achieve φ given ψ, with a
probability of at least q. This idea results helpful in mod-
eling case studies where the result of actions have a ran-
dom component. A simple example of this situation is given
in (Kushmerick, Hanks, and Weld 1995): consider a robot
that has to grasp an object, the result of the robot’s actions
stochastically depends on the state of the world. For in-
stance, if the gripper is wet, there is a probability of 0.9 that
the object falls when the robot tries to pick it up. Thus, the
robot may try to dry the gripper before picking up elements.
These kinds of scenarios can be modeled with Probabilistic
LTS (PLTS), i.e., transition systems where now transitions
relate states with probability distributions, which in turn cap-
ture the stochastic behavior of actions.

We start in Sec. 4.1 by naturally extending the logic over
linear plans from (Wang 2015; Wang 2018a; Wang 2018b).
For this logic we show that, under non-probabilistic mod-
els (i.e., LTSs), it agrees with the non-probabilistic case.
We prove that the model-checking problem for the new
logic is undecidable, which contrasts with the PSpace-
complete complexity of the base logic. The proof strategy
relies on reducing the emptiness problem for probabilis-
tic automata (Madani, Hanks, and Condon 1999). Then,
we extend with probabilities the knowing-how logic over
LTS with indistinguishability classes, for which we have
devised two cases. First (Sec. 4.2), we directly add prob-
abilities to the logic presented in (Areces et al. 2021). In
this case, that we call non-adaptative, the model-checking
problem becomes undecidable contrasting the complexity
of model checking the original logic, which is in PTime.
This is proven by showing and using a variant of the re-
sult in (Madani, Hanks, and Condon 1999). The second
proposal (Sec. 4.3), called here adaptative, is arguably suit-
able to model scenarios in which the agent has the ability to
choose between one plan or another, among those that are
considered equally good, depending on the particular situ-
ation. In fact, we compare expressivenes of all three log-

ics with indistinguishability which helps to understand their
utility. Also, for the adaptive case, we get that the model-
checking problem is in PTime, another appealing charac-
teristic of this logic. Along the paper, we discuss a running
example to illustrate not only the behaviour of the logics, but
also our design decisions.

2 Preliminaries
Words. Let Act be a finite set of actions, also called al-
phabet and let π ∈ Act∗ be a word with alphabet Act. We
use |π| to denote the length of π (with |ϵ| = 0) and π[i],
for 0 < i ≤ |π|, to denote the i-th element of π. For
0 ≤ i ≤ |π|, π[..i] denotes the i-th prefix of π, i.e., the
initial segment of π up to (and including) the i-th position
(with π[..0] = ϵ). We say that π is a prefix of π′, denoted
π ≤ π′, if π = π′[..i] for some 0 ≤ i ≤ |π|. For a set
Π ⊆ Act∗, let pref(Π) = {ρ′ ∈ Act∗ | ∃ρ ∈ Π: ρ′ ≤ ρ} be
the set of all prefixes of Π. We write pref(π) for pref({π}).
Besides, ππ′ denotes the concatenation of π followed by π′.

(Probabilistic) Labeled Transition Systems. A (discrete)
probability distribution µ over a denumerable set S is a func-
tion µ : S → [0, 1] such that µ(S) =

∑
s∈S µ(s) = 1.

Let Dist(S) denote the set of all probability distributions on
S, and let ∆s ∈ Dist(S) denote the Dirac distribution for
s ∈ S, i.e., ∆s(s) = 1 and ∆s(s

′) = 0 for all s′ ∈ S such
that s′ ̸= s.

Let Prop be a countable set of propositional symbols.
A probabilistic labeled transition System (PLTS) (Segala
1995) is a tuple M = ⟨S,Act,→,V⟩ where S is a finite set of
states, Act is a finite set of actions, → ⊆ S×Act× Dist(S)
is the (probabilistic) transition relation, and V : S →
P(Prop) is the valuation function. We denote s a−→ µwhen-
ever (s, a, µ) ∈ → and let T (s) = {(a, µ) | s a−→ µ} be the
set of all transitions enabled in state s. For the case in which,
for all (s, a, µ) ∈ →, µ is a Dirac distribution ∆s′ for some
s′ ∈ S, we say that M is a labeled transition system (LTS)
and denote s a−→ s′ instead of s a−→ ∆s′ .

An execution of M is a finite or infinite alternating se-
quence of states and actions s0 a1 s1 a2 s2 Execf =
S×(Act × S)∗ denotes the set of all finite executions and
Execω = S×(Act × S)ω denotes the set of all infinite exe-
cutions. We introduce the symbol ⊥ to indicate that a finite
execution has been intentionally ended, and let CExecf =
S×(Act × S)∗ × {⊥} denote the set of all complete finite
executions. Infinite executions are also considered complete
and hence CExec = CExecf ∪ Execω is the set of all com-
plete executions.

For ρ = s0 a1 s1 . . . sn−1 an sn ∈ Execf and 0 ≤ k ≤ n,
let |ρ| = n, first(ρ) = s0 and last(ρ) = sn. Let also
ρ[..k] = s0 a1 s1 . . . sk−1 ak sk be the k-th prefix of ρ. Sim-
ilarly, we can define ρ[..k] for ρ ∈ CExec. In particular,
notice that ρ[..0] = s0. We say that ρ ∈ Execf ∪CExecf is a
prefix of ρ′ ∈ CExec, denoted by ρ ≤ ρ′, if ρ = ρ′[..|ρ|] or
ρ = ρ′ (this last case is needed if ρ ∈ CExecf). (The over-
loading of notation with respect to words should be harmless
and easily understood by context.)

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

230

A strategy for a PLTS M is a function σ : Execf →
Dist((Act×Dist(S))∪{⊥}) that assigns a discrete probabil-
ity distribution to each finite (non-complete) execution ρ ∈
Execf such that σ(ρ)(a, µ) > 0 only if last(ρ) a−→ µ. Thus, a
strategy can choose with some probability a valid transition
after ρ or to intentionally terminate (in case σ(ρ)(⊥) > 0).

Let Cyl(ρ) = {ρ′ ∈ CExec | ρ ≤ ρ′} be the cylinder set
induced by the finite execution ρ ∈ Execf ∪CExecf . Notice
that we only consider cylinders of complete executions and
in particular Cyl(ρ) = {ρ} whenever ρ ∈ CExecf . A strat-
egy σ and a state s ∈ S define a probability measure Pσ

s on
the Borel sigma algebra generated by the set of all cylinder
sets as follows. For ρ = s0 a1 s1 . . . sn−1 an sn ∈ Execf ,

Pσ
s (Cyl(ρ)) = (1)

∆s(s0) ·
n∏

i=1

∑
(ai,µ)∈T (si−1)

σ(ρ[..(i−1)])(ai, µ) · µ(si)

and for ρ = s0 a1 s1 . . . sn−1 an sn ⊥ ∈ CExecf ,

Pσ
s (Cyl(ρ)) = (2)

∆s(s0) ·
(n∏

i=1

∑
(ai,µ)∈T (si−1)

σ(ρ[..(i−1)])(ai, µ) · µ(si)
)

· σ(ρ)(⊥).

Carathedeory’s extension theorem guarantees that Pσ
s is

uniquely defined in the sigma algebra (Segala 1995).

Probabilistic Finite Automata. A PLTS is deterministic
if s a−→ µ1 and s a−→ µ2 implies µ1 = µ2, for all s ∈ S, a ∈
Act, and µ1, µ2 ∈ Dist(S). A probabilistic finite automata
(PFA) (Rabin 1963; Paz 1971) is a deterministic PLTS P =
⟨S,Act,→,V⟩ on the set Prop = {init, fin}, i.e., V : S →
P({init, fin}), such that there is a single state si ∈ S, called
initial, with init ∈ V(si). F = {s ∈ S | fin ∈ V(s)} is the
set of final or accepting states.

Given an execution ρ = s0 a1 s1 . . . sn−1 an sn ∈ Execf ,
let ρ̄ = a1 a2 . . . an. In particular ρ̄ = ϵ whenever n = 0.
For a word π ∈ Act∗, define the strategy σπ such that for
all ρ ∈ Execf with ρ̄ ≤ π, (i) σπ(ρ)(a, µ) = 1 iff ρ̄a ≤ π
(in which case µ is unique), and (ii) σπ(ρ)(⊥) = 1 iff either
ρ̄ = π or ρ̄{a | last(ρ) a−→ µ} ∩ pref(π) = ∅. Since the
PFA is deterministic, for any s ∈ S, σπ defines the same
probability measure Pσπ

s regardless of its definition for all
ρ such that ρ̄ ̸≤ π. The word π is accepted by the PFA P
with probability q ∈ [0, 1] if Pσπ

si
(Succ(π, F)) ≥ q, where

Succ(π, F) = {ρ⊥ ∈ CExecf | ρ̄ = π and last(ρ) ∈ F}.

Proposition 1. For a PFA and a bound q ∈ [0, 1], the fol-
lowing problems are undecidable:

1. determine if Pσπ
si
(Succ(π, F)) ≥ q for some π ∈ Act∗;

2. determine if Pσπ
si
(Succ(π, F)) < q for some π ∈ Act∗.

The first item corresponds to the emptiness problem in
PFA (Paz 1971; Madani, Hanks, and Condon 1999). The
second one, to the best of our knowledge, is new and can be
proven from the first item using complete PFAs.

3 Knowing How Logics
We introduce first the common language we will use along
this section. The set of formulas (a.k.a. the language) of LKh

is defined by the following BNF:

φ,ψ ::= p | ¬φ | φ ∨ ψ | Kh(ψ,φ),

where p ∈ Prop. Other Boolean operators are defined as
usual. The distinguished formula Kh(ψ,φ) should be read
as “the agent knows how to achieve φ given ψ” meaning
that there exists a plan that allows the agent to achieve the
goal ψ whenever the assumed condition φ holds.

Linear Plans. In the most basic notion of knowing how
–as defined in (Wang 2015; Wang 2018a; Wang 2018b)– a
plan is a sequence of prescribed actions. Thus, formulas are
interpreted over Labeled Transition Systems which indicate
what actions are available for execution at each state and
how they transform one state into another.

In order to determine when an agent knows how to
achieve a goal, it is needed to characterize those plans that
result appropriate for such a purpose. According to (Wang
2015), the notion of strongly executable provides such char-
acterization and indicates that a plan is “fail proof”. This no-
tion was inspired by conformant planning (see e.g. (Cimatti,
Roveri, and Traverso 1998)).

For an LTS M = ⟨S,Act,→,V⟩, a plan is simply a word
in Act∗ (with ϵ being the empty plan). Given a plan π ∈
Act∗, we define π−→ as the composition

π[1]−−→ ◦ . . . ◦ π[|π|]−−−→.
We say that a plan π ∈ Act∗ is strongly executable (SE) at a
state s ∈ S if and only if, for all 0 ≤ i ≤ |π|−1 and all t ∈ S

such that s
π[..i]−−−→ t, there is v ∈ S such that t

π[i+1]−−−−→ v. The
plan π is SE at A ⊆ S if and only if it is SE at every s ∈ A.
The notation A π−→ G (for A,G ⊆ S) indicates that for all
s ∈ A, s π−→ t implies t ∈ G.

Formulas are interpreted over pointed LTS, i.e., w.r.t. an
LTS and a given state.

Definition 1. Let M = ⟨S,Act,→,V⟩ be an LTS and let
s ∈ S, the satisfiability relation |= for LKh is inductively
defined as:

M, s |= p iffdef p ∈ V(s)
M, s |= ¬φ iffdef M, s ̸|= φ
M, s |= ψ ∨ φ iffdef M, s |= ψ or M, w |= φ
M, s |= Kh(ψ,φ) iffdef there is π ∈ Act∗ such that:

(1) π is SE at JψKM and
(2) JψKM π−→ JφKM,

where: JχKM = {s ∈ S | M, w |= χ}.

The model-checking problem for a given logic is defined
as follows, where models and formulas are instantiated with
those corrresponding to each particular case.

Input: A model M, a state s in M and a formula φ;
Output: True if M, s |= φ; False, otherwise.

Proposition 2 (Demri and Fervari 2023). The model-
checking problem for LKh over LTS is PSpace-complete.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

231

Indistinguishability Classes in Knowing How. We
present the generalization of LKh where the agent’s per-
ception is determined by an indistinguishability relation be-
tween plans (Areces et al. 2021; Areces et al. 2025), called
herein LU

Kh. W.l.o.g., we consider here a single agent, unlike
the multi-agent presentation from previous works. Thus, the
languages of LKh and of LU

Kh coincide.
An uncertainty-based LTS (LTSU) is a tuple M =

⟨S,Act,→,U,V⟩ s.t. ⟨S,Act,→,V⟩ is an LTS, and U ⊆
P(Act∗) \ ∅ is a non-empty collection of pairwise dis-
joint non-empty sets of plans, i.e., (i) U ̸= ∅, (ii) for all
Π1,Π2 ∈ U, Π1 ̸= Π2 implies Π1 ∩ Π2 = ∅, and (iii)
∅ /∈ U. The set U is called the perception of the agent.

Intuitively, D =
⋃

Π∈U Π is the set of plans that the agent
is aware she has at her disposal, and each Π ∈ U is an indis-
tinguishability class. Thus, U is in direct correspondence to
an equivalence relation over D, where each Π ∈ U defines
an equivalence class (see e.g. (Areces et al. 2025)). Notice
that U is a partition of D representing the perception the
agent has about the reality. Those plans in Act∗ \ D are not
considered by the agent, even if they are suitable plans.

Given her indistinguishability over Act∗, the abilities of
the agent do not depend on what a single plan can achieve,
but rather on what a set of them can guarantee. Thus, for
Π ⊆ Act∗ and A,G ⊆ S, we write A Π−→ G if for all s ∈ A,
π ∈ Π and t ∈ S, s π−→ t implies t ∈ G.

In this new setting, we introduce the semantics of LU
Kh.

Definition 2. Let M = ⟨S,Act,→,U,V⟩ be an LTSU and
let s ∈ S, the satisfiability relation |= for LU

Kh is defined
inductively as usual for the Boolean operators and

M, s |= Kh(ψ,φ) iffdef there is Π ∈ U s.t. for all π ∈ Π
(1) π is SE at JψKM and
(2) JψKM π−→ JφKM,

where: JχKM = {s ∈ S | M, s |= χ}.
In (Areces et al. 2021; Demri and Fervari 2023) two dif-

ferent instances of the model-checking problem for LU
Kh over

LTSU were studied. In the former, U consists of a finite set
of classes, where each of them is a finite set of plans. In the
latter, U is finite but every class is characterized by a finite-
state automaton, i.e., it is potentially infinite, subsuming the
finite case. Both representations lead to the same result.
Proposition 3 (Demri and Fervari 2023). The model-
checking problem for LU

Kh is in PTime.

4 Probabilistic Knowing How
4.1 Linear Plans
Naturally, our first approach will be extending LKh with
some form of probabilistic behaviour. For this, we first
need to understand how plans work in a probabilistic model.
Thus, given a plan π ∈ Act∗, we want to consider strate-
gies that follow as faithfully as possible the plan π. This is
captured in the next definition.
Definition 3. A strategy σ is π-compatible if for all ρ ∈
Execf such that ρ̄ ∈ pref(π),

1. σ(ρ)(a, µ) > 0 implies ρ̄a ∈ pref(π), and

2. σ(ρ)(⊥) > 0 implies that either ρ̄ = π or {ρ̄a |
last(ρ)

a−→ µ} ∩ pref(π) = ∅.
Let Comp(π) denote the set of all π-compatible strategies.

The first item states that σ can chose an a-labeled transi-
tion after the partial plan ρ̄ if the continuation of ρ̄a is also
a partial plan. The second item states that σ is allowed to
terminate after the partial plan ρ̄ if either ρ̄ is itself a valid
plan or ρ̄ cannot be continued by the PLTS within the plan.

It is important to remark that, since π is finite, for any
π-compatible strategy σ and state s, Pσ

s (Execω) = 0 (or
equivalently, Pσ

s (CExecf) = 1). That is, any π-compatible
strategy leads to termination with probability 1. Also notice
that in PFA, the strategy σπ as defined in Sec. 2 is the only
one π-compatible. By “only one”, we mean that any strategy
defined so that it satisfy the same conditions as σπ yields the
same probability measure Pσπ

s .
Example 1 (Running). Fig. 1 depicts the PLTS Me model-
ing possible ways to escape a building in a fire emergency
situation including alerting the event. There, states are rep-
resented by circles and distributions by the dot in the mid-
dle of transitions. The outgoing dashed arrows are labeled
with the respective probability values. Thus, for instance,

s0
lf−→ µ1 with µ1(s1) = 0.2 and µ1(s2) = 0.8. Actions lf ,

st , and rm indicate that the exit might be reached through
the lift, the stairs or the ramp. Actions pn and mb repre-
sent that the emergency is alerted through a panic button
or by calling 911 using the mobile phone. Label ✓ indi-
cates that the exit and the alert have been successfully per-
formed. This happens only in states s7, s8, and s10 (thus
V(s7) = V(s8) = V(s10) = {✓}). States labeled with ✗
indicate that the last performed action has failed. In partic-
ular we distinguish the initial state by letting V(s0) = init.

Thus, it is possibe to take a lift through transition s0
lf−→ µ1

and failed with probability 0.2 while exiting through the al-

ternative lift (transition s0
lf−→ µ2) fails with probability 1.

Exiting through one of the stairs allows us to get to the panic
button with probability 0.9 and enables the mobile call with
probability 0.1, while exiting through the other stairs yields
to the same situation but with the probabilities inverted. Ex-
iting through the ramp allows us to press the panic button
with probability 0.5 or to make the phone call also with
probability 0.5. Notice that while the panic button always
successfully rises the alarm, the mobile phone call may fail
with probability 0.1.

Let π1 = lf mb. Define strategy σ1 so that
σ1(s0)(lf , µ1) = σ1(s0)(lf , µ2) = 0.5
σ1(s0 lf s1)(⊥) = σ1(s0 lf s3)(⊥) = 1
σ1(s0 lf s2)(mb, µ6) = 1
σ1(s0 lf s2 mb s6)(⊥) = σ1(s0 lf s2 mb s7)(⊥) = 1.

It is easy to check that σ1 is π1-compatible. Also, note that
σ′
1, defined so that σ′

1(s0)(lf , µ2) = σ′
1(s0 lf s3)(⊥) = 1,

is also π1-compatible despite that σ′
1 never manages to

complete the plan π1. Instead, σ′′
1 , defined so that

σ′′
1 (s0)(lf , µ1) = σ′

1(s0 lf s1)(⊥) = σ′
1(s0 lf s2)(⊥) = 1,

is not π1-compatible since σ′
1(s0 lf s2)(⊥) > 0 but

s2
mb−−→ µ6.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

232

s0

s1 s2 s3 s4 s5

s6 s7 s8 s9 s10

init

✓ ✓ ✓

✗ ✗

✗ ✗

µ1 µ2 µ3

µ4 µ5

µ6 µ7
µ8

lf
lf st rm

st

mb pn mb

0.2 0.8 1 0.9
0.1 0.5 0.5

0.90.1

0.1 0.9 1 0.1 0.9

Figure 1: PLTS Me modeling a fire emergency situation.

We define the set of successful complete (finite) execu-
tions that reach G ⊆ S following plan π by Succ(π,G) =
{ρ⊥ ∈ CExecf | ρ̄ = π and last(ρ) ∈ G}. We are inter-
ested in that any π-compatible strategy σ starting from a
given state s ∈ S reaches a state in G with a minimum de-
sired probability, say q. That is, we would like that

inf
σ∈Comp(π)

Pσ
s (Succ(π,G)) ≥ q. (3)

More generally, we would like that this holds from any par-
ticularly assumed state in a set A ⊆ S (say, a precondition).
So, we write A π−→q G if and only if for all state s ∈ A, the
condition in eq. (3) holds. Thus A π−→q G means that any
state in A can reach the goal G with at least probability q
following plan π.

Example 2. Continuing with Ex. 1, let G✓ be the set of all
states in which ✓ holds (i.e. G✓ = {s7, s8, s10}). Then
{s0}

π1−→q G✓ iff q = 0. This is a consequence of strategy

σ′
1 which is π1-compatible but Pσ′

1
s0 (Succ(π1, G✓)) = 0 (π1

and σ′
1 are as in Ex. 1).

For plan π2 = st mb, {s0}
π2−→q G✓ iff q ≤ 0.09. This is

due to π2-compatible strategy σ2 defined so that

σ2(s0)(st , µ3) = 1
σ2(s0 st s4)(⊥) = σ2(s0 st s5)(mb, µ8) = 1
σ2(s0 st s5 mb s9)(⊥) = σ2(s0 st s5 mb s10)(⊥) = 1,

with Pσ2
s0 (Succ(π2, G✓)) = Pσ2

s0 ({s0 st s5 mb s10 ⊥}) =
0.09 (the first equality is a consequence of s0 st s5 mb s10 ⊥
being the only complete execution in Succ(π2, G✓) with
non-zero probability). All other π2-compatible strategy
yields a probability larger than 0.09.

If we observe an LTS as a PLTS (as defined in Sec. 2)
there is a strong connection between π-compatible strate-
gies and strong executability of π. This connection is also
lifted to relate A π−→ G and A π−→1 G as stated in the next
proposition.

Proposition 4. For every LTS M = ⟨S,Act,→,V⟩, state
s ∈ S, plan π ∈ Act∗, and A,G ⊆ S,

1. π is SE at s iff infσ∈Comp(π) Pσ
s (Succ(π, S)) = 1, and

2. π is SE at A and A π−→ G iff A π−→1 G.

Proof sketch. Observe that Pσ
s (Succ(π, S)) = Pσ

s ({ρ⊥ |
ρ̄ = π ∧ first(ρ) = s}) (⋆) for all s ∈ S and σ ∈ Comp(π).

For (⇒) of item 1, using (⋆) suppose by contradiction
that that there exists σ ∈ Comp(π) and ρ ∈ Execf such that
ρ̄ ̸= π, first(ρ) = s, and Pσ

s ({ρ⊥}) > 0. Analyizing ρ̄ ̸= π
by cases ρ̄ ⪇ π (the prefix should be proper), π ⪇ ρ̄, and
π[i] ̸= ρ̄[i] for some 1 ≤ i ≤ min(|π|, |ρ̄|), the contradiction
is obtained by eq. (2) and Def. 3.

For (⇐) of item 1, we suppose s
π[..i]−−−→ t for i < |π|.

Considering (⋆), eq. (2) and Def. 3, a π-compatible strategy
σ that precisely follows π[..i] from s to t (which exists by

hypothesis), reveals the existence of a transition t
π[i+1]−−−−→ v.

For item 2, because of item 1, it suffices to show that for
all s ∈ A and SE plan π at s, s π−→ t implies t ∈ G iff
infσ∈Comp(π) Pσ

s (Succ(π,G)) = 1. This follows by con-
sidering (⋆) and eqs. (1) and (2).

Prop. 4 sets the bases to understand what we expect in a
probabilistic setting: we would like to validate whether an
agent knows how to achieve a goal with at least some given
probability of success. That is, plans might not be perfect
in a setting where actions are subject to failure or to random
outcome. Therefore we introduce a probabilistic variant of
Kh, denoted Khq(ψ,φ) here, which is interpreted as “the
agent knows how to achieve a goal φ given that ψ holds,
with probability at least q”.

Definition 4. The language LKhq is defined by

φ,ψ ::= p | ¬φ | φ ∨ ψ | Khq(ψ,φ),

where p ∈ Prop and q ∈ (0, 1].

Item 2 in Prop. 4 shows that expression A π−→1 G cap-
tures both the idea of strong executability and the successful
realization of a goal G. In a probabilistic setting, plans are
allowed to fail, so the idea of strong executability is inconve-
nient. Instead, we are interested in that a plan π is realizable
with at least probability q, and moreover, we are only inter-
ested in the realization of π if it achieves the goal G. That is
why we define A π−→q G to mean that from any state in A,
the goalG is achieved with plan π with at least probability q.
This is central for the definition of the semantics of LKhq .

Definition 5. Let M = ⟨S,Act,→,V⟩ be a PLTS and let
s ∈ S. The satisfiability relation |= for LKhq is defined in-
ductively as usual for the Boolean operators and

M, s |= Khq(ψ,φ) iffdef there exists π ∈ Act∗

s.t. JψKM π−→q JφKM,

where JχKM = {s ∈ S | M, s |= χ}.

In Def. 4 we requested that the probability bound is q > 0.
The choice is due to the fact that JψKM π−→0 JφKM is always
true since any probability is larger than or equal to 0.

Example 3. For the running example, for every state s,
Me, s |= Kh0.5(init,✓). This is explained through plan
rm pn . Notice also that Me, s |= ¬Khq(init,✓) for any
q > 0.5. One may think this is not the case since, for exam-
ple, there is a way to successfully realize the plan st pn with

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

233

probability 0.9 (starting with s0
st−→ µ5). However, by start-

ing instead with s0
st−→ µ3, the same plan yields probability

0.1 (and hence JinitKM st pn−−−→q J✓KM iff q ≤ 0.1).
In the following we show that there is strong connection

between LKh and LKhq when limiting to LTSs models. We
first present the next lemma which basically states that in
LTS, plans that are realizable with some probability are also
realized with probability 1.
Lemma 1. For every LTS M = ⟨S,Act,→,V⟩, s ∈ S and
A,G ⊆ S,

1. infσ∈Comp(π) Pσ
s (Succ(π,G)) > 0 iff

infσ∈Comp(π) Pσ
s (Succ(π,G)) = 1, and

2. A π−→q G for some q > 0 iff A π−→1 G.

Proof. For implication (⇒) of item 1 suppose by contradic-
tion that infσ∈Comp(π) Pσ

s (Succ(π,G)) < 1. Then there are
σ ∈ Comp(π) and ρ ∈ Execf such that Pσ

s ({ρ⊥}) > 0
and ρ⊥ /∈ Succ(π,G). Say ρ = s0 a1 s1 . . . sn−1 an sn.
Necessarily s0 = s. Define strategy σ⋆ such that, for all
0 ≤ i < n, σ⋆(s0 a1 s1 . . . si−1 ai si)(ai+1,∆si+1) = 1,
σ⋆(ρ)(⊥) = 1, and σ⋆(ρ′) = σ(ρ′) for all other ρ′ ∈
Execf . Since σ is π-compatible and for all 0 ≤ i < n,
σ(s0 a1 s1 . . . si−1 ai si)(ai+1,∆si+1

) > 0, it should not
be hard to check that σ⋆ is also π-compatible. Using
eq. (2), we calculate that Pσ⋆

s ({ρ⊥}) = 1 and hence
Pσ⋆

s (Succ(π,G)) = 0 contradicting the hypothesis that
Pσ⋆

s (Succ(π,G)) > 0. Since implication (⇐) is direct,
item 1 is proved. Item 2 follows directly from item 1.

Below we recursively define the mapping rp : LKhq →
LKh which removes probability bounds from formulas by

rp(p) = p rp(φ ∨ ψ) = rp(φ) ∨ rp(ψ)
rp(¬φ) = ¬rp(φ) rp(Khq(ψ,φ)) = Kh(rp(ψ), rp(φ))

The following proposition states the exact correspondence
between LKh and LKhq over LTSs.
Proposition 5. For all LTS M = ⟨S,Act,→,V⟩, s ∈ S and
φ ∈ LKhq , M, s |= φ iff M, s |= rp(φ).

The proposition can be proven by structural induction on
the formula, and using Lemma 1 and Prop. 4.

Now we proceed to analyze the computational behavior
of LKhq . Let M be a PFA. Then M, s |= Khq(init, fin)
holds if there is a plan π ∈ Act∗ such that JinitKM π−→q

JfinKM, that is, if infσ∈Comp(π) Pσ
si
(Succ(π, F)) ≥ q, where

JinitKM = {si} and F = {s ∈ S | fin ∈ V(s)}. Since
a PFA is deterministic, infσ∈Comp(π) Pσ

si
(Succ(π, F)) =

Pσπ
si
(Succ(π, F)) with σπ as in Sec. 2. Thus, checking

M, s |= Khq(init, fin) is equivalent to checking problem 1
in Prop. 1, yielding the following theorem.
Theorem 1. The model-checking problem for LKhq is unde-
cidable.

The above result shows a huge jump in the computational
behaviour of knowing-how: while model-checking for LKh

is PSpace-complete, considering probabilities leads to un-
decidability of the same problem.

4.2 Indistinguishable Classes
Just like we did for LKh, we want to extend LU

Kh to a proba-
bilistic setting. A first natural approach is to keep the same
spirit of LKh, in which plans are a priori commitments that
are followed as pre-established.

First, we need to extend PLTSs with a perception U to
reflect uncertainty.
Definition 6. An uncertainty-based LTS (PLTSU) is a tuple
M = ⟨S,Act,→,U,V⟩ such that ⟨S,Act,→,V⟩ is a PLTS,
and U ⊆ P(Act∗) \ ∅ is the perception.

In this setting, we reinterpret that Khq(ψ,φ) can only be
successful if there is a class Π ∈ U such that every π ∈ Π
that starts at ψ ends in φwith probability at least q. Since the
interpretation of the agent is that all plans in Π are equiva-
lent, then all of them must perform as desired. This idea
tries to extend to probability the non-probabilistic seman-
tics of Def. 2. Under this new idea, we call the logic LU

Khq ,
whose semantics is captured in the next definition.
Definition 7. Let M = ⟨S,Act,→,U,V⟩ be a PLTSU and
let s ∈ S. The satisfiability relation |= for LU

Khq is defined
inductively as usual for the Boolean operators and

M, s |= Khq(ψ,φ) iffdef there exists Π ∈ U s.t.
for all π ∈ Π, JψKM π−→q JφKM,

where JχKM = {s ∈ S | M, s |= χ}.
Example 4. Let π1 = lf mb, π2 = st mb, π3 =
st pn , π4 = rm mb, and π5 = rm pn . Define U1 =
{{π1}, {π2, π3}, {π4, π5}} and let M1

e be the PLTSU ex-
tending the PLTS Me with perception U1. Then, for all
s ∈ S, M1

e , s |= Kh0.45(init,✓) thanks to class {π4, π5},
since JinitKM π4−→0.45 J✓KM and JinitKM π5−→0.5 J✓KM.

Consider now U2 = {{π1}, {π2, π3, π4, π5}} and let M2
e

be the PLTSU extending the PLTS Me with perception U2.
Notice that infσ∈Comp(π1) Pσ

s0(Succ(π1,✓))=0 and hence
class {π1} does not provide any probability of success. For
class {π2, π3, π4, π5}, in particular, JinitKM π2−→q J✓KM iff
q ≤ 0.09. Therefore, M2

e , s |= ¬Kh0.1(init,✓).
The following proposition states the exact correspondence

between LU
Kh and LU

Khq over LTSUs.
Proposition 6. For all LTSU M = ⟨S,Act,→,U,V⟩, s ∈ S
and φ ∈ LU

Khq , M, s |= φ iff M, s |= rp(φ).
The proposition can be proven by structural induction on

the formula, and again using Lemma 1 and Prop. 4. It
turns out that the model checking for LU

Khq is also unde-
cidable contrary to the PTime problem to the relative non-
probabilistic logic (Demri and Fervari 2023).
Theorem 2. The model-checking problem for LU

Khq is unde-
cidable.

Proof. Let M = ⟨S,Act,→,U,V⟩ be a PLTSU so that U =
{{Act∗}} and ⟨S,Act,→,V⟩ is a complete PFA. (A PFA is
complete if for all s ∈ S and a ∈ Act exists µ ∈ Dist(S) s.t.
s

a−→ µ. Also, any PFA has an equivalent complete PFA.)
M, s |= ¬Khq(init, fin) holds if there is a plan π ∈ Act∗

such that it does not happen that JinitKM π−→q JfinKM,

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

234

or equivalently, if there is some π ∈ Act∗ such that
infσ∈Comp(π) Pσ

si
(Succ(π, F)) < q, where JinitKM = {si}

and F = {s ∈ S | fin ∈ V(s)}. Since the PFA is determin-
istic, this is also equivalent to say that there is π ∈ Act∗

such that Pσπ
si
(Succ(π, F)) < q. This is exactly problem 2

in Prop. 1, hence yielding the theorem.

4.3 Indistinguishability with Adaptiveness
An alternative way to extend LU

Kh to a probabilistic setting
is to consider adaptive plans. In reference to Ex. 4, notice
that, although M1

e , s |= Kh0.45(init,✓) (witnessed by class
{π4, π5}), M1

e , s |= ¬Khq(init,✓) for all q > 0.45. How-
ever, since the agent’s perception is that π4 and π5 are equiv-
alent, there is no reason to commit to one plan that is about to
fail while it is still possible to continue with the other. Since
the class {π4, π5} does not distinguish among its plans we
might as well measure the class success as a whole. Thus,
the decision whether to continue with π4 and π5 after tran-
sition s0

rm−−→ µ4 depends of the random outcome induced
by µ4. Notice that, by proceeding adaptively, the likelihood
to succeed in this case reaches 0.95.

In this new view, the concept of a single plan compatibil-
ity becomes too strong. Thus, we rather ask strategies to be
compatible with a whole class as follows.

Definition 8. Given a set of plans Π ⊆ Act∗, a strategy σ is
Π-compatible if for all ρ ∈ Execf such that ρ̄ ∈ pref(Π),

1. σ(ρ)(a, µ) > 0 implies ρ̄a ∈ pref(Π), and
2. σ(ρ)(⊥) > 0 implies that either ρ̄ ∈ Π or {ρ̄a |

last(ρ)
a−→ µ} ∩ pref(Π) = ∅.

Let Comp(Π) denote the set of all Π-compatible strategies.

Notice that a strategy is {π}-compatible if and only if it
is also π-compatible.

Example 5. Consider perception U1 of Ex. 4 and let Π2,3 =
{π2, π3} and Π4,5 = {π4, π5} be two of its classes. Strategy
σ3, defined so that

σ3(s0)(st , µ3) = σ3(s0)(st , µ5) = 0.5
σ3(s0 st s4)(pn, µ7) = σ3(s0 st s5)(mb, µ8) = 1
σ3(s0 st s4 pn s8)(⊥) = 1
σ3(s0 st s5 mb s9)(⊥) = σ3(s0 st s5 mb s10)(⊥) = 1,

is Π2,3-compatible but not π2-compatible or π3-compatible.
Notice the adaptive characteristic of σ3 that chooses to per-
form s4

pn−−→ µ7 after st if in state s4 but chooses s5
mb−−→ µ8

after st if in state s5.
Similarly, strategy σ4, discussed at the beginning of this

subsection, is defined so that

σ4(s0)(rm, µ4) = 1
σ4(s0 rm s4)(pn, µ7) = σ4(s0 rm s5)(mb, µ8) = 1
σ4(s0 rm s4 pn s8)(⊥) = 1
σ4(s0 rm s5 mb s9)(⊥) = σ4(s0 rm s5 mb s10)(⊥) = 1,

and can be verified to be Π4,5-compatible. However, it is
neither π4-compatible nor π5-compatible.

We extend some concepts already defined for single plans
to sets of plans. So, let Π ⊆ Act∗ be a set of plans and let

G ⊆ S be a set of goal states. The set of successful com-
plete executions reaching G with a plan in Π is defined by
Succ(Π, G) = {ρ⊥ ∈ CExecf | ρ̄ ∈ Π and last(ρ) ∈ G}.
The expression

inf
σ∈Comp(Π)

Pσ
s (Succ(Π, G)) ≥ q. (4)

states that any Π-compatible strategy σ starting from a given
state s ∈ S reaches a state in G with at least probability q.
More generally, we extend this concept to a set of assumed
starting states A ⊆ S by writing A Π−→q G iff for all state

s ∈ A, eq. (4) holds. Thus A Π−→q G means that any state in
A can reach the goal G with at least probability q following
some plan in Π in an adaptive manner. Then, the agent
can adapt to the best course of action in Π according to the
available decisions along the chosen execution path.

Example 6. Resuming the example, {s0}
Π4,5−−−→0.95 G✓

holds in M1
e . This is witnessed by strategy σ4 and yields

the value anticipated at the introduction of Sec. 4.3.
In M2

e , if Π⋆ = {π2, π3, π4, π5} ∈ U2, {s0}
Π⋆−−→0.91 G✓

witnessed by the Π⋆-compatible strategy σ5 defined so that

σ5(s0)(st , µ3) = 1
σ5(s0 st s4)(pn, µ7) = σ5(s0 st s5)(mb, µ8) = 1
σ5(s0 st s4 pn s8)(⊥) = 1
σ5(s0 st s5 mb s9)(⊥) = σ5(s0 st s5 mb s10)(⊥) = 1.

For both M1
e and M2

e , {s0}
{π1}−−−→q G✓ iff q = 0, as

expected from Ex. 2.
In this new context, Khq(ψ,φ) is reinterpreted so that

there is an indistinguishable class Π ∈ U such that for every
state that satisfies ψ, φ is reached with probability at least
q following any plan in Π with every Π-compatible strat-
egy. Under this new concept, we call the logic LA

Khq and its
semantics is captured in the next definition.
Definition 9. Let M = ⟨S,Act,→,U,V⟩ be a PLTSU and
let s ∈ S. The satisfiability relation |= for LA

Khq is defined
inductively as usual for the Boolean operators and

M, s |= Khq(ψ,φ) iffdef there exists Π ∈ U

s.t. JψKM Π−→q JφKM,

where JχKM = {s ∈ S | M, s |= χ}.
Notice that there is a universal cuantification on Π-

compatible strategies implicit in the “inf” within expression
JψKM Π−→q JφKM (see eq. (4)). This quantification parallels
the universal quantification of plans in Π in Def. 2. How-
ever, in Def. 9 plans in Π are neither existential nor uni-
versally quantified. Instead they are probabilistically quan-
tified for each Π-compatible strategy through expression
Pσ
s (Succ(Π, G)) within eq. (4).

Example 7. For all s ∈ S, M1
e , s |= Kh0.95(init,✓) since

{s0}
Π4,5−−−→0.95 G✓. However, M2

e , s |= ¬Kh0.95(init,✓).

This is a consequence of {s0}
{π1}−−−→q G✓ iff q = 0 and

{s0}
Π⋆−−→q G✓ iff q ≤ 0.91, the latter being witnessed by

Π⋆-compatible strategy σ5 (see Ex. 6).

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

235

s0

s1 s2

s3 s4

init

✗ ✓

µ1

µ2

µ3 µ4

µ5

a

b
c c

b

0.5 0.5

0.1

0.9

0.1

0.9 0.9

0.1

0.1

0.9

M3
e

s0 s1

s2 s3

s4

init init

✓

µ1 µ2

µ3 µ4

a b

b a

1 1

1 1

M4
e

Figure 2: Counterexamples.

Logics LU
Khq and LA

Khq are not directly related. On the
one hand M1

e , s |=LA
Khq

Kh0.95(init,✓) (see Ex. 7) but
M1

e , s |=LU
Khq

¬Kh0.95(init,✓) (see Ex. 4). (Subscripts
in |= distinguish the logic in which the formula holds.)
On the other hand, consider PLTSU M3

e in Fig. 2 with
U3 = {{ab, ac}}. It is not hard to check that M3

e , s |=LU
Khq

Kh0.5(init,✓) but M3
e , s |=LA

Khq
¬Kh0.5(init,✓). The sec-

ond one is explained by an {ab, ac}-compatible strategy that
always chooses wrongly: at state s1 it chooses the c transi-
tion while at state s2 it chooses the b transition.

It is also the case that LU
Kh is not as strongly related to

LA
Khq as it is to LU

Khq . Indeed, consider LTSU M4
e in Fig. 2

with U4 = {{ab, ba}}. Then M4
e , s |=LA

Khq
Kh1(init,✓) but

M4
e , s |=LU

Kh
¬Kh(init,✓). However, for an LA

Khq formula
φ in which Khq does not appear in the scope of a negation,
if rp(φ) holds in an LTSU under LU

Kh, then φ holds in the
same LTSU under LA

Khq . We show this after presenting the
next lemma.

Lemma 2. For every LTSU M with perception U, s ∈ S,
and Π ∈ U,

1. if infσ∈Comp(π) Pσ
s (Succ(π,G)) = 1 for all π ∈ Π, then

infσ∈Comp(Π) Pσ
s (Succ(Π, G)) = 1; and

2. for all A,G ⊆ S if A π−→1 G for all π ∈ Π, A Π−→1 G.

Proof sketch. The proof of item 1 follows by assuming
that there exist σ ∈ Comp(Π) and ρ ∈ Execf with
Pσ
s ({ρ⊥}) > 0 and either ρ̄ /∈ Π or last(ρ) /∈ G and deriv-

ing from σ a π-compatible strategy σ⋆ with π ∈ Π such that
Pσ⋆

s (Succ(π,G)) = 0 contradicting the assumption. Item 2
follows directly from item 1.

Proposition 7. Let χ ∈ LA
Khq so that no operator Khq ap-

pears in the scope of ¬. For all LTSU M and s ∈ S,
M, s |= rp(χ) implies M, s |= χ.

Proof. The proof follows by distinguishing the cases in
which χ contains some Khq operator or it does not. If χ
does not contain Khq , then straightforwardly M, s |= rp(χ)
iff M, s |= χ by structural induction.

The case in which χ contains Khq also follows by struc-
tural induction. In particular, the case χ = Khq(ψ,φ) fol-
lows from Lemma 2 (item 1) and Prop. 4 (item 2).

In the rest of this section, we show that the problem
of model checking for LA

Khq is decidable provided that the
classes of the agent’s perception are regular languages. We
first restate deterministic finite automata in our setting.

A deterministic finite automaton (DFA) is a PFA that is
also an LTS. Let D be a DFA. The language accepted by D is
defined by L(D) = L(D, 1), i.e., it is the language accepted
with probability 1 by D seen as a PFS. We say that D is live
if for all s ∈ S there is some ρ ∈ Execf so that first(ρ) = s
and last(ρ) ∈ F (F is the set of final states defined as for
PFAs in Sec. 2). That is, D is live if all of its states are
involved in the acceptance of some word. Notice that for
any regular language there is a live DFA that accepts it.

Let M = ⟨SM,Act,→M,VM⟩ be a PLTS. Let D =
⟨SD,Act,→D,VD⟩ be a live DFA with initial state ti (i.e.
init ∈ VD(ti)). The product PLTS of M and D is defined by
M×D = ⟨SM × SD,Act,→,V⟩ where V(s, t) = VM(s)∪
VD(t) and → ∈ (SM × SD)× Act×Dist(SM × SD) is the
smallest relation such that

s
a−→M µ and t a−→D ∆t′ imply (s, t)

a−→ µ⊗∆t′ ,

with µ⊗∆t′ being the usual product of distributions defined
by µ⊗∆t′(s, t) = µ(s) ·∆t′(t).

The following lemma is central to provide a model check-
ing algorithm for LA

Khq .
Lemma 3. Let M be a PLTS and let G ⊆ SM be a set of
goal states. Let Π ⊆ Act∗ be a regular language accepted
by the live DFA D with initial state ti ∈ SD. DefineRG×F =

{ρ ∈ CExecM×D | last(ρ[..i]) ∈ G×F for some i ≥ 0}
(viz., the set of complete executions that reach simultane-
ously both the goal and a final accepting state). Besides, let
si ∈ SM. Then:

1. For all strategy σ of M×D, there is a Π-compatible strat-
egy σ⋆ of M s.t. Pσ

(si,ti)
(RG×F) = Pσ⋆

si
(Succ(Π, G)).

2. For all Π-compatible strategy σ of M there is a strategy
σ⋆ of M×D s.t. Pσ

si
(Succ(Π, G)) = Pσ⋆

(si,ti)
(RG×F).

3. inf
σ∈Comp(Π)

Pσ
si
(Succ(Π, G)) = inf

σ
Pσ
(si,ti)

(RG×F).

4. For A ⊆ SM, A Π−→q G iff inf
s∈A

inf
σ

Pσ
(si,ti)

(RG×F) ≥ q.

Proof. We first state some general facts that would later sim-
plify the proof of each of the items of the lemma. First it is
not hard to verify that

RG×F =
⋃

ρ∈R Cyl(ρ) and (5)

Succ(Π, G) =
⋃

ρ∈S Cyl(ρ) (6)

where

R = {ρ ∈ ExecM×D
f | last(ρ) ∈ G×F and

for all 0 ≤ k < |ρ|, last(ρ[..k]) /∈ G×F}, and

S = {ρ ∈ ExecMf | ρ̄ ∈ Π, last(ρ) ∈ G and
for all 0 ≤ k < |ρ|, either last(ρ[..k]) /∈ G or ρ̄[..k] /∈ Π}.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

236

Let ρ, ρ′ ∈ R. Then, if ρ ≤ ρ′, necessarily ρ = ρ′. There-
fore, if ρ ̸= ρ′, Cyl(ρ) ∩ Cyl(ρ′) = ∅. Also notice that if
ρ ∈ R, ρ̄ is accepted by D and hence ρ̄ ∈ Π. Similarly, for
ρ, ρ′ ∈ S , if ρ ≤ ρ′ then ρ = ρ′. Thus, if instead ρ ̸= ρ′,
Cyl(ρ) ∩ Cyl(ρ′) = ∅.

Let Ri = {ρ ∈ R | first(ρ) = (si, ti)} and Si = {ρ ∈ S |
first(ρ) = si}. By eq. (5), for every strategy σ,

Pσ
(si,ti)

(RG×F) =
∑

ρ∈Ri
Pσ
(si,ti)

(Cyl(ρ)). (7)

Similarly, by eq. (6), for every strategy σ,

Pσ
si
(Succ(Π, G)) =

∑
ρ∈Si

Pσ
si
(Cyl(ρ)). (8)

Let ρ = (s0, t0) a1 (s1, t1) . . . (sn−1, tn−1) an (sn, tn) ∈
ExecM×D

f . Define the mapping proj by proj(ρ) =
s0 a1 s1 . . . sn−1 an sn. It turns out that proj is a bijection
from Ri to Si. Indeed, suppose ρ, ρ′ ∈ Ri and ρ is as before.
Then ρ′ = (s0, t

′
0) a1 (s1, t

′
1) . . . (sn−1, t

′
n−1) an (sn, t

′
n).

Notice that (s0, t0) = (si, ti) = (s0, t
′
0). Since D is deter-

ministic, then necessarily tk = t′k for all 0 ≤ k ≤ n, which
shows that proj is injective. To prove that proj is surjec-
tive, let ρ = s0 a1 s1 . . . sn−1 an sn ∈ Si. Then s0 = si
and, since ρ̄ ∈ Π, a1 a2 . . . an is accepted by D. As a
consequence there are t0, t1, . . . , tn ∈ SD with t0 = ti,
tn ∈ F and tk

ak+1−−−→ ∆tk+1
for all 0 ≤ k < n. Hence,

ρ′ = (s0, t0) a1 (s1, t1) . . . (sn−1, tn−1) an (sn, tn) ∈
ExecM×D

f . If, for some k < n, (sk, tk) ∈ G×F ,
a1 a2 . . . ak ∈ Π and sk ∈ G contradicting that ρ ∈ Si.
Therefore ρ′ ∈ Ri.

Now we address item 1. Let σ be a strategy for
M×D. We define strategy σ⋆ for M as follows. Let
ρ = (s0, t0) a1 (s1, t1) . . . (sn−1, tn−1) an (sn, tn) ∈ Ri

and 0 ≤ k ≤ |ρ|, then:

1. If k = |ρ|, let σ⋆(proj(ρ))(⊥) = 1. Since proj(ρ) = ρ̄ ∈
Π, then σ⋆ satisfies item 2 of Def. 8 for proj(ρ).

2. If instead k < |ρ|, let σ⋆(proj(ρ)[..k])(ak+1, µ) =
σ(ρ[..k])(ak+1, µ ⊗ ∆tk+1

) for all µ ∈ Dist(S). Since
proj(ρ)[..k] ∈ pref(Π) and proj(ρ)[..k]ak+1 ∈ pref(Π),
then σ⋆ satisfies item 1 of Def. 8 for proj(ρ)[..k].

Since proj is a bijection from Ri to Si, σ⋆ is well defined for
all executions that are prefixes of some execution in Si and,
moreover, it satisfies the conditions of Def. 8 for all those
executions. Then σ⋆ can be defined conveniently for any
other execution so that it is indeed Π-compatible.

Following eqs. (1) and (2), it should not be hard to see that
Pσ
(si,ti)

(Cyl(ρ)) = Pσ⋆

si
({proj(ρ)⊥}) = Pσ⋆

si
(Cyl(proj(ρ))).

Hence, from eqs. (7) and (8), item 1 follows.
The proof of item 2 follows in a similar way to that of

item 1. Item 3 follows from items 1 and 2, and item 4 is a
direct consequence of item 3.

As a consequence of item 4 in Lemma 3, the validity
of A Π−→q G can be checked on a simple extension of the
product PLTS M×D. More precisely, extend M×D with
a fresh state sA, a new fresh action τ /∈ Act and a tran-
sition sA

τ−→ ∆s for each s ∈ A. Then A
Π−→q G iff

Algorithm 1 Model checking algorithm for LA
Khq

Input: PLTSU M, with perception given as a family of live DFA
{Di}i∈I , LA

Khq formula φ
Output: JφKM
Function: Check(φ)
1: switch (φ) do
2: case p ∈ Prop: return {s ∈ S | p ∈ V(s)}
3: case ¬ψ: return S \Check(ψ)
4: case ψ ∧ χ: return Check(ψ) ∩ Check(χ)
5: case Khq(ψ, χ):
6: A := Check(ψ)
7: G := Check(χ)
8: for each i ∈ I do
9: Construct M×Di extended with sA

10: qmin := MeanReachProb(G×Fi)
11: if (qmin ≥ q) thenreturn S
12: return ∅

infσ Pσ
sA(RG×F) ≥ q. The full model checking algorithm

is implemented recursively as given in Alg. 1 where func-
tion MeanReachProb(G×Fi) (with Fi being the set of final
states of Di) calculates the minimun reachability probabil-
ity infσ Pσ

sA(RG×Fi
) using standard techniques (Puterman

1994; Baier and Katoen 2008). In particular, notice that in
line 11, the function returns the whole set S of states if the
i-th DFA witnesses the validity of Khq(ψ, χ) and, in 12, it
returns the empty set if no DFA witnesses Khq(ψ, χ).

Since infσ Pσ
sA(RG×Fi

) can be formulated as a linear op-
timization problem (Puterman 1994; Bianco and de Alfaro
1995; Baier and Katoen 2008), MeanReachProb(G×Fi) can
be implemented as a polynomial time algorithm (e.g. (Kar-
markar 1984)). Thus, a simple inspection of Alg. 1 yields
the next theorem.

Theorem 3. The model-checking problem for LA
Khq is decid-

able provided each class in U is a regular language. More-
over, if each Π ∈ U is given as input as a live DFA, the
problem is in PTime.

5 Final Remarks
We investigated the model-checking problem for probabilis-
tic variants of knowing-how logics. In particular, we proved
that for the direct extensions of the works from (Wang 2015)
and (Areces et al. 2021) the problem is undecidable. Then,
we detect an interesting variant in which the agent proceeds
adaptatively, for which model checking is decidable in poly-
nomial time. Arguably, our “adaptative” view subtly differs
from the “close-loop” policy in control, since our adaptative
agent chooses with no criteria among the decisions she con-
siders equivalent. Furthermore, our results shed some new
light for understanding constrained knowing how logics, and
introduce novel formalisms with interesting applications.

For future work, it would be interesting to characterize
the exact expressive power of LU

Khq and LA
Khq , and compare

them. In particular, define associated notions of bisimula-
tion and prove characterization theorems. Also, it would be
interesting to define proof systems for the logics we investi-
gated. Finally, our next step will be to implement Alg. 1 into
the PRISM tool (Kwiatkowska, Norman, and Parker 2011).

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

237

Acknowledgments
This work was supported by Agencia I+D+i grant
PICT 2021-00400, the EU H2020 research and inno-
vation programme under the Marie Skłodowska-Curie
grant agreements 101008233 (MISSION), the IRP SIN-
FIN, SeCyT-UNC grants 33620230100384CB (MECANO) and
33620230100178CB, and as part of France 2030 program
ANR-11-IDEX-0003.

References
Aminof, B.; Kwiatkowska, M.; Maubert, B.; Murano, A.;
and Rubin, S. 2019. Probabilistic strategy logic. In Proceed-
ings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, 32–38. International Joint
Conferences on Artificial Intelligence Organization.
Areces, C.; Fervari, R.; Saravia, A. R.; and Velázquez-
Quesada, F. R. 2021. Uncertainty-based semantics for multi-
agent knowing how logics. In 18th Conference on Theo-
retical Aspects of Rationality and Knowledge (TARK 2021),
volume 335 of EPTCS, 23–37. Open Publishing Associa-
tion.
Areces, C.; Fervari, R.; Saravia, A. R.; and Velázquez-
Quesada, F. R. 2025. Uncertainty-based knowing how logic.
Journal of Logic and Computation 35(1):1–35.
Baier, C., and Katoen, J. 2008. Principles of model check-
ing. MIT Press.
Baier, C.; Forejt, V.; de Alfaro, L.; and Kwiatkowska, M.
2018. Model checking probabilistic systems. In Clarke,
E. M.; Henzinger, T. A.; Veith, H.; and Bloem, R., eds.,
Handbook of Model Checking. Springer. 963–999.
Berthon, R.; Katoen, J.; Mittelmann, M.; and Murano, A.
2024. Natural strategic ability in stochastic multi-agent sys-
tems. In Thirty-Eighth AAAI Conference on Artificial Intel-
ligence, AAAI 2024, 17308–17316. AAAI Press.
Bianco, A., and de Alfaro, L. 1995. Model checking of
probabilistic and nondeterministic systems. In Foundations
of Software Technology and Theoretical Computer Science,
499–513. Berlin, Heidelberg: Springer Berlin Heidelberg.
Bulling, N., and Jamroga, W. 2009. What agents can prob-
ably enforce. Fundamenta Informaticae 93(1-3):81–96.
Chen, T., and Lu, J. 2007. Probabilistic alternating-time
temporal logic and model checking algorithm. In Proceed-
ings of the Fourth International Conference on Fuzzy Sys-
tems and Knowledge Discovery - Volume 02, FSKD ’07,
35–39. USA: IEEE Computer Society.
Cimatti, A.; Roveri, M.; and Traverso, P. 1998. Strong plan-
ning in non-deterministic domains via model checking. In
Proceedings of the Fourth International Conference on Arti-
ficial Intelligence Planning Systems, Pittsburgh, Pennsylva-
nia, USA, 1998, 36–43. AAAI.
Demri, S., and Fervari, R. 2023. Model-checking for ability-
based logics with constrained plans. In 37th AAAI Con-
ference on Artificial Intelligence (AAAI 2023), 6305–6312.
AAAI Press.
Fervari, R.; Herzig, A.; Li, Y.; and Wang, Y. 2017. Strategi-
cally knowing how. In 26th International Joint Conference

on Artificial Intelligence (IJCAI 2017), 1031–1038. Interna-
tional Joint Conferences on Artificial Intelligence.
Herzig, A., and Troquard, N. 2006. Knowing how to
play: uniform choices in logics of agency. In 5th Interna-
tional Joint Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2006), 209–216. ACM.
Herzig, A. 2015. Logics of knowledge and action: criti-
cal analysis and challenges. Autonomous Agents and Multi-
Agent Systems 29(5):719–753.
Hintikka, J. 1962. Knowledge and Belief. Cornell University
Press.
Jamroga, W., and Ågotnes, T. 2007. Constructive knowl-
edge: what agents can achieve under imperfect information.
Journal of Applied Non Classical Logics 17(4):423–475.
Karmarkar, N. 1984. A new polynomial-time algorithm for
linear programming. Comb. 4(4):373–396.
Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995. An
algorithm for probabilistic planning. Artificial Intelligence
76(1):239–286. Planning and Scheduling.
Kwiatkowska, M. Z.; Norman, G.; and Parker, D. 2011.
PRISM 4.0: Verification of probabilistic real-time systems.
In Computer Aided Verification - 23rd International Con-
ference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings, volume 6806 of Lecture Notes in Computer
Science, 585–591. Springer.
Lespérance, Y.; Levesque, H. J.; Lin, F.; and Scherl, R. B.
2000. Ability and knowing how in the situation calculus.
Studia Logica 66(1):165–186.
Li, Y., and Wang, Y. 2017. Achieving while maintaining:
A logic of knowing how with intermediate constraints. In
7th Indian Conference on Logic and Its Applications (ICLA
2017), LNCS, 154–167. Springer.
Li, Y. 2017. Stopping means achieving: A weaker logic of
knowing how. Studies in Logic 9(4):34–54.
Madani, O.; Hanks, S.; and Condon, A. 1999. On the unde-
cidability of probabilistic planning and infinite-horizon par-
tially observable markov decision problems. In Proceed-
ings of the Sixteenth National Conference on Artificial Intel-
ligence and Eleventh Conference on Innovative Applications
of Artificial Intelligence, 541–548. AAAI Press / The MIT
Press.
McCarthy, J., and Hayes, P. J. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Machine Intelligence, 463–502. Edinburgh University Press.
Moore, R. 1985. A formal theory of knowledge and ac-
tion. In Formal Theories of the Commonsense World. Ablex
Publishing Corporation.
Naumov, P., and Tao, J. 2018. Together we know how to
achieve: An epistemic logic of know-how. Artificial Intelli-
gence 262:279–300.
Naumov, P., and Tao, J. 2019. Knowing-how under uncer-
tainty. Artificial Intelligence 276:41–56.
Paz, A. 1971. Introduction to probabilistic automata. Com-
puter science and applied mathematics. Academic Press,
Inc.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

238

Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley Series in
Probability and Statistics. Wiley.
Rabin, M. O. 1963. Probabilistic automata. Inf. Control.
6(3):230–245.
Russell, S., and Norvig, P. 2020. Artificial Intelligence: A
Modern Approach. Pearson, 4th edition.
Segala, R. 1995. Modeling and verification of random-
ized distributed real-time systems. Ph.D. Dissertation, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA.
van der Hoek, W.; van Linder, B.; and Meyer, J. C. 2000. On
agents that have the ability to choose. Stud Logica 66(1):79–
119.
Wang, Y. 2015. A logic of knowing how. In 5th Inter-
national Workshop on Logic, Rationality, and Interaction
(LORI 2015), LNCS, 392–405. Springer.
Wang, Y. 2018a. Beyond knowing that: a new generation
of epistemic logics. In J. Hintikka on knowledge and game
theoretical semantics. Springer. 499–533.
Wang, Y. 2018b. A logic of goal-directed knowing how.
Synthese 195(10):4419–4439.

Proceedings of the 22nd International Conference on Principles of Knowledge Representation and Reasoning
Main Track

239

	Introduction
	Preliminaries
	Knowing How Logics
	Probabilistic Knowing How
	Linear Plans
	Indistinguishable Classes
	Indistinguishability with Adaptiveness

	Final Remarks

